Disturbance legacies and resilience simulation using an individual-based forest landscape model on the Andrews Experimental Forest

DB Code: 
TP125
Abstract: 

Disturbances are key drivers of forest ecosystem dynamics, and forests are well adapted to their natural disturbance regimes. However, as a result of climate change, disturbance frequency is expected to increase in the future in many regions. It is not yet clear how such changes might affect forest ecosystems, and which mechanisms contribute to (current and future) disturbance resilience. We here studied the 6364-ha HJ Andrews Experimental Forest landscape to investigate how patches of remnant old-growth trees (as one important class of biological legacies) affect the resilience of forest ecosystems to disturbance. Using the spatially explicit, individual-based forest landscape model iLand we analyzed the effect of three different levels of remnant patches (0%, 12%, and 24% of the landscape) on 500-year recovery trajectories after a large, high severity wildfire. In addition, we evaluated how three different levels of fire frequency (no fire, a historic fire return interval of 262 years, and a reduced fire return interval of 131 years) modulate the effects of initial legacies. The study investigated effects of legacies on the resilience of forest ecosystem structure (represented by canopy complexity as described by the rumple index), composition (proportion of late-seral species), and functioning (total ecosystem carbon storage). For each scenario of initial legacy and fire return interval 25 replicates were simulated. More information on the simulation methodology as well as the code and executable used for this study can be obtained at http://iLand.boku.ac.at. The dataset is completed and no further analyses are planned at this point. The results are published in Ecological Applications http://dx.doi.org/10.1890/14-0255.1.

Study date: 
May 01, 2014
Researchers: 

Rupert Seidl, Thomas A. Spies, Werner Rammer

Purpose: 

The purpose of this study was to determine the role and contribution of biological legacies to the resilience of the HJ Andrews landscape after large, high severity fire. Resilience is quantified for three indicators, i.e., total ecosystem carbon storage, canopy complexity (rumple index), and presence of late-seral species on the landscape.