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Summary

Canopy temperature Tcan is a key driver of plant function that emerges as a result of

interacting biotic and abiotic processes and properties. However, understanding controls on

Tcan and forecasting canopy responses to weather extremes and climate change are difficult

due to sparse measurements of Tcan at appropriate spatial and temporal scales. Burgeoning

observations of Tcan from thermal cameras enable evaluation of energy budget theory and

better understanding of how environmental controls, leaf traits and canopy structure

influence temperature patterns. The canopy scale is relevant for connecting to remote

sensing and testing biosphere model predictions. We anticipate that future breakthroughs in

understanding of ecosystem responses to climate change will result from multiscale

observations of Tcan across a range of ecosystems.

I. Introduction

Temperature is fundamentally important to almost all aspects of
plant function (Berry&Bj€orkman, 1980;K€orner, 2006).Themost
common measurement of plant temperature is that of the leaf
temperature Tleaf, given the central role leaves play in plant
metabolism and in water and energy cycling. Leaves are easily
measured compared with other organs, like roots. Tleaf directly

influences a variety of cellular properties and processes, including
membrane fluidity, enzyme reaction kinetics, and diffusion
constants and dissolution of CO2 and oxygen, which together
control rates of photosynthesis and respiration (Jones, 2013). Leaf
and tissue temperatures also indirectly impactmany aspects of plant
phenology and development, from dormancy to flowering (K€orner
&Hiltbrunner, 2018). The temperature of any aboveground plant
organ is strongly connected to air temperature Tair, but biological
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and environmental variations can cause large deviations (c. 20°C)
of Tleaf above and below Tair (e.g. Ehleringer et al., 1976; Smith &
Carter, 1988; Fauset et al., 2018; Blonder et al., 2020). For
example, in temperate and tropical alpine areas, plant stature and
leaf traits can lead to leaves being warmer (e.g. Sage & Sage, 2002)
or colder (Melcher et al., 1994) than Tair.

Though controls on Tleaf are generally well understood, and
satellite-based thermal measurements at coarse spatial resolution
have been available since the 1980s, there is little information on
high temporal frequency thermal regimes at canopy scales ranging
from individual tomultiple crowns.Understanding canopy scales is
crucial to upscale biophysical process models and observations
from leaves to ecosystems, and also to differentiate the responses of
different species or individuals to environmental stressors in
heterogeneous ecosystems.

Canopy temperature Tcan, which we define here as the average
temperature of multiple leaf assemblages aggregated from individ-
ual branches up to whole crowns, is rarely measured but strongly
influences – and is influenced by – ecosystem–atmosphere
exchanges of water, energy, and carbon (C) (Fig. 1). Techniques
for measuring Tcan are more established in the homogeneous
canopy structures of crops, where Tcan links directly to heat and
water stress (Jackson et al., 1981; Maes & Steppe, 2012; Ballester
et al., 2013). In natural ecosystems, however, Tcan measurements
can include multiple crowns with heterogenous plant heights and
diverse groupings of species and life forms. Wired contact sensors,
like thermocouples, present multiple practical and methodological
challenges formeasuringTcan, from representativeness to durability
(Kim et al., 2018). Given these limitations, it becomes clear why
our understanding of Tcan dynamics at fine spatial and temporal
scales is extremely limited.

There aremultiple canopy-scale temperaturemeasurements that
can be inferred from measurements of sensible heat (Kustas et al.,
2007) or upwelling longwave radiation fluxes (Norman & Becker,

1995; Kim et al., 2016), all of which are related to Tair (Table 1).
However, measuring Tcan as defined here is feasible only with
thermal imaging, as multiple leaf regions – though typically not
individual leaves – corresponding to different species or canopy
positions can be analyzed (Pau et al., 2018; Fig. 2). The advent of
relatively inexpensive and robust thermal cameras promises to
transform our understanding of Tcan regimes (Costa et al., 2013;
Seidel et al., 2016; Smigaj et al., 2017; Lapidot et al., 2019; Still
et al., 2019). Thermal cameras mounted on above-canopy towers
enable remotemeasurements over large areas and long time periods
(Aubrecht et al., 2016; Kim et al., 2016; Yi et al., 2020). Although
the images can be influenced by mid and lower canopy elements,
they typically capture upper canopy branches and leaves that are
directly in the camera’s field of view. Upper canopy leaves are most
likely to depart from adjacent Tair, as this region is often
simultaneously brighter, hotter, windier, and drier than the
understory during daytime, and typically colder at night. The
upper canopy absorbs most of the solar radiation in many
ecosystems, and it typically accounts for the majority of C and
water exchanges (Bonan, 2016).Critically, sunlit canopy leaves also
occupy the zone where most climate variations and stress are likely
to manifest (Hilker et al., 2008). Thus, thermal imaging of upper
canopy leaves can enable new insights into plant function and stress.

II. Canopy temperature strongly influences – and is
influenced by – exchanges of water, energy and CO2

with the atmosphere

Temperature effects on carbon and water fluxes

Many metabolic and biophysical processes depend nonlinearly on
temperature, particularly in the ranges experienced by most leaves
during periods of physiological activity (Yamori et al., 2014;Heskel
et al., 2016; Gimenez et al., 2019). For example, the catalytic
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Fig. 1 Energy,water, and carbon fluxes influenced by and influencing canopy temperature Tcan. Yellow and purple arrows represent shortwave and longwave
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activity of leaf metabolic enzymes follows well-characterized
exponential relationships with temperature (Bernacchi et al.,
2001). Similarly, vapor pressure deficit (VPD), the difference in
water vapor pressure between the saturated leaf intercellular spaces
and the air surrounding the leaf (Jarvis & Morison, 1981), is
nonlinearly related to Tleaf. Since leaves often reach temperatures
5–10°C higher than Tair during the daytime (e.g. Aubrecht et al.,
2016), estimates of processes like transpiration connected to VPD
can be erroneous if modelled with Tair. In turn, the predicted
response of leaf photosynthesis to temperature will be affected (Lin
et al., 2012). Indeed, Still et al. (2019) found that using measured
Tleaf to drive a leaf-level process model produced large increases in
modeled photosynthesis and transpiration compared with using
Tair as a driver.

Because of its role in metabolic processes, various measures of
Tair are typically used as explanatory variables in ecosystemmodels.
Ecosystem respiration is often modeled using Tair as a proxy for
plant and soil temperatures, which are rarely measured. However,
measurements of plant temperature should be more closely related
to ecosystemmetabolic fluxes. Indeed, Kim et al. (2016) found that
Tcan was more strongly associated with afternoon net ecosystem C
exchange than was Tair in a semi-arid pine forest. Similarly, Pau
et al. (2018) found for a semi-deciduous tropical forest that canopy
photosynthesis was more strongly correlated with Tcan than either
Tair orVPD.At larger scales, Sims et al. (2008) showed that amodel
incorporating vegetation temperature was a better predictor of
gross primary productivity than more complex models were.

III. Canopy temperature patterns and relationships to
structure and function

Canopy structure plays a large role in determining canopy
temperature dynamics

Stand structural characteristics strongly influence canopy tempera-
ture dynamics and the coupling between leaf and air temperatures.
For example, a larger difference inTleaf relative to above-canopyTair

in denser tree crowns was noted by Leuzinger & K€orner (2007),
Scherrer et al. (2011), and Aubrecht et al. (2016). A clear driver of
these differences is the turbulent exchange of sensible and latent heat
between tree canopies and the overlying atmosphere. The airspace in
dense canopies can often be decoupled from air aloft (Jarvis &
McNaughton, 1986) and can affect mass and energy exchanges
between canopies and the atmosphere (Aubinet, 2008). Surface
roughness also plays an important role, as do multiple aspects of
canopy structure, including leaf area density profiles and branch
patterns (Monson & Baldocchi, 2014). Decoupling is high in
homogeneous and short canopies, such as crops, grasslands, or even-
aged forest stands, as their low surface roughness suppresses turbulent
mixing, resulting in steep temperature gradients between the canopy
and surrounding air; in heterogenous canopies, greater isolation of
emergent tree canopies can lead to higher coupling (Monson &
Baldocchi, 2014). Canopy structure also influences radiation
absorption and Tcan. Uneven canopies absorb more radiation, as
scattered light not absorbed at the canopy top is likely to be absorbed
by leaves lower in the canopy (Roberts et al., 2004). Leaf geometric
and optical properties, as well as leaf angle distribution and
clumping, will also influence radiation absorption by the canopy.
Sunlit leaves can be 5–10°Cwarmer than shaded leaves (Doughty&
Goulden, 2008), and thus Tcan is strongly influenced by the relative
proportions of sunlit and shaded foliage, which can be determined
using multiangle imagery (e.g. Mu et al., 2017).

Nighttime measurements of canopy temperature can
illuminate processes that are not apparent from flux and
meteorological data

On clear nights, forest canopies cool by emitting more longwave
radiation towards the sky and the ground than they receive. The sky
is typically much colder than the canopy and has lower emissivity,

Table 1 Correlation statistics for various daytime temperature
measurements at contrasting forest sites in the Pacific Northwest, USA (a
dense old-growth Douglas fir/western hemlock moist forest at Wind River,
WA, andamature, relatively open canopy semi-aridPonderosapine forest at
Metolius,OR) anda tropical semi-deciduous forest onBarroColorado Island,
Panama.

Tcan Taero TLW LST

Wind River, WA
Tair 1.04x + 3.61

r = 0.99
1.0x + 3.11
r = 0.97

1.0x + 2.3
r = 0.99

1.04x + 1.78
r = 0.97

Tcan 1 0.95x� 0.17
r = 0.96

0.96x� 1.09
r = 0.99

1.0x� 1.88
r = 0.98

Taero 1 0.94x + 0.63
r = 0.97

0.99x� 0.05
r = 0.95

TLW 1 1.04x� 0.47
r = 0.97

LST 1
Metolius, OR
Tair 1.06x + 0.47

r = 0.99
1.04x + 4.64
r = 0.98

0.95x + 5.02
r = 0.99

0.89x + 9.57
r = 0.89

Tcan 1 0.98x + 4.38
r = 0.97

0.89x + 4.76
r = 0.99

0.83 + 9.38
r = 0.89

Taero 1 0.87x + 1.95
r = 0.97

0.82 + 6.47
r = 0.88

TLW 1 0.95x + 4.67
r = 0.90

LST 1
Barro Colorado Island, Panama
Tair 1.05x + 1.9

r = 0.91
1.1x � 1.95
r = 0.97

— 0.23 + 20.92
r = 0.16

Tcan 1 0.92x + 0.18
r = 0.93

— 0.26 + 19.39
r = 0.20

Taero 1 — 0.24 + 20.6
r = 0.18

TLW — — — —
LST 1

Relationships betweeneach variable pair are basedonordinary least-squares
linear regression. Tcan, canopy temperature; Tair, air temperature; Taero,
aerodynamic temperature calculated from eddy covariance measurements
of sensible heat flux, windspeed, and friction velocity using the R package
BIGLEAF (Knauer et al., 2018). TLW, bulk surface radiometric temperature
calculated frommeasurements of upwelling longwave radiationobservedby
radiometers mounted on the canopy tower (insufficient data available from
Barro Colorado Island to calculate); LST, land surface temperature from
NASA’s Moderate Resolution Imaging Spectroradiometer. All data were
screened to match the 10:30 h overpass time of the TERRA satellite.
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such that the longwave flux leaving the upper canopy exceeds the
downwelling longwave flux from the sky, leading to large negative
nocturnal net radiation Rnet fluxes on such nights (Jones, 2013;
Bonan, 2016). This radiation imbalance, along with sensible heat
transfers, can lead to large spatial heterogeneity in surface
temperatures, as is illustrated for the upper crown of an old-growth
Douglas fir tree in Oregon (Fig. 3a). The trunk and branches have
higher moisture content and thermal inertia: they retain heat from
the prior day’s insolation and remain considerably warmer than
leaves. The cooling rate of leaves depends on canopy position:
upper canopy foliage cools faster on clear and calm summer nights
than the mid- and lower canopy. This radiative cooling can chill
leaves below adjacent Tair and even to the dewpoint (Fig. 3b). This
leads to condensation in the upper canopy, as measured by leaf
wetness sensors (Fig. 3c). This dewfall might serve to alleviate water
stress of leaves in the upper canopy and thereby enhance
photosynthesis, as foliar water uptake has been shown to be
common and important in many species (Dawson & Goldsmith,
2018; Berry et al., 2019). Additionally, nighttime temperature
plays an important role in regulating ecosystem respiration
(Anderegg et al., 2015), and thus monitoring nighttime Tcan will
be important to understand impacts of climate warming on
productivity.

IV. Understanding biotic and abiotic controls on
canopy temperature

The temperature that canopies experience results from a complex
interplay of biotic and abiotic processes. Biotic influences on Tcan

can be broadly classified as those that influence the absorption of
radiation, those that influence the dynamics of leaf and canopy
boundary layers, and physiological processes that influence water
vapor exchanges. For example, leaf size, leaf area density and leaf
clumping influence radiation absorption, but they also regulate leaf
boundary-layer resistance. Physiological traits, including stomatal
conductance and its sensitivity to VPD, influence canopy energy

and water exchanges (Jones, 2013; Monson & Baldocchi, 2014).
Though these interactions are relatively straightforward to estimate
in isolated leaves, they are much more challenging to model and
measure at the canopy scale. Critically,many of these properties can
vary across heterogeneous canopies as a function of canopy
position, species composition, and even within species and
individual crowns (Leuzinger & K€orner, 2007; Aubrecht et al.,
2016; Yi et al., 2020).

Forecasting climate change impacts requires a firm understand-
ing of how and why Tcan varies with these factors across canopy
types and landscape positions. If Tcan equals Tair, then estimates of
acclimation and adaptation of photosynthetic temperature
response should scale linearly (Kumarathunge et al., 2019). By
contrast, if Tcan changes at a different rate than Tair (e.g. Pau et al.,
2018) then the implications of climate warming and weather
extremes are very different. Though the environmental drivers of
Tleaf are captured by energy budget theory (Jones, 2013), and these
same drivers should influence Tcan, their relative importance likely
varies by vegetation type and season. We assessed environmental
controls on Tcan at contrasting conifer sites in the Pacific
Northwest, USA (an old-growth Douglas fir/western hemlock
moist forest atWindRiver,WA, and amature semi-arid Ponderosa
pine forest at Metolius, OR) as well as a tropical semi-deciduous
forest in Panama, Barro Colorado Island (BCI; Fig. 4). A boosted
regression tree analysis (Greenwell et al., 2020) of variables
influencing the difference between daytimeTcan and Tair across the
growing season shows that themost important explanatory variable
at Wind River is Rnet, followed by VPD and soil moisture.
Similarly, Rnet dominates variable importance rankings at BCI. By
contrast, the most important variable explaining the difference
between Tcan and Tair at Metolius is VPD, followed by wind speed
(WS) and then Rnet. The primacy of VPD and WS as explanatory
variables at the more coupled, semi-arid pine forest site bolsters an
expectation that atmospheric and aerodynamic conditions strongly
influence evaporative cooling via impacts on stomatal conductance
and transpiration. By contrast, cooling at the less coupled sites with
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Fig. 2 Visible image of the forest canopy on Barro Colorado Island, Panama, during the dry season,with a thermal camera enclosuremounted on a 40m tower
in foreground (left). Corresponding thermal image of part of the same canopy (right). Black squares are regions of interest used to extract values for different
canopy surfaces (deciduous leaves, evergreen leaves, flowers and bark). Both images captured on 17 February 2015. Reproduced with permission from Pau
et al. (2018).
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denser canopies and higher leaf areas should be driven more by Rnet
and equilibrium evaporation (Jarvis &McNaughton, 1986; Jones,
2013). Particularly at the conifer sites, Tcan should increase more
rapidly than Tair, as growing-season VPD increases if other
variables remain constant. Though the importance of these drivers
is not surprising given ecophysiological and energy budget theory,
this analysis highlights knowledge gaps in predicting Tcan across
forest types. VPD is likely to be affected by climate change

(Grossiord et al., 2020), and annual WSs already exhibit trends
(McVicar et al., 2012). Changes in both variables will likely
influence Tcan and ecosystem function.

V. Future opportunities

Upscaling canopy temperature measurements with
near-surface and satellite-based thermal remote sensing

The improved accessibility of thermal imagers, in terms of cost,
physical footprint, and power requirements, promises a rapid
development of our understanding of leaf and canopy-scale
function. In particular, the combination of fixed-mount,
unmanned aerial-vehicle-based, and satellite remote sensing pre-
sents opportunities to understand variations in Tcan at spatiotem-
poral scales that were previously unmeasurable. Fixed-mount
imagers are already providing high spatial and temporal resolution
data sets of Tcan (Still et al., 2019), although they are restricted to a
relatively small field of view. Though UAV-mounted cameras also
capture high-resolution imagery across larger spatial scales, short
flight times limit temporal resolution, which is particularly
important given the dynamic nature of Tcan. Satellite measure-
ments of land surface temperature (LST) do not capture similarly
high spatial and temporal resolutions, although geostationary
satellite platforms provide coarse-scale LST estimates multiple
times per hour (Freitas et al., 2013). However, satellites do provide
global-scale coverage and long-term records (Li et al., 2013). Some
of the most exciting future research opportunities will result from
combining these platforms, and from connecting thermal data with
visible and near-infrared bands from other sensors. Upscaling
thermal, visible, and other spectral imagery from fixed mounts
using temporally sparse but higher resolution UAV imagery will
help reveal how Tcan responds to environmental variability across a
range of landscape positions, species mixtures, canopy structures,
and management histories. Canopy and landscape-scale thermal
imaging can also be related to satellite LST for upscaling to regions.
Relationships between Tcan and LST are likely to vary with biome,
season, and climate (Table 1). Some of this variation is due to the
mixing of typically hotter soil and/or colder water in vegetated
pixels.

Measurements of canopy temperature can help benchmark
land surface models

Land surface models (LSMs) are complex biophysical process
models that simulate land–atmosphere exchanges of momentum,
energy, and greenhouse gases, and they are used to represent
terrestrial ecosystems in Earth system models (Fisher & Koven,
2020). Leaf energy budget theory is embedded in most LSMs.
However, LSMs underestimate observed temporal and spatial
variability in Tcan (Dong et al., 2017; Jiang et al., 2019), which
implies that they are not capturing aspects of canopy structure and
function. We suggest that Tcan observations can be used to help
benchmark LSMs (Collier et al., 2018) and test the accuracy of
modeled Tcan and its implications for temperature-dependent
water and C cycling predictions.
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for Wind River is 0.81, for Metolius it is 0.79, and for BCI it is 0.85. MAT, mean annual temperature; MAP, mean annual precipitation; LAI, leaf area index.
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