
Climate extremes may be more important than climate
means when predicting species range shifts

Sara J. Germain1 & James A. Lutz1

Received: 14 October 2019 /Accepted: 11 September 2020 /
# Springer Nature B.V. 2020

Abstract
It is well known that temperatures across the globe are rising, but climatic conditions are
becoming more variable as well. Forecasts of species range shifts, however, often focus
on average climatic changes while ignoring increasing climatic variability. In particular,
many species distribution models use space-for-time substitution, which focuses exclu-
sively on the effect of average climatic conditions on the target species across a geo-
graphic range, and is blind to the possibility of range-wide population collapse with
increasing drought frequency, drought severity, or climate effects on other co-occurring
species. Relegated to assessments of broad demographic patterns that ignore underlying
biological responses to increasing climatic variability, this prevalent method of distribu-
tion forecasting may systematically underpredict climate change impacts. We compare
six models of survival and abundance of a subcanopy tree species, Taxus brevifolia, over
40 years of past climate change to disentangle multiple sources of uncertainty: model
formulation, scale of climate effect, and level of biological organization. We show that
drought extremes increased Taxus individual- and population-scale mortality across a
wide geographic climate gradient, precluding detection of a monotonic relationship with
average climate. Individual-scale climatic extremes models derived from longitudinal
data had the highest predictive accuracy (82%), whereas mean climate models had the
lowest accuracy (< 65%). Our results highlight that conclusions drawn from forecasts of
average warming alone likely underpredict climate change impacts by ignoring indicators
of range-wide population declines for species sensitive to increasing climatic variability.
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1 Introduction

Predicting species range shifts is a central aim of climate impacts research (Parmesan and
Yohe 2003), both to identify conservation priorities (VanDerWal et al. 2013, Urban 2015) and
to inform coupled global climate models (Stark et al. 2016, Fisher et al. 2018). Changing forest
distributions are a particularly large source of uncertainty when predicting future climate
(Purves and Pacala 2008) due to the prominent role of forest biomes in regulating global
carbon and hydrological cycles (Snyder et al. 2004, Adams et al. 2010), in tandem with the
complex biotic and abiotic processes that govern forest dynamics (Franklin et al. 1987, 2002).
Distribution forecasts in forests must therefore consider the suite of changes associated with
global warming: gradually increasing average temperatures can allow species adaptation
(Davis and Shaw 2001), for example, while extreme climate events (e.g., drought) can lead
to rapid die-offs due to strains on traits that developed under historic ranges of variability
(Breshears et al. 2005, McDowell et al. 2008, Allen et al. 2010, Chevin et al. 2013). Though
climatic extremes are projected to grow in severity and frequency with continued climate
change (Easterling et al. 2000, Field et al. 2012, Dai 2013), many species distribution models
remain focused on average climate changes (e.g., Sitch et al. 2008).

The confounding roles of non-climatic factors, including trophic interactions (Bentz et al.
2010, Wisz et al. 2013), tree neighborhoods (Larson et al. 2015, Ettinger and HilleRisLambers
2017), and disturbance history (Lenoir et al. 2010, Wason and Dovčiak 2017), are gaining
attention in efforts to reduce uncertainty persistent in distribution forecasting (Thuiller 2004,
Buisson et al. 2010). Likewise, recent research has demonstrated species responses to shifting
climate patterns, not just average climate changes, associated with global warming (Parmesan
et al. 2000, Knapp et al. 2008). Nonetheless, models of species distributional shifts tend to
ignore these confounds and distinctions (Clark et al. 2011). In particular, the commonly used
space-for-time substitution approaches (SFT) assume that species distributions are driven
primarily by average climate changes (Elith and Leathwick 2009, Blois et al. 2013). However,
species sensitive to climate extremes, such as increased annual drought compared with site
averages (Easterling et al. 2000, Condit et al. 2004, Allen et al. 2010), are more vulnerable to
increasing drought associated with climate change (Walther 2003, Dai 2013, Das et al. 2013).
These species are less able to escape the effects of climate change via migration because
interannual variability exists across the entire range (Parmesan et al. 2000, Condit et al. 2004).
Increasingly variable climate may therefore contribute to population declines and higher
extinction risk (Lenoir and Svenning 2015), but remains unexplored by most distribution
models (Clark et al. 2011, Fordham et al. 2012).

The primary approach to distribution forecasting utilizes space-for-time substitution (e.g.,
climatic niche models, dynamic global vegetation models). These models compare average
climate conditions across a species’ range to make inferences about climate change-induced
shifts in the future (Thuiller 2003). Contemporary relationships between species occurrences
and average regional climate are extrapolated to predict future occurrences with climatological
change over time. Assumptions of SFT forecasts include the following: (1) species are in
equilibrium with climatic and environmental factors; (2) phenotypic variability, evolutionary
adaptation, biotic relationships, and disturbance regimes can be ignored (Franklin 2010); and
(3) species will shift in tandem with the average climatic niche they currently occupy as it
moves with changing climate.

While SFT models can be highly predictive over centennial timescales (Hijmans and
Graham 2006, Blois et al. 2013), their usefulness in predicting species responses to climate
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over the shorter, decadal time frames necessary for managers to develop climate-adaptation
strategies has been called into question (Franklin 2010, Brun et al. 2016). For instance, forest
communities vary in their spatial patterns throughout geographic ranges, reflecting past
community assembly processes (Freund et al. 2014, Birch et al. 2019), but SFT models are
blind to population and community dynamics (Fordham et al. 2012, 2013). Importantly, model
assumptions may be violated in a climate-change context, as no-analogue climates (Williams
and Jackson 2007), novel community assemblages (Suttle et al. 2007, Gilman et al. 2010), and
altered disturbance regimes (Littell et al. 2010, Franklin et al. 2016) can disrupt species-
environment equilibria.

An alternative approach to SFT is longitudinal modeling, which correlates climatic fluctu-
ations over time with observed temporal population trends to forecast climate-induced range
shifts (Clark et al. 2011, Renwick et al. 2018). These models assume: (1) population responses
to interannual climate can be extrapolated to long-term climate trends; and (2) phenotypic
variability and evolutionary adaptation can be ignored. Unlike SFT, longitudinal models can
operate across levels of biological organization to capture individual- and population-level
responses to climate. Models able to consider climate effects on individual organisms can
disentangle the unique and perhaps contrasting responses of mortality, recruitment, and growth
processes (Lutz et al. 2014, Wason and Dovčiak 2017) while controlling for variation in stand
age or site productivity (Larson et al. 2008). Likewise, individualized information can increase
the power of statistical tests (due to replication being at the level of the individual) and thus
detect relationships that may not be apparent with population-level datasets (but see
Tredennick et al. 2017). Despite these benefits, limited data and computational power often
relegate longitudinal models to describing net demographic patterns at the population scale
rather than underlying biological processes.

Space-for-time and longitudinal models alike often recognize climate impacts as range
shifts down a climate gradient (i.e., to cooler, wetter climates associated with higher elevations
or latitudes; a “warming fingerprint”) (Parmesan and Yohe 2003). This pattern is identified via
positive species responses (e.g., population increase) at the leading edge of species distribu-
tions (i.e., cooler, wetter locations in SFT models; cooler, wetter years in longitudinal models)
and/or negative responses at the trailing edge (Gedir et al. 2015, Lenoir and Svenning 2015).
When opposite trends are observed, including no distributional shifts or equal shifts up and
down the climate gradient (Harsch et al. 2009, Chen et al. 2011, Rapacciuolo et al. 2014), it is
concluded that species distributions are unlikely to shift with changing climate. Species’
ranges can shift dramatically, however, following die-offs associated with climate extremes
(Thomas et al. 2004, VanDerWal et al. 2013). This is particularly evident in forests, where
altered drought regimes reduce performance of trees adapted to cooler/wetter sites and those
adapted to warmer/drier sites alike, even if mean annual climate stays constant (Walther 2003,
Knapp et al. 2008, Anderegg et al. 2013).

We add to ongoing efforts to improve vegetation components of earth system models
(Moorcroft 2006, Purves and Pacala 2008) by quantifying the potential for bias in forecasts
utilizing climate means to estimate species range shifts. We develop a forecasting ensemble
that synthesizes data from a Smithsonian Forest Global Earth Observatory site (ForestGEO;
Anderson-Teixeira et al. 2015) and region-wide forest monitoring sites to decouple uncertainty
associated with temporal scale of climate effect (relative or average climate differences) from
uncertainty related to model formulation. The prediction ensemble (1) compares predictions of
longitudinal and SFT models to determine whether species’ responsiveness to climate ex-
tremes may preclude detection of an average climate effect using the subcanopy gymnosperm,
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Taxus brevifolia, as an example; and (2) assesses climate effects at the individual and
population scales to characterize species responses in terms of biological processes and net
demographic change. No model prediction ensemble of which we are aware has compared
individual- and population-scale longitudinal models to SFT models, presenting the unique
opportunity to also decouple uncertainty related to scale of biological organization from that
related to scale of climate effect. We then critically examine the disparate ecological interpre-
tations of each model to identify primary sources of uncertainty in forecasts of distributional
change, thereby improving our ability to recognize climate change impacts and forecast future
species distributions.

2 Methods

2.1 Species and site data

Pacific yew (Taxus brevifolia Nutt.) is a near-threatened tree species (Thomas 2013) with
considerable ecological, social, and economic value. Recent reports show that mortality
rates for Taxus in southern Washington State, USA, increased three- to four-fold within
the past 80 years (Franklin and DeBell 1988, Busing et al. 1995, Larson and Franklin
2010, Lutz et al. 2014). Shade-tolerant understory tree species like Taxus may be
particularly sensitive to extreme drought, as these species are adapted to low light levels
and low vapor deficits of the understory microclimate and espouse lower water-use
efficiencies than drought-tolerant pioneer species (Harrington and Reukema 1983,
Lassoie et al. 1985). In the absence of acute disturbances, diminishing Taxus populations
may therefore be an early indicator of broader forest responses to warming and drying
climate trends (HilleRisLambers et al. 2015).

We combined two long-term, spatially explicit datasets spanning 690-m elevation to
examine Taxus populations within the Pseudotsuga-Tsuga (Douglas-fir/western hem-
lock) forest zone (Franklin and DeBell 1988) of the Pacific Northwest, USA (Table 1;
Fig. 1). In both datasets, all trees ≥ 5-cm diameter at breast height (DBH; 1.37 m) were
mapped relative to neighboring trees and revisited at roughly 5-year intervals to track
individual survival and sapling recruitment. This protocol enabled the assessment of
Taxus survival and population growth over time while accounting for competitive
dynamics occurring in local tree neighborhoods. The Wind River Forest Dynamics Plot
(WFDP) (Lutz et al. 2013) dataset included 23 years within 4 ha of mature forest in the
T.T. Munger Research Natural Area in Washington State, USA. The Pacific Northwest
Permanent Study Plot (PSP) (Acker et al. 1998) dataset comprised nineteen 1-ha to 2-ha,
mature forest stands containing at least two live Taxus stems in the year of establishment
and spanning 24 to 35 years of study (Table 1). All twenty stands have temperate
maritime climates (cool, wet winters; warm, dry summers) with a strong elevational
gradient: higher elevations experience colder, longer winters and cooler, shorter summers
compared with lower elevations (Table 1; Fig. S6).

For each stand, we developed population growth summaries: (1) annual population growth
rate, calculated as the net change in abundance of Taxus stems ≥ 5 cm DBH over the study
duration; and (2) local extinction time, defined as the number of years from the study end date
until fewer than one Taxus tree ha−1 would be expected per the observed population growth
rate.
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Lj ¼ P0; j er j t ð1Þ
This was found by solving for the time parameter (t) of a simple exponential growth model
(Eq. 1) for each stand, j, where P0 is Taxus abundance ha−1 in the final study year, r is the
observed population growth rate, and L is the local extinction threshold, which we set to 0.99
(less than one tree ha−1).

2.2 Ensemble structure

Our prediction ensemble included six models representing one parametric and one non-
parametric model each of individual-level longitudinal, population-level longitudinal,
and population-level SFT models (Table 1). We compared parametric and non-
parametric formulations to distinguish between those constrained by distributional and
homoscedasticity assumptions (parametric) and those more powerful when underlying
distributions are unknown (non-parametric). These six model forms have been common-
ly applied throughout the biogeography and ecology forecasting literature, allowing
generalizability to prior research. The ensemble estimated three parameters related to
Taxus demography: (1) individual mortality probability/instantaneous mortality proba-
bility (both individual-level longitudinal models); (2) population growth (one population-
level longitudinal model); and (3) population abundance (both population-level spatial
models, one population-level longitudinal model; see Section 2.4).

All models counted trees that were present at study establishment and trees that
recruited during the study period (including year of recruitment for longitudinal models).

Fig. 1 Locations of Pacific Northwest permanent study sites (a) within North America (b), including those
located within research natural areas (RNA) and experimental forest (EF). Study sites contained between one and
six individual forest stands (Table 1), which were analyzed if least two live Taxus brevifolia stems were present
in the stand, for a total of 20 stand locations. Orange shading indicates coastal Taxus brevifolia distributional
range within the Pseudotsuga-Tsuga (Douglas-fir/western hemlock) forest zone
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Individual- and population-level comparisons were only possible using longitudinal
models, as SFT models are unable to consider the individual scale. The primary differ-
ence between individual and population models was that population-level models quan-
tified abundance or net population growth (i.e., the balance of recruitment and survival),
while individual-scale models quantified survival of individual trees. Comparison be-
tween the two model types identified how individual survival processes scale up to the
population. Agreement between models would suggest that survival (not recruitment)
was the predominant process governing population growth and abundance; this is often
the case in systems with long-lived species (Silvertown et al. 1993).

We validated models using 10-fold cross-validation following the methods of Cutler
et al. (2007), which randomly selects 90% of the data for training at each of ten
iterations, allowing all datapoints to be used once for training and once for testing.
Using the out-of-sample predictions, we computed (1) model accuracy (variance ex-
plained or classification accuracy, where applicable); and (2) mean absolute deviance/
mean ratios (MADMR) (Kolassa and Schütz 2007), which is the mean absolute deviance
divided by the mean observed response value. MADMR is an alternative to mean
absolute percent error (MAPE) that is better suited to handling zeros while remaining
scale-free, therefore allowing a direct comparison of error between models built using
different units or response values. All statistical analyses were performed using the R
version 4.0.2 statistical software (R Core Team 2020).

2.3 Model parameters

2.3.1 Climate

We analyzed Taxus responses to changes in biologically meaningful measures of climate to
address recent criticisms of the temperature-driven approach (Stephenson 1998, VanDerWal et al.
2013). Interactions between temperature and precipitation can be important determinants of plant
photosynthetic rates and survival (Daniels and Veblen 2003). We therefore used climatic water
balance models to calculate drought-related climate covariates of physiological importance to
plants (Stephenson 1998, Lutz et al. 2010): snowpack and climatic water deficit (Deficit). In this
region, low snowpack has not historically been concomitant with high Deficit, and vice versa. In
years when low snowpack and high Deficit happen to cooccur, tree mortality can be increased.
Climatic water balance models were made for each site using monthly temperature and precip-
itation time series from the Parameter-elevation Regression on Independent Slopes Model
(PRISM) data set (Daly et al. 2008) at an 800-m spatial resolution following the methods of
Hostetler and Alder (2016) andMcCabe andMarkstrom (2007). Climate values differed between
stands but were the same for all trees within a stand.

Longitudinal models captured climate extremes by using maximum modeled annual Deficit
anomaly (maximum Deficit) and minimum modeled annual snowpack anomaly (minimum
snowpack), which were chosen due to known effects of drought on tree physiology and
survival (McDowell et al. 2008, Lian et al. 2020). These values were found by (1) standard-
izing annual Deficit and snowpack relative to the long-term (1970 to 2017), stand-level
averages, thus controlling for different climate averages among sites and expressing climatic
extremes relative to those averages; then (2) selecting the maximum Deficit anomaly and
minimum snowpack anomaly within each time interval between measurement years per stand.
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Space-for-time models captured average climate differences between stands by using mean
modeled annual Deficit andmeanmodeled annual snowpack over the study duration for each stand
(Table 1). These values were standardized across all stands to generate climatic units that would be
comparable with longitudinal models. We also ran SFT models with maximum Deficit anomaly
and minimum snowpack anomaly observed during the study timeframe (calculated by the same
methods as for longitudinal models) to ensure that standardization procedures did not changemodel
inferences (no meaningful differences; see Supplemental Information Tables S1, S2).

2.3.2 Abiotic and biotic covariates

To isolate the effects of climate, all six models controlled for the effects of elevation (m) and biotic
interactions among forest trees, and individual-level models additionally included log-transformed
tree DBH to control for density-independent size asymmetries in survival. Elevation was standard-
ized across the range to express relative differences between stands; elevation was measured at the
stand scale and was therefore considered to be the same for each tree within the same stand (i.e., for
individual-level models).

To control for prevailing biotic interactions, we calculated woody species richness (number of
species) and the Hegyi crowding index (Eq. 2) (Hegyi 1974, Biging and Dobbertin 1995), which
quantifies the potential for competitive interactions among trees. The Hegyi index, H, is the distance-
and diameter-weighted sum of all tree neighbors, j, within a 10-m radius of focal tree, i. The 10-m
radius for calculating the Hegyi index and species richness was chosen based on previously identified
interaction distances in similar forests (Das et al. 2008, Lutz et al. 2014, Das et al. 2018).

Hi ¼ ∑
DBH j

1þ Distanceij
� �

DBHið Þ ð2Þ

SeparateHegyi valueswere calculated for conspecific neighbors and heterospecific neighbors based
on previous research indicating these have distinct effects (Lutz et al. 2014). For individual-level
models, neighborhood covariates were standardized per stand to express relative differences
between individuals within each stand over time, and to control for site-specific differences in
productivity; for population-level longitudinal models, these were standardized across all stands to
express relative differences between stands over time across the entire geographic range; for SFT
models, we chose the maximum neighborhood covariate values observed per stand over the study
timeframe, then standardized across all stands to express relative differences between stands (but not
changing over time).

2.4 Model formulations

2.4.1 Individual-level longitudinal models

We tested generalized linear mixed models (parametric) and Cox survival analysis (semi-paramet-
ric). For both models, the interaction between maximum Deficit and minimum snowpack was
tested and retained if significant at α = 0.05. Though our analysis included stand-level (not
individual-tree level) climate values, tree-specific Hegyi and richness parameters produced func-
tional sample sizes equal to tree abundance per model (see sample sizes below).

To model individual mortality probabilities, we created generalized linear mixed models
(GLMM; Eq. 3; lme4 package; Bates et al. 2015):
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p̂i; j ¼
e β0;iþX ′

1;i;t�θ1þX ′
2; j;t�θ2þX 3; j�θ3þX 4;i;t�θ4

1þ e β0;iþX ′
1;i;t�θ1þX ′

2; j;t�θ2þX 3; j�θ3þX 4;i;t�θ4
ð3Þ

where p̂ is a Bernoulli distributed random variable representing tree mortality probability for

individual, i, at site, j, which is related (using the Logit link) to sets of tree neighborhood (X
0
1)

and climate covariates (X
0
2) at time, t, plus elevation (X3), and tree DBH (X4), with corre-

sponding vectors of coefficients (θ) describing the individual effects of each covariate on
survival probability. We included tree-specific random effects to allow intercepts to vary for
each individual (i.e., accounting for repeated measures over time; β; n = 1256). Validation
metrics were calculated using a classification threshold of 0.053, which was obtained by
optimizing sensitivity and specificity of model predictions (Fig. S1).

To model individual mortality hazard (left-censored, meaning that non-zero mortality
hazard existed for a period before the study conception), we used a Cox analysis (Eq. 4;
rms and simPH packages; Gandrud 2015, Harrell Jr. 2020):

λi; j;t ¼ λ0;i;t e X
0
1;i;t�θ1þX

0
2; j;t�θ2þX3; j;t�θ3þX4;i;t�θ4 ð4Þ

where instantaneous mortality probability (i.e., mortality hazard; λ) for individual, i, at time, t, is a
function of the linear combination of time-specific neighborhood, climate, elevation, and DBH
covariates scaled by an unspecified baseline hazard function, λ0. Because Cox regression is a
time-to-event model, we ensured that data availability did not bias this model by restricting the
dataset to trees residing in the eleven stands with exactly six discrete time steps, between which
the number of years spanned 4 to 6 (mode = 5; total timespan = 24 to 30 years). Generalized
estimating equations were used to create robust standard errors and account for repeatedmeasures
of each tree over time (n = 888) (Therneau et al. 2013). Repeated measures were present because
all time-series were combined into a single risk set to allow individual tree mortality hazard to be
calculated in the context of all observed climate covariate values over time.

2.4.2 Population-level longitudinal models

We compared an autoregressive linear mixed model (AR1; parametric) with Random forests
(non-parametric). To model population abundances (continuous variable), we built an
autoregressive linear mixed model (Eq. 5; lme4 package; Bates et al. 2015):

y j;t ¼ y j;t−1 þ X
0
1; j;t � θ1 þ X

0
2; j;t � θ2 þ X3; j � θ3 ð5Þ

where y is tree abundance per hectare within each forest stand, j, for year, t, modeled as a
function of tree abundance in the previous year (yt-1) plus tree neighborhood, climate, and
elevation covariates (n = 20). The interaction between maximum Deficit and minimum snow-
pack was tested and retained if significant at α = 0.05. We allowed the intercept and slope of
tree abundance in the previous year (yt − 1) to vary randomly with tree stand to account for
disparate initial population sizes at each stand, thus preventing dynamics at stands with the
highest Taxus abundances from driving model outcomes.

Tomodel population growth (expressed categorically as increasing, stable, or decreasing; n= 20),
we used Random forests (randomForest and rfPermute packages; Liaw and Wiener 2002, Archer
2020). Random forests is a machine learning extension of Classification and Regression Trees
(CART) that creates an ensemble of many classification trees (or regression trees, if response is
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continuous; trees n= 5000). The ensemble is created by (1) bootstrap aggregation of data to create
parallel trees; then (2) randompermutation of predictor covariate placements at each tree node,where
predictors at earlier tree nodes are assumed to have a stronger relationship with the response than
predictors placed at later nodes. Interactions between covariates are captured implicitly by the
branching structure of each tree. The predictive abilities of covariates are quantified by variable
importance ranks, which are established on the basis of percent decrease in classification accuracy (or
in regression, percent increase in mean squared error) when predictors are placed at earlier nodes
along decision trees (i.e., modeled having stronger relationship with response variable). Total
classification accuracy (or in regression, variance explained) by Random forests refers to the
ensemble model. P values for covariates were attained by permuting the response variable 100
times to produce a null distribution of variable importance, against which the importance metric
generated by the original tree ensemble was compared and assessed at α= 0.05.

2.4.3 Population-level space-for-time models

We compared a simple linear model (parametric) with Random forests (non-parametric).
Because no time component was considered by these models, the response variable was
maximum tree abundance per hectare that was observed over the study timeframe (though
minimum and mean were tested and produced similar results).

To model population abundances (continuous variable; n = 20), we used a simple linear
regression model (Eq. 6):

y j ¼ X
0
1; j � θ1 þ X

0
2; j � θ2 þ X3; j � θ3 ð6Þ

where y is maximum tree abundance per hectare within each forest stand, j, over the study
period modeled as a function of tree neighborhood, climate, and elevation covariates. The
interaction between mean Deficit and mean snowpack was tested and retained if significant at
α = 0.05 (stats package; R Core Team 2020).

To model population abundances (continuous variable; n = 20), we used Random forests
(randomForest and rfPermute packages; Liaw and Wiener 2002, Archer 2020). Rather than
building classification trees, we regressed Taxus maximum abundance at each site on the site-
specific climatic, neighborhood, and elevation covariates (described in Section 2.4.2). Total
variance and P values were obtained as previously described.

3 Results

3.1 Summary

3.1.1 Climate

Between 1977 and 2017, all sites showed increasing modeled annual Deficit, decreasing
modeled annual snowpack, and high interannual variability for both (Fig. S6; P < 0.05 for
all sites’ climatic trends). These trends are projected to continue with warmer temperatures and
more variable precipitation (Littell et al. 2010, Dalton et al. 2013). Climatic anomalies showed
roughly similar trends as annual Deficit and snowpack, but statistical significance was
equivocal among sites at α = 0.05 (increasing high Deficit anomaly: 5% sites; decreasing
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low snowpack anomaly: 25% sites). Overall, Deficit became higher on average, with higher
extremes in the most recent decade, while snowpack became lower on average and with
generally lower extremes (Fig. S6).

3.1.2 Tree populations

Average Taxus abundance declined overall (mean annual population growth rate = − 0.09%,
SD = 1.46%). The highest declines (− 2.4% to − 2.7% year−1) were evident at the WFDP and
Ohanapecosh River, Washington (Fig. 1; Table 1), where Taxus is projected to become locally
extinct within 189 and 26 years, respectively. Taxus distributions did not show a clear warming
fingerprint: stands at the leading edge of the mean climate gradient (i.e., higher elevations and
latitudes) did not have higher population growth rates than those at the trailing edge (Tables 1
and 3). However, two of the three highest elevation sites (> 1000m) showed positive population
growth (Table 1), and individual tree survival was enhanced at higher elevations (Table 3).

Climate extremes (i.e., anomalies) were more important than climate means for predicting
Taxus individual survival and population growth. Longitudinal models showed that climate
extremes had strong negative relationships with Taxus survival and population growth, which
appear to have obscured a relationship with average climate that may otherwise have been
evident in SFT models. Consequently, Taxus’ relationship with climate was only apparent in
longitudinal models. The relative climate, individual-scale Cox models had the highest
predictive accuracy of the six models tested (81.8%; Table 2) and among the lowest error
rates (MADMR= 0.08; Table 2).

3.2 Ensemble details

3.2.1 Individual-level longitudinal models

Individual-tree mortality probability (GLMM) and mortality hazard (Cox) were increased by
low elevations, high conspecific and heterospecific neighbor density (Hegyi indices), high

Table 2 Results of 10-fold cross-validated model performance for generalized linear mixed model (GLMM;
individual scale), Cox survival analysis (Cox; individual scale), 1st order autoregressive linear mixed model
(AR1; population scale), simple linear model (SLM; population scale), and Random forests (population scale).
Accuracy is classification accuracy (GLMM, Random forestsa), concordance (Cox), or percent variance ex-
plained (i.e., R2; AR1 and Random forestsb). Two accuracy metrics are given for the AR1 model: marginal R2

(first number; related to fixed climate and competition effects) and conditional R2 (second number; related to
random autoregressive effects). Mean absolute deviance/mean ratio (MADMR) is scaled by the units of each
model’s response variable to allow direct comparison of error betwee error)

Model Validation

MADMR Accuracy (%) Mortality (n) Survival (n) Sample size (n)

Longitudinal
GLMM 1.84 67.8 314 942 1256
Cox 0.08 81.8 250 638 888
AR1 0.06 1.8 / 99.0 - - 20
Random forestsa 1.05 70.6 - - 20

Space-for-time
SLM 0.66 53.0 - - 20
Random forestsb 0.48 59.0 - - 20
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Deficit, and low snowpack (Table 3). Even after accounting for tree density and elevation (i.e.,
average climate) effects, high Deficit and low snowpack extremes increased mortality. In both
models, an interaction between snowpack and Deficit showed that survival was highest when
snowpack was high and Deficit was low (Figs. S2, S3), but that high snowpacks could not
ameliorate Deficit effects after Deficit surpassed ~ 2.7 SD. Predictive accuracy was 14%
higher for Cox models than GLMM (Table 2). Models showed similar significance and
direction of effects for each variable, except for species richness (increased mortality proba-
bility but not hazard).

3.2.2 Population-level longitudinal models

In agreement with individual-level models, the AR1 population model identified that small
Taxus populations were related to higher maximum Deficit (Table 3). Though not significant
at α = 0.05, Random forests reflected the pattern of Taxus population decline with moderately
high Deficits (1–3 SD) and at lower elevations (< 0 SD; Fig. S4). In contrast with individual-
level models, small Taxus populations were related to low species richness and low
heterospecific neighbor density. Random forests accuracy was comparable to that of
individual-level GLMM at 70.6%. AR1 accuracy overall was highest (R2 = 99.5%; Table 2),
but this came almost entirely from random effects (autoregression; conditional R2 = 99.0%)
and predictive abilities of fixed effects was low (i.e., climate, neighborhood, and elevation
covariates; marginal R2 = 1.8%).

3.2.3 Population-level space-for-time models

Average climate covariates were not predictive in either model. SLM and Random forests
agreed that small Taxus populations were associated with low species richness and low
conspecific neighbor density (Fig. S5). Predictive accuracy was 6% higher for Random forests
than SLM, but both SFT models had lower accuracy than longitudinal models (Table 2).

4 Discussion

Our study highlights the importance of ensemble forecasting by demonstrating how different
models can lead to contradicting inferences: because Taxus was more sensitive to climate
extremes than climate means, SFT models suggested stable Taxus demography, while longi-
tudinal models predicted population declines with continued climate change. Conclusions
drawn from longitudinal models are most consistent with observed Taxus declines in recent
decades (Table 1). These findings illustrate how sensitivity to climate extremes creates
uncertainty in species distribution models relying on climate means by obscuring unidirec-
tional shifts along a geographic climate gradient (Lenoir et al. 2010, Boisvert-Marsh et al.
2014). Considering the many oversimplifications and assumptions that are violated by SFT
models in a climate change context (Williams and Jackson 2007, Franklin 2010, Fordham
et al. 2013), longitudinal model predictions that account for climatic variability and allow
explicit consideration of biological mechanisms are likely to be more useful for developing
species conservation and climate change mitigation strategies (Iverson and McKenzie 2013).

Though we used a temperate tree species as an example, climate extremes can induce
population declines across taxa (George et al. 1992, Parmesan et al. 2000, Carey and
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Alexander 2003, Matthews and Marsh-Matthews 2003). Conclusions about SFT forecasting
methods are thus generalizable to the extent that other species share vulnerabilities with Taxus,
including thermo-sensitivity, low phenotypic plasticity, sessility, and dispersal limitation
(Svenning et al. 2008, Bertrand et al. 2011, HilleRisLambers et al. 2015). For example,
abundance declines are most often observed for non-vagile and thermo-sensitive animals
(e.g., lizards and amphibians; Carey and Alexander 2003, Dubos et al. 2020), whereas
distributions of highly motile animals (e.g., birds) often shift in accordance with a warming
fingerprint (Lenoir and Svenning 2015). Likewise, species lacking the phenotypic plasticity
required to rapidly respond to short-term fluctuations can less effectively acclimate to climatic
extremes (Agrawal 2001, Chevin et al. 2013). When these species are also sessile or dispersal-
limited, populations across the range are likelier to succumb to the negative effects of climate
extremes (Coulson et al. 2001, Urban 2015).

Observed tree species’ range shifts disproportionately fail to show a strong warming
fingerprint, suggesting that these Taxus dynamics may represent other temperate tree species
particularly well. For instance, the leading edges of a majority (79%) of terrestrial plant ranges
have expanded with their changing climate envelope (Lenoir and Svenning 2015), while only
half (52%) of treelines have done the same (Harsch et al. 2009, Zhu et al. 2012). Trees are
often subject to lagged responses that are asynchronous with the rate of warming (Bertrand
et al. 2011), likely due to species interactions (Suttle et al. 2007, Das et al. 2018), recruitment
or dispersal limitations (HilleRisLambers et al. 2015), and disturbance legacies (Wason and
Dovčiak 2017). We add to this body of work to show there is potential for widespread declines
if species with these characteristics are also sensitive to climate extremes over regional scales.
These factors together support the interpretation that tree range expansion is unlikely to keep
pace with climate warming (Grabherr et al. 1995). It is therefore inappropriate to conclude that
species ranges will remain stable with climate change based on SFT model outcomes
incongruent with a warming fingerprint, as instead, we might expect range-wide crashes due
to increasingly variable climate patterns (Neumann et al. 2017).

Synchronous responses across scales of biological organization support the interpretation that
sensitivity to climate extremes may promote range-wide declines. Individual mortality processes
were manifest as population declines at the stand scale, even after accounting for elevation
gradients and biotic relationships. Recruitment of young trees was not sufficient to offset the
increased mortality observed during periods of drought (HilleRisLambers et al. 2015), highlight-
ing the importance of mortality processes in driving demography of long-lived and/or recruitment-
limited species, particularly in temperate forests (Silvertown et al. 1993, Lutz and Halpern 2006,
Bertrand et al. 2011). Sensitivity to climate extremes suggests stronger local competition during
drought (Clark et al. 2011, Das et al. 2011, Urban et al. 2012, Furniss et al. 2020), which was
supported by increased individual mortality with high neighbor crowding (Hegyi indices;
Table 3). Sensitivity to Deficit could also suggest limited drought tolerance of established
individuals (Voelker et al. 2018), resulting in physiological stress and concomitant vulnerability
to forest pests (Mattson and Haack 1987, McDowell et al. 2008, Gaylord et al. 2013). In the
absence of disturbances such as fire and pest epidemics that can accelerate forest decline (Bentz
et al. 2010, Davis et al. 2019), these factors may together explain gradual declines that occur
despite species being well-adapted to average climatological conditions (Bréda et al. 2006).

Taxus decline predicted by our longitudinal models joins the growing body of work
demonstrating negative impacts of increasing drought in forests globally (Breshears et al.
2005, Hutyra et al. 2005, Allen et al. 2010, Neumann et al. 2017). Though not as dramatic as
rapid die-offs, gradually declining survival rates can substantially reduce carbon sequestration
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capacity across forested landscapes (Das et al. 2016). Moreover, increasingly frequent and
severe drought in the future (Field et al. 2012, Dai 2013) may result in more rapid population
crashes compared with the declines of recent decades (Zhu et al. 2012, Lenoir and Svenning
2015). By ignoring climatic variability and extreme events, reliance on SFT models likely
contributes to the growing problem of underestimating habitat loss with changing climate
(VanDerWal et al. 2013, Allen et al. 2015).

Reliance on climate means in distribution models creates uncertainty that propagates to
estimations of global ecosystem functionality with changing climate (Pan et al. 2013, Allen
et al. 2015). In addition to anticipating future habitat for much of terrestrial biodiversity,
accurately forecasting forest responses to climate change is necessary to obtaining realistic
estimates of climate change itself due to strong regulation of global carbon and hydrological
cycles by forests (IPCC 2019). Though some terrestrial components of coupled global climate
models are rightly beginning to consider wildfire (Fisher et al. 2018), leading models continue
to ignore the possibility of drought-induced population crashes (e.g., maximum stress mortality
rate = 1%; Levis et al. 2004, Sitch et al. 2008, Lawrence et al. 2019). Nonetheless, forest loss
due to increasing climatic variability may destabilize climate and associated habitat production
at regional and global scales (Adams et al. 2010, Stark et al. 2016). Such feedbacks have been
noted for western temperate forests in particular (i.e., within the range of Taxus; Garcia et al.
2016, Swann et al. 2018), which tout some of the highest biomass carbon densities in the
world (Smithwick et al. 2002, Keith et al. 2009, Lutz et al. 2018, Sillett et al. 2018). Climate
extremes-associated Taxus decline support the interpretation that current carbon sinks could
become carbon sources with increasingly variable climate (Cox et al. 2000).

5 Conclusions

Our study corroborates the growing understanding that SFT models built on climatic means
cannot be relied upon to accurately forecast climate change effects in forests. SFT datasets may
still be valuable tools, but individual-based, longitudinal data appear to be better suited to
biogeographical forecasting amidst modern climate change. It is increasingly important to
supplement SFT datasets with a longitudinal component that reflects underlying biological
mechanisms, whether that be observational or experimental (Lutz 2015). If this is not possible,
SFT study results could be evaluated by explicitly testing whether climate means are indeed
the best predictors of biological responses to changing climate. This could be done by
comparing predictive accuracy between (1) SFT models using differences in mean climate
across the geographic range as a proxy for longitudinal climate change; and (2) SFT models
using differences in variability metrics as the proxy, which may better reflect local climate
extremes (e.g., coefficients of variance or derivatives). In either case, reliable forecasts of
future species distributions require examination of species responses to average and relative
climate changes.

Acknowledgments We thank J.R. Alder (USGS) for the 800-m climate projection data. WFDP research was
conducted under 5-year special use permits from the US Forest Service Gifford Pinchot National Forest and the
US Forest Service Pacific Northwest Research Station. We thank the Pacific Northwest Permanent Sample Plot
Program for data (provided through the H. J. Andrews Experimental Forest research program, National Science
Foundation LTER DEB 1440409, US Forest Service Pacific Northwest Research Station, and Oregon State
University). We are grateful for the foresight of J. F. Franklin in establishing these longitudinal plots.

593Climatic Change (2020) 163:579–598



Code availability Upon request to the corresponding author.

Authors’ contributions SJG and JAL conceived the study, SJG designed and performed analyses and wrote
the initial manuscript, and SGJ and JAL revised and approved the final manuscript.

Funding National Science Foundation Graduate Research Fellowship Program, Utah State University Quinney
College of Natural Resources Graduate Fellowship, and the Utah Agricultural Experiment Station (journal paper
9255).

Data availability Data are available from the Pacific Northwest Permanent Sample Plot Program
(http://pnwpsp.forestry.oregonstate.edu) and the Smithsonian ForestGEO data portal (https://forestgeo.si.edu).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethics approval N/A.

Consent to participate N/A.

Consent for publication N/A.

References

Acker SA, McKee WA, Harmon ME, Franklin JF (1998) Long-term research on forest dynamics in the Pacific
Northwest: a network of permanent forest plots. Man Biosphere Series 21:93–106

Adams HD, Macalady AK, Breshears DD, Allen CD et al (2010) Climate-induced tree mortality: earth system
consequences. EOS Trans Am Geophys Union 91:153–154

Agrawal AA (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294:321–326
Allen CD, Breshears DD, McDowell NG (2015) On underestimation of global vulnerability to tree mortality and

forest die-off from hotter drought in the Anthropocene. Ecosphere 6:1–55
Allen CD, Macalady AK, Chenchouni H, Bachelet D et al (2010) A global overview of drought and heat-induced

tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684
Anderegg LD, Anderegg WR, Berry JA (2013) Not all droughts are created equal: translating meteorological

drought into woody plant mortality. Tree Physiol 33:701–712
Anderson-Teixeira KJ, Davies SJ, Bennett AC, Gonzalez-Akre EB et al (2015) CTFS-ForestGEO: a worldwide

network monitoring forests in an era of global change. Glob Chang Biol 21:528–549
Archer E (2020) rfPermute: estimate permutation p-values for random Forest importance metrics. R package

version 2.1.81. https://CRAN.R-project.org/package=rfPermute
Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw

67(1):1–48. https://doi.org/10.18637/jss.v067.i01
Bentz BJ, Régnière J, Fettig CJ, Hansen EM et al (2010) Climate change and bark beetles of the western United

States and Canada: direct and indirect effects. BioScience 60:602–613
Bertrand R, Lenoir J, Piedallu C, Riofrío-Dillon G et al (2011) Changes in plant community composition lag

behind climate warming in lowland forests. Nature 479:517–520
BigingGS,DobbertinM (1995) Evaluation of competition indices in individual tree growthmodels. For Sci 41:360–377
Birch JD, Lutz JA, Hogg EH, Simard SW et al (2019) Density-dependent processes fluctuate over 50 years in an

ecotone forest. Oecologia 191(4):909–918
Blois JL, Williams JW, Fitzpatrick MC, Jackson ST, Ferrier S (2013) Space can substitute for time in predicting

climate-change effects on biodiversity. Proc Natl Acad Sci 110:9374–9379
Boisvert-Marsh L, Périé C, de Blois S (2014) Shifting with climate? Evidence for recent changes in tree species

distribution at high latitudes. Ecosphere 5:1–33

594 Climatic Change (2020) 163:579–598

http://pnwpsp.forestry.oregonstate.edu
https://forestgeo.si.edu
https://cran.r-project.org/package=rfPermute
https://doi.org/10.18637/jss.v067.i01


Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of
ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644

Breshears DD, Cobb NS, Rich PM, Price KP et al (2005) Regional vegetation die-off in response to global-
change-type drought. Proc Natl Acad Sci 102:15144–15148

Brun P, Kiørboe T, Licandro P, Payne MR (2016) The predictive skill of species distribution models for plankton
in a changing climate. Glob Chang Biol 22:3170–3181

Buisson L, Thuiller W, Casajus N, Lek S, Grenouillet G (2010) Uncertainty in ensemble forecasting of species
distribution. Glob Chang Biol 16:1145–1157

Busing RT, Halpern CB, Spies TA (1995) Ecology of Pacific yew (Taxus brevifolia) in western Oregon and
Washington. Conserv Biol 9:1199–1207

Carey C, AlexanderMA (2003) Climate change and amphibian declines: is there a link? Divers Distrib 9:111–121
Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high

levels of climate warming. Science 333:1024–1026
Chevin L-M, Collins S, Lefèvre F (2013) Phenotypic plasticity and evolutionary demographic responses to

climate change: taking theory out to the field. Funct Ecol 27(4):967–979
Clark JS, Bell DM, Hersh MH, Nichols L (2011) Climate change vulnerability of forest biodiversity: climate and

competition tracking of demographic rates. Glob Chang Biol 17:1834–1849
Condit R, Aguilar S, Hernandez A, Perez R et al (2004) Tropical forest dynamics across a rainfall gradient and

the impact of an El Niño dry season. J Trop Ecol 20:51–72
Coulson T, Catchpole EA, Albon SD, Morgan BJT et al (2001) Age, sex, density, winter weather, and population

crashes in Soay sheep. Science 292:1528–1531
Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle

feedbacks in a coupled climate model. Nature 408:184–187
Cutler, D. R., T. C. Edwards, K. H. Beard, A. Cutler, et al. 2007. Random forests for classification in ecology.

Ecology 88:2783–2792
Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Chang 3:52–58
Daly C, Halbleib M, Smith JI, Gibson WP et al (2008) Physiographically sensitive mapping of climatological

temperature and precipitation across the conterminous United States. Int J Climatol 28:2031–2064
Dalton MM, Mote PW, Snover AK (2013) Climate change in the Northwest: implications for our landscapes,

waters, and communities. Island Press, Washington, D.C.
Daniels LD, Veblen TT (2003) Regional and local effects of disturbance and climate on altitudinal treelines in

northern Patagonia. J Veg Sci 14:733–742
Das A, Battles J, van Mantgem PJ, Stephenson NL (2008) Spatial elements of mortality risk in old-growth

forests. Ecology 89:1744–1756
Das A, Battles J, Stephenson NL, van Mantgem PJ (2011) The contribution of competition to tree mortality in

old-growth coniferous forests. For Ecol Manag 261:1203–1213
Das AJ, Larson AJ, Lutz JA (2018) Individual species-area relationships in temperate coniferous forests. J Veg

Sci 29(2):317–324
Das AJ, Stephenson NL, Davis KP (2016) Why do trees die? Characterizing the drivers of background tree

mortality. Ecology 97:2616–2627
Das AJ, Stephenson NL, Flint A, Das T, Van Mantgem PJ (2013) Climatic correlates of tree mortality in water-

and energy-limited forests. PLoS One 8:e69917
Davis KT, Dobrowski SZ, Higuera PE, Holden ZA et al (2019) Wildfires and climate change push low-elevation

forests across a critical climate threshold for tree regeneration. Proc Natl Acad Sci 116:6193–6198
Davis MB, Shaw RG (2001) Range shifts and adaptive responses to Quaternary climate change. Science 292:

673–679
Dubos N, Morel L, Crottini A, Freeman K et al (2020) High interannual variability of a climate-driven amphibian

community in a seasonal rainforest. Biodivers Conserv 29:893–912
Easterling DR, Meehl GA, Parmesan C, Changnon SA et al (2000) Climate extremes: observations, modeling,

and impacts. Science 289:2068–2074
Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and

time. Annu Rev Ecol Evol Syst 40:677–697
Ettinger A, HilleRisLambers J (2017) Competition and facilitation may lead to asymmetric range shift dynamics

with climate change. Glob Chang Biol 23:3921–3933
Field CB, Barros V, Stocker TF, Dahe Q (2012) Managing the risks of extreme events and disasters to advance

climate change adaptation: special report of the intergovernmental panel on climate change. Cambridge
University Press, Page A Special Report of Working Groups I and II of the Intergovernmental Panel on
Climate Change

Fisher RA, Koven CD, AndereggWRL, Christoffersen BO et al (2018) Vegetation demographics in earth system
models: a review of progress and priorities. Glob Chang Biol 24:35–54

595Climatic Change (2020) 163:579–598



Fordham DA, Akçakaya HR, Araújo MB, Elith J et al (2012) Plant extinction risk under climate change: are
forecast range shifts alone a good indicator of species vulnerability to global warming? Glob Chang Biol 18:
1357–1371

FordhamDA, Mellin C, Russell BD, Akçakaya RH et al (2013) Population dynamics can be more important than
physiological limits for determining range shifts under climate change. Glob Chang Biol 19:3224–3237

Franklin J (2010) Moving beyond static species distribution models in support of conservation biogeography.
Divers Distrib 16:321–330

Franklin JF, DeBell DS (1988) Thirty-six years of tree population change in an old-growth Pseudotsuga–Tsuga
forest. Can J For Res 18:633–639

Franklin JF, Shugart HH, Harmon ME (1987) Tree death as an ecological process. BioScience 37:550–556
Franklin JF, Spies TA, Van Pelt R, Carey AB et al (2002) Disturbances and structural development of natural

forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For Ecol Manag
155:399–423

Franklin J, Serra-Diaz JM, Syphard AD, and Regan HM (2016) Global change and terrestrial plant community
dynamics. Proceedings of the National Academy of Sciences:201519911

Freund JA, Franklin JF, Larson AJ, Lutz JA (2014) Multi-decadal establishment for single-cohort Douglas-fir
forests. Can J For Res 44(9):1068–1078

Furniss TJ, Larson AJ, Kane VR, Lutz JA (2020) Wildfire and drought moderate the spatial elements of tree
mortality. Ecosphere 11(8):e03214

Gandrud C (2015) simPH: an R package for illustrating estimates from Cox proportional hazard models
including for interactive and nonlinear effects. J Stat Softw 65(3):1–20 http://www.jstatsoft.org/v65/i03/

Garcia ES, Swann ALS, Villegas JC, Breshears DD et al (2016) Synergistic ecoclimate teleconnections from
forest loss in different regions structure global ecological responses. PLoS One 11(11):e0165042

Gaylord ML, Kolb TE, Pockman WT, Plaut JA et al (2013) Drought predisposes piñon–juniper woodlands to
insect attacks and mortality. New Phytol 198:567–578

Gedir JV, Cain JW, Harris G, Turnbull TT (2015) Effects of climate change on long-term population growth of
pronghorn in an arid environment. Ecosphere 6:1–20

George TL, Fowler AC, Knight RL, McEwen LC (1992) Impacts of a severe drought on grassland birds in
western North Dakota. Ecol Appl 2:275–284

Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD (2010) A framework for community interactions
under climate change. Trends Ecol Evol 25:325–331

Grabherr G, Gottfried M, Gruber A, Pauli H (1995) Patterns and current changes in alpine plant diversity. In:
Chapin FS, Körner C (eds) Arctic and alpine biodiversity: patterns. Causes and Ecosystem Consequences.
Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 167–181

Harrington CA, Reukema DL (1983) Initial shock and long-term stand development following thinning in a
Douglas-fir plantation. For Sci 29:33–46

Harrell Jr FE (2020) rms: regression modeling strategies. R package version 6.0–1. https://CRAN.R-project.
org/package=rms

Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of
treeline response to climate warming. Ecol Lett 12:1040–1049

Hegyi, F. 1974. A simulation model for managing jack-pine stands. RoyalColl. For, Res. Notes 30:74–90
Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on

species distributions. Glob Chang Biol 12:2272–2281
HilleRisLambers J, Anderegg LD, Breckheimer I, Burns KM et al (2015) Implications of climate change for

turnover in forest composition. Northwest Science 89:201–218
Hostetler SW, Alder JR (2016) Implementation and evaluation of a monthly water balance model over the US on

an 800 m grid. Water Resour Res 52:9600–9620
Hutyra LR, Munger JW, Nobre CA, Saleska SR et al (2005) Climatic variability and vegetation vulnerability in

Amazônia. Geophys Res Lett 32:L24712
IPCC (2019) Climate change and land: an IPCC special report on climate change, desertification, land

degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems
[P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, and others]. ipcc.ch/srccl

Iverson LR, McKenzie D (2013) Tree-species range shifts in a changing climate: detecting, modeling, assisting.
Landsc Ecol 28:879–889

Keith H, Mackey BG, Lindenmayer DB (2009) Re-evaluation of forest biomass carbon stocks and lessons from
the world’s most carbon-dense forests. Proc Natl Acad Sci 106:11635–11640

Knapp AK, Beier C, Briske DD, Classen AT et al (2008) Consequences of more extreme precipitation regimes
for terrestrial ecosystems. AIBS Bull 58:811–821

Kolassa S, Schütz W (2007) Advantages of the MAD/mean ratio over the MAPE. Foresight, The International
Journal of Applied Forecasting, pp 40–43

596 Climatic Change (2020) 163:579–598

http://www.jstatsoft.org/v65/i03/
https://cran.r-project.org/package=rms
https://cran.r-project.org/package=rms


Larson AJ, Franklin JF (2010) The tree mortality regime in temperate old-growth coniferous forests: the role of
physical damage. Can J For Res 40:2091–2103

Larson AJ, Lutz JA, Donato DC, Freund JA et al (2015) Spatial aspects of tree mortality strongly differ between
young and old-growth forests. Ecology 96(11):2855–2861

Larson AJ, Lutz JA, Gersonde RF, Franklin JF, Hietpas FF (2008) Productivity influences the rate of forest
structural development. Ecol Appl 18(4):899–910

Lassoie, J. P., T. M. Hinckley, and C. C. Grier. 1985. Coniferous forests of the Pacific Northwest. Pages 127–161
Physiological ecology of North American plant communities. Springer

Lawrence DM, Fisher RA, Koven CD, Oleson KW et al (2019) The community land model version 5:
description of new features, benchmarking, and impact of forcing uncertainty. J Adv Model Earth Syst
11:4245–4287

Lenoir J, Gégout J-C, Guisan A, Vittoz P et al (2010) Going against the flow: potential mechanisms for
unexpected downslope range shifts in a warming climate. Ecography 33:295–303

Lenoir J, Svenning J-C (2015) Climate-related range shifts—a global multidimensional synthesis and new
research directions. Ecography 38:15–28

Levis S, Bonan G, Vertenstein M, Oleson K (2004) The community land Model’s dynamic global vegetation
model (CLM-DGVM): technical description and user’s guide. NCAR Tech Note 459:1–50

Lian, X., S. Piao, L. Z. X. Li, Y. Li, et al. 2020. Summer soil drying exacerbated by earlier spring greening of
northern vegetation. Science advances 6:eaax0255

Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2(3):18–22 https://CRAN.R-
project.org/doc/Rnews/

Littell JS, Oneil EE, McKenzie D, Hicke JA et al (2010) Forest ecosystems, disturbance, and climatic change in
Washington State, USA. Clim Chang 102:129–158

Lutz JA (2015) The evolution of long-term data for forestry: large temperate research plots in an era of global
change. Northwest Science 89(3):255–269

Lutz JA, Furniss TJ, Johnson DJ, Davies SJ et al (2018) Global importance of large-diameter trees. Glob Ecol
Biogeogr 27:849–864

Lutz JA, Halpern CB (2006) Tree mortality during early forest development: a long-term study of rates, causes,
and consequences. Ecol Monogr 76(2):257–275

Lutz JA, Larson AJ, Freund JA, Swanson ME, Bible KJ (2013) The importance of large-diameter trees to forest
structural heterogeneity. PLoS One 8:e82784

Lutz JA, Larson AJ, Furniss TJ, Donato DC et al (2014) Spatially nonrandom tree mortality and ingrowth
maintain equilibrium pattern in an old-growth Pseudotsuga–Tsuga forest. Ecology 95:2047–2054

Lutz JA, van Wagtendonk JW, Franklin JF (2010) Climatic water deficit, tree species ranges, and climate change
in Yosemite National Park. J Biogeogr 37:936–950

Matthews WJ, Marsh-Matthews E (2003) Effects of drought on fish across axes of space, time and ecological
complexity. Freshw Biol 48:1232–1253

Mattson WJ, Haack RA (1987) The role of drought in outbreaks of plant-eating insects. Bioscience 37:110–118
McCabe GJ, and Markstrom SL (2007) A monthly water-balance model driven by a graphical user interface.

Geological Survey (US). Open-File Report 2007–1088
McDowell N, Pockman WT, Allen CD, Breshears DD et al (2008) Mechanisms of plant survival and mortality

during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739
Moorcroft PR (2006) How close are we to a predictive science of the biosphere? Trends Ecol Evol 21:400–407
Neumann M, Mues V, Moreno A, Hasenauer H, Seidl R (2017) Climate variability drives recent tree mortality in

Europe. Glob Chang Biol 23:4788–4797
Pan Y, Birdsey RA, Phillips OL, Jackson RB (2013) The structure, distribution, and biomass of the world’s

forests. Annu Rev Ecol Evol Syst 44:593–622
Parmesan C, Root TL, Willig MR (2000) Impacts of extreme weather and climate on terrestrial biota. Bull Am

Meteorol Soc 81:443–450
Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems.

Nature 421:37–42
Purves D, Pacala S (2008) Predictive models of forest dynamics. Science 320:1452–1453
R Core Team (2020) R: a language and environment for statistical computing. In: R Foundation for statistical

computing. Austria. URL, Vienna https://www.R-project.org/
Rapacciuolo G, Maher SP, Schneider AC, Hammond TT et al (2014) Beyond a warming fingerprint: individualistic

biogeographic responses to heterogeneous climate change in California. Glob Chang Biol 20:2841–2855
Renwick KM, Curtis C, Kleinhesselink AR, Schlaepfer D et al (2018) Multi-model comparison highlights

consistency in predicted effect of warming on a semi-arid shrub. Glob Chang Biol 24:424–438
Sillett SC, Van Pelt R, Freund JA, Campbell-Spickler J et al (2018) Development and dominance of Douglas-fir

in North American rainforests. For Ecol Manag 429:93–114

597Climatic Change (2020) 163:579–598

https://cran.r-project.org/doc/Rnews/
https://cran.r-project.org/doc/Rnews/
https://www.r-project.org/


Silvertown J, Franco M, Pisanty I, Mendoza A (1993) Comparative plant demography–relative importance of
life-cycle components to the finite rate of increase in woody and herbaceous perennials. J Ecol 81:465–476

Sitch S, Huntingford C, Gedney N, Levy PE et al (2008) Evaluation of the terrestrial carbon cycle, future plant
geography and climate-carbon cycle feedbacks using five dynamic global vegetation models (DGVMs).
Glob Chang Biol 14:2015–2039

Smithwick EAH, Harmon ME, Remillard SM, Acker SA, Franklin JF (2002) Potential upper bounds of carbon
stores in forests of the Pacific Northwest. Ecol Appl 12:1303–1317

Snyder PK, Delire C, Foley JA (2004) Evaluating the influence of different vegetation biomes on the global
climate. Clim Dyn 23:279–302

Stark SC, Breshears DD, Garcia ES, Law DJ et al (2016) Toward accounting for ecoclimate teleconnections:
intra-and inter-continental consequences of altered energy balance after vegetation change. Landsc Ecol 31:
181–194

Stephenson N (1998) Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation
distribution across spatial scales. J Biogeogr 25:855–870

Suttle K, Thomsen MA, Power ME (2007) Species interactions reverse grassland responses to changing climate.
Science 315:640–642

Svenning J-C, Normand S, Skov F (2008) Postglacial dispersal limitation of widespread forest plant species in
nemoral Europe. Ecography 31:316–326

Swann AL, Laguë MM, Garcia ES, Field JP et al (2018) Continental-scale consequences of tree die-offs in North
America: identifying where forest loss matters most. Environ Res Lett 13:055014

Therneau T, Crowson C, Atkinson E (2013) Using time dependent covariates and time dependent coefficients in
the Cox model. CRAN vignettes:1–27

Thomas CD, Cameron A, Green RE, Bakkenes M et al (2004) Extinction risk from climate change. Nature 427:
145–148

Thomas P (2013) Taxus brevifolia. IUCN, The IUCN Red List of Threatened Species
Thuiller W (2003) BIOMOD–optimizing predictions of species distributions and projecting potential future shifts

under global change. Glob Chang Biol 9:1353–1362
Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Chang Biol 10:

2020–2027
Tredennick AT, Hooten MB, Adler PB (2017) Do we need demographic data to forecast plant population

dynamics? Methods Ecol Evol 8:541–551
Urban MC (2015) Accelerating extinction risk from climate change. Science 348:571–573
Urban MC, Tewksbury JJ, Sheldon KS (2012) On a collision course: competition and dispersal differences create

no-analogue communities and cause extinctions during climate change. Proc R Soc Lond B Biol Sci 279:
2072–2080

VanDerWal J, Murphy HT, Kutt AS, Perkins GC et al (2013) Focus on poleward shifts in species’ distribution
underestimates the fingerprint of climate change. Nat Clim Chang 3:239–243

Voelker SL, DeRose RJ, Bekker MF, Sriladda C et al (2018) Anisohydric water use behavior links growing
season evaporative demand to ring-width increment in conifers from summer-dry environments. Trees 32:
735–749

Walther GR (2003) Plants in a warmer world. Perspect Plant Ecol Evol Syst 6:169–185
Wason JW, Dovčiak M (2017) Tree demography suggests multiple directions and drivers for species range shifts

in mountains of Northeastern United States. Glob Chang Biol 23:3335–3347
Williams JW, Jackson ST (2007) Novel climates, no-analog communities, and ecological surprises. Front Ecol

Environ 5:475–482
Wisz MS, Pottier J, Kissling WD, Pellissier L et al (2013) The role of biotic interactions in shaping distributions

and realised assemblages of species: implications for species distribution modelling. Biol Rev 88:15–30
Zhu K, Woodall CW, Clark JS (2012) Failure to migrate: lack of tree range expansion in response to climate

change. Glob Chang Biol 18:1042–1052

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

598 Climatic Change (2020) 163:579–598


	Climate extremes may be more important than climate means when predicting species range shifts
	Abstract
	Introduction
	Methods
	Species and site data
	Ensemble structure
	Model parameters
	Climate
	Abiotic and biotic covariates

	Model formulations
	Individual-level longitudinal models
	Population-level longitudinal models
	Population-level space-for-time models


	Results
	Summary
	Climate
	Tree populations

	Ensemble details
	Individual-level longitudinal models
	Population-level longitudinal models
	Population-level space-for-time models


	Discussion
	Conclusions
	References


