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Abstract. Phenology—recurring seasonal events in an organism’s life cycle—is largely driven by local
climates <1 km2 (microclimates), and changes in phenology are frequently used to indicate a species’ or
community response to climate change. Phenological shifts can result in trophic asynchrony, population
declines of higher-level consumers, and reduction of plant fitness. While timing of phenological events is
often correlated with elevation, studies have shown that microclimates created by areas of heterogeneous
topography can be decoupled from regional climate patterns and that the distribution of microclimates
does not always follow the elevation gradient. To examine the interaction between regional weather pat-
terns and microclimate, and the subsequent effect of microclimate on phenology, we conducted standard-
ized weekly spring phenology surveys of 18 native forest plants at the H.J. Andrews Experimental Forest
in the Western Cascades from 2009 to 2016. We saw a high degree of inter-annual variability of microcli-
mate within and across sites, resulting in a changing pattern of microclimate diversity across the landscape
from year to year. Most importantly, we saw that years with regional conditions predicted by continued cli-
mate change showed a loss of diversity in both microclimate and phenological events, with a more rapid
advancement in bud break occurring at higher elevation sites. This study highlights the importance of
understanding the interactions between regional and local processes that determine microclimate condi-
tions and how those conditions influence patterns of plant phenology within forest communities, across
mountain landscapes and over time, with implications for the capacity of mountainous regions to buffer
local communities against the effects of climate change.
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INTRODUCTION

Over the past several decades, scientists and
land managers have become increasingly con-
cerned about the effects of current warming
trends and the potential threat warming poses to
biodiversity and ecosystem services (Grimm et al.
2016). Phenology—the timing of seasonal events
of an organism’s life cycle—is a common measure
of the response of a species to climate change, as
many species have phenologies driven by

temperature cues, and phenological shifts can
have significant impacts on the dynamics of an
ecosystem (Walther et al. 2002, Parmesan 2006,
Both et al. 2009, Fu et al. 2015). For example,
trophic levels with historically synced phenolo-
gies such as plants and pollinators may become
decoupled due a shift in one or both species’ phe-
nologies (trophic asynchrony) and result in local-
ized population declines and biodiversity loss
(Harrington et al. 1999, Walther et al. 2002, Visser
et al. 2004, Visser and Both 2005, Parmesan 2006,
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Inouye 2008, Both et al. 2009, Forrest and Thom-
son 2011, Thackeray et al. 2016). Thackeray et al.
(2016) found that primary producers consistently
have more advanced phenologies in response to
seasonal warming than secondary consumers
(�4.1 vs. �1.9 d/°C).

Physical factors such as topography, snowpack
accumulation and ablation, and forest cover can
have significant effects on local climate and in
turn affect the timing of phenological events (Bill-
ings and Bliss 1959, Hwang et al. 2011, Lundquist
et al. 2013, Sherwood et al. 2017, O’Leary et al.
2018). These microclimates can be significantly
different from regional climate patterns, and for
this reason, downscaling regional models may
result in overgeneralization when projecting the
effects of climate change (Daly et al. 2010, De
Frenne et al. 2013, Franklin et al. 2013). Moun-
tainous regions—which make up 12.3% of the ter-
restrial surface on earth, excepting Antarctica
(K€orner et al. 2011)—are especially overgeneral-
ized in regional models, due to the high degree of
topographic heterogeneity (Luoto and Heikkinen
2008). Additionally, climate stations are often
biased toward lower elevation, accessible sites,
leading to underrepresentation of remote moun-
tainous sites as inputs into climatic models (Pepin
et al. 2011).

Steep mountainous terrain often leads to per-
sistent cold air pooling events where cold air
drains down mountain slopes into valleys and
other areas of low topographic relief and is
trapped by a layer of warmer air above, creating
temperature inversions. These events, which can
decouple valleys from regional atmospheric con-
ditions for many days at a time, are a major dri-
ver of microclimate in mountainous regions,
especially during winter months, and they are
largely driven by interactions between topogra-
phy, radiative cooling, and regional weather pat-
terns (Daly et al. 2010, Pepin et al. 2011, Novick
et al. 2016). In the study region, anticyclonic
weather systems promote formation of cold air
pools, especially in winter, while cyclonic sys-
tems result in well-mixed atmospheric conditions
under which temperatures across the elevation
gradient largely conform with expectations
based on moist adiabatic lapse rates; Daly et al.
(2010) derived an anticyclonic–cyclonic index
(A–C index) as an indicator of the relative fre-
quency of these regional weather systems. Some

studies suggest that microclimates created by
topography, canopy cover, and local decoupling
from regional weather patterns may mitigate the
effects of regional warming and have the poten-
tial to buffer temperatures and minimize
advanced phenological events in plant communi-
ties (i.e., earlier bud break or flowering; Peterson
et al. 1997, Daly et al. 2010, Dobrowski 2011,
Frey et al. 2016b, Lenoir et al. 2017).
Here, we report results of an eight-year study

involving weekly spring phenology observations
of 18 species of plants across a diverse range of
fixed sites in the H.J. Andrews experimental for-
est on the west slope of the Oregon Cascades. We
were interested in how microclimates vary across
a watershed, and how regional climate variabil-
ity and microclimate processes interact to influ-
ence the timing of spring phenology of native
herbs, shrubs, and trees. In general, we expected
that warm years with less snow pack would
result in advancement of bud break and flower-
ing, especially for the higher elevation, exposed
ridgelines, and vice versa for cooler years with
deeper and more persistent snowpack (O’Leary
et al. 2018). We expected to see the effects of cold
air pooling across the landscape reflected in the
timing of phenology in two ways. First, we
hypothesized that areas more susceptible to cold
air pooling would experience less early season
(December–March) temperature forcing and
more persistent snowpack than topographically
exposed sites of similar elevation, which would
be reflected in relatively delayed spring phenol-
ogy of forest plants. Second, we expected that
interactions between regional and local processes
may result in year-to-year variability in the rela-
tionship among sites across the elevation gradi-
ent (e.g., the timing bud break may be similar at
two sites one year and be widely different
between those sites a different year).

METHODS

Study area
The H.J. Andrews Experimental Forest is a

6400-ha (15,800 acre) forest located on the west
side of the Cascade Mountains approximately
50 miles east of Eugene, Oregon, USA. The area
is typical of the Western Cascade Range, with
steep mountainous terrain, exposed ridges
and sheltered valleys, and a high degree of
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topographic heterogeneity with elevations rang-
ing from 410 to 1630 m. Snow is infrequent
below 500 m, and intermittent snow occurs
between 500 and 900 m, indicating average land
surface temperatures above freezing in those ele-
vation ranges (Moore et al. 2015). Above 900 m,
substantial winter snowpack typically accumu-
lates (Daly et al. 2010). Vegetation is primarily a
combination of 150- to 500-yr-old mixed conifer
forests and 40- to 60-yr-old Pseudotsuga menziesii
(Douglas fir) plantations (Pelt and Franklin
2000).

Study design
Temperature and phenology data were col-

lected from 16 core phenology sites (PC) across a
variety of elevations and aspects, with sites

ranging from 460 to 1339 m (Fig. 1). Eleven of 16
sites were selected to be co-located with long-
term temperature (Daly and McKee 2016a, b,
Johnson and Gregory 2016) and vegetation moni-
toring plots (Harmon and O’Connell 2015,
Franklin 2017). This allowed for quality assur-
ance and quality control (QAQC), and data vali-
dation using comparable temperature data, and
to relate microclimate measurements during the
phenology study to long-term climate records.
Five additional sites (beyond those 11 co-located
with long-term monitoring plots) were added to
augment distribution of study sites across eleva-
tion, aspect, and topographic position. Eighteen
species of native herbs, shrubs, and trees were
selected as target species (Appendix S1:
Table S1). At each site, a center point was

Fig. 1. Map showing the location and relative topographic position of the 16 core phenology sites at the H.J.
Andrews. Colors are relative topographic position, with blues showing sites of low topographic relief, and
whites showing sites with high topographic relief. Purples are intermediate values. Squares indicate sites without
a paired reference stand, while circles are sites with a nearby reference stand. Sites are labeled with PC (phenol-
ogy core) and the site number. Map projection is NAD83.
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established and plants from all of the focal study
species occurring in the area (due to the variety
of terrain and elevation, not every target species
was found at every site) were added as encoun-
tered while inventorying a 25 m radius circle
around the center point until five individuals of
each species were mapped and tagged; in the
2009 pilot season, only three individuals per spe-
cies were tagged, and the sample sizes were
increased to 5 early in the 2010 season. In a few
instances, plants of a given species were tagged
up to 35 m away from the center point to attain
the target sample size. Each plant was mapped
using bearing and distance from the center post.
For herbaceous plants, individuals were marked
using one or two pin flags with a numbered alu-
minum tag attached to the pin flag. Trees and
shrubs were tagged using aluminum nails or zip
ties depending on stem diameter. If an individual
died or was eaten over the course of the study,
another plant was selected to maintain five indi-
viduals per site.

Understory air temperature and snow cover
were the primary microclimate variables recorded.
To capture the temperature of each site, HOBO
(Onset, Hobo U22-001; accuracy 0.2°C, Bourne,
Massachusetts, USA) temperature sensors were
placed 1.5 m above the ground facing south in the
center of each plot, and temperature data were col-
lected every fifteen minutes. To reduce tempera-
ture spikes due to solar radiation, the sensors were
placed in the shade, beneath a PVC shield (8 inch
long, 3.5 inch schedule 40 pipe split in half length-
wise; see Frey et al. 2016b, Johnson and Gregory
2016, Daly 2017 for more information on shield
design). Observations of snow depth and percent
cover were made by researchers during each site
visit, and partial or full burial under snow was
recorded for each individual plant. These and sup-
plemental observations were made to estimate last
day of snow cover, and the number of days each
site had significant snow (>50% cover). For sites/
years in which snowmelt may have occurred one
or more times during the winter prior to the initia-
tion of phenology site visits, we extrapolated esti-
mates using observations from opportunistic
winter visits to phenology sites, and data from
long-term snow stake datasets (three-week obser-
vations 1970–2014, daily 2015–2016; Schulze and
Levno 2017), Andrews meteorological stations
(hourly snow depth and SWE and monthly snow

course measurements; Daly and McKee 2016b), 45
time lapse cameras distributed across the forest,
and observations from other researchers. Phenol-
ogy sites were related to these supplemental data
sources based on elevation, aspect, and forest
cover, to infer presence/absence of snow on speci-
fic winter date ranges when direct observations
were not possible.

Surveys
We developed a species-specific scoring sys-

tem for vegetative and reproductive pheno-
phases that captured consistently observable
stages between dormant buds and full leaf out/
end of flowering (Schulze 2017). Plants were typ-
ically scored on a scale of 1–6 for leaf emergence,
with 1 representing dormant, and 6 representing
full leaf size. Some plants have further stem elon-
gation after full leaf out and have a score of 7,
while other plants have intermediate stages. For
example, Pseudotsuga menzisii (Douglas fir) has
an intermediate stage between bud break (3) and
emerging leaves (4) and has an additional score
of 3.5. The same system was followed for repro-
ductive phases, with 1 representing dormancy
and 10 representing seed dispersal. See Schulze
(2017) for the full list of species scores.
Over the course of each spring, the sites were

visited once every 5–10 d, and each individual
was scored based on its current reproductive and
vegetative phenophase. In the early years of the
study (2009 and 2010), visits were less consistent,
due to concurrent study plot set up and early
season site access limitations. From 2011 to 2016,
sites were typically visited once every 7 d.
Observations began each year in late winter
(mid-February to early April) with the start date
varying depending on observed winter weather,
snow pack, and plant condition across the eleva-
tion gradient, with the goal of initiating observa-
tions at each site prior to the onset of key
phenophases (e.g., bud swell) of focal plant spe-
cies. In 2015, only a subset of seven sites were
visited due to budget and time limitations.
To reduce bias in cross-site comparisons due to

observations occurring on different days of the
week (it was generally not logistically feasible to
visit all sites on the same day, but visits were
scheduled to occur within a one to four-day win-
dow), all observation dates were standardized to
the midpoint of each week (weeks were defined
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as day of year [DOY] weeks rather than based on
the calendar of each year). For example, regard-
less of what day (Monday, Tuesday, etc.) 1 Jan-
uary falls on, the first DOY week begins on 1
January (DOY 1), and the midpoint is 4 January
(DOY 4). Thus, any survey that occurs between
DOY 1 and DOY 7 is standardized to DOY 4,
and any survey that occurs between DOY 8 and
DOY 14 is standardized to DOY 11, and so on.
This way we could compare sites surveyed
within the same week, but not on the same day
without introducing bias from different survey
dates. The median offset (error) between
adjusted DOY and observed DOY was 2 d, with
a maximum offset of 5 d. Occasionally, individu-
als would exhibit significant development over
the course of a week, resulting in missed scores
for particular phenophases. For example, a plant
may be observed at bud swell one week and has
emerging leaves the subsequent week, with bud
break occurring sometime in the interim. In such
cases, we estimated these missed scores by split-
ting the difference between each observation
(e.g., if bud swell was observed on DOY 30 and
emerging leaves were observed on DOY 37, we
interpolated that bud break occurred on DOY
33). No attempt was made to estimate the timing
of phenophases that occurred prior to the first
visit of each year, or after the last summer visit.

Data processing
Quality assurance and quality control was con-

ducted on all temperature data collected. All
data were averaged into hourly segments and
run through a Python script (see Frey et al.
2016b, and Johnson and Hadley 2017 for script
details) to identify and flag impossible values,
periods of missing data, and when sensors were
buried by snow. We then further checked the
data via manual QAQC and compared values to
those from nearby temperature stations to iden-
tify any erroneous snow flags (i.e., data flagged
as snow burial when there was no snow at that
site), as well as temperature spikes, missing data,
and other questionable values not identified by
automated QAQC. To produce cumulative mea-
sures of temperature forcing, all data flagged for
removal (sensor error, impossible values, missing
data, snow burial) were filled via regressions
using nearby long-term temperature stations
(Daly and McKee 2016a, b; Appendix S1:

Table S2). All regressions used to interpolate tem-
perature data had an adjusted R2 of 0.97 or
greater, and most (11 of 16) came from stations
25–200 m from the phenology plot.
Growing degree-days (GDD) were calculated

by summing all degree hours >5°C accumulated
over a 24-h period and dividing that sum by 24 to
get the average daily accumulation of GDD for a
given plot (Perry 1971, Murray et al. 1989, Heide
1993, Polgar and Primack 2011). As a general
metric of temperature forcing across sites and
years, we chose 1 December as the start date for
accumulation of GDD and 1 April and 1 June as
the end point for winter and spring cumulative
GDD. Starting from 1 December, we added each
subsequent daily accumulation of degree-days.
Past studies have used a variety of dates to begin
GDD accumulation; 1 November has been used
for chilling and forcing phenology models for
species such as Douglas fir (P. menziesii), while
other studies have suggested 1 January as a start
date for GDD accumulation (Harrington et al.
2010, Forrest and Thomson 2011). The first day of
frost in some portions of our landscape can occur
as late as end of November (Daly 2017), yet some
of the species in our study were observed flower-
ing or with bud swell in early January, indicating
early winter forcing can be important. We recog-
nize that herbaceous species growing above snow
line are likely insulated from winter/early spring
forcing; however, we chose this metric as an indi-
cator of inter-annual variability in winter and
early spring temperatures.
We compared April GDD accumulation to the

winter A–C index developed by Daly et al. (2010
and Daly unpublished data), which is an indicator of
year-to-year variability in regional winter (1 Decem-
ber–31 March) weather patterns (Appendix S1:
Table S3). This index, calculated by subtracting the
number of cyclonic (stormy/low pressure) days
from the anticyclonic (clear/high pressure) days,
has been shown to correlate strongly with patterns
of cold air pooling and temperature inversions
using methods described by Daly et al. (2010).
We calculated the relative topographic position

index (TPI) of each site using R package spatialEco
(function tpi) and used a 500 m radius around the
phenology site. This function calculates the position
of a given site relative to the topography within a
500 m radius, allowing for comparison of two sites
regardless of elevation. Topographic Position Index
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has been found to be a useful indicator (lower
scores) of places on the landscape subject to cold
air pooling (Daly et al. 2010). Slope, aspect, and ele-
vation were derived from existing raster layers in
the Andrews database (Valentine and Lienkaemper
2005, Spies 2016; Appendix S1: Table S4).

Analysis
Data analysis was conducted using R statistical

software (version 3.3.2; R Core Team 2017) and R
studio (version 1.0.153; RStudio Team 2016), with
packages MASS, sp, Lattice, ggplot2, car, ggbi-
plot, plyr, Rmisc, permute, gridExtra, maps, map-
tools, rgdal, raster, leaps, vegan, ggsn, scales,
devtools, and DescTools (Venables and Ripley
2002, Pebesma and Bivand 2005, Sarkar 2008,
Wickham 2009, Fox and Weisberg 2011, Vu 2011,
Wickham 2011, 2017, Bivand et al. 2013, Hope
2013, Simpson 2016, Auguie 2017, Baquero 2017,
Becker and Deckmyn 2017, Bivand and Lewin-
Koh 2017, Bivand et al. 2017, Hijmans 2017, Miller
2017, Oksanen et al. 2017, Wickham and Chang
2017, Signorell et al. 2018). To compare the 8 yr of
phenology to historic temperature patterns, we
looked at temperature data between 1974 and
2016 from two permanent meteorological refer-
ence stands (RS) on the Andrews, one on a high-
elevation ridge with a high relative topographic
position (RS04, 1307 m, TPI = 232.49) and one in
a low-elevation valley (RS02, 489 m, TPI = 53.58).
To see the relationship between A–C index and
temperature inversions (where temperatures are
lower at lower elevations than higher elevations),
we looked at two metrics; we used linear regres-
sion to compare how the maximum winter tem-
perature at each site deviated from the average
maximum (1974–2016) at a given A–C index. We
also used linear regression to see how well A–C
index predicted the percentage of winter days
when the daily temperature of RS04 exceeded
RS02 (e.g., in 1974 on 19 of 121 winter days, or
15.7% of the winter, RS04 was warmer than
RS02). For the 8 yr of phenology data, we con-
ducted the same analysis as above using two phe-
nology core (PC) sites located within 250 m of
RS02 (PC02, 478 m, TPI = 76.65) and RS04 (PC17,
1300 m, TPI = 229.10). We looked at the relation-
ship between winter A–C index and winter GDD
accumulation, as well as how TPI affected the
maximum winter temperature at each site.

To see how each year varied across all sites, we
looked at GDD accumulation between January
and June (Appendix S1: Table S5), and we also
looked at estimated snow depth at each PC site
(Appendix S1: Table S6) and snow depth at a per-
manent meteorological station (VANMET, 1285;
m; Daly and McKee 2016b). As herbaceous spe-
cies are likely insulated by snowpack and thus do
not experience forcing until after snowmelt, we
also compared 1 April and 1 June GDD accumu-
lated from 1 December vs. GDD accumulated
after snowmelt. Additionally, collinear tempera-
ture variables (Appendix S1: Table S7) were con-
densed using principal components analysis
(PCA) to compare microclimates between years
and across sites; all assumptions of a PCA were
tested. We used the first principal component to
derive a multiple linear regression with physical
variables predicting differences in temperature
metrics across sites. We used best subsets (rpack-
age Leaps, function leaps()) to select a model with
the fewest variables and most predictive power.
The function outputs a mallows Cp score (models
are penalized for each additional variable) and an
adjusted R2 for each potential model. We selected
the model that met all assumptions of a linear
regression (i.e., no collinearity (function vif(), val-
ues >0.2 and <5), normal residuals, and homo-
geneity of variance), and had the lowest Cp score
and highest predictive power.
Although we collected data on all stages of leaf

expansion and flowering, we focused this analysis
on the timing of bud break and peak flowering as
these are well-documented metrics of plant phe-
nology (Parmesan 2006). To see how variability in
regional weather patterns affected bud break, we
compared inter-annual variability in the timing of
bud break across the PC sites. We subtracted the
difference between the earliest and latest phenol-
ogy years to find the maximum difference in bud
break dates (Appendix S1: Table S8). Additionally,
we used linear regression to test elevation, as a
proxy for microclimate, as a predictor of bud
break and flowering in each year of the study; if
inter-annual variability in weather patterns is
altering microclimate diversity in a way that is
meaningful for plant phenology, we expected the
slope and strength of the elevation relationship to
vary by year. The assumptions of linear models
were checked for each model (Appendix S1:
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Tables S9, S10). See supporting information (Data
S1) for data files and R code.

RESULTS

Microclimate
From 2009 to 2016, there was a large amount of

inter-annual variability both within and across
sites. To see how the climate during the phenol-
ogy study compared to other years at the
Andrews, we looked at temperature data from
two historic reference stands (RS) with contrasting
elevations and topographic positions (RS02,
489 m valley and RS04, 1307 m slope) associated
with phenology sites. We found that from 1974

until 2016, the A–C index between 1 December
and 31 March (hereafter, winter) fluctuated
greatly between years, with a range from �7 to 45
(Fig. 2a). Winter GDD varied substantially over
this time period, with a range from 2.5 to 165.5
GDD at RS04 and a range between 11 and 230.2
at RS02 Fig. 2b). 1982 had the lowest A–C index
(�7) and the winter GDD at both the high- and
low-elevation sites were nearly 0, with little differ-
ence between the two sites. In contrast, 2015 had
an A–C index of 44 and winter GDD were 165.5
and 230.2 at RS04 and RS02, respectively. That
year, both RS02 and RS04 accumulated more
GDD than any other year in the 46-yr record, and
that year the GDD at RS04 exceeded all but 4 yr

RS02: R2 = 0.36
RS04: R2 = 0.22

R2 = 0.52

b.

c.

d.

a.

Fig. 2. (a) Historic winter anticyclonic–cyclonic (A–C) index values for the entire Andrews watershed from
1974 until 2016. (b) Winter growing degree-days between 1974 and 2016 from two reference stands at the H.J.
Andrews. Red asterisks indicate data from reference stand 2 (RS02), which is located at 489 m in an old-growth
forest in Lookout Creek valley. Blue circles indicate data from reference stand 4 (RS04), which also located in an
old-growth stand, but at 1307 m on the upper 1/3 of the east bounding ridge of Lookout watershed. (c) The per-
centage of days where daily winter temperature at RS04 exceeded RS02 relative to the winter A–C index. Each
point represents a year between 1974 and 2016, while the dashed line is a line of best fit, with an R2 of 0.52.
(d) The deviation of maximum winter (1 December–31 March) temperature from the mean (1974–2016) at RS02
and RS04 from 1974 to 2016 relative to A–C index. Blue circles represent RS04, and red asterisks represent RS02.
Lines (dashed red for RS02 and solid blue for RS04) are lines of best fit, which explain 0.36% and 0.22% of the
variation in the data, respectively.
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of GDD at RS02. We found across both sites, the
A–C index had a correlation coefficient of 0.53
with winter GDD; however, when we looked at
each site individually, the A–C index had a stron-
ger effect on winter GDD at the higher elevation
site, with a correlation of 0.61 with winter GDD at
RS04 vs. 0.54 at RS02. Anticyclonic–cyclonic index
explained 52% of the variance in the number of
days where mean daily temperature at RS04
exceeded RS02 (F = 42.47(1,40), P = 8.87 9 10�8;
Fig. 2c). We also found that in years with high
winter A–C index values, the maximum winter
temperature at RS04 deviates more from the aver-
age (1974–2016) than RS02, while in years with
low winter A–C index values, the opposite is true
(Fig. 2d). This is likely due to cold air pooling
events buffering temperatures at low-elevation
sites during years with high A–C indices.

The eight years when phenology surveys
occurred also displayed extreme inter-annual
variability within and across sites, especially dur-
ing winter months (Fig. 3a). We compared the
number of winter days where daily temperatures
at PC17 (<100 m from RS04) exceeded PC02
(<250 m from RS02), and found that the A–C
index explained 81.2% of the variance in the data
(F = 25.82(1,6), P = 0.002; Fig. 3b), suggesting that
during the phenology study, cold air pooling
events had a strong effect on microclimate varia-
tion across the elevation gradient. We also see
that temperature differentials between high- and
low-elevation sites vary greatly based on daily
A–C conditions and that this effect is largely
diminished as spring progresses (typically after
early to mid-April; Appendix S1: Fig. S1). Anticy-
clonic–cyclonic index was positively correlated
(0.42) with winter GDD accumulation, and years
with low A–C indices had a greater variation
across sites in the rate of GDD accumulation than
years with high A–C indices (Spearman rank cor-
relation of �0.47 between the winter A–C index
and the annual range of 1 April GDD; Fig. 3c).

In 2015, the year with the highest A–C index,
we saw a homogenization of GDD accumulation
across the elevation gradient. That year, sites
500 m apart in elevation (PC01 and PC16) accu-
mulated the same amount of GDD (242.6 and
242.7) between 1 December and 31 March. Sites
with high relative topographic position saw
greater inter-annual variability in maximum win-
ter temperature than sites with low topographic

position during phenology years (Fig. 3d), which
likely contributed to the rapid accumulation of
winter GDD at higher elevation sites. 2015 had
the highest A–C index and was the warmest year
at all sites, and the rate of GDD accumulation
was nearly linear at PC12 and PC17, both sites
with a relatively high topographic position (243.6
and 229.1 respectively; Fig. 3e). In contrast, PC02
is a site with a topographic position of 76.7, and
GDD accumulation followed a more logarithmic
pattern in 2015, likely due to frequent winter
cold air pooling and a lack of persistent cold air
pools in the spring.
Snow was highly variable across all phenology

years, and early winter snow accumulation was
not a good indication of the persistence of snow
cover into the spring. In 2015, most precipitation
fell as rain, resulting in minimal snowpack even at
the highest elevations on the Andrews (Sproles
et al. 2017). In 2011, snow persisted well into June
at VANMET (a meteorological station at 1285 m),
while all of the other years had little to no snow by
1 June (Fig. 4a). The phenology sites maintained a
similar pattern, with the number of days with
snow cover varying by more than 100 d across
years at PC17 (Fig. 4b). 2016 had the most days
with snow; however, most of that snow fell in the
early winter, and by February, the snow pack at
VANMETwas below the 10-yr average and snow-
melted by early May. 2015 had nearly no snow by
February but had more snow in January at VAN-
MET than 2012, which had a snow pack 500 mm
above average on 1 April. In terms of late winter/
early spring snow pack, 2011 and 2015 again rep-
resent the extremes in inter-annual snow variabil-
ity, with over a meter of snow at VANMET on 1
June 2011, and no snow on the same date in 2015.
The first date where 0% of plants were buried
under snow was on average 94 d earlier in 2015
than in 2011 (Appendix S1: Table S6). One mid-ele-
vation site (PC15, 971 m) had all plants exposed
144 d earlier in 2015 than in 2011.
In 62 of 128 (48%) site/year combinations, 0

GDD accumulated by 1 April when date of
snowmelt was the starting point, vs. no sites/
years with 0 GDD by 1 April with 1 December as
a starting date. In these circumstances, early sea-
son air temperature forcing is likely lost on those
plants buried by snow. For example, in 2012,
deep and persistent snowpack at mid- to high-
elevation sites despite a relatively warm spring
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PC17 (1300 m, TPI = 229.10)PC02 (478 m, TPI = 76.65) PC12 (1083 m, TPI = 243.58)e.

Fig. 3. Microclimate patterns 2009–2016. (a) Mean winter temperatures at all sites. Colors represent elevation,
with low-elevation sites in blue, high-elevation sites in yellow. Intermediate elevations are in green. (b) Percentage
of days where daily winter temperature at PC17 (1300 m) exceeds PC02 (478 m) relative to the winter anticyclonic–
cyclonic (A–C) index. The dashed line is a line of best fit that explains 81% of the variance in the data and color
represents year. (c) Growing degree-days accumulated on 1 April at each site relative to the winter A–C index.
Growing degree-days are on a log (base 10) scale, colors are different years, with each colored point representing a
different site during a given year. (d) Maximum winter temperature at a given topographic position (from a 500 m
radius). Colors are different years, with each colored point representing a different site during a given year.
(e) Growing degree day accumulation curves for a low (PC02)-, mid (PC12)-, and high (PC17)-elevation site from
2009 to 2016. Colors represent years, and topographic position index (TPI) is noted at the top of each panel.
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resulted in large difference between early season
GDD accumulation above the snowpack and
temperatures herbs and shrubs experienced dur-
ing this period, as well as a greater range in
microclimate conditions across the elevation gra-
dient than is apparent from GDD values alone
(Appendix S1: Fig. S2). In contrast, years like
2014, 2015, and 2016 with minimal snow by 1
April, there appears to be little difference
between 1 April GDD accumulated after snow-
melt and 1 April GDD accumulated beginning 1
December.

Principal components analysis illustrated that
A–C index, in addition to fixed topographic char-
acteristics, was an important predictor of variabil-
ity across sites/years in temperature variables and
snowmelt date (Fig. 5; Appendix S1: Table S11).
The first two principal components of the micro-
climate PCA explained 73.3% of the variance in
microclimates among sites and years. The first
principal component explained 63.0% of the varia-
tion among sites and years, and primarily sepa-
rated sites by mean seasonal temperature (Fall:
October–December, winter: January–March,
spring: April–June and summer: July–September)
mean annual temperature (1 November–31 Octo-
ber) and 1 April GDD (from 1 December). The
second principal component explained 10.3% of
the variance between site microclimates, and

primarily separated sites by fall average tempera-
ture (89.4% of the axis). We used best subsets
(rfunction leaps) to select a linear model using
physical variables to predict principal component
1 and were able to predict 73.1% of the variance
in PC1 using aspect, slope, elevation, TPI, and
winter A–C index (F(5, 122) = 66.39,
P < 2.2 9 10�16). Winter A–C index alone
explained 23.3% of the variance (F(1, 126)38.19,
P = 8.2 9 10�9) and elevation explained 38.3% of
the variance in PC1 (F(1, 126) = 78.24,
P = 6.9 9 10�15). We used the same method of
model selection to investigate how physical vari-
ables plus the A–C index affect snow- melt; eleva-
tion, TPI, and the winter A–C index predicted
41.6% of the variance in the last date of snowmelt
(F(3, 115) = 27.31, P = 2.08 9 10�13).

Phenology
Plant phenology tracked inter-annual climate

variability. The general pattern of relatively early
bud break in warm years and late bud break in
cold years was consistent across all focal species
and sites (Appendix S1: Fig. S3). However, for
most species, the relationship among sites in tim-
ing of bud break was not consistent across all
years. We saw a loss of diversity in the timing of
bud break across the elevation gradient in years
with a higher A–C index especially in herbs and

a. b.

Fig. 4. Snow cover during the phenology years. (a) Snow depth at a high-elevation meteorological station
(VANMET, 1268 m) on the first of each month between January and June. The red dashed line is the 10-yr aver-
age from 1998 to 2008, and the solid lines are phenology years. Colors are different years. (b) Estimated number
of days of snow at each phenology site in a given year from 1 December. Data were estimated using observations
and nearby meteorological stations and snow stakes. Colors represent years, while each point is a site in a given
year.
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shrubs (Fig. 6; Coptis laciniata and Linnea borealis
are both herbs, Rhododendron macrophyllum is an
understory shrub, and Tsuga heterophylla is a
mid-canopy tree).

We regressed bud break against elevation to
explore how closely timing of bud break of indi-
vidual species across sites in each year of the
study related to the elevation gradient, as an indi-
cator of the degree to which plant phenology was
sensitive to the effect of the A–C index on micro-
climate (high A–C index years reducing winter
microclimate differentiation across elevations).
Although elevation, as a proxy for temperature
and snowmelt patterns that drive spring phenol-
ogy, was a significant predictor in models for most
species in most years, the pattern broke down in
the year with the highest A–C index and lowest
snowpack; in 2015, elevation was a non-significant
predictor of bud break in 10 of 14 species (Fig. 7;
Appendix S1: Fig. S3, Table S9). For example, in
2009–2014, and in 2016, elevation predicted
between 52% and 86% of the variance in the tim-
ing of bud break for Acer circinatum, but there was
no relationship in 2015 (Fig. 7a). In contrast, eleva-
tion was a significant predictor of bud break for
all years for the conifer P. menziesii (Douglas fir),

and elevation predicted 94% (F(1,5) = 87.73,
P < 2.3 9 10�4) of the variance in bud break dur-
ing 2015, the highest adjusted R2 of any year for
that species (Fig. 7b). All 12 species with a wide
distribution across microclimates show a strong
positive relationship among bud break and snow
regardless of year (Appendix S1: Fig. S4), while
the relationship between GDD and bud break has
more variability among years and species
(Appendix S1: Fig. S5). The variation in the rela-
tionship between bud break and GDD suggests
that it is an interaction among snow, tempera-
tures, and regional weather (i.e., A–C index) that
drives the onset of spring plant growth.
Since 2011 and 2015 represented the extremes

in terms of winter climate conditions in our sam-
ple, we contrast patterns in these two years to
illustrate the magnitude of phenological
response and variability across the elevational
gradient. We saw a median advance of bud break
for all species of 37.5 d in 2015 when compared
to 2011. The most extreme advancement in bud
break occurred at PC09 (984 m), where Viola sem-
pervirens (violet) broke bud 85 d earlier in 2015
than in 2011 (Appendix S1: Table S8). However,
the degree of advancement of bud break was

Fig. 5. A principal components analysis of temperature variables at all 16 sites across 8 yr of phenology data
(2009–2016). Principal component 1 is on the x-axis, while principal component two is on the y-axis. Ellipses rep-
resent a 95% confidence interval. See Appendix S1: Table S11 for variable contributions and loadings.
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both species and site specific; for example,
V. sempervirens showed as little as 15-d difference
between years at a low-elevation site (PC01).

Flowering
Flowering data were limited to those species

that regularly flowered over the course of the
study. These data are spotty because many of the
individuals grew in dense, heavily shaded stands
and thus rarely flowered. Sufficient data (three or
more observations at each site, and three or more
sites per year) exist for A. circinatum, Vaccinium
parvifolium (red huckleberry), and Trillium ovatum
(trillium) to regress the date of peak flower
against elevation. Elevation was an inconsistent
predictor of variance in the flowering time of
A. circinatum. We often observed A. circinatum
flowers aborting/dying prior to reaching peak
flowering, which tended to result in low sample
sizes and may explain the inconsistent effect of
elevation. Elevation explains a large amount of
variance in the date of peak flower for V. parvi-
folium in all years except 2015 (Fig. 8a). While
both 2014 and 2015 have both been classified as
below average snow years (Sproles et al. 2017),
Fig. 4a shows that in 2014 there was between a

quarter and half meter of snow at the highest
(1285 m) sites between February and May, while
in 2015 there was effectively no snow during that
period. This suggests that even below average
snow pack can be enough to maintain an eleva-
tion gradient in flowering, and it may require a
total loss of winter snow to stimulate early flower-
ing at the sites that typically experience persistent
snow pack. In contrast, the elevation gradient
appears to remain a powerful signal regardless of
snowpack for T. ovatum, similar to the pattern of
bud break seen in that species (Fig. 8b). Both
V. parvifolium and T. ovatum have flowers emerge
from rolled leaves, and both species appear to
have synced bud break and flowering trends.

DISCUSSION

Microclimate is a strong driver of local plant
phenology, and all of the focal plant species in
this study displayed a high degree of phenologi-
cal plasticity in response to inter-annual climate
variability. A small number of physical variables
explained spatial variation in temperature, espe-
cially during winter and spring. As expected, rel-
atively cool, snowy conditions during winter and

Fig. 6. Day of year of bud break relative to anticyclonic–cyclonic index for (a) Coptis laciniata, (b) Linnea borealis,
(c) Rhododendron macrophyllum, and (d) Tsuga heterophylla. Colors are year, with each point representing a site in a
given year.
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early spring led to delayed onset of spring plant
phenology (bud break), while relatively warm
winter and spring conditions with below normal
snowpack led to an advancement in the onset of
spring phenology, especially at upper elevations.
Less intuitive was the loss of early season micro-
climate diversity and homogenization of plant
phenology across the landscape when low snow-
pack coincided with high frequencies of anticy-
clonic weather systems.

Since 1979, the Northern Hemisphere has
warmed by 0.33°C per decade (IPCC 2007), and

annual average temperatures in the Pacific
Northwest are projected to increase by an addi-
tional 1.8°C by the 2040s and 3.0°C by the 2080s
(Mote and Salathe 2010). This will likely result in
more winter precipitation falling as rain and less
as snow (Stewart 2009, Sproles et al. 2013, 2017),
and an increase in the range of the transient
snow zone, in which snowpack varies through-
out the season due to repeated melting and accu-
mulation (Mote 2006). Since the 1950s, 92% of
snow courses in the western United States have
shown negative trends in snowpack (Mote et al.

Fig. 7. Elevation as a predictor of the timing of bud break for (a) A. circinatum, (b) Pseudotsuga menziesii,
(c) Trillium ovatum, and (d) Vaccinium parvifolium. Error bars are �SE; colors are year.
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2018). Lute et al. (2015) predict a reduction of up
to 60% of the 1 April snow water equivalent in
the Western Cascades, and Sproles et al. (2017)
suggest that patterns of snowpack seen in 2014
and 2015 are likely to become more common as
warming trends continue.

Some models suggest that storms may become
less frequent and more severe, resulting in longer
windows of clear anticyclonic weather between
storms (Pepin et al. 2011). Years with long periods
of clear winter weather (e.g., 2015) can lead to per-
sistent temperature inversions in mountainous
areas like the Andrews, and valleys and drainages
affected by these inversions will have tempera-
tures consistently around freezing (Daly et al.
2010, Pepin et al. 2011, Novick et al. 2016). In con-
trast, during the same cold air pooling events,
upper elevations and ridgelines will be above the
inversion and be exposed to consistently clear,
sunny weather (Pepin et al. 2011).

The net result of these predicted changes in
snowpack and winter weather patterns would
likely be a homogenization of spring phenology
events across the elevation gradient. Our data
suggest that in the Western Cascades (as opposed
to the higher elevation High Cascades, which
may not experience as great of a decrease in snow
pack, Mote 2006, Mote et al. 2018), years with
snowpack well below average (Sproles et al.

2017), and frequent anticyclonic weather patterns
will have much greater effects on the mountain
communities situated in upper elevation sites and
sites of high topographic relief due to increased
daily maxima (Appendix S1: Fig. S1). Understory
species are more likely to have significant shifts in
phenology than overstory trees, and because sites
with less vegetation biomass are less buffered
against temperature extremes than sites with old-
growth characteristics and high biomass (Frey
et al. 2016a), understory communities in upper
elevation plantations (i.e., replanted second-
growth timber stands) in the Western Cascades
will likely have the greatest shifts in phenology
due to changes in regional climate patterns. A
recent study in the European Alps found a similar
homogenization of phenological events, where
bud break of four European trees advanced
~1.9 d per decade from 1960 to 2016 at high eleva-
tions (>808 m), and only ~0.4 d per decade at low
elevations (<522 m; Vitasse et al. 2018).
Trade-offs exist for an individual experiencing

advanced or delayed bud break (Lockhart 1983,
Saxe et al. 2001). Plants that break bud early are
subject to a lower solar angle and fewer overall
daylight hours. This means that primary produc-
tivity is limited, and the plant is at risk for frost
damage and snow burial, especially at higher ele-
vations (Inouye 2008). At sites above 1200 m, we

Fig. 8. Elevation as a predictor of the timing of peak flowering for (a) Vaccinium parvifolium and (b) Trillium
ovatum. Error bars are �SE; colors are year.
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observed individuals of Vaccinium spp., T. ova-
tum and V. sempervirens with frost damage on
new leaves during years (2014, 2015, and 2016)
of advanced bud break (Schulze 2017). If frost
damage does not occur, a plant that breaks bud
early has a longer growing season (and in some
circumstances a competitive advantage, through
shading, over other plants that break bud later),
which may result in increased fitness due to
greater resource storage, or the plant may be
more susceptible to early onset of summer
drought due to the relatively warm conditions
that initiated advanced bud break and the
Mediterranean climate. In 2015, the warm and
dry winter and spring and extraordinarily low
snow pack (Sproles et al. 2017) led to early and
prolonged drought conditions, reflected in some
of the lowest summer flows on record in Lookout
Creek (Johnson and Rothacher 2016) and obser-
vations of early growth cessation in lower eleva-
tions of the P. menziesii range in the Pacific
Northwest (Ford et al. 2016).

While our study focused on herbs, shrubs, and
trees native to the Western Cascades, the effect of
advanced phenology is not limited to a single
trophic level, and the negative effects of trophic
asynchronies have been documented around the
world (Walther et al. 2002, Parmesan and Yohe
2003, Visser and Both 2005, Both et al. 2009,
Aldridge et al. 2011, Forrest and Thomson 2011).
Areas of topographic heterogeneity typically dis-
play a strong gradient in spring plant phenology
(Hwang et al. 2011), which may mitigate the
effects of regional warming for mobile organisms
like birds or mammals (Gaudry et al. 2015, Frey
et al. 2016a). However, in 2015, a potential ana-
logue of future winter weather and snowpack
dynamics, the timing of spring plant phenology
became much less varied across the landscape; it
is possible that such loss of variation could lead
to more widespread consequences and trophic
asynchronies than in years in which early season
microclimate and phenological diversity are
maintained (e.g., 2011). A diverse spread of bud
break and flowering events means a longer win-
dow of food availability for species able to move
from sites with early spring phenology, to sites
that begin the growing season later in the year.
Losing diversity in the timing of bud break and
flowering across microclimates creates potential
for fewer resources for migrants and other mobile

species dependent on a varied patchwork of
spring flowering and growing seasons.
Long-term, high-resolution (both spatially, i.e.,

<1 km2, and temporally, i.e., >5 yr) studies such
as this one are needed to capture the effects of a
warming climate on forest and mountain com-
munities. There is a need to further explore the
interaction between microclimate and phenology
and to develop species-specific models of bud
break using microclimate variables, with the goal
of developing high-resolution predictive models
of bud break across a landscape (Ault et al. 2011,
2015). As the effects of climate change become
more severe, it will be important to understand
how regional patterns affect microclimates, and
how that in turn affects community dynamics.
Homogenization of microclimate and phenol-

ogy has been documented in other recent studies
from mountainous regions. Maclean et al. (2017)
found that between 1977 and 2014, higher alti-
tude areas had significantly faster rates of warm-
ing than valley bottoms and northeast slopes.
Additionally, Vitasse et al. (2018) show that war-
mer winter and spring temperatures result in a
homogenization of phenological diversity across
a mountainous landscape; similarly, this study
provides evidence that years with long periods
of anticyclonic winter weather result in a more
rapid advancement of phenology at higher eleva-
tion ridge sites and a reduction in diversity of
phenological events across a landscape. All three
studies occurred in areas of heterogeneous
topography, although the magnitude of variation
was different at each site. Given the differences
in site characteristics and site location (Western
Cascades of North America, southern Britain and
the European Alps), it is possible that this phe-
nomenon of heterogeneous warming across a
landscape (and thus a homogenization of phe-
nology) is occurring at areas of variable topogra-
phy around the world. Trophic asynchronies and
community shifts due to altered phenologies
have already resulted in declines in species pop-
ulations (Parmesan 2006, Both et al. 2009). Identi-
fying which areas across landscapes are more
and less susceptible to climate change, and the
processes responsible for those patterns, is the
first step in managing for future conditions and
mitigating future population declines due to cli-
mate change (Lawler 2009, Morelli et al. 2016,
Lenoir et al. 2017).
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