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THESIS ABSTRACT 
 
Sarah E. Ward 
 
Master of Science 
 
Department of Biology 
 
March 2018 
 
Title: Microclimate and Phenology at the H.J. Andrews Experimental Forest 
 
 

Spring plant phenology is often used as an indicator of a community response to 

climate change.  Remote data and low-resolution climate models are typically used to 

predict phenology across a landscape; however, this tends to miss the nuances of 

microclimate, especially in a mountainous area with heterogeneous topography.  I 

investigated how inter-annual variability in regional climate affects the distribution of 

microclimates (i.e., areas <100m2) and spring plant phenology across a 6400-hectare 

watershed within the Western Cascades in Oregon.  Additionally, I created species-

specific models of bud break at the microclimate scale, that could then be applied across 

a wider landscape.  I found that years with warm winters, few storms and low snowpack 

have a homogenizing effect on microclimate and spring phenology events, and that bud 

break models developed at a local scale can be effectively applied across a broader 

landscape.  

This thesis includes previously unpublished coauthored material. 



 
v 
 

 
 

 

CURRICULUM VITAE 
 
NAME OF AUTHOR:  Sarah E. Ward 
 
 
GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED: 
 
 University of Oregon, Eugene 
 Michigan State University, East Lansing 
 
 
DEGREES AWARDED: 
 
 Master of Science, Biology, 2018, University of Oregon 

 Bachelors of Science, Wildlife Management and Biology, 2012, Michigan State 
University 

 
 
AREAS OF SPECIAL INTEREST: 
 
 Forest Ecology 
 
 
PROFESSIONAL EXPERIENCE: 
 
 Forestry Research Technician, Oregon State University, 2012-2018 
  

Graduate Teaching Assistant, Department of Biology, University of Oregon 2016-
2018 

  
Graduate Teaching Assistant, Department of Geography, University of Oregon 

2016-2017 
 
 
GRANTS, AWARDS, AND HONORS: 
 
 Travel Grant, Ecological Society of America, 2017 
 
  
PUBLICATIONS: 
 

Ward, S., Schulze, M., & Roy, B. (in review). A long-term perspective on 
microclimate and spring plant phenology in the Western Cascades. 
Ecosphere. 

 



 
vi 
 

 
 

 

ACKNOWLEDGMENTS 
 

Many thanks to Mark Schulze, Bitty Roy and Dan Gavin for their assistance in 

both the research and writing aspects of this thesis.  This work was funded by the NSF 

LTER program (DEB 1440409).  Data and facilities were provided by the HJ Andrews 

Experimental Forest and Long Term Ecological Research program, administered 

cooperatively by the USDA Forest Service Pacific Northwest Research Station, Oregon 

State University, and the Willamette National Forest.  Special thanks to Jay Sexton and 

all of the people who assisted with data collection in one or more seasons.  And last but 

not least, many thanks to Rob Miron and Jessica Celis for the moral support.  



 
vii 

 
 

 
 

TABLE OF CONTENTS 

Chapter Page 
 
 
I. INTRODUCTION ...............................................................................................  1 

II. A LONG TERM PERSPECTIVE OF MICROCLIMATE AND SPRING PLANT  
     PHENOLOGY IN THE WESTERN CASCADES..............................................  2  

Acknowledgements ...........................................................................................  2 

 Introduction .......................................................................................................  2 

 Methods ............................................................................................................  4 

Study Area...................................................................................................  4 

 Study Design ...............................................................................................  4 

Surveys........................................................................................................  6 

Data Processing ...........................................................................................  7 

Analysis ......................................................................................................  8 

Results ..............................................................................................................  8 

Microclimate ...............................................................................................  8 

Phenology ...................................................................................................  13 

Discussion .........................................................................................................  16 

III. BRIDGE ...........................................................................................................  20 

IV. MODELING BUD BREAK AND MICROCLIMATE  .....................................  21 

Acknowledgements ...........................................................................................  21 

Introduction .......................................................................................................  21 

 Methods ............................................................................................................  23 

Study Area...................................................................................................  23 



 
viii 

 
 

 
 

Chapter Page 
 

 Study Design ...............................................................................................  24 

Surveys........................................................................................................  25 

Modeling Bud break ....................................................................................  26 

Modeling Microclimate ...............................................................................  28 

Results ..............................................................................................................  29 

Bud Break Models .......................................................................................  29 

Microclimate Models ...................................................................................  31 

Discussion .........................................................................................................  34 

Conclusions .......................................................................................................  35 

V. CONCLUSION ..................................................................................................  36 

APPENDICES ........................................................................................................  37 

 A. APPENDIX S1 .............................................................................................  37 

 B. APPENDIX S2 .............................................................................................  53 

 C. APPENDIX S3 .............................................................................................  60 

REFERENCES CITED ...........................................................................................  64 



 
ix 
 

 
 

 

LIST OF FIGURES 
 
Figure Page 
 
 
CHAPTER II 
1. Map showing the location and relative topographic position of the 16 core  
 phenology sites at the H.J. Andrews ..................................................................  5 
 
2. Historic winter climate at high and low elevation sites at the H.J. Andrews .......  9 
 
3. Microclimate patterns between 2009 and 2016 ..................................................  10 

4. Snow depth during phenology years ..................................................................  11 

5. A principle components analysis of temperature variables at all 16 sites between  
 2009 and 2016 ...................................................................................................  12 
 
6. Day of year of bud break relative to AC index ...................................................  13 

7. Elevation as a predictor of bud break .................................................................  14 

8. Elevation as a predictor of the timing of peak flowering ....................................  15 

 
CHAPTER IV 
1. A digital elevation map (dem) of the H.J. Andrews Experimental Forest ...........  24 
 
2. Observed bud break for 2017 and discovery trail data versus bud break  
 predicted by species models  .............................................................................  30 
 
3. Range in microclimate variables across the Andrews between the warmest  
 (2015) and coolest (2011) years in the phenology record ...................................  33 
 



 
x 
 

 
 

 

LIST OF TABLES 
 
Table Page 
 
 
1. Variables included in original bud break model selections .................................  27 
 
2. Variables included in each bud break model ......................................................  31 
 
3. Model statistics for the 2017 and discovery trail validation data ........................  31 

4. Model statistics from validation of microclimate variables ................................  32 

  
 
 



 
1 
 

 
 

 

CHAPTER I 

INTRODUCTION 

Phenology – the study of recurring seasonal life cycle events – is a simple metric 

that can be used to elucidate patterns among communities and across ecosystems.  Plant 

phenology is easily observable and can be measured by citizens and scientists alike.   

Regional climates across the globe have been steadily increasing in temperature (IPCC 

2014), and as temperatures continue to warm, the timing of annual leaf emergence and 

flowering has advanced as much as 2 to 3 days per decade (Parmesan and Yohe 2003, 

Menzel et al. 2006).  These advancements can have sweeping impacts beyond a single 

trophic level, and can reduce the fitness of plants, animals and insects within a 

community (Walther et al. 2002, Parmesan and Yohe 2003, Both et al. 2009, Thackeray 

et al. 2016)  Local climates (areas <100m2) driven by variable topographies, canopy 

cover and temperature inversions have been shown to buffer temperature advances and in 

turn have the potential to minimize advanced phenological events  (Daly et al. 2010, 

Dobrowski 2011, Pepin et al. 2011, Frey et al. 2016b, Novick et al. 2016, Lenoir et al. 

2017).  I investigated the effects of regional climate patterns on the distribution of 

microclimates in a 6400-hectare watershed in the Western Cascades, and in turn, how 

those microclimates affect the spring plant phenology of 18 native species of herbs, 

shrubs and trees.  Because each species has evolved a unique physiological response to 

climate (Kreyling 2010), I was interested in creating species-specific models to predict 

bud break using local temperature metrics.  Most predicted effects of regional warming 

are derived using low resolution spatial models and then downscaled to higher spatial 

resolutions.  This method misses the nuances of local microclimates and can over or 

under predict the effects of regional change on a community.  By creating local scale 

models at high spatial resolution that can then be applied to a wider region, I hoped to 

remove this source of error, and create models that can accurately predict bud break 

across a landscape.   

Chapters II and IV of this thesis are both co-authored material and will be 

published with Bitty Roy and Mark Schulze listed as co-authors.  Chapters I, III and V 

are all sole authored by Sarah Ward.    
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CHAPTER II 

A LONG TERM PERSPECTIVE OF MICROCLIMATE AND SPRING PLANT 
PHENOLOGY IN THE WESTERN CASCADES 

 
Acknowledgements 

This chapter includes materials currently under review and co-authored by Sarah 

Ward, Mark Schulze, Bitty Roy.   

 

Introduction 

Over the past several decades, scientists and land managers have become 

increasingly concerned about the effects of current warming trends and the potential 

threat warming poses to biodiversity and ecosystem services (Grimm et al. 2016).  

Phenology – the timing of seasonal events of an organism’s life cycle – is a common 

measure of the response of a species to climate change, and phenological shifts can have 

significant impacts on the dynamics of an ecosystem (Walther et al. 2002, Parmesan 

2006, Both et al. 2009).  For example, because not every species responds equally to 

changes in climate, trophic levels with historically synced phenologies, such as plants 

and pollinators, may become decoupled due a shift in one or both species’ phenologies 

(trophic asynchrony), and result in localized population declines and biodiversity loss 

(Harrington et al. 1999, Walther et al. 2002, Visser et al. 2004, Visser and Both 2005, 

Parmesan 2006, Inouye 2008, Both et al. 2009, Forrest and Thomson 2011, Thackeray et 

al. 2016).  Parmesan and Yohe (2003) reviewed data time series data on the phenology 

of 677 species for periods spanning from 16-132 years in length (median 45 years) and 

found that 62% of those species had shown some change in their phenologies, and that 

87% of phenological shifts were in the direction expected due to climate change.  For 

plants, they found that spring events such as bud break (first date of leaf emergence) and 

flowering are advancing at an average rate of 2.3 days per decade.   

Models developed to predict the effects of climate warming on biodiversity are 

often based on regional climate projections, which are too coarse (>50km2) to predict the 

variation in local climate (microclimate) that organisms experience (Peterson et al. 1997, 

Lookingbill and Urban 2003, Luoto and Heikkinen 2008, Daly et al. 2010, Pepin et al. 
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2011, Potter et al. 2013, Frey et al. 2016b).  Physical factors such as topography, 

snowpack accumulation and ablation, and forest cover can have significant effects on 

local climate, and in turn affect the timing of phenological events (Hwang et al. 2011).  

These microclimates can be significantly different from regional climate patterns and 

downscaling regional models may result in overgeneralization when projecting the 

effects of climate change (Daly et al. 2010, Franklin et al. 2013, Frenne et al. 2013)  

Mountainous regions—which make up 12.3% of the terrestrial surface on earth, 

excepting Antarctica (Körner et al. 2011)—are especially overgeneralized in regional 

models, due to the high degree of topographic heterogeneity (Luoto and Heikkinen 

2008).  Additionally, climate stations are often biased towards lower elevation, 

accessible sites, resulting in higher incidences of estimated data for remote upper 

elevation sites (Pepin et al. 2011).  Steep mountainous terrain often leads to persistent 

cold air pooling events (temperature inversions) where cold air drains down mountain 

slopes into valleys and other areas of low topographic relief and is trapped by a layer of 

warmer air above and the local climate is decoupled from the regional atmospheric 

conditions.  These events are a major driver of microclimate in mountainous regions, 

especially during winter months and they are largely driven regional weather patterns 

(Daly et al. 2010, Pepin et al. 2011, Novick et al. 2016).  Some studies suggest that 

microclimates created by topography, canopy cover and local decoupling from regional 

weather patterns may mitigate the effects of regional warming, and have the potential to 

buffer temperatures and minimize advanced phenological events (Peterson et al. 1997, 

Daly et al. 2010, Dobrowski 2011, Frey et al. 2016b, Lenoir et al. 2017) 

Here we report results of an eight-year study involving weekly spring phenology 

observations of 18 species of plants across a diverse range of fixed sites in the H.J.  

Andrews experimental forest on the west slope of the Oregon Cascades.  We were 

interested in how microclimates vary across a watershed, and how regional climate 

variability and microclimate processes interact to influence the timing of spring 

phenology of native herbs, shrubs, and trees.  In general, we expected that warm years 

with less snow pack would result in advancement of bud break and flowering, especially 

for the higher elevation, exposed ridgelines, and vice versa for cooler years with deeper 

and more persistent snowpack.  Specifically, we expected to see the effects of cold air 
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pooling across the landscape reflected in the timing of phenology in two ways.  First, we 

hypothesized that areas more susceptible to cold air pooling would experience less early-

season temperature forcing and more persistent snowpack than topographically exposed 

sites of similar elevation, which would be reflected in relatively delayed spring 

phenology of forest plants.  Second, we expected that interactions between regional and 

local processes may result in year to year variability in the relationship among sites 

across the elevation gradient (e.g., the timing bud break may be similar at two sites one 

year, and be widely different between those sites a different year). 

 

Methods 

Study area 

The H.J. Andrews Experimental Forest is a 6400-hectare (15,800 acre) forest 

located on the west side of the Cascade Mountains around 50 miles east of Eugene, 

Oregon.  The area is typical of the Western Cascade Range, with steep mountainous 

terrain, exposed ridges and sheltered valleys, and a high degree of topographic 

heterogeneity with elevations ranging from 410 to 1630 m.  Vegetation is primarily a 

combination of 150-500 year old mixed conifer forests, and 40-60 year old Pseudotsuga 

menziesii (Douglas fir) plantations.   

Study design 

6" Sixteen core phenology sites were selected across a variety of elevations and 

aspects, with sites ranging from 460 to 1339 meters (Figure 1).  Most phenology sites 

were co-located (11 of 16 sites) with long term temperature (Johnson and Gregory 2016, 

Daly and McKee 2016a, 2016b) and vegetation monitoring plots (Harmon and O’Connell 

2015, Franklin 2017).  This allowed for quality assurance and quality control (QAQC), 

and data validation using comparable temperature data.  Additional sites (beyond those 

11 co-located with long term monitoring plots) were added to augment distribution of 

study sites across elevation, aspect and topographic position and to create old growth and 

plantation paired sites at high, medium and low elevations.  18 species of native herbs, 

shrubs and trees were selected as target species (Appendix S1: Table S1).  At each site, a 

center point was established and plants from all of the focal study species occurring in the 

area (due to the variety of terrain and elevation, not every target species was found at 
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every site) were added as encountered while inventorying a 25m radius circle around the 

center point until 5 individuals of each species were mapped and tagged (in the 2009 pilot 

season, only 3 individuals per species were tagged, the sample sizes were increased to 5 

early in the 2010 season).  In a few instances, plants of a given species were tagged up to 

35m away from the center point to attain the target sample size.  Each plant was mapped 

using bearing and distance from the center post.  For herbaceous plants, individuals were 

marked using one or two pin flags with a numbered aluminum tag attached to the pin 

flag.  Trees and shrubs were tagged using aluminum nails or zip ties depending on stem 

diameter.  If an individual died or was eaten over the course of the study, another plant 

was selected to maintain five individuals per site.   

Understory air temperature and snow cover were the primary microclimate 

variables recorded.  To capture the temperature of each site, HOBO (Onset Corporation, 

Hobo U22-001; accuracy 0.2°C) temperature sensors were placed 1.5 meters above the 

ground facing south in the center of each plot, and temperature data were collected every 

fifteen minutes.  To reduce temperature spikes due to solar radiation, the sensors were 

placed in the shade, beneath a PVC shield (a 20.32cm long piece of 7.62 cm schedule 40 

pipe split in half lengthwise).  Snow data were collected via observations of depth and 

Figure 1: Map showing the location and relative topographic position of the 16 core phenology 
sites at the H.J. Andrews.  Colors are relative topographic position, with blues showing sites of low 
topographic relief, and whites showing sites with high topographic relief.  Purples are intermediate 
values.  Squares indicate sites without a paired reference stand, while circles are sites with a nearby 
reference stand.  Sites are labeled with PC (phenology core) and the site number. 
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percent cover made by researchers during each site visit, and partial or full burial under 

snow was recorded for each individual.  Snow data for the winter period prior to the first 

phenology census were estimated using existing snow stake datasets (Schulze and Levno 

2017), Andrews meteorological stations (Daly and McKee 2016b), time lapse cameras 

distributed across the forest, and observations from other researchers.   

Surveys 

We developed a species-specific scoring system for vegetative and reproductive 

phenophases that captured consistently observable stages between dormant buds and full 

leaf out/end of flowering (Schulze 2017).  Over the course of each spring, the sites were 

visited once every 5-10 days, and each individual was scored based on its current 

reproductive and vegetative phenophase.  In the early years of the study (2009 and 2010), 

visits were less consistent, due to concurrent study plot set up and early season site access 

limitations.  From 2011-2016, sites were typically visited once every 7 days.  

Observations began each year in late winter with the start date varying depending on 

observed winter weather, snow pack and plant condition across the elevation gradient, 

with the goal of initiating observations at each site prior to the onset of key phenophases 

(e.g., bud swell) of focal plant species.  In 2015, only a subset of seven sites were visited 

due to budget and time limitations.  To reduce bias in cross-site comparisons due to 

observations occurring on different days of the week (it was generally not logistically 

feasible to visit all sites on the same day, but visits were scheduled to occur within a one 

to four-day window), all observation dates were standardized to the midpoint of each 

week.  Weeks were defined as day of year weeks rather than based on the calendar of 

each year, meaning regardless of what day (i.e., Monday, Tuesday) the year began on, the 

mid-point of the first week of the year is day of year 3, and the mid-point of week two is 

day of year 10.  Occasionally, individuals would exhibit significant development over the 

course of a week, resulting in missed scores for particular phenophases.  For example, a 

plant may be observed at bud swell one week, and have emerging leaves the subsequent 

week, with bud break occurring sometime in the interim.  In such cases, we estimated 

these missed scores by splitting the difference between each observation (e.g., if bud 

swell was observed on day of year 30 and emerging leaves were observed on day of year 

37, we interpolated that bud break occurred on day of year 33).  No attempt was made to 
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estimate the timing of phenophases that occurred prior to the first visit of each year, or 

after the last summer visit.   

Data processing 

QAQC was conducted on all temperature data collected.  All data were averaged 

into hourly segments and run through python (Frey et al. 2016b, Johnson and Hadley 

2017) to identify and flag impossible values, periods of missing data, and when sensors 

were buried by snow.  We then further checked the data via manual QAQC and compared 

values to those from nearby temperature stations to identify any erroneous snow flags 

(i.e. data flagged as snow burial when there was no snow at that site), as well as 

temperature spikes, missing data, and other questionable values not identified by 

automated QAQC.  To produce cumulative measures of temperature forcing, all data 

flagged for removal (sensor error, impossible values, missing data, snow burial), were 

filled via regressions using nearby long-term temperature stations (Daly and McKee 

2016a, 2016b) (Appendix S1: Table S2).  All regressions used to interpolate temperature 

data had an adjusted R2 of 0.97 or greater, and most (11 of 16) came from stations 25-200 

m from the phenology plot. Growing degree days were calculated by summing all degree 

hours greater than 5° C accumulated over a 24-hour period and dividing that sum by 24 

to get the average daily accumulation of growing degree days for a given microclimate 

(Murray et al. 1989, Heide 1993).  Starting from December 1, we added each subsequent 

daily accumulation of degree days.  This allowed us to estimate the total growing degree 

days accumulated on April 1 as an indicator of winter and spring temperature forcing.  

We also used the winter anticyclonic-cyclonic index (A-C index) developed by Daly et 

al. (2010 and unpublished) as an indicator of year to year variability in regional winter 

(Dec 1 – Mar 31) weather patterns.  This index, calculated by subtracting the number of 

cyclonic (stormy/low pressure) days from the anticyclonic (clear/high pressure) days, has 

been shown to correlate strongly with patterns of cold air pooling and temperature 

inversions using methods described by Daly et al. (2010).  We used data from two 

permanent meteorological stations on the Andrews to compare temperatures at high 

elevations (out of temperature inversions) and low elevations (typically beneath winter 

temperature inversions) to confirm the presence of winter cold air pooling events.  Our 

assumption was that cold air pools were likely present if the lower elevation sites 
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deviated from normal at a lesser rate than higher elevation sites, meaning that the lower 

sites had temperatures that were decoupled from the regional conditions while the higher 

sites were not. 

Analysis 

Data analysis was conducted using R statistical software (version 3.3.2) and R 

studio (version 1.0.153) (Appendix S3).  For microclimate analysis, we compared local 

and regional climate with a variety of temperature and climate metrics.  We created linear 

models to regress elevation against bud break and flowering; the assumptions of linear 

models were checked for each model, and data were transformed where necessary to 

meet assumptions of normality.  Additionally, collinear temperature variables (Appendix 

S1: Table S3) were condensed using principle components analysis (PCA) to compare 

microclimates between years and across sites; all assumptions of a PCA were tested.   

 

Results 

Microclimate 

From 2009 to 2016, there was a large amount inter-annual variability both within 

and across sites.  To see how the climate during phenology years compared to other years 

at the Andrews, we looked at temperature data from two historic reference stands with 

contrasting elevations and topographic positions (RS02, 478m and RS04,1300m) 

associated with phenology sites.  We found that from 1970 until 2015, growing degree 

days (GDD) accumulated between December 1 and March 31 (hereafter, winter) 

fluctuated greatly between years (Figure 2a), as did the winter A-C index (Figure 2b).  

1982 had the lowest A-C index (-7) and the winter GDD at both the high and low 

elevation sites is nearly 0, with little difference between the two sites.  In contrast, 2015 

had an A-C index of 44 and growing degree days at both sites are well above 100.  That 

year, RS04 (the high elevation site) accumulated more GDD than any other year in the 

46-year record.  Data from all 16 phenology sites over the course of this study also 

showed this strong inter-annual variation in climate (Figure 3a, Appendix S1: Table S4, 

S5).   
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 To confirm the presence of winter temperature inversions, we compared data from 

two permanent meteorological stations (PRIMET 436m, UPLO 1284 m) to the 30 year 

average (179 – 2008), and found that years with lower AC indices (2010, 2011, 2016) 

tended to have winter temperatures that deviated similarly from normal at both high and 

low elevation sites (Figure 3b).  In 2011 and 2016 (low AC indices), the high elevation 

site deviated only 0.35 and 0.35 more from normal than the low elevation site.  In 2014 

and 2015 (high AC indices), the mean winter temperature at the high elevation site 

deviated 0.07 and 3.35 degrees above normal while the low elevation site was 0.8 degrees 

below normal in 2014 and 2.1 degrees above normal in 2015 (a difference of 0.87 and 

1.25 between high and low sites).  This is likely due to cold air pooling events buffering 

temperatures low elevation sites during years with high AC indices.  Sites with high  

Figure 2: Historic winter climate at high and low elevation sites at the H.J. Andrews.  (a) Winter 
A-C index values for the entire Andrews watershed from 1970 until 2016. (b) Winter growing 
degree days between 1970 - 2016 from two reference stands at the H.J.  Andrews.  In figure (a), 
squares indicate years without phenology surveys, and circles indicate years included in the phenology 
dataset.  For both figures, grey indicates data from reference stand 2 (RS02), which is located at 489 m 
in an old-growth forest.  Black indicates data from reference stand 4 (RS04), which also located in an 
old-growth stand, but at 1300 m. Years with incomplete data were not included in either figure.   
 

a. 

b. 
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Figure 3: Microclimate patterns between 2009-2016.  (a) Mean winter temperatures at all sites.  
Colors represent elevation, with low elevation sites in blue, high elevation sites in yellow.  Intermediate 
elevations are in green.  (b) Difference from the 30-year average (1979-2008) of mean winter 
temperatures at two permanent meteorological station at the HJA relative to the winter AC 
index.  PRIMET is a station near the Andrews headquarters and is at 436 meters; it is represented by 
filled squares.  UPLO is a high elevation site at 1284 meters and is represented by circles. (c) 
Maximum winter temperature relative to topographic position.  Colors represent year while each 
point is a site during a given year.  (d) GDD accumulated on April 1 at each site relative to the 
winter AC index.  Colors are different years, while each colored point represents a different site during 
a given year.  e.) Winter and annual GDD at all sites in 2011 and 2015.  Grey bars are GDD 
accumulated between January 1 and December 31 at each site, while black bars are GDD accumulated 
between December 1 and March 31 at each site. 

a. 

b. c. d. 

e. 
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relative topographic position also saw greater variability in maximum winter temperature 

than sites with low topographic position (Figure 3c), another indicator that cold air 

pooling buffered winter temperatures from regional warming.  In the eight years when 

phenology surveys occurred, 2011 and 2015 represent the coolest and warmest years 

respectively.  We used a two tailed, unpaired t-test to compare 2011 and 2015 conditions 

and found that in 2015 all sites accumulated significantly more growing degree days by 

April 1 (p<0.001, t = -10.62(df=19.865)) than in years with a lower A-C index like 2011 and 

there was less difference in winter growing degree day accumulation between high and 

low elevation sites in 2015 compared to 2011 (Figure 3d).  In 2015, sites 500 meters apart 

in elevation accumulated the same amount of growing degree days (242.6 and 242.7) 

between Dec 1 and Mar 31.   

Snow was highly varaible across all year (Figure 4).  In 2015, most precipitation 

fell as rain, resulting in minimal snowpack even at the highest elevations on the Andrews 

(Sproles et al. 2017).  In 2011, snow persisted well into June at the 1284 m 

meteorological station, while all of the other years had little to no snow by June 1.  The 

first date where 0% of plants were buried under snow was on average 94 days earlier in 

2015 than 2011 (Appendix S1: Table S6).  One mid-elevation site (PC15, 971m) had all 

plants exposed at least 144 days earlier in 2015 than in 2011.   

Figure 4:  Snow depth during the phenology years.  (a) Estimated number of days of snow at each 
phenology site in a given year.  Data was estimated using observations and nearby meteorological 
stations and snow stakes.  Colors represent years, while each point is a site in a given year.  (b) Snow 
depth at a high elevation meteorological station (VANMET, 1285 m) on the first of each month 
between January and June.  The red dashed line is the 10-year average from 1998 to 2008, and the 
solid lines are phenology years.  Colors are different years. 
 
 

a. b. 
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   Finally, we used a principle components analysis to compare collinear 

temperature variables (Figure 5).  The first two principle components of the microclimate 

PCA explained 73.3% of the variance in microclimates between sites and years.  The first 

principle component explained 63.0% of the variation among sites and years, and 

primarily separated sites by mean seasonal (Fall: Oct-Dec, winter: Jan-Mar, spring: Apr-

Jun and summer: Jul-Sept) mean annual (November 1 to October 31) temperature and 

April 1 GDD (from Dec 1).  The second principle component explained 10.3% of the 

variance between site microclimates, and primarily separated sites by fall average (89.4% 

of the axis).  We used best subsets to select a model using physical variables to predict 

principle component 1 (Appendix S1: Table S9), and were able to predict 73.1% of the 

variance in PC1 using aspect, slope, elevation, topographic index and winter AC index 

(F(5,122)= 66.39, p<2.2e-16).  Winter AC index alone explained 23.3% of the variance 

(F(1,126)38.19, p = 8.2e-9) and elevation explained 38.3% of the variance in PC1 

(F(1,126)78.24, p = 6.9e-15).   

 

Figure 5: A principle components analysis of temperature variables at all 16 sites between 2009 
and 2016.  Ellipses represent 95% confidence intervals.  Colors represent years and each point is a site 
during a given year. 
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Phenology 

Plant phenology generally tracked the inter-annual variability of microclimates, 

although individual species varied in their responses to microclimate differences.  The 

general pattern of relatively early bud break in warm years and late bud break in cold 

years was consistent across all focal species and sites (Figure 6; Appendix S1: Fig S1). 

We saw a loss of diversity in the timing of bud break in years with a higher AC index 

especially in herbs and shrubs.  Coptis laciniata and Linnea borealis are both herbs, 

Rhododenron macrophyllum is an understory shrub and Tsuga heterophylla is a mid-

canopy tree. 

   We explored how elevation affected bud break among individual species across 

sites and years, by regressing bud break against elevation, and found that in 2015, 

elevation was a non-significant predictor of bud break in 10 of 14 species (Appendix S1: 

Table S10).  For example, in 2009-2014, and in 2016, elevation predicted between 52% 

and 86% of the variance in the timing of bud break for A. circinatum, but there was no 

relationship in 2015 (Figure 7a).  In contrast, elevation was a significant predictor of bud 

break for all years for the conifer Pseudotsuga menziesii (Douglas fir), and elevation 

Figure 6: Day of year of bud break relative to AC index.   (a) C. laciniata (b) L. borealis (c) R. 
macrophyllum and (d)T. hetrophylla.  Colors are year.  2009 and 2015 are not included due to limited 
sample sizes for a visual comparison of the diversity of bud break. 
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predicted 94% (F(1,5)=87.73, p <2.3e-4) of the variance in bud break during 2015, the 

highest adjusted R2 of any year for that species (Figure 7b).  This retention of the 

elevational gradient in the timing of bud break in 2015 was seen in only 4 of 14 species 

modeled including Trillium ovatum (Figure 7c), while 10 of 14 species (including 

Vaccinium parvifolium) saw a complete loss of elevational gradient in bud break (Figure 

7d; Appendix S1: Fig S1).   

Because 2011 and 2015 represented the extremes in terms of winter climate 

conditions, we contrast patterns in these two years in many of the figures that follow to 

illustrate the magnitude of phenological response and variability across the elevational 

gradient.  We saw a median advance of bud break for all species of 37.5 days in 2015 

when compared to 2011.  The most extreme advancement in bud break occurred at PC09 

(984m), where Viola sempervirens (violet) broke bud 85 days earlier in 2015 than in 

2011 (Appendix S1: Table S7).  However, the degree of advancement of bud break was 

Figure 7: Elevation as a predictor of the timing of bud break.  (a) A. circinatum (b) P. menziesii (c) 
T.  ovatum and (d) V.  parvifolium.  Error bars are ± SE, colors are year. 
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both species and site specific; e.g., V. sempervirens showed as little as 15 days difference 

between years at a low elevation site (PC01). 

Flowering data were limited to those species that regularly flowered over the 

course of the study, and many of the individuals grow in dense, heavily shaded stands 

with little opportunity for major reproductive output.  Sufficient data (three or more 

observations at each site, and three or more sites per year) exist for A. circinatum, 

Vaccinium parvifolium (red huckleberry), and Trillium ovatum (trillium) to regress the 

date of peak flower against elevation.  Elevation was an inconsistent predictor of variance 

in the flowering time of A. circinatum.  We often observed A. circinatum flowers 

aborting/dying prior to reaching peak flowering, which tended to result in low sample 

sizes and may explain the inconsistent effect of elevation.  Elevation explains a large 

amount of variance in the date of peak flower for V. parvifolium during years with typical 

winter weather, but the elevational gradient is lost in years with low snow like 2015. 

(Figure 8a).  The elevation gradient appears to remain a powerful signal regardless of 

snowpack for T. ovatum (Figure 8b).  Both of these species have flowers emerge from 

rolled leaves, and both species appear to have synced bud break and flowering trends. 

 

 

 

Figure 8: Elevation as a predictor of the timing of peak flowering.  (a) V. parvifolium and (b) T. 
ovatum.  Error bars are ± SE. 
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Discussion 

Microclimate is a strong driver of local plant phenology. We found that the 

combination of unusually warm and dry conditions and the decoupling of areas of low 

topographic relief from the regional climate patterns can lead to a homogenization of 

microclimate and spring phenology events in mountainous regions like the Western 

Cascades.  A small number of physical variables explained variation in temperature, 

especially during winter and spring.  Each plant species had a unique response to 

microclimate variability, and there was considerable variation across and within years.  

Relatively cool, snowy conditions during winter and early spring led to delayed onset of 

spring plant phenology (bud break), while relatively warm and dry winter and spring 

conditions led to an advancement in the onset of spring phenology, especially at upper 

elevations.  In the future, winter and springs with fewer storms, less snowpack, and warm 

temperatures will likely have advanced bud break across most, if not all species.  If areas 

of low topographic relief are consistently decoupled from regional conditions, and high 

elevation sites have limited snowpack, there will likely be a homogenization of spring 

phenology events across the elevation gradient, mainly due to extreme advances at upper 

elevation sites, especially for herbs and shrubs.  A recent study that found similar results 

where bud break of four European trees advanced ~ 1.9 days per decade from 1960 to 

2016 at high elevations (>808 m), and only ~ 0.4 days per decade at low elevations (<522 

m) (Vitasse et al. 2018).  

Tradeoffs exist for an individual experiencing advanced or delayed bud break 

(Lockhart 1983, Saxe et al. 2001). Plants that break bud early are subject to a lower solar 

angle and fewer overall day light hours.  This means that primary productivity is limited, 

and the plant is at risk for frost damage and snow burial, especially at higher elevations 

(Inouye 2008).  We often observed individuals with frost damage on new leaves during 

years of advanced bud break.  If frost damage does not occur, a plant that breaks bud 

early has a longer growing season, which may result in increased fitness due to greater 

resource storage, or the plant may be more susceptible to early season drought due to the 

relatively warm conditions that initiated advanced bud break.  In 2015, the warm and dry 

winter and spring and extraordinarily low snow pack (Sproles et al. 2017) led to early and 

prolonged drought conditions, reflected in some of the lowest summer flows on record in 
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Lookout Creek (Johnson and Rothacher 2016).  Later bud break and flowering may also 

result in fewer incidences of fruit set due to less pollination, or less resource allocation 

towards reserve storage for the winter dormancy period and the following growing season 

(Rathcke and Lacey 1985, Chapin III et al. 1990, Kreyling 2010). 

While our study focused on the herbs, shrubs and trees of the Western Cascades, 

the effect of advanced phenology is not limited to a single trophic level, and the negative 

effects of trophic asynchronies have been documented around the world (Parmesan 

2006).  Insects that depend on new fragile leaves for easy meals may emerge after peak 

leaf expansion, or after frost damages newly emerged leaves, and find themselves with 

limited food sources (Visser and Both 2005).  Birds dependent on such insects may have 

less food for themselves and their young.  Pollinators may emerge and become active 

after peak flowering, resulting in less fruit production for the plant, and less food for the 

pollinator.  This in turn could lead to less food for birds and other animals dependent on 

berry producing species.  Areas of topographic heterogeneity typically display a strong 

gradient in spring plant phenology (Hwang et al. 2011), which may mitigate the effects of 

regional warming and reduce for mobile organisms like birds or mammals (Gaudry et al. 

2015, Frey et al. 2016a).  However, in years like 2015, the timing of spring plant 

phenology became much less varied across microclimates, and it is possible that such loss 

of variation could lead to more widespread consequences and trophic asynchronies than a 

relatively cool (late) year in which early season microclimate and phenological diversity 

are maintained (e.g., 2011).  A diverse spread of bud break and flowering events means a 

longer window of food availability for species able to move from sites with early spring 

phenology, to sites that begin the growing season later in the year.  Losing the diversity 

across microclimates creates potential for fewer resources for migrants and other mobile 

species dependent on a varied patchwork of spring flowering and growing seasons.   

Since 1979, the northern hemisphere has warmed by 0.33° C per decade (IPCC 

2007), and annual average temperatures in the Pacific Northwest are projected to 

increase by an additional 1.8° C by the 2040s and 3.0° C by the 2080’s (Mote and 

Salathe Jr 2010).  This will likely result in more winter precipitation falling as rain and 

less as snow (Sproles et al. 2013, 2017), and an increase in the range of the transient 

snow zone, in which snowpack varies throughout the season due to repeated melting and 
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accumulation) (Mote 2006).  Since the 1950s, 92% of snow courses in the western 

United States have shown negative trends in snowpack (Mote et al. 2018).  Lute et al. 

(2015) predict a reduction of up to 60% of the April 1st snow water equivalent in the 

Western Cascades, and Sproles et al. (2017) suggest that patterns of snowpack seen in 

2014 and 2015 are likely to become more common as warming trends continue.  Some 

models suggest that storms may become less frequent and more severe, resulting in 

longer windows of clear anticyclonic weather between storms (Pepin et al. 2011).  Years 

with long periods of clear winter weather (e.g., 2015) can lead to persistent temperature 

inversions in mountainous areas like the Andrews, and valleys and drainages affected by 

these inversions will have temperatures consistently around freezing (Daly et al. 2010, 

Pepin et al. 2011, Novick et al. 2016).  In contrast, during the same cold air pooling 

events, upper elevations and ridgelines will be above the inversion and be exposed to 

consistently clear, sunny weather (Pepin et al. 2011).  The combination of less 

precipitation as snow and more persistent temperature inversions will likely result in a 

loss of diversity in the timing of spring phenology similar to the pattern we see when 

comparing the distribution of phenological events in 2015 and 2011.  Our data suggest 

that in the Western Cascades (as opposed to the higher elevation High Cascades, which 

may not experience a significant decrease in snow pack (Mote 2006), years with little to 

no snowpack like 2015, and persistent cold air pools will have much greater effects on 

the mountain communities situated in upper elevation sites and sites of high topographic 

relief than those communities situated in drainages and lower elevation valleys, and that 

understory species are more likely to have significant shifts in phenology than overstory 

trees.  Additionally, because sites with less vegetation biomass are less buffered against 

temperature extremes than sites with old growth characteristics and high biomass (Frey 

et al. 2016a), understory communities in upper elevation plantations in the Western 

Cascades will likely have the greatest shifts in phenology due to changes in regional 

climate patterns.  Long term, high resolution (both spatially, i.e. <1km2, and temporally, 

i.e. > 2 years) studies such as this one are needed to capture the effects of a warming 

climate on forest and mountain communities, and to inform managers of vulnerable 

areas in need of protection.  The snow pack of 2015 has been described as 

“extraordinarily low” (Sproles et al. 2017), and we were fortunate to capture such an 
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extreme year; a typical two year study would likely have missed the inter-annual 

variability we captured across the eight years of phenology surveys.  As the effects of 

climate change become more severe, it will be important to understand how regional 

patterns affect microclimates, and how that in turn affects community dynamics.  

Identifying which areas across landscapes more and less susceptible to climate change, 

and the processes responsible for those patterns, is the first step in managing for future 

conditions (Lawler 2009, Morelli et al. 2016, Lenoir et al. 2017). 
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CHAPTER III 

BRIDGE 

The first half of this thesis explained the nuances of inter-annual variability and 

showed that changes in regional climate patterns (i.e., AC index) have a strong effect on 

the distribution of microclimate and spring phenology events across the Andrews.  I 

wished to further explore the connection between microclimate and spring phenology and 

chose four species from the original 18 to develop models with the capacity to predict 

bud break.  I had two goals with this second chapter: 1) to create models that could 

accurately predict observed bud break using only microclimate variables (i.e., no physical 

drivers like elevation); and 2) to upscale those models to the landscape level to remotely 

predict bud break across a wide region.   
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CHAPTER IV  

MODELING BUD BREAK AND MICROCLIMATE 

Acknowledgements 

This chapter contains co-authored material written by Sarah Ward, Mark Schulze, 

Bitty Roy. 

 

Introduction 

  The timing of seasonal plant activity (phenology) is often used as an indicator of a 

community’s response to changes in climate, and in particular, the timing of bud break in 

plants is a simple and common metric of the onset of spring (Walther et al. 2002).  Many 

studies have found a relationship between rising global temperatures and an advancement 

in the timing of spring bud break (Parmesan and Yohe 2003, Visser and Both 2005, 

Parmesan 2006, Menzel et al. 2006, Thackeray et al. 2016), however modeling the effect 

of climate change on communities across a landscape can be difficult due to the species-

specific climatic requirements needed to initiate bud break (Kramer 1994, Chuine et al. 

1998, 2000, Cleland et al. 2007). Inter-annual climate variability is a constant for nearly 

every terrestrial plant in the temperate region, and plants have adapted numerous 

strategies to avoid breaking bud too early or too late (Kreyling 2010).  It is well 

established that bud break for most species is sensitive to temperature forcing (typically 

measured as the sum hours above a set temperature threshold, typically 5º C, starting in 

early winter) (Perry 1971, Polgar and Primack 2011).  Many temperate species are also 

known to require a set amount of chilling units (often defined as degree hours between 0 

and 5º C), in addition to accumulating forcing units (degree hours above a set threshold, 

typically 5º C) that will initiate for the onset of bud break (Hänninen 1995, Bailey and 

Harrington 2006).  This strategy requires a certain period of cold weather before warm 

weather has an effect on the plant, which prevents the onset of bud break during mid-

winter warm spells and mitigates the risk of frost damage to leaves (Heide 2003).  

However, while recent advances in phenology research have improved our understanding 

of species-specific bud break requirements (Chiune 2000), the exact physiological 

requirements of the majority of plants are still unknown (Fitter et al. 1995). Additionally, 
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even well studied species like Pseudotsuga menziesii (Douglas fir) could have local 

adaptations that lead to physiological differences from what is established in the literature 

(Bennie et al. 2010).   

Advances in remote sensing and modeling techniques have led to an increase in 

predictions of future phenological shifts due to climate change (Chuine et al. 2000, Reed 

et al. 2003, Cleland et al. 2007, Buitenwerf et al. 2015).  However, the climate a plant 

experiences is generally at a scale of less than 100m (microclimate), and is strongly 

affected by local topography and other physical features (Potter et al. 2013, Frenne et al. 

2013, Morelli et al. 2016, Frey et al. 2016a).  These microclimates can be divergent, or 

even decoupled from regional weather patterns (especially in winter and early spring) and 

can make it difficult to predict localized patterns of bud break using low resolution (i.e. 

>1km) spatial and climate data (Daly et al. 2010, Pepin et al. 2011, Novick et al. 2016, 

Lenoir et al. 2017).    

We were interested in whether we could use microclimate variables to develop 

species-specific models of bud break for four species native to the Western Cascades 

using nine years of phenological observations from sixteen sites.  Douglas fir, Acer 

circinatum (vine maple), Vaccinium parvifolium (red huckleberry) and Trillium ovatum 

(Pacific trillium), are all common native species found in the Western Cascades.  

Douglas fir is an over story tree that is the dominant species in much of the region (Spies 

et al. 1990). Vine maple and red huckleberry are both common shrubs that are typical in 

the understory of both old growth and second growth forests (Brown 1969, Gholz et al. 

1976, Agee and Kertis 1987, Kerns et al. 2004), and Pacific trillium is a common herb 

found across a variety of elevations in the Western Cascades (Brockway et al. 1983).  

We hypothesized that species-specific models developed at the local scale could be 

applied to predict bud break across the landscape (Chuine et al. 2000). We hoped to 

develop models could be used to investigate the local effects of potential shifts in 

regional climates, such as reduced snow pack, increased temperatures and fewer days of 

precipitation and cloud cover (Mote 2006, Mote and Salathe Jr 2010, Sproles et al. 2013, 

Lute et al. 2015).   

Areas of heterogeneous topography are known to have a diversity of 

microclimates (Pepin et al. 2011), which result in a diversity in the timing of 
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phenological events (Vitasse et al. 2018).  These microclimates allow for a longer period 

of resource availability for organisms that can move with the phenology gradient (Frey et 

al. 2016a).  Additionally, numerous studies have suggested that the microclimate 

diversity within mountainous areas can buffer against the effects of climate change and 

that during the glacial and interglacial periods, these buffered areas acted as micro-

refugia for biodiversity (Peterson et al. 1997, Dobrowski 2011, Lenoir et al. 2017).  

While it is uncertain that such buffers will remain stable enough to act as micro-refugia in 

the future, evidence is mounting that certain microclimatic features maintain cooler 

conditions despite current patterns of regional warming (Pepin et al. 2011, Frenne et al. 

2013, Frey et al. 2016b, Morelli et al. 2016, Frey et al. 2016a).  Frey et al. (2016b) found 

that while high elevation sites in the Western Cascades are typically cooler, and 

accumulate fewer growing degree days between January and March, vegetation and 

topography were the dominant factors driving growing degree day accumulation during 

that part of the year  They also found that old growth stands in the Cascade region 

reduced both the maximum temperature of the warmest month and the average maximum 

monthly temperature from April to June when compared to closed-canopied plantations 

(40-60 years old).  Given that the phenology of many plant species responds to late 

winter and early spring temperature forcing (Lavender 1991), this microclimatic 

buffering of temperature (driven by topography and vegetation) has the potential to 

mitigate the advancement of phenological events due to regional warming.  Models that 

are developed at the local and landscape scale (rather than downscaling regional models) 

will be more accurate when identifying microclimates that may be less susceptible to 

future shifts in regional climate patterns. 

 

Methods 

Study area 

The H.J. Andrews Experimental Forest is a 6400-hectare (15,800 acre) forest 

located on the west side of the Cascade Mountains in central Oregon.  The area is 

representative of the Cascade Range, with steep mountainous terrain, exposed ridges and 

sheltered valleys, and a high degree of topographic heterogeneity with elevations ranging 
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from 410 to 1630 m.  Vegetation is primarily a combination of 150-500 year old mixed 

conifer forests, and 40-60 year old Pseudotsuga menziesii (Douglas fir) plantations.   

Study design 

For the initial phenology study, sixteen sites (core phenology sites) were selected across a 

variety of elevations and aspects, with sites ranging from 460 to 1339 meters (Appendix 

S2: Table S1).  An additional site (discovery trail) was later added as part of an 

educational trail, and we used this site, along with 2017 data from the core phenology 

sites, to validate the bud break models we discuss below (Figure 1).  Eighteen species of 

native herbs, shrubs and trees were permanently marked as target species, and individuals 

were typically located within 25 m of a center post (occasionally one or two were located 

up to 35m away to have 5 representatives of each species within a plot).   This paper 

focuses only on four of those species: Acer circinatum (Vine maple), Pseudotsuga 

menziesii (Douglas fir), Trillium ovatum (Trillium) and Vaccinium parvifolium (Red 

huckleberry).  We chose these four species because they are common representatives of 

three functional groups (trees, herbs and shrubs) at the Andrews, and we had a large 

number of observations of bud break for each species across the study area.  Additionally, 

vine maple and other deciduous shrubs have been shown to support higher levels of 

Elevation 

Figure 1: A digital elevation map (dem) of the H.J. Andrews Experimental Forest.  Circles 
triangles are the 16 core phenology sites and the asterix is the location of the Discovery trail.  
Phenology core sites are labeld with PC and the site number.  Color represents elevation, with greens as 
low elevation sites and light browns as upper elevation sites.  Yellows are intermediate elevations 
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animal and insect diversity and are key factors in within year avian occupancy at the 

Andrews (Hagar 2007, Ellis and Betts 2011, Frey et al. 2016a).  

Understory air temperature was the primary microclimate variable recorded.  To 

capture the temperature of each site, HOBO (Onset Corporation, Hobo U22-001; 

accuracy 0.2°C) temperature sensors were placed 1.5 meters above the ground facing 

south in the center of each plot, and temperature data were collected every fifteen 

minutes.  To reduce temperature spikes due to solar radiation, the sensors were placed in 

the shade, beneath a PVC shield (20.32cm long piece of 7.62 cm schedule 40 pipe split in 

half lengthwise).  Temperature data were assessed for accuracy by comparing phenology 

data to nearby permanent monitoring sites (Daly and McKee 2016a, 2016b) with long 

term temperature records.  Erroneous data was replaced with data regressed from 

permanent monitoring sites (Appendix 1, Table S2).  Observations of snow depth were 

made during each visit, however, depth was estimated so only presence or absence data 

can be used reliably.  

Surveys 

We developed a species-specific scoring system for vegetative and reproductive 

phenophases (Schulze 2017).  During each spring, sites were typically visited once per 

week, and each marked individual was scored for vegetative and reproductive growth.  In 

the early years of the study (2009 and 2010), visitations were less consistent, due to 

concurrent study plot set up and early season site access limitations.  From 2011-2017, 

sites were typically visited once every 7 days.  Observations began each year in late 

winter with the start date varying depending on observed winter weather, snow pack and 

plant condition across the elevation gradient, with the goal of initiating observations at 

each site prior to the onset of key phenophases (e.g., bud swell) of focal plant species.  In 

2015, only a subset of seven sites were visited due to budget and time limitations.  To 

reduce bias (surveys did not always occur on the same day of year each year), all 

observation dates were standardized to the midpoint of each week, and weeks were 

defined as day of year weeks (i.e. week three in January begins on 1/15 each year).  

Occasionally, individuals would exhibit significant development over the course of a 

week, resulting in missed scores for particular phenophases.  For example, a plant may be 

observed at bud swell one week, and have emerging leaves the subsequent week, with 
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bud break occurring sometime in the interim.  In such cases, we estimated these missed 

scores by splitting the difference between each observation (e.g., if bud swell was 

observed on day of year 30 and emerging leaves were observed on day of year 37, we 

interpolated that bud break occurred on day of year 33).  No attempt was made to 

estimate the timing of phenophases that occurred prior to the first visit of each year, or 

after the last summer visit.   

Modeling bud break: 

Final models of bud break were validated using data from the core phenology 

sites collected in 2017 (not included in the initial model development) and against three 

years of observations from the discovery trail.  These data represent external conditions 

independent of the original data (internal conditions) used to develop the models.  The 

discovery trail data did not include observations of bud break for Douglas fir, and was not 

included in the validation of that model.  To develop the initial models, we used 

temperature data (Johnson and Hadley 2017) at each site to calculate forcing, chilling, 

and frost variables.  The two frost variables included were the last day of year when the 

mean daily temperature was below zero, and the number of days between November 1 

and the end of June where the mean daily temperature was below zero.  Forcing and 

chilling units were calculated using models from Harrington et al. (2010), and the chilling 

variable we included was the day of year at which chilling units reached 1200 (Bailey 

and Harrington 2006).  We calculated two forcing variables, one where forcing units 

were accumulated beginning on November 1 (in concert with chilling variables) and one 

where the forcing did not begin to accumulate until the chilling units were greater than or 

equal to 1200.  While the forcing model was developed for Douglas fir trees, we found 

little literature on appropriate units for the other species, and after initial testing with 

other established forcing units (namely growing degree days above 5 degrees C and 

growing degree days above 10 degrees C from January 1), we found both versions of the 

Harrington forcing model (i.e. simultaneous accumulation and accumulation after a set 

threshold) to have the most predictive power.  We included forcing accumulated on the 

first of April, May and June from November 1st and after 1200 hours of chilling were 

accumulated.  We also calculated mean April temperature, as an indicator of the relative 

warmth of the spring regardless of the earlier winter conditions.  We used presence or 
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absence of snow observed during the closet visit to the first of April and the first of May 

as snow metrics.  All data was examined prior to modeling and transformed to reduce 

skew where necessary.   

For vine maple, red huckleberry and trillium, we tested two initial sets of 

variables (Table 1).  We chose to test one model that included simultaneous forcing and 

chilling, and another that included forcing after chilling, we did not know whether these 

plants respond to forcing accumulated at the same time as chilling or forcing that does 

not begin accumulating until after a set chilling unit was reached.  For Douglas fir, we 

included both types of forcing variables in one model, as we only included forcing on 

June1, and assumed the model selection would select one of the two forcing metrics.   

Table 1: Variables included initial bud break models. 

 All species models were initially reduced using best subsets (rpackage leaps, 

Appendix S3) which gives two potential models for each number of available variables 

(i.e., if there are 3 variables, leaps outputs two models with one variable, two with two 

variables etc.) and a Mallows CP score and an adjusted R2 value for each model.  We 

always tested the model with the highest adjusted R2 and the lowest Cp score; however if 

that model had significant multicollinearity (variance inflation factors identified via r 

base function vif(), Appendix S3), we removed the variable with the highest vif score and 

tested the reduced model.  See Appendix S2: Table S3 for all tested models.  We selected 

Vine maple, Red 
huckleberry and Trillium : 

Forcing+ 

Vine maple, Red 
huckleberry and Trillium : 

Chilling+ 

Douglas fir 

Days below 0 

Last day of year below 0 

Days below 0 

Last day of year below 0 

Days below 0 

Last day of year below 0 

April 1 snow (0 or 1) 

May 1 snow (0 or 1) 

April 1 snow (0 or 1) 

May 1 snow (0 or 1) 

April 1 snow (0 or 1) 

Mean April temperature 

Mean April temperature 

Day of year when chilling units = 
1200 

May 1 forcing+ x April 1 snow  

OR  

April 1 forcing+ x April 1 snow 

Mean April temperature 

May 1 forcing.chilling x April 1 
snow  

OR  

April 1 forcing.chilling x April 1 
snow 

June forcing (from Nov. 1) 

June forcing (after 1200 
chilling units)  

Day of year when chilling 
units = 1200 

 
+For vine maple, red huckleberry and trillium four versions of the model were tested:  Forcing from 
November 1 to April 1;  forcing after chilling to April 1; forcing from November 1 to May 1; forcing 
after chilling to May 1.  This was due to high correlation between the two months. 
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the final model based on the prediction accuracy of observed validation data (Appendix 

S2: Table S4).  Accuracy was determined via the coefficient of determination (R2) from a 

linear regression of observed versus predicted dates of bud break. If two models were 

nearly identical in their predictive power, we favored models that most accurately 

predicted the discovery trail data, as it was completely independent of the original model 

development. Assumptions of linear models were checked for each model. 

Modeling microclimate 

To upscale the models at the landscape level, we needed to predict the 

temperature variables included in each species model.  We used available spatial data 

(Valentine and Lienkaemper 2005, Valentine and DeSilva 2014, Spies 2015, 2016), to 

predict all of the microclimate included in each species model and created 30m resolution 

rasters with each temperature variable across the Andrews for 2009-2016. To model 

snow, we used snow depth data from an existing network of snow stakes that have been 

visited approximately once every three weeks during the winter from 1998 to 2014 

(Schulze and Levno 2017) and created a binary presence absence variable for the first of 

each month between December and June.  Because the sites were not always visited 

precisely on the first of each month, we considered any survey that occurred within four 

days on either side of the first to be representative of the snow depth on the first of the 

month.  We used stepwise logistic regression to select the snow model (rpackage MASS, 

Appendix S3) with AIC as the selection criteria, and initially included the depth of snow 

on the date of interest at two permanent meteorological stations (CENMET and 

UPLMET, 1028 m and 1284 m respectively), aspect, biomass and elevation, and mean 

monthly air temperature at one low and high elevation meteorological stations (PRIMET, 

436 m; UPLMET 1284m) (Daly and McKee 2016b).  For all variables except snow, we 

used multiple linear regression and stepwise model selection.  The initial models included 

observed temperature metrics from the phenology sites as predicted by relative 

topographic position (i.e. ridge or valley), biomass, slope and elevation, mean 

temperature at PRIMET and two anticyclonic-cyclonic indices (AC index) (Table S5).  

The AC index is a metric used by Daly et al (2010) (data courtesy of Chris Daly) and can 

indicate the frequency anticyclonic versus cyclonic weather systems over a given period 

of interest and thereby the frequency of temperature inversions.  Anticyclonic weather 
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patterns result in cold air pooling and decoupling of valleys and depressions from 

regional weather, particularly in winter and early spring.  With cyclonic weather systems, 

temperatures across the Andrews Forest elevation gradient typically conform to 

expectations based on moist adiabatic lapse rates, whereas in periods with anticyclonic 

systems, valleys maintain temperatures near freezing, and ridges and slopes are exposed 

to clear weather and higher daily temperatures due to increased irradiation (Daly et al. 

2010, Pepin et al. 2011). Hence, a relatively warm winter with no shift in the AC index 

would be expected to preserve a strong elevational gradient in average air temperature, 

whereas a shift in the AC index could result in homogenization of mean or cumulative 

temperature metrics such as forcing units.  We used the AC index from November to 

May (for June forcing. chilling) and from November to March (for April forcing/April 

forcing. chilling) as an annual constant that represents the inter-annual variability of 

regional climate and is an indicator of local climatic decoupling due to cold air pooling.  

We also included two mean temperature variables (mean April temperature and mean 

temperature between November 1 and May 31) from the low elevation meteorological 

station (PRIMET, 436 m), and a snow depth variable for the first of the month for April 

and May from a mid and a high elevation meteorological station (CENMET,1025 m; 

UPLMET 1284 m, MS001) as indicators of the annual conditions (Daly and McKee 

2016b).  We tested the predicted climate models against four years (2011-2014) of data 

from 180 sites across the Andrews (Johnson and Hadley 2017).  While this validation 

data set is more spatially robust, we chose to model the phenology temperature data as it 

is more temporally robust and includes data from all of the phenology survey years. We 

do not have AC index data for 2017, and so we tested the upscaled landscape models 

against the observed 2009-2016 phenology core data and discovery trail data. 

 

Results 

Bud break models 

We succesfully developed bud break models for all four species with a range of 

preditive success, both for internal (original 2009 to 2016 data) and external (2017 and 

Discovery trail validation data) conditions (Figure 2, Table 2).  All four models were 

quite accurate when predicting the orignal phenology data and the validation data (Table 
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3).  The vine maple model included mean April temperature, total days below and the 

first day of year where chilling uniits were greater than 1200.  The model explained 73% 

of the variance in the 2009-2016 data and 74% of the variance in the validation data.  The 

model for Douglas fir was surprisingly simple and only included June 1 forcing after 

chilling as a predictive variable.  The model explained 83% of the variance in the original 

dataset 90% of the variance in the validation data.  The trillium model was also highly 

successful and included observed presence or absence of snow on April 1, total days 

below 0 and mean April temperature; the model explained 85% of the variance in the 

original dataset and 90% of the variance in the validation data.  Finally, the model for red 

huckleberry explained 82% of the variance in the original data, and 81% of the variance 

in the validation data.  This included mean April temperature, the last day of year below 

freezing and April 1 forcing after chilling.  

Figure 2:  Observed bud break for 2017 and discovery trail data versus bud break predicted by 
species models. (a) Acer circinatum; (b) Pseudotsuga menziesii; (c) Trillium ovatum; (d)Vaccinium 
parvifolium.  Colors are elevation, with oranges indicating high elevation sites, and blues indicating 
low elevation sites, with reds as intermediate values.  Sites are labeled as PC and the site number for 
phenology core sites or Disc. Trail for the discovery trail. 
 

a. b. 

c. d. 
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Table 3: Model statistics for the 2017 and discovery trail validation data 
Species R2 F-stat(df) p-value 

Acer circinatum 0.74 45.91(1,16) *** 

Pseudotsuga menziesii 0.90 112.1(1,13) *** 

Trillium ovatum 0.90 110.5(1,13) *** 

Vaccinium parvifolium 0.81 50.78(1,12) *** 

 

Microclimate models 

We were able to successfully model all of the predictive climate variables across 

the Andrews watershed (Appendix S2: Table S6).  The microclimate models explained 

between 63% and 81% of the variance in the validation data for all variables except for 

April forcing after chilling (Table 4).  The model for April forcing after chilling 

Table 2: Varibles included in each bud break model     
Species Model variables and coefficients+ Cp 

Score 
R2 F-stat P-

value 
Acer 
circiantum 

Budbreak (DOY) = e^(4.67 – 0.04 x MAT + 
0.04 x (ÖDB0) – 

0.03 x (ÖDOY@1200)) 
 

2.79 0.73 94.72(3,107) *** 

Pseudotsuga 
menziesii 

Budbreak (DOY) = 179.68 – 0.09 x JFC 
 
  

18.55+++ 0.83 510(1,105) *** 

Trillium 
ovatum++ 

Budbreak (DOY) = (10.05 + 0.20 x A.snow + 
0.48 x (ÖDB0) – 0.25 x (MAT))^2 

 

5.42 0.85 125.1(3,64) *** 

Vaccinium 
parvifolium++ 

Budbreak (DOY) = (9.86+ 0.20 x LD0  - 0.30 x 
MAT – 

0.52 x ln(AFC))^2 

0.09 0.82 110.6(3,73) *** 

 
+ AF = April forcing (from Nov.1); AFC = April forcing after chilling; A.snow = April 1 snow; DB0 = Number of 
days below 0 between November 1 and June 1; DOY@1200 = First day of year where 1200 chilling hours are 
accumulated; JFC = June forcing after chilling; LD0 = Last day of year below 0;  MAT = Mean April temperature 
 
++ Predictor variables scaled (mean centered) using r function scale() to reduce collinearity; scaling occurred after 
any transformation of data.   
 
+++ Despite a high CP score, all other potential models had highly correlated variables and R2 values that differed 
only by around 0.01. 
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explained 35% of the variance in the validation data.  For snow, we used a logistic 

regression, and compared observed snow at snow stake sites between 2014 and 2015 and 

found that sites with observed presence of snow had a mean probability of 0.64, and sites 

with no snow had a mean probability of 0.27 (Table S8).  We applied the bud break 

models to the new microclimate rasters and predicted bud break across the entire 

Andrews watershed, and tested the validity against the 2009 to 2016 observed phenology 

data (Table S9, Figure S1).   

Table 4: Model statistics from validation of microclimate variables. 

Microclimate 
variable 

F-stat(df) R2 p-value 

April chilling after 
forcing 
 

282.6(1,533) 0.35 *** 

DOY chilling above 
1200 
 

889.4(1,533) 0.63 *** 

Mean April 
temperature 
 

2325(1,533) 0.81 *** 

Days below 0 891.3(1,533) 0.63 *** 

Last day of year 
below 0 
 

1023(1,533) 0.66 *** 

June forcing after 
chilling 

1162(1,533) 0.69 *** 

 

To explore the possibility of identifying microclimates less susceptible to 

warming trends, we compared the two years with the highest and lowest values of each 

predicted microclimate variable.  June forcing after chilling, the day of year where 1200 

chilling units are accumulated, number of days below 0 and April forcing after chilling 

all had distinct patterns of microclimate distribution, with some areas experiencing a 

much greater range of values than others (Figure 3).  High elevation sites saw much 

greater ranges in both the day of year where chilling reached 1200 and the last day of 

year where the temperature dropped below 0.  Low elevation sites tended to see greater 

ranges in forcing metrics, although the April 1 forcing appears to be buffered near the 

stream channels, even when nearby areas show extreme ranges in April 1 forcing units.  
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Discussion 

 We were able to create species-specific models of bud break that were robust 

for predicting both internal and external (validation) data.  The Douglas fir model was 

highly accurate across all elevations, with a median difference of 2.26 days, and a 

maximum difference between observed and predicted data of 8.9 days (Table S11).  

Interestingly, the model for Douglas fir included the forcing variable that accumulated 

Figure 3: Range in microclimate variables across the Andrews between the warmest (2015) and 
coolest (2011) years in the phenology record.  (a) June forcing after chilling. (b) Number of days 
below 0. (c) First day of year above 1200 chilling units. (d) April forcing after chilling.  All colors 
represent the range between 2011 and 2015 values (2015 was the warmest year in the phenology record 
while 2011 was the coolest). Blues represent regions with the least range in the given variable, while 
yellows are the areas with the greatest range between the two years.  Greens are intermediate. 

a. b. 

c. d. 
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after 1200 chilling units rather than a forcing variable that accumulates simultaneously 

with chilling (parallel model).  This is counter to Harrington et al. (2010), whose models 

of forcing and chilling units we used.  They modeled Douglas fir bud break possibility 

lines using chilling and forcing units that accumulated simultaneously.  However, other 

studies have supported temperate trees requiring a certain number of chilling units prior 

to forcing accumulation (sequential model) (Landsberg 1974, Hänninen 1995, Bailey and 

Harrington 2006).  Because the Harrington et al. models were developed using seed 

sources that had a maximum elevation of 880m, it is possible that the individuals from 

our study have a more rigid chilling requirement as individuals that break bud too early at 

higher elevations will more likely be subject to frost damage.  Red huckleberry also 

included forcing after chilling, which was surprising.  We tend to (anecdotally) observe 

huckleberry rapidly breaking bud as soon as daily temperatures begin to warm up.  It’s 

possible that the day of year when chilling is near 1200 units is also closely timed with 

snow melt, and the variable is a stand in for the more direct effect of snow.  Neither 

models for vine maple or trillium had any forcing metrics included, and both included 

mean April temperature and the number of days below 0.  Because both species are 

subject to snow burial and persistent freezing temperatures beneath temperature 

inversions, it is possible that mean April temperature captures the late season forcing that 

occurs after snow melts and the number of days below 0 indicate the persistence of cold 

air pooling events.   

 The models for trillium and vine maple were both the least accurate when 

predicting bud break at the two highest elevation sites (PC17 at 1300 m and PC18 at 1330 

m) (Table S4).  Both of these species are subject to winter snow burial, and it is likely 

that our snow variable (presence or absence at the site) does not capture the fine scale 

nuances of snow pack (and snow melt) that affect an individual plant, and thus the bud 

break models fail to capture as much variance as the other species less affected by snow 

(i.e. Douglas fir).  The vine maple model also predicted a later bud break at PC16.  This 

site is a mid to high elevation site (1025m) that is situated at the top of a south facing 

ridge that is often much more advanced than other sites at the same elevation.  The model 

predicted bud break 17 days later than the observed value and as there is rarely a late 
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season snow pack at this site, it is likely that some of the finer nuances of microclimate 

are not captured in the overall model.  

 We were able to accurately predict microclimate across the landscape using 

only a few sites.  When comparing the two extreme years, we found that the low 

elevation stream sites were buffered against extreme variability in freezing events and the 

rate of chilling accumulation, while high elevation sites were buffered against extreme 

ranges in June forcing metrics.  The range in April forcing after chilling was particularly 

interesting, as the low elevation stream valleys showed little variability while sites only a 

few hundred meters up the hillsides showed extreme ranges in April forcing 

accumulation.  Further exploration of historic data may indicate sites that are consistently 

buffered against extreme climate variability.   

 

Conclusions 

 Vegetation and topography are the dominant factors driving winter and spring 

temperature in the Western Cascades, and areas of heterogeneous topography and high 

biomass (i.e., old growth forests) have the potential to buffer species from regional 

increases in winter and spring temperature (Pepin et al. 2011, Frenne et al. 2013, Frey et 

al. 2016b, Morelli et al. 2016, Frey et al. 2016a). However, identifying potential 

microclimates is difficult due to the highly variable physiologies of individual species.  

We found that physical variables and temperature metrics from a few local sites can be 

used to accurately predict microclimate across a landscape, and species-specific models 

can then be applied to a broad area.  Upscaling species-specific bud break models derived 

from a local scale has the potential both explore the effects of future climate scenarios, 

and to identify sites that may continue to maintain microclimatic diversity in the future.  

These sites could benefit or protect those species most susceptible to a homogenization of 

microclimates and phenologies driven by warming climate trends.   
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CHAPTER V 

CONCLUSION 

In summary, we found that during the eight year phenology study, years with a 

decline in winter snow pack, and an increase in cold air pooling events resulted in a more 

similar distribution of microclimates across a watershed.  This homogenization of 

microclimates led to a less diverse range of spring phenology events, especially in herbs 

and shrubs.  Microclimate is a significant driver of spring plant phenology, and local 

temperature metrics can be used to accurately predict phenology across a wide range of 

microclimates.  Snow is likely the most limiting factor in modeling plant phenology, 

especially for herbs and shrubs, as it is difficult to measure at a high enough resolution.  

The models we developed tended to predict bud break early than observed at sites with 

persistent snow pack.  Finally, physical variables can be used to accurately predict 

microclimate across a landscape, using observed data from only a few sites.  These up 

scaled microclimate variables can be used to accurately predict bud break across the 

landscape and have the potential to help identify local zones that are protected from the 

predicted changes in regional climate.   
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APPENDIX A 

APPENDIX S1 

Table S1: Species list for plants included in phenology study. 

 
 
 
 
Table S2: Regression equations used to fill in any missing or erroneous temperature data.   

Site Equation Adjusted R2 df F-stat P-value 
PC01 PC01 = RS02 x 0.941 + 0.649 0.989 1,45215 425924 *** 
PC02 PC02 = CS2met x 0.933 + 1.074  0.986 1,49115 354185 *** 
PC04 PC04 = RS89 x 0.985 + 0.632 0.994 1,54915 979041 *** 
PC05 PC05 = RS86 x 0.992 + 0.430 0.994 1,44049 706341 *** 
PC07 PC07 = RS05 x 0.987 - 0.075 0.996 1,55057 1271158 *** 
PC08 PC08 = RS10 x 1.000 + 0.115 0.997 1,54568 1571495 *** 
PC09 PC09 = RS12 x 1.001 + 0.381 0.992 1,53536 647952 *** 
PC10 PC10 = RS05 x 1.003 - 0.568 0.986 1,54745 376250 *** 
PC11 PC11 = RS26 x 0.975 - 0.554 0.991 1,47045 495211 *** 
PC12 PC12 = RS26 x 0.979 + 0.107 0.996 1,54593 1402571 *** 
PC13 PC13 = RS26 x 0.952 - 1.235 0.971 1,54196 181439 *** 
PC14 PC14 = RS05 x 1.016 - 0.454 0.989 1,55067 485521 *** 
PC15 PC15 = HI15 x 0.984 + 0.386 0.985 1,48635 320198 *** 
PC16 PC16 = RS26 x 0.996 - 0.026 0.986 1,54059 372480 *** 
PC17 PC17 = RS04 x 0.977 + 0.014 0.992 1,47550 595117 *** 
PC18 PC18 = RS04 x 1.001 - 0.203 0.984 1,48787 308451 *** 
 
Notes 
-- Non Significant; * P<0.05; ** P<0.01; ***P<0.001; In the site column, PC represents “phenology core”;  In the equation 
column, all abbeviations following = are representative of reference stands (RS) or other climate stations (HI15 and CS2met); df, 
degrees of freedom. 
 

 

Species Common name Species code 
Abies amabilis Pacific silver fir ABAM 
Abies procera Noble fir ABPR 
Acer circinatum Vine maple ACCI 
Acer macrophyllum Big leaf maple ACMA3 
Chimaphila umbellata Princes pine CHUM 
Coptis laciniata Cut-leaf goldthread COLA3 
Cornus canadensis Bunchberry COCA13 
Cornus nutalii Pacific dogwood CONU4 
Linnaea borealis Twinflower LIBO3 
Pseudotsuga mensiezii Douglas fir PSME 
Rhododendron macrophyllum Pacific rhododendron RHMA 
Rubus ursinus Creeping blackberry RUUR 
Synthyris reniformis Snow queen SYRE 
Trillium ovatum Trillium TROV2 
Tsuga hetrophllya Western hemlock TSHE 
Vaccinium membranaceum Mountain huckleberry VAME 
Vaccinium parvifolium Red huckleberry VAPA 
Viola sempervirens Violet VISE3 
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Table S3: Variables included in principle component analysis of temperature data. 

 
 
 
 
 
Table S4:  Variable contributions to each principle component in Figures 2a and 2b 
 

Variable PC1 PC2 
Winter average (Jan – Mar) 12.84 0.36 
Spring average (Apr – Jun) 12.40 0.00 
Summer average (Jul – Sept) 8.39 2.78 
Fall average (Oct – Dec) 0.13 89.44 
Annual average (Jan – Dec) 15.24 0.03 
Winter GDD (Dec – Mar31) 11.99 0.46 
Spring GDD (Apr 1- Jun 30) 12.70 0.05 
Minimum temp (Jan – Dec) 6.54 1.73 
Maximum temp (Jan – Dec) 6.14 4.97 
Mid winter average (Dec-Mar31) 13.62 0.17 

 
 

Temperature PCA 
Variables Description: 

Winter average  Mean temp between January 1 and March 31 

Spring average Mean temperature between April 1 and June 30 

Summer average  Mean temperature between July 1 and September 30 

Fall average  Mean temperature between October 1 and December 31 

Annual average  Mean temperature between January 1 and December 31 

Winter GDD  Accumulated growing degree days above 5° C between December 1 and March 31 

Spring GDD Accumulated growing degree days above 5° C between April 1 and June 30 

Minimum: coldest month Minimum temperature (°C) of the coldest month per year (Nov 1 – Oct 31)  

Maximum: warmest month Maximum temperature (°C) of the warmest month per year (Nov 1 – Oct 31)  

Mid winter average Mean temperature between December 1 and March 31 



 
39 
 

 
 

 

Table S5:  Growing degree days for all sites and all years for the first six months of 
each year (January 1 to June 30), and for winter (December 1 – March 31).  
 

Plot Elevation 2009 2010 2011 2012 201 2014 2015 2016 

PC01 489.47 
635.33 

(35.52) 

528.07 

(104.32) 

428.98 

(52.35) 

548.37 

(41.67) 

697.21    

(74.8) 

705.31    

(96.82) 

939.72    

(242.63) 

830.28    

(123.19) 

PC02 478.21 
627.46 

(29.47) 

478.48    

(68.18) 

399.52    

(36.3) 

502.08     

(23) 

649.05    

(55.17) 

625.31    

(69.21) 

833.7    

(164.8) 

745.66     

(90.4) 

PC04 487.25 
666.87 

(42.28) 

555.44    

(113.95) 

443.25    

(51.98) 

571.56    

(44.53) 

720.77    

(82.47) 

713.32    

(106.5) 

950.91    

(249.18) 

829.44    

(120.07) 

PC05 643.14 
764.49 

(115.82) 

586.08    

(144.05) 

472.97    

(80.73) 

614.53    

(87.3) 

770.96    

(107.09) 

794.44    

(165.14) 

1051.37    

(299.24) 

887.67    

(137.31) 

PC07 899.88 
474.95 

(26.44) 

304.89    

(37.22) 

245.99    

(26.06) 

357.03    

(14.93) 

484.7    

(21.72) 

494.08    

(64.38) 

748.45    

(166.4) 

607.17    

 (55.57) 

PC08 646.51 
624.44 

(46.01) 

480.94    

(94.98) 

381.69    

(49.4) 

510.61    

(39.08) 

654.04    

(61.66) 

667.99    

(99.92) 

909.35    

(228.03) 

775.86    

 (98.68) 

PC09 985 
389.81 

(3.38) 

258.79    

(19.48) 

176.47    

(5.35) 

286.41    

(6.15) 

398.86 

(6) 

416.36    

(29.89) 

649.12    

(113.67) 

501.49    

 (23.95) 

PC10 984 
446.6 

(19.88) 

294.39    

(44.85) 

207.96    

(14.89) 

330.2    

(17.71) 

439.42    

(17.53) 

468.12    

(60.46) 

711.66    

(161.27) 

584.08    

 (52.65) 

PC11 1114.83 
473.86 

(69.35) 

287.82    

(54.18) 

205.4    

(26.87) 

339.29    

(39.58) 

442.84    

(37.09) 

486.77    

(110.42) 

734.98    

(195.11) 

574.76     

(68.29) 

PC12 1083.18 
524.94 

(87.2) 

330.67    

(78.65) 

245.1     

(48.7) 

389.3    

(66.34) 

508.25    

(68.73) 

540.42    

(141.98) 

821.81    

(247.79) 

650.93    

(104.68) 

PC13 1177.89 
402.41 

(50.84) 

203.68    

(22.34) 

116.31    

(5.02) 

233.58    

(13.97) 

338.42    

(4.85) 

371.35    

(55.98) 

619.73    

(135.36) 

446.32   

  (19.84) 

PC14 964.54 
469.42 

(23.21) 

291.9    

(35.14) 

210.11    

(9.29) 

335.93    

(12.37) 

458.43    

(12.13) 

486.75    

(62.98) 

744.67    

(158.55) 

590.56  

(41.28) 

PC15 970.83 
500.57 

(33.44) 

317.48    

(43.2) 

225.63    

(12.25) 

360.79    

(15.95) 

483.95    

(12.96) 

523.3    

(75.55) 

814.07    

(181.33) 

634.39    

(50.34) 

PC16 1025.07 
546.23 

(84.86) 

373.03    

(83.01) 

266.9     

(40.1) 

410.94    

(53.53) 

524.65    

(54.23) 

523.3    

(75.55) 

838.41    

(242.65) 

668.02     

(97.45) 

PC17 1299.86 
386.89 

(63.08) 

176.65    

(12.91) 

96.61     

(3.96) 

225.45    

(13.28) 

340.02    

(39.81) 

347.68    

(64.39) 

601.68    

(124.5) 

408.91     

(14.74) 

PC18 1329.72 
392.32 

(63.5) 

191.38    

(15.09) 

111.75    

(8.65) 

231.67    

(13.16) 

342.39    

(40.68) 

355.88    

(60.88) 

602     

(121.24) 

417.97     

(29.09) 

Notes 
Data outside the parentheses is January 1 – June 30 growing degree day accumulation, while data within parentheses is winter 

growing degree days (December 1 – March 31).  
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Table S6: A-C index values between December 1- March 31 from 2009 to 2016. 
Year AC index 

2009 12 

2010 3 

2011 -1 

2012 26 

2013 21 

2014 29 

2015 44 

2016 3 

 
 
Table S7:  Snow data for all sites and years.    

Plot Elevation (m) Year 
Estimated last 

DOY with 
patchy snow 

Estimated max 
days of snow 

 (Dec 1 – Mar 31) 

DOY with no buried 
plants observed 

PC01 489.47 2009 96 35 NA 

PC02 478.21 2009 96 35 NA 

PC04 487.25 2009 96 35 NA 

PC05 643.14 2009 105 35 NA 

PC07 899.88 2009 105 45 NA 

PC08 646.51 2009 105 35 NA 

PC09 985 2009 120 63 NA 

PC10 984 2009 110 50 NA 

PC11 1114.83 2009 133 70 NA 

PC12 1083.18 2009 132 50 NA 

PC13 1177.89 2009 141 82 NA 

PC14 964.54 2009 125 70 NA 

PC15 970.83 2009 110 60 NA 

PC16 1025.07 2009 110 60 NA 

PC17 1299.86 2009 145 88 NA 

PC18 1329.72 2009 150 92 NA 

PC01 489.47 2010 91 7 62 

PC02 478.21 2010 91 7 48 

PC04 487.25 2010 91 7 55 

PC05 643.14 2010 95 10 55 

PC07 899.88 2010 105 15 62 

PC08 646.51 2010 95 10 48 

PC09 985 2010 123 39 125 

PC10 984 2010 102 15 48 

PC11 1114.83 2010 139 46 132 

PC12 1083.18 2010 127 35 48 

PC13 1177.89 2010 137 61 132 

PC14 964.54 2010 121 47 125 
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PC15 970.83 2010 121 47 125 

PC16 1025.07 2010 121 47 132 

PC17 1299.86 2010 149 87 153 

PC18 1329.72 2010 149 92 153 

PC01 489.47 2011 91 7 75 

PC02 478.21 2011 118 7 75 

PC04 487.25 2011 91 7 75 

PC05 643.14 2011 82 7 82 

PC07 899.88 2011 116 45 103 

PC08 646.51 2011 105 7 103 

PC09 985 2011 137 45 152 

PC10 984 2011 128 57 131 

PC11 1114.83 2011 150 75 152 

PC12 1083.18 2011 132 57 138 

PC13 1177.89 2011 158 105 159 

PC14 964.54 2011 147 80 145 

PC15 970.83 2011 137 90 145 

PC16 1025.07 2011 137 90 131 

PC17 1299.86 2011 166 110 173 

PC18 1329.72 2011 166 110 180 

PC01 489.47 2012 87 7 88 

PC02 478.21 2012 87 7 88 

PC04 487.25 2012 87 7 81 

PC05 643.14 2012 99 15 102 

PC07 899.88 2012 92 7 109 

PC08 646.51 2012 96 35 88 

PC09 985 2012 152 55 130 

PC10 984 2012 116 50 116 

PC11 1114.83 2012 122 55 116 

PC12 1083.18 2012 107 7 116 

PC13 1177.89 2012 126 65 137 

PC14 964.54 2012 126 65 123 

PC15 970.83 2012 121 60 123 

PC16 1025.07 2012 108 50 116 

PC17 1299.86 2012 144 70 144 

PC18 1329.72 2012 146 70 165 

PC01 489.47 2013 91 7 72 

PC02 478.21 2013 91 7 72 

PC04 487.25 2013 91 7 72 

PC05 643.14 2013 91 7 72 

PC07 899.88 2013 104 7 93 

PC08 646.51 2013 91 7 79 

PC09 985 2013 120 45 121 
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PC10 984 2013 112 7 107 

PC11 1114.83 2013 112 7 114 

PC12 1083.18 2013 110 7 114 

PC13 1177.89 2013 112 45 121 

PC14 964.54 2013 112 45 114 

PC15 970.83 2013 112 45 114 

PC16 1025.07 2013 112 45 114 

PC17 1299.86 2013 130 65 128 

PC18 1329.72 2013 130 65 135 

PC01 489.47 2014 91 7 57 

PC02 478.21 2014 91 7 57 

PC04 487.25 2014 91 7 57 

PC05 643.14 2014 91 7 57 

PC07 899.88 2014 91 7 71 

PC08 646.51 2014 91 7 71 

PC09 985 2014 91 7 120 

PC10 984 2014 119 14 99 

PC11 1114.83 2014 119 28 120 

PC12 1083.18 2014 96 14 120 

PC13 1177.89 2014 126 35 120 

PC14 964.54 2014 119 14 99 

PC15 970.83 2014 118 14 120 

PC16 1025.07 2014 118 14 99 

PC17 1299.86 2014 119 28 127 

PC18 1329.72 2014 126 42 127 

PC01 489.47 2015 1 0 1 

PC02 478.21 2015 1 0 1 

PC07 899.88 2015 1 0 1 

PC09 985 2015 1 7 47 

PC12 1083.18 2015 102 7 47 

PC15 970.83 2015 1 7 1 

PC17 1299.86 2015 117 14 102 

PC01 489.47 2016 40 14 47 

PC02 478.21 2016 75 21 83 

PC04 487.25 2016 75 21 83 

PC05 643.14 2016 40 14 47 

PC07 899.88 2016 83 56 89 

PC08 646.51 2016 75 21 83 

PC09 985 2016 92 96 96 

PC10 984 2016 83 96 89 

PC11 1114.83 2016 91 63 96 

PC12 1083.18 2016 80 56 90 

PC13 1177.89 2016 91 103 96 
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PC14 964.54 2016 89 56 96 

PC15 970.83 2016 89 56 96 

PC16 1025.07 2016 89 56 93 

PC17 1299.86 2016 97 134 124 

PC18 1329.72 2016 97 134 124 
  
Notes 
 
In 2009, sites were not visited prior to snowmelt.  
 

 
 
 
Table S8: Difference in average bud break date from 2011 to 2015.   

Plot Species 2011 2015 2011-2015 
PC01 ACCI 109 96 13 

PC01 ACMA3 135 86 49 

PC01 COLA3 89 74 15 

PC01 LIBO3 95 68 27 

PC01 PSME 154 129 25 

PC01 RUUR 110 81 29 

PC01 TROV2 89 77 12 

PC01 TSHE 158 136 22 

PC01 VAPA 99 70 29 

PC01 VISE3 81 66 15 

PC02 ACCI 109 82 27 

PC02 CHUM 137 96 41 

PC02 COLA3 102 77 25 

PC02 CONU4 107 79 28 

PC02 LIBO3 98 74 24 

PC02 PSME 158 131 27 

PC02 RHMA 153 144 9 

PC02 RUUR 131 91 40 

PC02 TROV2 92 76 16 

PC02 TSHE 162 143 19 

PC02 VAPA 96 70 26 

PC02 VISE3 95 61 34 

PC04 ACCI 103 NA NA 

PC04 COLA3 98 NA NA 

PC04 LIBO3 101 NA NA 

PC04 PSME 151 NA NA 

PC04 RHMA 153 NA NA 

PC04 RUUR 112 NA NA 

PC04 SYRE 90 NA NA 
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PC04 TROV2 93 NA NA 

PC04 TSHE 157 NA NA 

PC04 VAPA 105 NA NA 

PC04 VISE3 85 NA NA 

PC05 ACCI 117 NA NA 

PC05 CONU4 102 NA NA 

PC05 LIBO3 102 NA NA 

PC05 PSME 158 NA NA 

PC05 RHMA 160 NA NA 

PC05 RUUR 119 NA NA 

PC05 TSHE 161 NA NA 

PC05 VAPA 110 NA NA 

PC05 VISE3 85 NA NA 

PC07 ACCI 122 95 27 

PC07 CHUM 161 116 45 

PC07 LIBO3 129 67 62 

PC07 PSME 180 147 33 

PC07 RHMA 170 142 28 

PC07 TSHE 171 154 17 

PC08 ACCI 112 NA NA 

PC08 CHUM 133 NA NA 

PC08 COLA3 102 NA NA 

PC08 LIBO3 113 NA NA 

PC08 PSME 166 NA NA 

PC08 RHMA 158 NA NA 

PC08 RUUR 130 NA NA 

PC08 SYRE 105 NA NA 

PC08 TROV2 98 NA NA 

PC08 TSHE 165 NA NA 

PC08 VAPA 108 NA NA 

PC08 VISE3 88 NA NA 

PC09 ABAM 174 149 25 

PC09 ACCI 127 92 35 

PC09 CHUM 169 117 52 

PC09 COCA13 145 81 64 

PC09 LIBO3 154 75 79 

PC09 PSME 179 151 28 

PC09 RHMA 179 144 35 

PC09 RUUR 155 84 71 

PC09 TROV2 137 91 46 

PC09 TSHE 176 150 26 

PC09 VAPA 138 74 64 

PC09 VISE3 144 59 85 
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PC10 ABAM 177 NA NA 

PC10 ACCI 136 NA NA 

PC10 CHUM 154 NA NA 

PC10 COCA13 140 NA NA 

PC10 COLA3 130 NA NA 

PC10 LIBO3 129 NA NA 

PC10 PSME 173 NA NA 

PC10 RHMA 172 NA NA 

PC10 RUUR 146 NA NA 

PC10 TSHE 172 NA NA 

PC10 VAPA 136 NA NA 

PC10 VISE3 119 NA NA 

PC11 ABPR 174 NA NA 

PC11 ACCI 133 NA NA 

PC11 CHUM 157 NA NA 

PC11 COCA13 147 NA NA 

PC11 LIBO3 136 NA NA 

PC11 PSME 179 NA NA 

PC11 RUUR 162 NA NA 

PC11 SYRE 144 NA NA 

PC11 TROV2 137 NA NA 

PC11 TSHE 173 NA NA 

PC11 VAPA 138 NA NA 

PC11 VISE3 133 NA NA 

PC12 ACCI 130 88 42 

PC12 CHUM 150 110 40 

PC12 COLA3 137 73 64 

PC12 LIBO3 131 66 65 

PC12 PSME 178 147 31 

PC12 RUUR 152 70 82 

PC12 SYRE 137 56 81 

PC12 TROV2 132 89 43 

PC12 TSHE 173 150 23 

PC12 VAPA 131 67 64 

PC12 VISE3 133 60 73 

PC13 ABAM 181 NA NA 

PC13 ACCI 141 NA NA 

PC13 CHUM 172 NA NA 

PC13 COCA13 165 NA NA 

PC13 LIBO3 164 NA NA 

PC13 PSME 186 NA NA 

PC13 RUUR 175 NA NA 

PC13 TSHE 183 NA NA 
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PC13 VISE3 159 NA NA 

PC14 ACCI 139 NA NA 

PC14 CHUM 159 NA NA 

PC14 COCA13 140 NA NA 

PC14 COLA3 140 NA NA 

PC14 LIBO3 137 NA NA 

PC14 PSME 178 NA NA 

PC14 RHMA 177 NA NA 

PC14 RUUR 162 NA NA 

PC14 TROV2 130 NA NA 

PC14 TSHE 171 NA NA 

PC14 VAPA 138 NA NA 

PC14 VISE3 129 NA NA 

PC15 ABAM 179 151 28 

PC15 ACCI 134 88 46 

PC15 CHUM 152 103 49 

PC15 COCA13 148 87 61 

PC15 COLA3 130 81 49 

PC15 LIBO3 138 67 71 

PC15 PSME 179 147 32 

PC15 RUUR 164 92 72 

PC15 SYRE 137 68 69 

PC15 TROV2 137 93 44 

PC15 TSHE 175 148 27 

PC15 VAPA 133 70 63 

PC15 VISE3 130 54 76 

PC16 ACCI 126 NA NA 

PC16 CHUM 150 NA NA 

PC16 LIBO3 127 NA NA 

PC16 PSME 175 NA NA 

PC16 RHMA 172 NA NA 

PC16 RUUR 154 NA NA 

PC16 TSHE 171 NA NA 

PC16 VAPA 133 NA NA 

PC16 VISE3 130 NA NA 

PC17 ABAM 181 151 30 

PC17 ACCI 149 87 62 

PC17 CHUM 190 132 58 

PC17 COCA13 174 108 66 

PC17 PSME 186 158 28 

PC17 RUUR 186 113 73 

PC17 TROV2 NA 118 NA 

PC17 TSHE 186 152 34 
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PC17 VAME NA 74 NA 

PC17 VISE3 169 97 72 

PC18 ABPR 181 NA NA 

PC18 ACCI 162 NA NA 

PC18 CHUM 191 NA NA 

PC18 COCA13 174 NA NA 

PC18 PSME 187 NA NA 

PC18 RUUR 179 NA NA 

PC18 TSHE 187 NA NA 

PC18 VISE3 172 NA NA 
 

Notes 
Mean bud break from 2011 was subtracted from 2015 to find the most extreme advancement of bud break 
between those two years. 

 

 
 
Table S9: Physical variables included in microclimate model 

Plot Elevation 
(m) 

Slope 
(25m radius) 

Aspect 
(25 m radius) 

Relative topographic 
position 

(500 m radius) 
PC001 489.47 61.484 0.917 109.852 

PC002 478.21 21.826 0.480 76.648 

PC004 487.25 66.114 -0.966 71.178 

PC005 643.14 64.593 -0.983 184.431 

PC007 899.88 14.373 0.425 222.997 

PC008 646.51 48.223 -0.784 117.416 

PC009 984.48 32.431 -0.214 149.310 

PC010 983.62 18.496 -0.873 192.657 

PC011 1114.83 28.690 -0.360 236.108 

PC012 1083.18 39.696 -0.973 243.581 

PC013 1177.89 18.772 -0.402 222.385 

PC014 964.54 20.847 0.215 199.705 

PC015 970.82 14.109 -0.541 196.015 

PC016 1025.07 34.904 -0.924 265.403 

PC017 1299.86 41.105 0.473 229.104 

PC018 1329.72 45.493 -0.017 254.462 
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Table S10: Elevation as a predictor of bud break for each species and year. 
 

Year Species 
code Adj R2 P-value F-stat df1 df2 Intercept Slope 

2009 ABAM 0.83 1.99E-02 20.68 1 2 123.35 0.03 

2010 ABAM Not Sig 2.19E-01 2.40 1 2 0.00 0.00 

2011 ABAM Not Sig 1.48E-01 3.76 1 2 0.00 0.00 

2012 ABAM Not Sig 1.98E-01 2.72 1 2 0.00 0.00 

2013 ABAM Not Sig 8.44E-01 0.05 1 2 0.00 0.00 

2014 ABAM Not Sig 3.37E-01 1.30 1 2 0.00 0.00 

2015 ABAM Not Sig 6.91E-01 0.28 1 1 0.00 0.00 

2016 ABAM Not Sig 4.91E-01 0.61 1 2 0.00 0.00 

2009 ACCI 0.82 4.61E-04 38.01 1 6 66.78 0.06 

2010 ACCI 0.74 2.37E-05 40.88 1 3 76.61 0.03 

2011 ACCI 0.86 1.22E-07 95.72 1 4 80.00 0.05 

2012 ACCI 0.65 9.77E-05 28.91 1 4 94.24 0.03 

2013 ACCI 0.67 7.14E-05 30.82 1 4 76.46 0.03 

2014 ACCI 0.72 1.89E-05 39.96 1 4 71.22 0.02 

2015 ACCI Not Sig 8.76E-01 0.03 1 5 0.00 0.00 

2016 ACCI 0.52 1.02E-03 17.07 1 4 74.38 0.02 

2009 CHUM 0.72 3.19E-04 28.73 1 7 90.57 0.05 

2010 CHUM 0.71 2.01E-04 29.70 1 8 88.36 0.06 

2011 CHUM 0.69 2.64E-04 27.79 1 8 96.87 0.06 

2012 CHUM 0.74 1.07E-04 34.52 1 8 91.44 0.06 

2013 CHUM 0.68 3.06E-04 26.78 1 8 88.10 0.05 

2014 CHUM 0.51 3.59E-03 13.58 1 8 81.96 0.04 

2015 CHUM 0.61 4.06E-02 8.89 1 9 75.81 0.04 

2016 CHUM Not Sig 2.14E-01 1.74 1 8 0.00 0.00 

2009 COCA Not Sig 4.29E-01 0.83 1 2 0.00 0.00 

2010 COCA 0.81 1.34E-03 31.71 1 10 4.83 0.11 

2011 COCA 0.89 2.68E-04 57.94 1 10 53.35 0.09 

2012 COCA 0.77 2.66E-03 24.20 1 10 66.43 0.07 

2013 COCA 0.92 1.00E-04 82.47 1 10 47.10 0.07 

2014 COCA Not Sig 1.80E-01 2.30 1 10 0.00 0.00 

2015 COCA Not Sig 1.60E-01 15.17 1 1 0.00 0.00 
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2016 COCA 0.78 2.35E-03 25.44 1 10 42.06 0.06 

2009 COLA Not Sig 4.33E-01 1.53 1 1 0.00 0.00 

2010 COLA 0.52 4.08E-02 7.50 1 5 67.45 0.04 

2011 COLA 0.91 1.64E-04 69.20 1 10 59.60 0.07 

2012 COLA 0.71 5.48E-03 17.91 1 10 86.57 0.03 

2013 COLA 0.96 1.72E-05 152.61 1 10 64.61 0.05 

2014 COLA 0.65 9.62E-03 13.99 1 10 64.41 0.03 

2015 COLA Not Sig 8.98E-01 0.02 1 11 0.00 0.00 

2016 COLA 0.44 4.40E-02 6.46 1 10 61.96 0.03 

2009 LIBO Not Sig 9.25E-02 4.85 1 9 0.00 0.00 

2010 LIBO 0.44 5.54E-03 11.38 1 12 52.25 0.05 

2011 LIBO 0.80 9.04E-06 53.80 1 12 60.40 0.08 

2012 LIBO 0.73 5.48E-05 36.99 1 12 93.02 0.04 

2013 LIBO 0.80 8.93E-06 53.93 1 12 60.30 0.06 

2014 LIBO 0.77 2.55E-05 43.53 1 12 62.59 0.03 

2015 LIBO Not Sig 5.46E-01 0.43 1 9 0.00 0.00 

2016 LIBO 0.63 3.98E-04 23.53 1 12 46.40 0.03 

2009 PSME 0.88 1.18E-02 30.38 1 2 121.87 0.03 

2010 PSME 0.86 4.99E-07 83.72 1 3 125.57 0.05 

2011 PSME 0.90 1.36E-08 135.87 1 4 136.52 0.04 

2012 PSME 0.71 2.65E-05 37.45 1 4 128.15 0.03 

2013 PSME 0.81 1.51E-06 62.94 1 4 111.08 0.03 

2014 PSME 0.73 1.38E-05 42.38 1 4 118.31 0.03 

2015 PSME 0.94 2.34E-04 87.73 1 5 114.31 0.03 

2016 PSME 0.71 2.48E-05 37.95 1 4 112.21 0.03 

2009 RHMA 0.77 1.21E-03 27.38 1 6 132.82 0.02 

2010 RHMA 0.75 1.56E-03 25.02 1 6 126.52 0.04 

2011 RHMA 0.92 3.23E-05 88.22 1 6 131.83 0.04 

2012 RHMA Not Sig 5.70E-02 5.18 1 6 0.00 0.00 

2013 RHMA 0.42 3.62E-02 6.69 1 6 125.40 0.02 

2014 RHMA 0.65 5.56E-03 15.57 1 6 118.88 0.02 

2015 RHMA Not Sig 7.67E-01 0.15 1 1 0.00 0.00 

2016 RHMA Not Sig 5.46E-02 5.31 1 6 0.00 0.00 

2009 RUUR 0.44 4.34E-02 6.51 1 10 119.15 0.02 



 
50 
 

 
 

 

2010 RUUR 0.76 1.49E-05 44.76 1 3 64.71 0.07 

2011 RUUR 0.89 1.08E-07 109.15 1 3 78.04 0.08 

2012 RUUR 0.79 6.32E-06 52.77 1 3 94.73 0.05 

2013 RUUR 0.83 1.71E-06 67.22 1 3 67.38 0.06 

2014 RUUR 0.71 4.50E-05 35.91 1 3 64.38 0.04 

2015 RUUR Not Sig 5.00E-01 0.55 1 9 0.00 0.00 

2016 RUUR 0.72 3.59E-05 37.60 1 3 65.02 0.05 

2009 SYRE Not Sig     0.00  

2010 SYRE Not Sig 5.64E-02 9.17 1 2 0.00 0.00 

2011 SYRE 0.97 1.28E-03 141.62 1 2 50.31 0.08 

2012 SYRE Not Sig 6.49E-02 8.14 1 2 0.00 0.00 

2013 SYRE 0.76 3.52E-02 13.42 1 2 65.44 0.04 

2014 SYRE Not Sig 1.44E-01 3.88 1 2 0.00 0.00 

2016 SYRE Not Sig 1.64E-01 3.37 1 2 0.00 0.00 

2009 TROV Not Sig     0.00  

2010 TROV 0.92 2.42E-05 96.37 1 6 41.68 0.06 

2011 TROV 0.94 8.66E-06 131.32 1 6 52.35 0.08 

2012 TROV 0.95 1.29E-04 112.57 1 5 63.68 0.06 

2013 TROV 0.90 5.35E-06 90.74 1 13 58.88 0.05 

2014 TROV 0.83 8.31E-06 60.83 1 8 54.74 0.04 

2015 TROV 0.75 1.57E-02 16.25 1 9 54.35 0.04 

2016 TROV 0.88 1.15E-06 91.49 1 8 59.71 0.04 

2009 TSHE 0.59 1.22E-03 18.62 1 8 133.90 0.02 

2010 TSHE 0.79 2.96E-06 55.98 1 4 140.89 0.03 

2011 TSHE 0.90 1.32E-08 136.43 1 4 143.07 0.03 

2012 TSHE 0.71 2.55E-05 37.74 1 4 144.65 0.02 

2013 TSHE 0.61 2.22E-04 24.29 1 4 139.02 0.02 

2014 TSHE 0.59 3.20E-04 22.41 1 4 131.39 0.02 

2015 TSHE 0.60 2.55E-02 9.91 1 5 132.88 0.02 

2016 TSHE 0.51 1.19E-03 16.41 1 4 129.38 0.02 

2009 VAPA Not Sig     0.00  

2010 VAPA 0.75 7.92E-04 27.37 1 14 61.49 0.04 

2011 VAPA 0.93 3.56E-07 138.08 1 7 68.81 0.06 

2012 VAPA 0.56 2.93E-03 15.26 1 7 92.07 0.03 
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2013 VAPA 0.67 6.68E-04 23.55 1 7 65.11 0.04 

2014 VAPA 0.80 4.84E-05 46.02 1 7 58.44 0.03 

2015 VAPA Not Sig 9.52E-01 0.00 1 2 0.00 0.00 

2016 VAPA Not Sig 9.01E-02 3.52 1 7 0.00 0.00 

2009 VISE 0.78 9.47E-04 29.80 1 6 72.42 0.05 

2010 VISE 0.56 2.00E-03 16.19 1 8 35.23 0.07 

2011 VISE 0.91 2.51E-08 139.65 1 3 31.21 0.10 

2012 VISE 0.90 4.06E-08 128.85 1 3 37.08 0.08 

2013 VISE 0.76 1.50E-05 44.74 1 3 46.82 0.06 

2014 VISE 0.35 1.21E-02 8.49 1 3 49.21 0.04 

2015 VISE Not Sig 3.55E-01 1.09 1 9 0.00 0.00 

2016 VISE 0.69 7.20E-05 32.58 1 3 27.61 0.06 
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Figure S1:  Elevation as a predictor of bud break for focal species from 2009-2016.  Colors represent 
year, while dashed line is the line of best fit.  Error bars are ± SE.  Abies amabalis, Abies procera, Acer 
macrophyllum, Cornus nuttallii and Vaccinium membranaceum are not included due to limited distribution 
and small sample sizes.  
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APPENDIX B 

APPENDIX S2 

 
Table S1: Location data of phenology sites 

 

Site 

Code 

Site 

Type 

UTM X 

(m, zone 10) 

UTM Y 

(m, zone 10) 

Latitude 

(dd.mmss) 

Longitude 

(dd.mmss) 

Elevation 

(m) 

PC01 PC 559337.35 4895046.44 44.2062254 -122.25732 489 

PC02 PC 560002.77 4896020.61 44.2149409 -122.24888 478 

PC04 PC 559036.61 4896294.35 44.2174841 -122.26094 487 

PC05 PC 559285.46 4896520.5 44.2194998 -122.2578 643 

PC07 PC 563676.24 4896880.81 44.222373 -122.20279 900 

PC08 PC 564602.71 4898330.95 44.2353459 -122.19102 647 

PC09 PC 570158.63 4897484.72 44.2272141 -122.12156 985 

PC10 PC 568428.4 4899050.06 44.2414701 -122.14302 984 

PC11 PC 567818.24 4900020.42 44.2502624 -122.15054 1115 

PC12 PC 567119.53 4899576.57 44.2463316 -122.15934 1083 

PC13 PC 568962.13 4899919.42 44.2492458 -122.13622 1178 

PC14 PC 567112.4 4900996.98 44.259119 -122.15925 965 

PC15 PC 566249.07 4901763.91 44.2661021 -122.16997 971 

PC16 PC 565638.52 4901903.32 44.2674124 -122.1776 1025 

PC17 PC 568878.06 4902587.96 44.2732761 -122.13692 1300 

PC18 PC 569001.89 4902746.4 44.2746907 -122.13535 1330 

DT DT 560008.19 4896195.93 44.216519 -122.24879 436 
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Table S2 Regression equations used to fill in any missing or erroneous temperature data.   
 

Site Equation Adjusted R2 df F-stat P-value 
PC01 PC01 = RS02 x 0.941 + 0.649 0.989 1,45215 425924 *** 
PC02 PC02 = CS2met x 0.933 + 1.074  0.986 1,49115 354185 *** 
PC04 PC04 = RS89 x 0.985 + 0.632 0.994 1,54915 979041 *** 
PC05 PC05 = RS86 x 0.992 + 0.430 0.994 1,44049 706341 *** 
PC07 PC07 = RS05 x 0.987 - 0.075 0.996 1,55057 1271158 *** 
PC08 PC08 = RS10 x 1.000 + 0.115 0.997 1,54568 1571495 *** 
PC09 PC09 = RS12 x 1.001 + 0.381 0.992 1,53536 647952 *** 
PC10 PC10 = RS05 x 1.003 - 0.568 0.986 1,54745 376250 *** 
PC11 PC11 = RS26 x 0.975 - 0.554 0.991 1,47045 495211 *** 
PC12 PC12 = RS26 x 0.979 + 0.107 0.996 1,54593 1402571 *** 
PC13 PC13 = RS26 x 0.952 - 1.235 0.971 1,54196 181439 *** 
PC14 PC14 = RS05 x 1.016 - 0.454 0.989 1,55067 485521 *** 
PC15 PC15 = HI15 x 0.984 + 0.386 0.985 1,48635 320198 *** 
PC16 PC16 = RS26 x 0.996 - 0.026 0.986 1,54059 372480 *** 
PC17 PC17 = RS04 x 0.977 + 0.014 0.992 1,47550 595117 *** 
PC18 PC18 = RS04 x 1.001 - 0.203 0.984 1,48787 308451 *** 
 
Notes 
-- Non Significant; * P<0.05; ** P<0.01; ***P<0.001; In the site column, PC represents “phenology core”;  In the equation 
column, all  
abbeviations following = are representative of reference stands (RS) or other climate stations (HI15 and CS2met); df, degrees of 
freedom. 

 
Table S3: Alternative and selected bud break models tested; final models in bold: 

Species Model CP Adj R2 

Acer 
circinatum 

log(Budbreak)~ meanaprtemp + log(apr_chill.force) 
 
 

0.17 0.74 

Acer 
circinatum 

log(Budbreak) ~ meanaprtemp + sqrt(days_below_0) + 
sqrt(DOYchilling_above_1200) 

 
2.09 0.74 

Acer 
circinatum 

log(Budbreak) ~ meanaprtemp + sqrt(days_below_0)   
 
 

5.25 0.70 

Pseudotsuga 
menziesii 

Budbreak ~ meanaprtemp + juneforce + lastdoybelow0 
 
 

6.5 0.85 

Pseudotsuga 
menziesii 

Budbreak ~ juneforce 
 
 

25.55 0.85 

Pseudotsuga 
menziesii 

Budbreak ~ june_chill.force 
 
 

18.55 0.83 

Vaccinium 
parvifolium 

sqrt(Budbreak)~ scale(obs_aprsnow) + scale(lastdoybelow0) + 
scale(meanaprtemp) + scale(sqrt(may_chill.force)) + 

scale(obs_aprsnow)*scale(sqrt(may_chill.force) 
 

4.73 0.82 

Vaccinium 
parvifolium 

sqrt(Budbreak)~ scale(lastdoybelow0) + scale(meanaprtemp) 
+ scale(log(apr_chill.force) 

 
0.09 0.81 

Vaccinium 
parvifolium 

sqrt(Budbreak)~ scale(obs_aprsnow) + scale(lastdoybelow0) +  
scale(sqrt(mayforce)) + (obs_aprsnow)*scale(sqrt(mayforce) 2.69 0.78 
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Vaccinium 
parvifolium 

sqrt(Budbreak)~ scale(sqrt(days_below_0) + scale(meanaprtemp) 
+ scale(log(aprforce) 

 
2.11 0.76 

Trillium 
ovatum 

sqrt(Budbreak) ~ (obs_aprsnow) + (sqrt(days_below_0)) + 
(meanaprtemp) 

 
5.42 0.85 

Trillium 
ovatum 

sqrt(Budbreak) ~ scale(sqrt(days_below_0)) + scale(obs_aprsnow) 
+ scale(lastdoybelow0) + scale(meanaprtemp) + 

scale(sqrt(may_chill.force)) + scale(sqrt(may_chill.force)) * 
scale(obs_aprsnow) 

 

6.42 0.86 

Trillium 
ovatum 

sqrt(Budbreak) ~ scale(sqrt(days_below_0)) + scale(obs_aprsnow) 
+  

    scale(lastdoybelow0) + scale(meanaprtemp) + 
scale(log(apr_chill.force)) +  

    scale(log(apr_chill.force)) * scale(obs_aprsnow) 

6.09 0.86 

 
Table S4:  Difference in observed and predicted bud break days. 

SITECODE+ Year Species++ Observed 
budbreak 

Predicted 
budbreak 

Difference 
(Days) Elevation (m) 

DiscTrail 2014 ACCI 89 89.53 -0.40 436 

DiscTrail 2015 ACCI 88 86.29 1.43 436 

DiscTrail 2016 ACCI 80 79.06 0.99 436 

PC02 2017 ACCI 84 92.00 -8.00 478 

PC01 2017 ACCI 89 89.69 -0.69 489 

PC05 2017 ACCI 91 90.86 0.14 643 

PC08 2017 ACCI 95 94.92 0.08 647 

PC07 2017 ACCI 99 103.07 -4.07 900 

PC14 2017 ACCI 104 106.87 -2.87 965 

PC15 2017 ACCI 100 104.73 -4.73 971 

PC10 2017 ACCI 102 105.79 -3.79 984 

PC09 2017 ACCI 106 110.65 -4.65 985 

PC16 2017 ACCI 87 104.35 -17.35 1025 

PC12 2017 ACCI 105 105.39 -0.39 1083 

PC11 2017 ACCI 101 109.76 -8.76 1115 

PC13 2017 ACCI 115 118.28 -3.28 1178 

PC17 2017 ACCI 137 120.92 16.08 1300 

PC18 2017 ACCI 140 122.36 17.64 1330 

PC02 2017 PSME 140 148.89 -8.89 478 



 
56 
 

 
 

 

PC01 2017 PSME 137 143.44 -6.44 489 

PC05 2017 PSME 138 140.26 -2.26 643 

PC08 2017 PSME 147 147.55 -0.55 647 

PC07 2017 PSME 152 156.31 -4.31 900 

PC14 2017 PSME 155 156.85 -1.85 965 

PC15 2017 PSME 158 154.91 3.09 971 

PC10 2017 PSME 159 157.52 1.48 984 

PC09 2017 PSME 158 163.17 -5.17 985 

PC16 2017 PSME 147 152.35 -5.35 1025 

PC12 2017 PSME 152 153.81 -1.81 1083 

PC11 2017 PSME 157 156.79 0.21 1115 

PC13 2017 PSME 161 165.13 -4.13 1178 

PC17 2017 PSME 166 168.04 -2.04 1300 

PC18 2017 PSME 168 168.70 -0.70 1330 

DiscTrail 2014 TROV2 88 84.62 3.38 436 

DiscTrail 2015 TROV2 84 75.34 8.32 436 

DiscTrail 2016 TROV2 86 73.21 12.79 436 

PC02 2017 TROV2 86 89.22 -3.22 478 

PC01 2017 TROV2 82 86.73 -4.73 489 

PC08 2017 TROV2 95 92.56 2.44 647 

PC14 2017 TROV2 113 112.11 0.89 965 

PC15 2017 TROV2 105 109.14 -4.14 971 

PC09 2017 TROV2 115 113.58 1.42 985 

PC16 2017 TROV2 113 102.35 10.65 1025 

PC12 2017 TROV2 105 102.31 2.69 1083 

PC11 2017 TROV2 118 107.09 10.91 1115 

PC13 2017 TROV2 130 122.41 7.59 1178 

PC17 2017 TROV2 144 127.03 16.97 1300 

PC18 2017 TROV2 146 128.55 17.45 1330 

DiscTrail 2014 VAPA 88 79.14 8.86 436 

DiscTrail 2015 VAPA 84 70.19 13.31 436 

DiscTrail 2016 VAPA 71 66.47 4.33 436 

PC02 2017 VAPA 78 92.39 -14.39 478 

PC01 2017 VAPA 79 83.23 -4.23 489 
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PC05 2017 VAPA 88 85.36 2.64 643 

PC08 2017 VAPA 87 92.35 -5.35 647 

PC14 2017 VAPA 115 117.09 -2.09 965 

PC15 2017 VAPA 102 115.71 -13.71 971 

PC10 2017 VAPA 108 102.14 5.86 984 

PC09 2017 VAPA 116 122.99 -6.99 985 

PC16 2017 VAPA 96 101.96 -5.96 1025 

PC12 2017 VAPA 91 103.36 -12.36 1083 

PC11 2017 VAPA 110 107.87 2.13 1115 

 

+PC = phenology core; DiscTrail = discovery trail 

++ACCI = Acer circinatum; PSME = Pseudotsuga menziesii; TROV2 = Trillium ovatum; VAPA = Vaccinium parvifolium 

 
 
TABLE S5: Variables initially included in microclimate models. 
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Microclimate 
variable Predictor variables in initial models 

April chilling after 
forcing 

sqrt(apr_chill.force) ~ ELEVATION + tpi_500m + aspect +sqrt(biomass) + vegheight + 
Nov_Mar_acindex +Slope + mean_mar_temp_PRIMET 

 

DOY chilling 
above 1200 

sqrt(DOYchilling_above_1200) ~ ELEVATION +  aspect +sqrt(biomass) + vegheight +  
Nov_Mar _acindex +Slope +  mean_mar_temp_PRIMET 

 

Mean april 
tempearture 

meanaprtemp ~ ELEVATION +tpi_500m + aspect +sqrt(biomass) + vegheight + 
(Nov_Mar_acindex ) + mean_apr_temp_PRIMET + Slope 

 

Days below 0 
sqrt(days_below_0) ~ ELEVATION +tpi_500m + sqrt(biomass) + (Nov_May_acindex) + Slope 

+ mean_temp_novmay_PRIMET 
 

Last day of year 
below 0 

lastdoybelow0) ~ ELEVATION +tpi_500m + aspect +sqrt(biomass) +  (Nov_May_acindex ) + 
mean_temp_novmay_PRIMET+ Slope 

 

June forcing after 
chilling 

sqrt(jun_chill.force) ~ ELEVATION +tpi_500m + aspect + sqrt(biomass) + vegheight + 
(Nov_May_acindex ) + Slope + meantemp_mar_may_PRIMET 

 

April 1 snow 
snow_present ~ log(biomass) + ELEVATION + sqrt(CENMET_snowdepth) 

+sqrt(UPLMET_snowdepth) + hja_aspect + avg_monthly_airtemp_PRIMET + 
avg_monthly_airtmep_UPLMET 
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Table S6:  Model summaries of microclimate predictions. 
Microclimate 

variable Predictor variables F-stat(df) R2 p-
value 

April chilling after 
forcing 

ELEVATION + tpi_500m + sqrt(biomass) + Nov_Mar_acindex 
+ Slope + mean_mar_temp_PRIMET 

 
72.3(6,121) 0.78 *** 

DOY chilling 
above 1200 

Elevation + Nov_Mar_acindex 
 
 

117.8(2,125) 0.65 *** 

Mean april 
tempearture 

Elevation + tpi_500m + meanapriltemp_PRIMET + 
Slope 

 
464.4(4,123) 0.94 *** 

Days below 0 Elevation + tpi_500m + mean_temp_Nov-May_PRIMET 
 138.9(3,124) 0.77 *** 

Last day of year 
below 0 

Elevation + mean_temp_Nov-May_PRIMET 
 
 

169.9(2,125) 0.731 *** 

June forcing after 
chilling 

Elevation +tpi_500m +sqrt(biomass) + Nov_May_acidex + 
Slope + mean_temp_Mar-May_PRIMET 

 
177.8(6,121) 0.90 *** 

April 1 snow log(biomass) + ELEVATION + sqrt(CENMET_snowdepth) + 
avgUPLMET_airtemp 

G2: 0.98 
Deviance: 1105. 326 

Dispersion: 0.91 

 
 
Table S7:  Observed presence absence of April 1 snow versus predicted probability. 

Month Mean SD Min Max Observations (n) 

April absent 0.27 0.25 0.02 0.89 51 

April present 0.64 0.29 0.08 0.98 77 
 
Table S8:  Landscape model predictions of observed 2009 to 2016 bud break 

Species R2 F-stat(df) p-value 
Acer circinatum 0.60 164.3(1,109) *** 

Pseudotsuga menziesii 0.84 538.9(1,105) *** 

Trillium ovatum 0.62 109.9(1,66) *** 

Vaccinium parvifolium 0.19 17.79(1,75) *** 
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Figure S1 
 
 
 
 

 
 

 

a. b. 

c. 

Figure 3: Range predicted bud break across the andrews Andrews between the warmest (2015)  
and coolest (2011) years in the phenology record.  (a) Acer circinatum (b) Pseudotsuga menziesii 
(c) Trillium ovatum. Colors represent the range between 2011 and 2015 values (2015 was the warmest 
year in the phenology record while 2011 was the coolest). Blues represent regions with the least range 
bud break, while yellows are the areas with the greatest range between the two years.  Greens are 
intermediate. Red huckleberry is not presented due to limited accuracy of the landscape model 
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