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Abstract. While advances in remote sensing have made stand, landscape, and regional
assessments of the direct impacts of disturbance on forests quite common, the edge influence
of timber harvesting on the structure of neighboring unharvested forests has not been exam-
ined extensively. In this study, we examine the impact of historical timber harvests on basal
area patterns of neighboring old-growth forests to assess the magnitude and scale of harvest
edge influence in a forest landscape of western Oregon, USA. We used lidar data and forest
plot measurements to construct 30-m resolution live tree basal area maps in lower and middle
elevation mature and old-growth forests. We assessed how edge influence on total, upper
canopy, and lower canopy basal area varied across this forest landscape as a function of har-
vest characteristics (i.e., harvest size and age) and topographic conditions in the unharvested
area. Upper canopy, lower canopy, and total basal area increased with distance from harvest
edge and elevation. Forests within 75 m of harvest edges (20% of unharvested forests) had 4%
to 6% less live tree basal area compared with forest interiors. An interaction between distance
from harvest edge and elevation indicated that elevation altered edge influence in this land-
scape. We observed a positive edge influence at low elevations (<800 m) and a negative edge
influence at moderate to high elevations (>800 m). Surprisingly, we found no or weak effects of
harvest age (13–60 yr) and harvest area (0.2–110 ha) on surrounding unharvested forest basal
area, implying that edge influence was relatively insensitive to the scale of disturbance and mul-
ti-decadal recovery processes. Our study indicates that the edge influence of past clearcutting
on the structure of neighboring uncut old-growth forests is widespread and persistent. These
indirect and diffuse legacies of historical timber harvests complicate forest management deci-
sion-making in old-growth forest landscapes by broadening the traditional view of stand
boundaries. Furthermore, the consequences of forest harvesting may reach across ownership
boundaries, highlighting complex governance issues surrounding landscape management of
old-growth forests.
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INTRODUCTION

Forest disturbances, such as timber harvesting, can
have large effects on ecosystem structure and function
(Franklin et al. 2002, Turner 2010) and neighboring
undisturbed forests (Harper et al. 2005). For example,
clearcutting in Oregon and Washington (hereafter, the
Pacific Northwest, USA) during the 20th century has
not only reduced the area of old-growth and mature for-
est (Davis et al. 2015), but altered the microenvironment
and structure of unharvested forests adjacent to harvest
units (Chen et al. 1993, 1995) while increasing the
amount of edge habitat in the landscape (Spies et al.
1994). Clearcutting can alter the understory microenvi-
ronment in a neighboring old-growth forest at distances
of tens to hundreds of meters into the intact old-growth
forest (Chen et al. 1993, 1995, Harper et al. 2005, 2015,
Esseen et al. 2016). The distance of microclimate

impacts from clearcut patches can exceed those of smal-
ler canopy gaps, which are part of natural successional
processes, by a factor of five or more (Gray et al. 2002).
These impacts on microenvironment are likely to alter
ecosystem function and structure (Chen et al. 1999). For
example, tree growth, density of dead trees, and density
of tree seedlings all increased near harvest edges in an
old-growth Pseudotsuga menziesii and Tsuga heterophylla
forest neighboring a 50-yr-old, 96-ha clearcut (Chen
et al. 1992). Because most studies of edge influence asso-
ciated with clearcutting have focused on a few sites, our
understanding of the frequency and magnitude of edge
influence on vegetation structure and composition at
landscapes scales is limited.
Applying existing field-based results to landscape

assessment of ecological processes and patterns are lim-
ited by the cost of implementing large, well-replicated
experiments across controls (e.g., forest interiors) and
treatments (e.g., forest edges) (Hurlbert 1984, Oksanen
2001). The large sample sizes needed to assess the edge
influence of timber harvests across entire landscapes
make field-based methods impractical (but see Esseen
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et al. 2016). Advances in remote sensing have made
stand, landscape, and regional assessments of the direct
impacts of disturbance on forests quite common (e.g.;
Kennedy et al. 2012, Davis et al. 2015) and in some cases
these methods can contribute to our understanding of the
edge influence by disturbance. Spies et al. (1994) esti-
mated edge influence of clear cutting in the western Ore-
gon Cascade Mountains using Thematic Mapper (TM)
imagery and assuming a fixed 100 m width of edge influ-
ence (general effects including microclimate and forest
structure) into closed canopy conifer forests from adja-
cent cutting units. They found that this type of edge in
the landscape increased from about 9.5% to over 13%
between 1972 and 1988 but they were not able to measure
the edge influence on forest structure directly. The advent
of high resolution, active, remote sensing techniques cap-
able of characterizing the horizontal and vertical distribu-
tion of vegetation, such as airborne light detection and
ranging (lidar), has made more refined assessments of for-
est structure possible. Lidar can estimate many facets of
forest structure across forest landscapes, including tree
basal area and biomass (Seidl et al. 2012, Zald et al.
2016), snag density (Wing et al. 2014), characteristics of
individual trees (Andersen et al. 2014), and habitat qual-
ity for wildlife (Ackers et al. 2015). The increasing avail-
ability of lidar data offers an opportunity to directly
measure the magnitude and scale of edge influence on
forest structure across large areas.
Timber harvesting edge influence on unharvested for-

est structure is complex, involving multiple ecological
processes, such as tree growth and mortality, which vary
in space and time. Upper canopy (i.e., exposed to open
sky) and lower canopy (i.e., shaded by larger trees) com-
ponents of forest structure might respond differently to
nearby forest harvest, with understory tree biomass
responding positively to increased resource availability
(Canham 1988, Clark et al. 2012) and overstory tree bio-
mass responding negatively as a result of increased mor-
tality, the latter probably associated with greater chance
of windthrow (Huggard et al. 1999). Most evidence sug-
gests that edge influence is more pronounced and extend
further into the overstory compared to understory,
though the magnitude is also influenced by local factors
such as aspect, edge abruptness, density of the forest,
patch contrast in canopy height, and disturbance history
(Harper et al. 2005, Esseen et al. 2016). In addition,
characteristics of the harvest itself, such as clearcut size,
presence and distribution of remnant trees, and time
since harvest, will affect the mitigation of edge influence
(i.e., diminishing edge influence through time).
In this work, we examine the impact of historical timber

harvests on basal area patterns of neighboring old-growth
forests to assess the magnitude and scale of harvest edge
influence in a forest landscape of western Oregon, USA.
Our objectives were to (1) quantify edge influence for
clearcut units of differing ages and sizes and (2) assess dif-
ferences in edge influence on basal area between upper
canopy and lower canopy tree communities. We used lidar

data and forest plot measurements to construct 30-m res-
olution maps of total, upper canopy, and lower canopy
tree basal area in lower and middle elevation mature and
old-growth forests within the H. J. Andrews Experimental
Forest. We then assessed how edge influence on total,
upper canopy, and lower canopy basal area varies across
this forest landscape as a function of harvest characteris-
tics (i.e., harvest size and age) and topographic conditions
in the unharvested area. By integrating field observations
and remote sensing for examining the impacts of histori-
cal forest harvests on neighboring unharvested forest, this
work provides a framework for mapping complex forest
structural variation essential for forest landscape manage-
ment and monitoring.

METHODS

Study area and data

This research was carried out at the 6,400-ha H. J.
Andrews Experimental Forest (HJA) located in the Cas-
cade Mountains of western Oregon, USA (44.2° N,
122.2° W). Established in 1948, HJA has played a key role
in basic and applied forest ecosystem research in the Paci-
fic Northwest (Luoma 2006). The HJA covers elevations
from 410 to 1,630 m (Fig. 1a), with forests dominated by
Pseudotsuga menziessii, Tsuga heterophylla, and Thuja pli-
cata at low elevations and forests dominated by Abies pro-
cera, Abies amabilis, P. menziesii, and T. heterophylla at
high elevations. Harvesting in the HJA began in 1950 and
continued until the mid-1980s, roughly a decade prior to
cessation of most timber harvesting activities on national
forest lands associated with the Northwest Forest Plan
(Davis et al. 2015). Harvest patches in the HJA range from
13 to 60 yr in age and 0.2 to 119.0 ha in size (Fig. 1b).
We identified 102 circular, 17.84 m radius tree plots dis-

tributed across three unharvested watersheds at HJA
measured in 2008 and 2009 that were appropriate for
characterizing forest structure with lidar data. Mean total
basal area, upper canopy basal area, and lower canopy
basal areas were 76.0 � 25.8 m2/ha (mean � SD), 63.4 �
25.1 m2/ha, and 12.5 � 6.7 m2/ha, respectively. Canopy
heights (here described by 95th percentile height of lidar
first returns greater than 1 meter above the ground within
25-m2 cells) of forests ranged from 0 to 95 m, with the
most dramatic transitions in canopy height occurring
across the boundary between harvested and unharvested
forests (Fig. 2). All three watersheds, and much of the
unharvested forest within the study area, are at least
200 yr old, originating after stand-replacing fires. The
tree plots share common measurement methodologies
and were likely sufficiently large (approximately 900 m2

area after slope correction) to minimize issues associated
with plot boundaries and co-registration errors in lidar-
based estimation of tree basal area (Frazer et al. 2011).
At each plot, trees were measured for diameter, among
other things (for plot details regarding plot establishment,
see Chen et al. [1992]), and classified by canopy status
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(dominant, codominant, intermediate, and suppressed)
based on visual inspection (e.g., Latifi et al. 2016). Exam-
ination of diameter data indicated that these canopy
classes correlated with tree size. Trees were grouped based
on canopy status as upper canopy trees (dominant and
codominant) and lower canopy trees (intermediate and
suppressed) and plot basal area per unit area (m2/ha) was
calculated. The upper and lower canopy groups roughly
correspond to trees that are directly observed by aerial
remote sensing (i.e., exposed canopies) and trees that are
obscured from view by larger trees, thus providing less
direct information about tree structure. Because eleva-
tions of the tree plots ranged from 476 to 1,177 m, we
limited the study to elevations within 50 m of this range
(i.e., 426 to 1,227 m; Fig. 1a).
Lidar remote sensing of forest canopy structure at HJA

has been ongoing since the 1990s (Lefsky et al. 1999),
with an August 2008 acquisition supporting improved
mapping of forest biomass at the HJA (Seidl et al. 2012,
Zald et al. 2016). Technical details of the data acquisition
are provided in Appendix S1. To represent vertical

structure in the forest canopy, we extracted the propor-
tion of the total lidar returns for each 5-m height bin to
represent the canopy height profile for (1) topographically
corrected plot footprints and (2) a grid of 30-m pixels
covering the study area (Fig. 1) matching Landsat-based
vegetation products used in a previous study of landscape
forest dynamics in HJA (Seidl et al. 2012). Given that
average pulse return density was 9 points/m2, each 30-m
pixel averaged 8,100 points per pixel upon which height
profiles could be based.
To avoid multicollinearity while still representing the

complex variation in lidar data reflective of forest struc-
ture, we performed a principal component analysis on
the canopy height profile data for all unharvested 30-m
pixels in the study area. This approach helps to minimize
the correlations between covariates in the lidar data
whilst retaining major types of variation represented in
the lidar data (Finley et al. 2013). Lidar data from har-
vested areas were avoided to maximize the information
in the principal components analysis relative to unhar-
vested forest structure. Harvest boundaries were based

FIG. 1. Map of (a) elevation and (b) distance from timber harvests in our study area.
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on harvest maps created using historical aerial pho-
tographs that were later corrected for image distortion
and spatial registration errors (Zald et al. 2016). Correc-
tions involved manual retracing of harvest boundaries
based on 95th percentile vegetation height from the 2008
lidar data acquisition. Thus, harvest boundaries were
defined as the transition in canopy architecture from
tall, remnant trees in uncut stands to shorter tree and
shrub regrowth within harvest units. For assessing the
influence of harvest edges on basal area in uncut forest
(see Assessing edge influence), we excluded 30-m pixels
within 15 m of this harvest boundary to avoid the mix-
ing of uncut and harvested vegetation.
The first four axes of the principal component analysis

explained 85.2% of the variation in the canopy height
profile data (Fig. 3). Axis 1 differentiated between tall,
closed-canopy forests (returns above 35 m) and short-
stature and/or open forest (returns below 20 m). Axis 2
differentiated between closed-canopy, moderate height
forests (20–40 m) and tall forest (>45 m) with understory
or bare earth (<10 m). Axis 3 differentiated between
moderate height forest (30–40 m) with understory or
bare-earth returns (<10 m) and tall forest (>50 m) with a
second sub-canopy cohort of trees (10–30 m). Axis 4 dif-
ferentiated between moderate height forest (35–50 m)
with a second cohort (5–20 m) and tall forest (>55 m)
with both a second cohort (20–35 m) and bare-earth
returns (<5 m). Additional axes were not included in
basal area mapping because (1) they only incrementally
increased the variation explained, (2) they showed little
relationship with the plot-level basal area measurements,
and (3) they exhibited increasingly chaotic vertical

patterns of correlations with the canopy height profile
data, making interpretation of axes difficult.

Basal area mapping

To inform the examination of harvest edge influence
on tree basal area in unharvested forest (see Assessing
edge influence), we first developed models for predicting

FIG. 3. Correlations between the first four axes of a princi-
pal components analysis (PCA) and the proportion of returns
for an individual pixel falling into different 5-m height bands.

FIG. 2. Canopy height (m; 95th percentile) for lidar first returns more than 1 meter above the ground within 5-m footprints.
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unharvested forest basal area based on the PCA of lidar
height profiles across the study area. We used a Bayesian
multivariate regression modeling procedure to explore
bivariate modeling of old-growth forest basal area in the
HJA. Visual inspection of the tree plot data indicated that
the basal area estimates were log-normally distributed.
Therefore, we log-transformed total (Bi), upper canopy
(Ui), and lower canopy (Li) tree basal area for plot i. We
model log upper and lower canopy basal area jointly,
such that yi = [Ui Li] ~ N2(xia, Σ), where a is an m 9 2
matrix of regression coefficients, xi is a 1 9 m vector of
lidar principal component analysis axes (Fig. 3), quadra-
tic, and interaction terms, and Σ is a 2 9 2 covariance
matrix. Thus, the values of upper and lower canopy basal
area depend both on the lidar measurements as well as
the covariation between the two different aspects of forest
structure. To compare this method with a more tradi-
tional, univariate approach, we modeled log total basal
area Bi as a normally distributed random variable with
mean xib and variance r2, where b is a m 9 1 vector of
regression coefficients. Models were fit with an adaptive
Metropolis algorithm using JAGS (rjags package Version
4-6; Plummer 2003, 2014) within the R statistical pro-
gramming environment (version 3.3.2; R Development
Core Team 2016; see Metadata S1 for documentation of
code). The model incorporates weak prior distributions
on all parameters, representing the relatively weak prior
belief in any given value of the parameter being correct
and allowing the data to dominate model fitting. Priors
for the regression parameters were distributed as N(0, 1).
The prior for the variance parameter for the univariate
model was distributed as per Gamma(1,1). The prior for
the covariance in the bivariate model was distributed as
per Wishart(2,diag(1)). Models were fit to differing com-
binations of main effects, quadratic effects, and interac-
tions terms and model selection was based on posterior
predictive loss (Gelfand and Ghosh 1998). Specifically,
the best model was defined by the model incorporating
those covariates shared by 90% of the models within 0.5
of the minimum posterior predictive loss across all mod-
els: we selected a nested model shared by 90% of the mod-
els with the lowest posterior predictive loss values (sensu
Bell et al. 2014). Once the best models were selected,
mean predictions were determined for each 30-m pixel
from 2000 maps of total, upper canopy, and lower canopy
basal area generated through 2000 realizations of param-
eter estimates from the Gibbs sampler. All mapping and
raster manipulation was performed using the raster pack-
age (version 2.5-8; Hijmans 2016).

Assessing edge influence

The edge influence of harvests on neighboring, intact,
unharvested forests is thought to decline with distance
as one moves from the edge of the harvest to the core of
the undisturbed forest (Chen et al. 1992, Harper et al.
2005). For all 30-m pixels in the study area, we identified
the closest timber harvest and calculated the distance to

harvest edge as a gridded product (Fig. 1b). Characteris-
tics of the timber harvest might impact the relationship
between distance and basal area (i.e., the edge influence)
in unharvested stands. For example, intact forests neigh-
boring older timber harvests might have had a greater
opportunity to recover and the magnitude of edge influ-
ence might increase as timber harvest sizes increase. In
addition, we incorporated mean elevation of a given dis-
tance category around each harvest patch to represent
the impacts of gradients in climate and soils on ecosys-
tem structure and function in the study area.
For the purposes of assessing edge influence across

the study area, we grouped 30-m pixels by 30-m harvest
distance bins and harvest patch identity. Further parti-
tioning of these distance groups by local topographic
variables (i.e., aspect and slope position) did not explain
additional variation in the edge influence (i.e., no inter-
action between aspect and distance or topographic posi-
tion and distance included in best models), so these
factors were excluded from the analysis described in this
paper. Pixels within 15 m of harvests and roads were
excluded, minimizing the chances of including measure-
ments of harvested areas and other unnatural canopy
openings. Grouping pixels based on distance helped to
(1) reduce spatial heterogeneity in the data associated
with fine-scale variation in canopy structure and (2)
avoid the potential for identifying statistically significant
and biologically insignificant effects that can be com-
mon with very large sample sizes (37,900 30-m pixels in
the current study). We then calculated the mean total,
upper canopy, and lower canopy basal area for each
grouping.
To better account for the large amount of variation in

basal areas, and thus edge influence, we analyzed the
edge influence on basal area using a linear mixed-effects
model with distance from harvest (m), harvest age (yr),
harvest area (m2), mean elevation of the distance by
patch grouping (m), and associated interactions as fixed
effects and the harvest identity used as a random effect
to account for other differences, such as ecosystem type.
Total, upper canopy, and lower canopy basal areas were
modeled independently (i.e., univariate models), but the
model structure and evaluations were the same. The
mean basal area zij for aggregate j near harvest k was
modeled as zjk = wjkb + ck + ejk, where wij is a 1 9 p
vector of covariates, b is a p 9 1 vector of parameter val-
ues, ck is the normally distributed harvest-specific ran-
dom effect with mean 0 and variance s2, and ejk is the
normally distributed residual with mean 0 and variance
p2. Similar to the basal area mapping models, priors for
the regression parameters were distributed as N(0, 1)
and priors for the variance parameters (p2 and s2) were
distributed as per Gamma(1,1). Distance (D), harvest
age (A), area of harvest (R), and elevation (E) were used
as potential predictors, as well as interactions between
distance and the other covariates. Interactions with dis-
tance were examined because the focus of this study was
on edge influence. Random effects ck for harvest identity
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(i.e., which harvest is a given area of unharvested forest
nearest) may account for spatial variation in local distur-
bance history, such as fire, windthrow, or disease and
insect attack, which might further alter forest structure.
Exploratory data analysis indicated that distances
needed to be square-root transformed. All covariates
were rescaled to range from zero to one to aid in model
convergence. Bayesian model fitting and model selection
were performed is the same fashion as plot-level basal
area models (see Basal area mapping).

RESULTS

Basal area mapping

Observed total tree basal area was well predicted,
regardless of whether these predictions were based on
the univariate model or the bivariate model (i.e.,
R2 ≥ 0.44 and RMSE ≤ 0.27; Table 1). Models for total
and upper canopy tree basal area were similar and incor-
porated the first four PCA axes for canopy height profile
while the model for lower canopy tree basal area incor-
porated only the second and third axes (Appendix S1).
The basal area models indicated that high total and
upper canopy basal area predictions were associated
with the lidar returns arising from taller trees (>30 m)
while high lower canopy basal area predictions were
associated with the returns arising from the secondary
canopy (10–35 m). Total and upper canopy basal areas
were greatest in the eastern portion of the study area
(Fig. 4 and Appendix S2: Fig. S1) associated with
greater elevations (Fig. 1a) and forest canopy heights
(Fig. 2). No clear geographic trend in lower canopy
basal area was apparent (Appendix S2: Fig. S2). Still,
these maps highlight a high degree of spatial variation in
forest basal area across unharvested forest in the HJA
that is itself related to vertical variation in forest struc-
ture measured directly by lidar data.

Assessing edge influence

Linear mixed effects models with distance and eleva-
tion performed best for total, upper canopy, and lower

canopy basal area (Table 2), with additional variation
roughly evenly split between random effects and the
model residuals (Table 3). Unsurprisingly, mean basal
areas (i.e., intercepts from models) were greatest for
total, followed by upper and lower canopy basal area.
Positive effects of the square root distance D0.5 indicated
that upper canopy, lower canopy, and total basal area
increased with distance from harvest edge. Interactions
between distance and other covariates were included in
all models (Table 3). Edge influence decreased with ele-
vation for total, upper canopy, and lower canopy basal
area (Figs. 5a–c), indicating elevated basal area near
edges at low elevations and reduced basal area at high
elevations. Edge influence increased with harvest area
for total and upper canopy basal area (Figs. 5d–f), indi-
cating reduced basal area near edges for small harvests
and no effect for large harvests. Edge influence was
impacted by harvest age for upper canopy trees only and
the effect did not differ from zero. Such patterns imply
that edge influence across the study area was mediated
by additional biophysical and historical gradients.
Given that harvest age, harvest area, and elevation of

unharvested forest with the study area are not equally and
evenly distributed, we used the linear mixed effects models
to predict landscape edge influences across the study area.
After weighting predicted effects of edges by the areas of
patches, mean landscape basal area was reduced by 6.3%
between 15 and 45 m of harvests (10.6% of the unhar-
vested forest), 4.8% between 45 and 75 m (11.0% of the
unharvested forest), and 1.0% at distances greater than
75 m, with upper canopy basal area following a similar
pattern with slightly greater magnitude of edge influence
(78.4% of the unharvested forest; Fig. 6). Mean upper
canopy basal area was reduced by 6.8%, 5.3%, and 1.0%
across the three distances (15–45 m, 45–75 m, >75 m,
respectively) from the harvest edge (Fig. 6). While lower
canopy basal area accounted for a small portion of total
basal area (Appendix S1), mean lower canopy basal area
was reduced by 3.9%, 3.0%, and 0.7% across the three
distances (15–45 m, 45–75 m, >75 m, respectively) from
the harvest edge (Fig. 6). Variation in the edge influence
on lower canopy basal area was substantial. This high
variation was due to the interaction between elevation and
distance (Table 3), resulting in a positive edge influence at
low elevations (<800 m) and a negative edge influence at
moderate to high elevations (>800 m; Fig. 5c). Similar
patterns were observed for total and upper canopy basal
area (Fig. 5a, b), but greater uncertainty in parameter esti-
mates reduced its impact on variation observed across the
landscape (Fig. 6).

DISCUSSION

Our study indicates that the edge influence of past
clearcutting of old growth on current structure of remain-
ing old-growth forest is widespread and persistent.
Roughly 60% of the forest between 400 and 1,100 m
elevation in the HJA remains uncut, but a substantial

TABLE 1. Lidar-based basal area model performance in
unharvested forests (n = 102) based on the coefficient of
determination (R2) and the root mean square error (RMSE).

Response variable R2 RMSE (ln[m2/ha])

Bivariate model
Lower canopy basal area 0.09 0.47
Upper canopy basal area 0.48 0.33
Total basal area 0.45 0.27

Univariate model
Total basal area 0.44 0.28

Note: Best models were selected as those where all predictor
variables were included in the 10 models with the lowest
posterior predictive losses.

July 2017 HARVEST EDGES AND UNHARVESTED FOREST 1671



percentage of that uncut landscape appears to have
reduced basal area through indirect effects of historical
timber harvests (Fig. 6). Forests within 75 m of harvest
edges have 4% to 6% less live basal area than forest interi-
ors. At higher elevations, these reductions approached
10%. The distance of edge influence in this study is simi-
lar to previous research within our study area focused on
a 96-ha harvest unit (50–100 m, approximately 1–2 tree

heights), where the distribution of snags indicated ele-
vated mortality (Chen et al. 1992). The greater mortality
and associated basal area declines are most likely due to
greater exposure to wind and storm damage and possibly
some partial harvest (usually done to remove “hazard”
trees) outside the cutting units that occurred at the time
of the logging. In contrast to this previous work, which
focused on a few cutting units, our landscape-scale

FIG. 4. Mean predicted total tree basal area (lower canopy + upper canopy trees) for the study area. Black areas represent
timber harvests and were not modeled (Fig. 1b). [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2. Model selection to understand impacts of distance, harvest characteristics (age and area), and environment (elevation
and aspect) based on posterior predictive loss (PPL).

DPPL Model

Lower canopy basal area
0 D0.5 + R + E + D0.5 9 E
0.6 D0.5 + E + D0.5 9 E
2.8 D0.5 + R + E + D0.5 9 R + D0.5 9 E
3.8 D0.5 + A + E + D0.5 9 A + D0.5 9 E

Upper canopy basal area
0 D0.5 + A + R + E + D0.5 9 A + D0.5 9 R + D0.5 9 E
58.5 D0.5 + R + E + D0.5 9 R + D0.5 9 E
68.6 D0.5 + A + R + E + D0.5 9 A + D0.5 9 R
214.7 D0.5 + A + R + E + D0.5 9 R

Total basal area
0 D0.5 + A + R + E + D0.5 9 R + D0.5 9 E
110.1 D0.5 + A + R + E + D0.5 9 A + D0.5 9 R + D0.5 9 E
173.5 D0.5 + R + E + D0.5 9 R + D0.5 9 E
413.6 D0.5 + A + R + D0.5 9 A + D0.5 9 R

Notes: D, distance; A, harvest age; R, area of harvest; E, elevation. Best models were defined by those that minimized PPL (i.e.,
DPPL = 0 for best model). Because the focus of this study was on edge influence, interactions not including distance were ignored.
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assessment indicates the extent the timber harvesting edge
influence across a 700-m elevational gradient in the west-
ern Cascade Mountains. Within this region and eleva-
tional band, most federal forests are now managed to
conserve and grow as multi-storied old growth forests
under the Northwest Forest Plan (Davis et al. 2015). The
HJA has probably experienced less clear cutting than

areas of general federal forest, consequently the propor-
tion of the unlogged forest landscape outside our study
area experiencing reductions in live tree basal area
associated with historical timber harvest edges is probably
greater.
The ecological consequences of basal area reductions

over 20% of the unharvested landscape are not well
understood. Areas of lower basal area of upper canopy
trees are part of the heterogeneity of canopies and gaps
in old-growth forests in this area (Cohen et al. 1990,
Spies et al. 1990). However, edge-associated areas of
lower basal area may fall below the normal range in
older forests and could reduce habitat quality of species
such as the Northern Spotted Owl whose habitat is asso-
ciated with density of large conifers and tree height
(Ackers et al. 2015). The widespread nature of the edge
influence also suggests that carbon sequestration in old-
growth forests has been reduced somewhat by proximity
to harvest edges. On the other hand, an increase in
standing dead and fallen trees could benefit species such
as pileated woodpeckers that use dead wood for habitat
(Mellen et al. 1992), and decreases in tree cover could
increase diversity of understory plant communities in
dense conifer forests (Fahey et al. 2008). Microclimate is
likely heavily altered by harvest edge influence (Chen
et al. 1999, Schmidt et al. 2017), potentially minimizing
the capacity of old-growth forest structure to buffer for-
est understories against climate change (sensu Frey et al.
2016). Such changes in microclimate may also impact
epiphyte communities distributed throughout forest
canopies (van Rooyen et al. 2011). In short, the compo-
sition, structure, and function of unharvested forests are
likely to differ dramatically in these forest edges and we
do not know how long it will take for recovery to occur.

TABLE 3. Posterior mean parameter estimates for landscape-
level edge influence analysis of lidar-based basal area
predictions.

Parameter

Basal area models for edge influence

Lower canopy Upper canopy Total

Intercept 11.6 (0.5)† 54.3 (2.9)† 67.9 (3.1)†
D0.5 0.5 (0.1)† 4.9 (0.7)† 5.4 (0.7)†
E �1.7 (0.3)†* 13.3 (2.4)† 11.7 (2.6)†
A �3.3 (2.9) �2.0 (3.0)
R �0.8 (0.7) �2.6 (4.2) �5.4 (4.4)
D0.5 9 A �3.9 (3.1)
D0.5 9 R �10.6 (4.8)† �12.1 (5.0)†
D0.5 9 E 1.9 (0.4)† 2.3 (2.9) 5.5 (2.9)
r 0.9 6.5 6.8
s 1.1 7.4 7.5

Notes: D, distance; A, harvest age; R, area of harvest; E,
elevation; r, standard deviation of the residuals; s, standard
deviation of the harvest-level random effects. Values are means
with SD in parentheses.
† Indicate that 95% credible intervals do not include zero.

FIG. 5. Influence of (a–c) elevation and (d–f) harvest area
on the edge influence for basal area from (a, d) all trees, (b, e)
upper canopy trees, and (c, f) lower canopy trees as measured
by the difference between predicted basal areas in edge (e.g.,
15–45 m from harvest edge) and core (>195 m from harvest
edge) portions of the old-growth forest. Because D0.5 9 A did
not differ from zero for lower canopy, upper canopy, or all tree
models (Table 3), we do not present that interaction here.

FIG. 6. Edge influence on basal area (percentage change in
basal area) weighted by forest areas for all trees, lower canopy
trees, and upper canopy trees at differing distanced from the
harvest edge. The figure represents the mean (thick horizontal
bar), the 25% to 75% percentile interval (box), and 2.5% to
97.5% percentile interval (whiskers) of edge influences for a
given distance category across all harvest patches.
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We hypothesized that size and age of harvest units
might modify edge influence on basal area, based on the
assumption that larger harvests might have larger
impacts on the landscape and that greater time since
harvest offers greater opportunities for recovery in basal
area (i.e., recruitment and growth). Surprisingly, we
found greater negative edge influence on total and
upper canopy basal area around small, rather than
large, timber harvests and no effect on lower canopy
basal area (Fig. 5), despite the presence of harvests
ranging two orders of magnitude in size (0.2–119.0 ha).
Elevated atmospheric turbulence associated with har-
vests may be sufficient to expose neighboring trees to
elevated risk of windthrow even in small harvests, which
in turn can increase the likelihood of additional wind-
throw in Pacific Northwest forests (i.e., windthrow
begets windthrow; Sinton et al. 2000, Harcombe et al.
2004). However, this does not explain why edge influ-
ence would disappear as harvest size increases. Addi-
tionally, the relatively large ratio of standard deviation
to mean parameter estimate for the D0.5 9 R interac-
tion effects (0.37–0.40) indicate high uncertainty in this
effect. We found little or no harvest age interactions
with distance (Table 3), though harvest ages mostly ran-
ged from 13 to 60 yr. The lack of strong age effects
could be because we lacked harvests that were either (1)
young (<13 yr old) where windthrow hazard might
remain high and be ongoing (Ruel 1995) or (2) old
(>60 yr) where recovery processes might be more
advanced. While there was little age effect, we did
observe a shift from a positive edge influence (higher
basal area near edge) to a negative edge influence (lower
basal area near edge) in lower canopy trees as elevation
increased (Fig. 5), indicating that trees in the lower
canopy might be responding positively to overstory
mortality in warmer, more productive environments. A
similar pattern was observed for upper canopy and all
trees, though the shift was from no effect to a negative
edge influence with elevation. If recovery rates are
energy limited (i.e., faster recovery in warmer ecosys-
tems), age effects may be confounded with temperature
effects, as the oldest and largest harvests in the land-
scape tended to be at lower elevations (Pearson correla-
tion between harvest age and elevation = �0.26).
Vertical and horizontal variation in vegetation struc-

ture of old-growth forests may also impact edge influ-
ence. For example, patch contrast (i.e., difference in
composition, structure, and function between unhar-
vested and harvested forests) can drive edge influence on
forest structure and dynamics (Harper et al. 2005,
Esseen et al. 2016). We could not easily examine these
factors directly because canopy height enters the model-
ing of basal area, making inferences on how these fac-
tors impact basal area at the landscape scale
tautological. An interesting alternative would be to
leverage physical models of air turbulence as a predictor
variable, the presumed driver of windthrow related mor-
tality along clearcut boundaries (Ruel 1995), which

could encapsulate the various risk factors associated
with wind-related edge influence of past harvests.
In addition to the ecological differences between upper

and lower canopy tree responses, our partitioning of
canopy basal area highlights the importance of recogniz-
ing the limits of lidar when mapping forest structure.
Greater predictive performance for upper compared to
lower canopy basal area (Table 1) reflects the fact that aer-
ial lidar data provide extensive information about trees
with exposed canopies, but the richness of the information
declines as we examine obscured components (Latifi et al.
2016), such as suppressed and intermediate canopy trees.
Predictive performance for total basal area based on our
bivariate method (upper canopy + lower canopy) did not
differ from traditional univariate approaches (Table 1),
raising the question: why go through the trouble to sepa-
rate out the lower canopy? In situations where only the
largest, canopy dominant trees are important, this parti-
tioning of basal area may be of little practical use, espe-
cially given the uncertainties in lower canopy basal area
predictions (R2 = 0.09). However, ignoring the structural
complexity in both the landscape and the lidar data risks
missing a key aspect of landscape structure. Despite strik-
ing similarities between the two methodologies in terms of
coefficients of determination, 17% and 4% of the predicted
30-m pixels differ by more than 5 and 10 m2/ha basal area,
respectively. These differences arose because (1) upper and
lower canopy basal area regression functions differed sub-
stantially and (2) covariance between the two basal area
components was not different from zero (Appendix S1).
The study provides yet another example of how the

legacies of land use activities can persist in natural and
semi-natural ecosystems for many decades and poten-
tially longer after the cessation of the activity or event
(Foster et al. 2003). These land use legacies reach into
neighboring stands, diffusely altering landscape structure
(Harper et al. 2005). The effects of human activities can
be both dramatic, e.g., replacing an old growth forest
with a plantation, and subtle, as we have demonstrated
here for edge influence on forest structure. Subtle human
impacts can be important, especially if they are wide-
spread and persistent, but they are generally not well
studied (McDonnell and Pickett 2012). This research
examines just such a subtle impact of human activity and
highlights the connectivity within forest landscapes of the
Cascade Mountains of Western Oregon. Our result show
that changes in old-growth forest ecosystems can be
caused by management in a neighboring forest stand and
persist for decades, implying that spatial variation in
management, within or across forest ownership bound-
aries, is not as simple as delineating where and when har-
vests occurred. Such issues may contribute to conflicts
between ownerships with drastically differing manage-
ment objectives and highlights the need for landscape-
level science and planning. It remains to be seen how
much longer these structural effects can be detected or
how much other components of the ecosystem track the
changes in forest structure that we observed here.
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