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ABSTRACT

Forest ecosystems are the most important terrestrial

carbon (C) storage globally, and presently mitigate

anthropogenic climate change by acting as a large

and persistent sink for atmospheric CO2. Yet, forest C

density varies greatly in space, both globally and at

stand and landscape levels. Understanding the

multi-scale drivers of this variation is a prerequisite

for robust and effective climate change mitigation in

ecosystem management. Here, we used airborne

light detection and ranging (Lidar) and a novel high-

resolution simulation model of landscape dynamics

(iLand) to identify the drivers of variation in C

density for an old-growth forest landscape in Ore-

gon, USA. With total ecosystem C in excess of

1 Gt ha-1 these ecosystems are among the most

C-rich globally. Our findings revealed considerable

spatial variability in stand-level C density across the

landscape. Notwithstanding the distinct environ-

mental gradients in our mountainous study area

only 55.3% of this variation was explained by

environmental drivers, with radiation and soil

physical properties having a stronger influence than

temperature and precipitation. The remaining vari-

ation in C stocks was largely attributable to emerging

properties of stand dynamics (that is, stand structure

and composition). Not only were density- and size-

related indicators positively associated with C stocks

but also diversity in composition and structure,

documenting a close link between biodiversity and

ecosystem functioning. We conclude that the com-

plexity of old-growth forests contributes to their

sustained high C levels, a finding that is relevant to

managing forests for climate change mitigation.
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INTRODUCTION

Forest ecosystems store more than 800 Pg carbon

(C) globally (Pan and others 2011), which corre-

sponds approximately to the amount of C stored in

the earth’s atmosphere. The C density (C stored per

unit area) of forest ecosystems varies considerably

in space, both globally (Pan and others 2011) and

at the stand and landscape scale (Bradford and

others 2010). The highest C densities are generally

found in old-growth forests, that is, ecosystems that

have not been subject to stand replacement dis-

turbance for a significant amount of time. Thus,

despite their decreasing global extent, old-growth

forests are crucially important for gaining insight

into the regulation and upper bounds of forest

ecosystem C storage.

Multiple drivers acting at different hierarchical

levels affect C cycling in forest landscapes. Climatic

factors are frequently reported as major drivers of

spatial variation (for example, Turner and others

1996; Baccini and others 2004). It can be hypoth-

esized that—especially in complex mountainous

terrain—variation in climate in general, and in

temperature and precipitation in particular, are

primary drivers of spatial variation in C storage.

Yet, Stegen and others (2011) found only weak

support for an influence of climate on the vari-

ability in forest C storage in a recent meta-analysis

of climate–carbon relationships. While climate

(together with soil processes) sets the stage for the

ecological play to unfold, processes at lower hier-

archical levels (for example, the interactions

among trees as the main actors in forest ecosys-

tems) also contribute to the stand-level variation in

C storage.

Stand structure and composition, which are

emergent properties (sensu Levin 1998) of stand

dynamics (that is, the interplay of tree-level pro-

cesses such as growth, mortality, regeneration, and

competition), are important indicators in this re-

gard. Hardiman and others (2011), for instance,

reported the influence of canopy structure on

productivity and C sequestration to be equally

strong as site effects. Likewise, species composition

was found to influence the C cycle (for example,

Hooper and Vitousek 1997; Balvanera and others

2005; Yachi and Loreau 2007), with higher even-

ness in species and forest types generally associated

with higher and more stable C uptake (Bradford

2011). However, a detailed characterization of

forest structure and composition across landscapes

has been historically difficult, and has become

available only recently through advances in remote

sensing (for example, Kane and others 2011).

Furthermore, studies addressing the effect of

structure and composition have largely focused on

differences between seral stages of forest succession

(Runyon and others 1994; Turner and others

2003), which leads us to hypothesize that within a

given seral stage of stand development processes of

stand dynamics have little influence on the stand-

level variation in C density.

In general, the relative importance of top-down

constraints (climate, soil) and bottom-up emerging

properties (structure, composition) in explaining

the variation of forest C density at the stand level

remains poorly understood (Baraloto and others

2011). Yet the C stored in forest ecosystems has a

distinct influence on the climate system, which

makes understanding its drivers an increasingly

important question in the context of mitigating

anthropogenic climate change (Canadell and

Raupach 2008). Of particular relevance in this

context is the role of climatic drivers of C stocks (cf.

robustness to future climatic changes), and the

potential to improve forest C stores via the man-

agement of stand structure and composition.

Understanding how these factors influence C den-

sities is thus a prerequisite for developing effective

and robust mitigation strategies in ecosystem

management (see McKinley and others 2011).

Here, our aims were to (i) characterize the spatial

variation in forest ecosystem C density in an old-

growth forest landscape, and (ii) identify the main

factors influencing stand-scale variation in C stor-

age across the landscape. We selected old-growth

forests in the western Cascade Range of Oregon

(USA) as our study system because they are char-

acterized by complex terrain (that is, considerable

environmental variability at relatively small scales),

and are among the most C-dense terrestrial eco-

systems globally (Smithwick and others 2002). We

used light detection and ranging (Lidar) in combi-

nation with ground survey data to describe the

spatial variation in landscape-level C stores. To

address the hierarchical nature of influences in

forest ecosystems and disentangle effects of both

climatic constraints and emergent stand properties,

we used a novel multi-scale landscape model with

individual tree resolution.

MATERIALS AND METHODS

Material

HJ Andrews Experimental Forest

The HJ Andrews Experimental Forest (HJA) is

located at N44.2�, W122.2� in the western Cascade
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Range of Oregon. It encompasses the entire

6364 ha drainage basin of Lookout Creek. The

watershed is characterized by steep mountainous

topography and well-drained soils derived from

aeolian volcanic materials, colluvium, and residual

materials from Tertiary basalts and andesites. The

maritime climate has wet, mild winters and dry,

cool summers. Mean monthly temperatures at

lower elevations range from near 1�C in January to

18�C in July. Precipitation falls primarily from

November to March, and varies with elevation,

averaging 2300 mm at low elevations to over

3550 mm at higher elevations per year.

Lower elevation forests are dominated by

Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco),

western hemlock (Tsuga heterophylla (Raf.) Sarg.),

and western redcedar (Thuja plicata Donn ex D.

Don). Upper elevation forests contain noble fir

(Abies procera Rehd.), Pacific silver fir (Abies amabilis

Dougl. ex Forbes), Douglas-fir, and western hem-

lock, with a mid-elevation transition zone situated

between these two forest types. Low- and mid-

elevation forests in this area are among the tallest

and most productive in the world, with average

canopy heights in excess of 75 m. Under natural

conditions, Douglas-fir is a seral dominant on these

sites and typically develops young, nearly pure,

even-aged stands after severe fires. Stands over

200 years old generally exhibit old-growth char-

acteristics (Spies and Franklin 1988) such as

codominance of western hemlock in the oversto-

rey, diverse vertical foliage distribution, and large

accumulations of coarse woody debris (Spies and

others 1988).

When it was established in 1948, the Andrews

Experimental Forest was about 65% old-growth

forest (much of that was �500 years old) with the

remainder largely in mature stands (80–200 years

old) that developed after wildfires in the mid-1800s

to early 1900s. About 30% of the original forest

cover has been clear cut, creating plantations of

native conifers. Historically, high to mixed severity

wildfire was the primary disturbance in the natural

forest with return intervals of 80 to over 200 years.

Soil and Climate Data

Soil data for the HJA were available from 326 soil

profiles (Dyrness 2001), and were imputed to the

soil mapping units (that is, soil series 9 slope class)

of Dyrness and others (2005). After rastering to a

100 m grid missing data were derived by means of

ordinary kriging (Figure 1). In addition to C and

nitrogen (N) pools for mineral soil and forest floor,

soil physical properties (sand, silt, and clay content

as well as effective rooting depth, that is, the

minimum of soil depth sans rock fraction and po-

tential maximum rooting depth, with the latter set

to 250 cm) were derived from soil profile data. A

proxy of nutrient availability (plant-available N per

hectare and year) was calculated from total N pools

following the approach of Seidl and others (2012).

Except for the C and N pools, which were dynam-

ically simulated in our study (see below), all soil

properties were assumed to be time-invariant.

A daily climate time series from 1973 to 2001

was available for the PRIMET weather station lo-

cated in the southwestern part of the landscape

(Daly and McKee 2009). Furthermore, using an

extended network of meteorological stations

throughout the HJA watershed, spatial grids of

monthly temperature (Daly and Smith 2005a),

precipitation (Daly 2005), and radiation (Daly and

Smith 2005b) have been developed previously.

These data were used to determine regions of

homogeneous climate by means of cluster analysis.

Using scree-plots of within-cluster dissimilarity,

cluster silhouette, and cluster isolation (Kaufman

and Rousseeuw 1990; R Development Core Team

2011), we determined that the optimal number of

climate regions was 113. We used monthly differ-

ences and ratios to the PRIMET climate to generate

daily climate data for the representative grid cell

(that is, cluster medoid, the representative data

point with minimal within-cluster dissimilarities)

for every region (Figure 1).

A 500-year time series was created for every

climate region by stratified sampling with replace-

ment from the observation period 1973–2001,

using the Pacific Decadal Oscillation (PDO) index as

stratification criterion. We classified years in the

observation period into cool, neutral, and warm

PDO phases (see also Tepley 2010), and sampled

years from the respective subset following the PDO

reconstruction of MacDonald and Case (2005) for

the period 1501–1972. A time series of atmospheric

CO2 concentration change from 1765 to 2001 was

obtained from Meinshausen and others (2011), and

a constant atmospheric CO2 concentration of

280 ppm was assumed prior to 1765.

Vegetation Data

Two wall-to-wall layers of vegetation data were

used in the analysis: first, spatially explicit infor-

mation on vegetation structure and composition

were derived from gradient nearest neighbor

(GNN) imputation of forest inventory data

(Ohmann and others 2011). Specifically, stand

basal area (BA), quadratic mean diameter (QMD),

Drivers of Variation in Forest Carbon Density 1323
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the standard deviation of the diameter distribution

(SDdbh), the abundance of trees larger than 100 cm

diameter at breast height (N100), and tree species

proportion, richness, and diversity were derived

from GNN data (Table 1).

Second, airborne discrete return Lidar data (see

Lefsky and others 2002) were collected on August

10 and 11, 2007 by Watershed Sciences, Inc.

(Corvallis, Oregon, USA). Lidar was collected by a

fixed wing aircraft equipped with a Leica ALS50

Phase II laser scanner with a 59 kHz pulse rate,

scan angle of ±14�, and scan swath overlap of

at least 50%. Average Lidar point return density

exceeded 9 m-2 within the study area, and root

mean squared error between 344 real-time kine-

matic ground survey points and Lidar data was

0.024 m. The 95th percentile height (H95) of Lidar

returns was created using the ‘‘Gridmetrics’’ com-

mand in FUSION (McGaughey 2011). Statistics

were processed from the original Lidar point cloud

(first returns only) and summarized to 5 m raster

cells. From H95, we calculated an index of canopy

structure, that is, the rumple index (Parker and

others 2004; Kane and others 2010), using the

surfaceArea command in R (Bivand and others

2008). Rumple is the ratio of the canopy surface-

Area to the projected surface ground area, and was

calculated for each 100 m grid cell (Table 1). We

used Lidar data in combination with detailed on-

site vegetation data to derive estimates of above-

ground C density (see ‘‘Methods’’ section).

Delineation of Old-Growth Forests

Our analysis here focused on the old-growth por-

tion of the HJA watershed. To identify old-growth

forests, we compiled a fire history for the land-

scape, building on detailed disturbance history

studies by Teensma (1987), Weisberg and Swanson

(2003), and Tepley (2010). In addition, we used

orthophoto imagery from the 1950s and current

Lidar data to corroborate and amend the last

100 years of these previous tree-ring-based fire

Table 1. Spatial Variation in Forest Structure and Composition at the HJ Andrews Experimental Forest

5th percentile Mean ± SD 95th percentile

Structure1

Basal area (BA, m2 ha-1) 37.5 59.9 ± 12.6 76.9

Quadratic mean dbh (QMD, cm) 21.8 35.2 ± 8.7 49.4

SD of dbh distribution (SDdbh, cm) 14.3 24.3 ± 5.9 33.7

Trees >100 cm dbh (N100, n ha-1) 2.8 14.8 ± 8.5 30.4

Rumple index (rumple, dim.) 1.61 2.32 ± 0.40 2.96

Composition1,2

Psme (% basal area) 37.5 62.4 ± 15.6 88.2

Tshe (% basal area) 6.3 22.0 ± 10.8 42.4

Thpl (% basal area) 0.0 10.0 ± 9.3 28.2

Abam (% basal area) 0.0 3.0 ± 5.6 14.8

Abpr (% basal area) 0.0 1.3 ± 3.5 7.6

Acma (% basal area) 0.0 0.6 ± 1.6 3.2

Alru (% basal area) 0.0 0.4 ± 2.0 1.4

Tsme (% basal area) 0.0 0.3 ± 1.1 1.9

Dom. species richness (SPrich, n ha-1) 2.0 2.9 ± 0.8 4.0

Species diversity3 (SPdiv, dim.) 0.32 0.50 ± 0.14 0.79

SD = standard deviation; dbh = diameter at breast height; Psme = Pseudotsuga menziesii; Tshe = Tsuga heterophylla; Thpl = Thuja plicata; Abam = Abies amabilis;
Abpr = Abies procera; Acma = Acer macrophyllum; Alru = Alnus rubra; Tsme = Tsuga mertensiana.
1Data are reported for 2191 ha of old-growth forests and analyzed at the level of 100 m grid cells.
2The analysis is restricted to species with a share of ‡5% on total basal area in at least one vegetation plot of the survey by Harmon and Munger (2005), and additionally
excludes Castanopsis chrysophylla for parameterization reasons. The species proportions, richness of dominant species (>5% of basal area), and species diversity reported here
are calculated for the thus selected eight main canopy species.
3Simpson’s diversity index (McGarigal and others 2002).

Figure 1. Spatial variation of environmental drivers (A–

E) and stand structure and composition (F–G) in the old-

growth forests of the HJ Andrews Experimental Forest. A

Mean annual temperature (�C), B mean annual precip-

itation (mm y-1), C mean daily radiation (MJ m-2 d-1),

D effective rooting depth (cm), E plant-available nitro-

gen (kg ha-1 y-1), F dominant species richness (n ha-1),

G trees larger than 100 cm dbh (n ha-1), H rumple index

(dimensionless). Climate data are averages for the period

1973–2001, soil data are assumed to be time-invariant.

All maps are masked to old-growth forests within the HJ

Andrews watershed (bold black line). For more details on

stand structure and composition see Table 1. (Color

figure online)

b
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history reconstructions. Spatial information on

forest management was available from Lienkaem-

per (2004). We focused our analysis on the portion

of the landscape that was neither managed nor

affected by moderate or high severity wildfires

since approximately 1800. Via this definition of

old-growth, we selected 2191 ha (that is, approxi-

mately one-third of the overall HJA watershed) as

our study area.

Methods

Estimating Aboveground C Density from Lidar Data

Field data were assembled from a variety of previ-

ous vegetation-related projects at HJA (see Harmon

and Munger 2005), and consequently were of dif-

ferent plot sizes and clustered over the landscape.

From field data on tree size and abundance per

25 m by 25 m plot aboveground live C (ALC) was

derived by means of allometric equations. To in-

crease the robustness of this ALC estimate, we used

the average over two different sets of allometric

equations (Means and others 1994; Jenkins and

others 2004). Because biomass estimates represent

volumes and are skewed, they were cube-root

transformed. Because the 708 plots were clustered

in space, they were divided into 41 reasonably

spatially independent groups before analysis.

Potential predictors included aspect, elevation, and

metrics created from the Lidar data representing

tree height and its horizontal as well as vertical

variability (that is, the mean, variance, and 95th

percentile of Lidar return heights, the percentage of

returns >2 m and 40 m above ground, two indices

based on canopy cover, as well as the spatial vari-

ance of the 95th percentile Lidar return height in

15, 25, 35, and 45 m cells around the focal 5 m

pixel). To identify the best set of predictor variables,

simple linear regression models were built using

the average of the cube-root transformed data for

each of the 41 groups as the response. The best

model was selected using a modified forward

selection procedure. To correctly account for the

hierarchical structure of the plot data, final model

coefficients and standard errors were estimated

using 100,000 iterations of a non-parametric

bootstrap in which groups were re-sampled with

replacement (Davison and Hinkley 1997).

iLand: The Individual-Based Forest Landscape

and Disturbance Model

To test hypotheses about interacting drivers (that is,

environment, stand dynamics) of spatial variation

in C density, we used the simulation model iLand

(Seidl and others 2012). iLand models forest eco-

systems from a complex adaptive systems perspec-

tive (see Grimm and others 2005), with ecosystem

dynamics an emergent property of interactions

between agents (that is, individual trees) and their

environment. The spatially explicit competition for

resources between individuals is simulated based

on ecological field theory (see Berger and others

2008). The computational challenge of simulating

(a large number of) individual trees at the land-

scape scale is addressed by defining competitive

influence as generalized interference patterns in

the model (Seidl and others 2012). To robustly

scale from individual trees to forest landscapes

iLand employs a hierarchical multi-scale approach

(Wu and David 2002, Figure 2). Within this

framework, generalized physiological principles are

applied to calculate individual tree growth and

mortality from the resources captured by every

individual. iLand employs a light-use efficiency

approach to model primary production (Landsberg

and Waring 1997), and scalar modifiers to account

for effects of temperature, soil water availability,

and humidity (on daily basis), as well as the effects

of nutrient availability and atmospheric CO2 con-

centration (on monthly basis). Allocation to tree

compartments is based on empirical allometric

ratios (Duursma and others 2007), and height to

diameter growth relations are determined by an

individuals’ competitive situation (Seidl and others

2010). The probability of stress-related mortality is

calculated from an individuals’ C balance (Güner-

alp and Gertner 2007).

iLand was previously successful in simulating

productivity and complex stand dynamics over

wide environmental gradients for a number of

different species and ecosystems, including the HJA

(Seidl and others 2012). To adapt the model to the

needs of this study, and develop it into a full

dynamic landscape simulator, we integrated a soil

module and a regeneration module into the iLand

simulation framework. The soil and decomposition

module, described in detail in Appendix A of the

Supplementary material, tracks dead organic mat-

ter in separate pools for standing and downed

deadwood, litter, and soil organic matter (Kätterer

and Andren 2001). The sensitivity of decomposi-

tion processes to climate is modeled based on

the empirical findings of Adair and others (2008).

The regeneration module (details in Appendix B

of Supplementary material) simulates spatially

explicit seed dispersal in the landscape, using a

two-part exponential dispersal kernel (Lischke and

Löffler 2006). Species-specific thermal limitations

to establishment are modeled based on a phenology

1326 R. Seidl and others



approach (Nitschke and Innes 2008), while the

detailed light computations in iLand (Seidl and

others 2012) account for the light regime experi-

enced by seedlings. Sapling growth and competi-

tion are modeled explicitly at a 2 9 2 m resolution

using a mean tree approach based on height

growth potentials (Rammig and others 2006) and

species-specific responses to the environment.

Extensive technical model documentation as well

as the model code and executable are available

online at http://iland.boku.ac.at.

Study Design and Analysis

We used Lidar estimates to quantify ALC stocks and

their variation at stand level (that is, a 100 m grid),

and employed simulations to extend our analysis to

total ecosystem C (TEC, up to a maximum soil depth

of 100 cm, not including C in lichens and the herb

layer). Spatial variation in C density was analyzed

by means of both non-spatial [coefficient of varia-

tion (CV), 5th to 95th percentile range (R90)] and

spatially explicit (patch density, division index, see

Jaeger 2000; McGarigal and others 2002) indices.

To account for the hierarchy of influences in forest

ecosystems in disentangling the drivers of spatial C

variation, we performed two hierarchically nested

analysis steps: first, we conducted a full factorial

simulation experiment, in which we—separately

and in combination—fixed temperature, precipita-

tion, radiation, soil physical properties, and N

availability to their respective landscape averages.

The resulting 32 model runs were analyzed by

means of an analysis of variance to quantify the

relative contribution of these environmental drivers

to the variation in C density (R90) at the stand scale

(100 m resolution in our analysis). Second, we

analyzed the residual variation not accounted for by

environmental drivers for effects of stand dynamics

and its emergent properties stand structure and

composition. Explanatory variables in this second

analysis step were the indicators listed in Table 1.

Principal component regression analysis was used

to address the correlation in predictors in relating

indices of structure and composition to C density.

Figure 2. iLand, the individual-based forest landscape and disturbance model. The schematic (left) illustrates iLands’

approach to scale competition via dynamically combining species- and size-specific individual tree light interference

patterns (top) to a continuous landscape scale field of light competition (bottom). The flowchart to the right highlights the

main processes and their respective scales (square boxes) in the hierarchical multi-scale design of iLand. Rounded boxes

denote state variables or pools, external environmental drivers are given in italics, and arrows indicate causal influences or

relationships between processes, with dashed connections highlighting main feedbacks between hierarchical scales. T mean

temperature; Tmin minimum temperature; PAR photosynthetically active radiation; VPD vapor pressure deficit; P precip-

itation; APAR absorbed PAR; uAPAR utilizable APAR; LUE light use efficiency; GPP gross primary production; Ra auto-

trophic respiration; NPP net primary production; I interception; E transpiration; SOM soil organic matter; DWD downed

woody debris; SWD standing woody debris. (Color figure online)
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iLand simulations were started in the year 1501,

that is, immediately following the last known

landscape level high severity fire event (Tepley

2010). Location and extent of patches surviving the

disturbance were taken from the analysis of Tepley

(2010). In those legacy patches (�10% of the study

area) vegetation was initialized using stand infor-

mation for current old-growth stands (Harmon and

Munger 2005). On the remaining, burnt-over part

of the landscape these data were combined with

consumption rates from the literature (for example,

Campbell and others 2007) to initialize dead wood

pools. Current soil and litter pools were assumed

(Dyrness 2001) and were likewise modified with

consumption rates for the portion of the landscape

initialized as recent burn. Simulations were run for

500 years and the full 6364 ha HJA landscape. The

results presented here focus on the old-growth

portion of the simulated landscape (2191 ha) at the

end of the 500-year simulation period. Because

parts of the simulation model used here were

newly developed we also conducted a suite of model

evaluation experiments prior to applying iLand to

our study questions (Appendix C of the Supple-

mentary material). All statistical and spatial analyses

were conducted using the R Project for Statistical

Computing (R Development Core Team 2011).

RESULTS

Aboveground Live C

The best regression model to predict ALC from Lidar,

determined using the simple linear models, included

three predictors: H95, elevation, and the local

variance of Lidar returns within a 35 m 9 35 m

window (that is, the approximate dimensions of

the ground survey plots) centered on the focal 5 m

pixel (LV7). Although the bootstrapped confidence

interval might not support the continued inclusion

of LV7 in the final model, we have retained it be-

cause it was significant in the simple linear model

based on group means. Model coefficients for H95

and elevation are nearly identical when LV7 is in-

cluded and when LV7 is not included in the final

model. The average adjusted R2 for the final

regression model (Table 2) across all 100,000 boot-

strapped samples was 0.768.

Our Lidar-based ALC estimates corroborated

very high C stocks for old-growth forests at the HJA

(see for example, Smithwick and others 2002),

with a mean ALC density of 435.1 Mg ha-1 and a

95th percentile ALC of 667.3 Mg ha-1. The highest

ALC stocks (‡95th percentile) were predominantly

found on gentle slopes (between 20 and 40%

inclination) with southerly or westerly exposition

in the mid-elevation range (between 900 and

1100 m asl) of the landscape (Figure 3). Lidar data

also revealed considerable spatial variation in old-

growth forest C density: the CV in stand-level ALC

was 34.3%, and both patch density and division

index were high, signifying variability at small

spatial scales (Table 3).

Total Ecosystem C

iLand was able to reproduce observed indicators of

forest structure and composition at HJA, and sim-

ulated ALC levels closely matched Lidar-based

values (see Table 3 and the detailed analyses in

Appendix C of the Supplementary material). Mean

TEC densities for old-growth forests were calcu-

lated to be on average 66% higher than ALC den-

sities, with a 95th percentile landscape TEC of

999.4 Mg ha-1. On average, litter and soil con-

tributed 20.6%, woody detritus 15.5%, and live

roots 9.8% to TEC. The spatial variation in TEC

(CV = 26.2%) was lower than for ALC, but spa-

tially explicit diversity indices were high also for

total C (Table 3; Figure 3).

Table 2. Parameter Estimates for the Lidar—Aboveground Live Carbon Model

Parameter1 Estimate2 Lower 90% CI2 Upper 90% CI2

Intercept 0.187 0.0880 0.277

H95
3 (m) 0.0211 0.0191 0.231

Elevation (m) 0.000198 0.000117 0.000278

LV7
4 (m2) 0.000177 -0.0000202 0.000365

CI = confidence interval.
1The model assumes a linear combination of parameters with the cube root of aboveground live biomass (Mg) at 25 m2 cells as response variable. Aboveground live carbon was
derived by assuming a C content of 50%.
2Derived from 100,000 iterations of a nonparametric boostrap in which groups of spatially dependent observations were resampled with replacement.
395th percentile Lidar return height.
4Variance in H95 across a 35 m 9 35 m area centered on the focal 5 m cell.
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Drivers of Spatial Variation in C Density

Lidar-based ALC densities were only weakly cor-

related with individual environmental drivers, with

radiation and effective soil rooting depth being the

most prominent factors (Figure 4). A stronger

relationship was found with individual indicators

of stand structure, with Lidar-based ALC moder-

ately correlated to vertical and horizontal hetero-

geneity (that is, rumple index and SDdbh) as well as

size and stocking level (N100 and BA). However,

because of the hierarchical nature of influence

(coincident effect of environment on both stand

dynamics and ecosystem productivity) and the

multicollinearity between individual factors these

correlations allow only limited insight into the

processes driving variation in C density of old-

growth forests at HJA.

We thus conducted a full factorial simulation

experiment with a process-based model to disentan-

gle environmental effects from the influence of stand

dynamics on C density. We found that variation in

environmental drivers was responsible for 55.3% of

the spatial variation in TEC density (53.8% for ALC).

Radiation was identified as the most important

environmental driver (Figure 5A). According to our

analysis, solar energy thus had a stronger influence

on C storage than climatic factors limiting plant

metabolism (for example, temperature) in the

mountainous terrain of HJA. Furthermore, soil

physical properties (that is, the local ability to store

water) were found more influential on variation in C

than the overall amount of precipitation. Precipita-

tion is generally high throughout the landscape (see

Figure 1B) but is unevenly distributed over the year,

with a distinct dry season in summer, which makes

the ability to store precipitation and runoff from

snow-melt a crucial parameter for plant growth in

(solar energy-rich) early summer.

In a subsequent step, we analyzed how much of

the C variation not explained by environmental
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<150

150−300

300−450
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Figure 3. Aboveground live carbon (ALC, derived from Lidar) and total ecosystem carbon (TEC, simulated with iLand) in

old-growth forests at the HJ Andrews Experimental Forest (Mg C ha-1). (Color figure online)

Table 3. Carbon Storage in Old-Growth Forests of the HJ Andrews Experimental Forest

ALC (Lidar) ALC (iLand) TEC (iLand)

Central tendency Mean (Mg C ha-1) 435.1 396.5 724.5

Variation (Spatially non-explicit) R90
1 (Mg C ha-1) 496.7 428.2 583.5

CV2 (%) 34.3 34.9 26.2

Variation (Spatially explicit)3 Patch density4 (100 ha-1) 22.1 18.1 26.5

Division index5 (dim.) 0.995 0.981 0.995

ALC = aboveground live carbon; TEC = total ecosystem carbon.
190th percentile range (that is, the range between the 5th and 95th percentile of landscape C density).
2Coefficient of variation.
3Results were grouped into 150 Mg C ha-1 classes to identify homogeneous patches (see Figure 3).
4Number of patches per 100 ha (McGarigal and others 2002).
5The probability that two randomly chosen places in the landscape are not situated in the same undissected patch (Jaeger 2000); the minimum division index from separate
calculations for all C classes is reported here.
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drivers was attributable to stand structure and

composition. Using simulations sans environmental

variation allowed us to control not only for direct

but also indirect effects of environmental drivers

(via influence on stand dynamics) on C density in

our analysis. Together, indicators of stand structure

and composition explained at least two thirds of the

remaining spatial variation in C density (R2 of the

principal component regression of 0.665 (TEC) and

0.931 (ALC), respectively). As expected, density-
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Figure 4. Correlations between Lidar-derived aboveground live C (ALC) density and environmental drivers (top row) as

well as indicators of stand structure and composition (bottom row). For the latter, the five strongest relationships from the

list of indicators described in Table 1 are reported. Note that rumple index was derived from the same data source used to

estimate ALC. Red lines are spline fits drawn to aid interpretation, r Pearson’s correlation coefficient. (Color figure online)
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and size-related indicators of stand structure (for

example, BA, number of big trees) showed a strong

positive relationship with C density (Figure 5B).

But also species richness was positively associated

with C density, in particular, in relation to an

increasing share of true fir species in mid- and

high-elevation stands. An increasing share of

shade-tolerant T. heterophylla and T. plicata, on the

other hand, associated with climax stages of stand

development and a senescing of the dominant

P. menziesii cohort, were negatively related to C

stocks. Principal component analysis showed that

compositional diversity is closely related to struc-

tural diversity in our study landscape. Our analysis

indicates that diversity in canopy and diameter

structure had a moderate positive relation to C

density.

DISCUSSION

Spatial C Variation and Its Drivers

We analyzed the spatial variation in C density in a

mountain forest landscape in western Oregon, and

found that stand-level C stocks vary substantially

even in the absence of stand-replacement distur-

bance. In contrast to studies relating C budgets

primarily to temperature and precipitation (for

example, Govind and others 2011), we found that

the effect of solar energy input (strongly mediated

by topographic features like slope, aspect, and ele-

vation in our study landscape) and the buffering

capacity of soil with regard to water availability

were major environmental drivers of C density

variations at HJA. These results suggest that total C

storage in these old-growth landscapes might be at

least initially resistant to future changes in tem-

perature and precipitation. But further analyses

accounting for the effect of large-scale disturbances

(and their climate sensitivity) need to be conducted

to corroborate this notion.

We, furthermore, found that the explanatory

power of stand structure and composition (emer-

gent properties of stand dynamics) was in the same

order of magnitude as that of the abiotic environ-

ment, that is, top-down and bottom-up processes

together drive stand-level variation in C densities.

Not only density- and size-related indicators of

stand structure but also the structural and compo-

sitional diversity of stands was positively associated

with C density in our analyses, documenting a

positive relationship between biodiversity and

ecosystem functioning. Our data suggest that one

mechanism behind this finding is complementary

resource use (species with different traits and

strategies optimize resource use, Hooper and Vito-

usek 1997; Yachi and Loreau 2007), particularly in

the species-rich mid- to high-elevation true fir

zone. Furthermore, the (temporal and spatial) scale

of analysis matters; although peak C densities

might be found in small, relatively homogeneous

patches with a high density of large P. menziesii, a

trade-off with increasing vulnerability of such

conditions to disturbance exists at broader scales

(see, for example, Seidl and others 2011). Our

finding that the long-term integral of C storage is

positively associated with diversity indicators sug-

gests a stabilizing effect of diversity, if considering

century-scale forest dynamics at the landscape

level. This finding is congruent with the theoretical

consideration that the response diversity intro-

duced by heterogeneity (Elmqvist and others 2003)

is an important constituency of ecosystem resil-

ience. We conclude that typical old-growth features

such as complex canopy structure, a considerable

number of big trees, and high species diversity are

not only important for habitat quality (see for

example, Spies and others 2007) but also relevant

in the context of ecosystem C storage. In this

regard, our findings support the notion that

objectives of conserving biodiversity and mitigating

climate change through C storage could be mutu-

ally achieved in some situations (see Huston and

Marland 2003; Seidl and others 2007).

Methodological Limitations
and Implications

An aspect not considered in our analysis but

potentially contributing to spatial variation in C

density is long-term legacies of disturbance of var-

ious kinds and intensities. Disturbance can have a

long-lasting influence on ecosystem structure and

composition, for example, through favoring the

regeneration of long-lived early seral species such

as P. menziesii, or creating slowly decaying pulses

of woody debris (see Franklin and others 2002).

Despite our focus on forests unaffected by major

disturbances in the past 200 years, effects of older

disturbances cannot be completely ruled out. Fur-

thermore, it is also likely that some of the structural

variation we see is a result of lower severity fire

disturbances, small-scale windthrow, and Douglas-

fir bark beetles (Dendroctonus pseudotsugae). Because

such local and low severity disturbances as well as

fine scale environmental factors (for example, local

rock outcrops, seepages, and small streams) were

not accounted for explicitly in our study, forest

structure and composition as considered here can

only be seen as a surrogate for stand dynamics.
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Further limitations of our analysis stem from the

applied modeling methodologies. The relationship

between ALC determined from ground plot data

and Lidar returns was satisfactorily strong and in

the range of previous Lidar-derived C models (for

example, Lefsky and others 2005). However, the

data used to build the empirical model were col-

lected for other purposes. Empirical biomass esti-

mates collected using a sampling scheme designed

specifically for building C models could improve

the ability to predict biomass and C in unsampled

locations in the future. iLand, although employing

general physiological process understanding and

operating at higher spatial- and process-resolution

than most current landscape simulation models,

simplifies important C cycle processes such as

autotrophic and heterotrophic respiration, com-

pared to more detailed models (see Appendix A of

the Supplementary material for details). The high

influence of radiation in our results might be

somewhat inflated by the structure of the model,

which relies on radiation as the principal driver of

primary production (light-use efficiency approach).

However, the independent Lidar-based analysis of

ALC resulted in findings congruent with simula-

tions (Figure 4), adding support to the result that

radiation is the most important environmental

driver of heterogeneity at HJA. A further limitation

of the model is that the lateral components of

the water cycle (for example, subsurface water flow)

are currently not simulated explicitly (but see Tague

and others 2009). However, a thorough model eval-

uation in general and the good agreement between

the two independent ALC estimates (empirical Lidar

modeling, simulation modeling) in particular lend

confidence to the applied methods and their abilities

in the context of our study objectives (see Appendix C

of the Supplementary material).

An important methodological implication of the

study arises from its reinforcement of the links

between structure and functioning in forest eco-

systems (Franklin and others 2002; Balvanera and

others 2005). The effects of structure and compo-

sition on C density documented here highlight the

importance of considering the emergent properties

of stand dynamics explicitly in making model pre-

dictions about the forest C cycle. This finding is in

line with the analysis by Smithwick and others

(2003), who found that complex nonlinear inter-

actions of small-scale processes (such as for exam-

ple, competition) and their associated emerging

behaviors matter for the prediction of ecosystem

dynamics at larger scales (see also Grimm and

others 2005)

CONCLUSIONS

We characterized the spatial variation in C density

for a C-rich forest ecosystem and investigated

what drives this variation. We found that envi-

ronmental factors were indeed the overall most

important drivers of C variation. However, in

contrast to large-scale studies (for example, Run-

yon and others 1994) our findings at landscape

scale suggest that radiation and soil characteristics,

both strongly mediated by the complex topogra-

phy of our study landscape, contribute more to

the variance in C density than air temperature

and precipitation. Furthermore, making use of

emerging remote sensing products and novel

high-resolution modeling allowed us to extend

our analysis to include the effects of stand

dynamics (that is, of local processes such as indi-

vidual-tree competition, mortality, and establish-

ment) on large-scale C density, and to address the

interaction between ecosystem structure and

functioning. Despite focusing on forests in the

same seral stage (old-growth forests), we found

that effects of stand dynamics were in the same

order of magnitude as those induced by the strong

environmental gradients of the mountainous

landscape studied. Our results suggest that typical

old-growth features, for example, an abundance of

large individuals as well as structural and com-

positional diversity, are positively associated with

C density. Our findings on a positive relationship

between diversity and C density could be impor-

tant in the context of the emerging interest to

manage forests in the context of climate change

mitigation (McKinley and others 2011) and

underline the significance of complexity for forest

ecosystem functioning.
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