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7.1 Introduction

Ecological processes frequently occur at multiple spatial scales simultaneously. For 
example, fires imprint the landscape at a variety of spatial scales, from small areas 
of high burn intensity due to patchy surface fuels, to large stands within fires that 
escape conflagration entirely (Fig. 7.1). These types of complex disturbances can 
increase environmental heterogeneity and thus species diversity by creating a 
variety  of microhabitats and by increasing patch diversity (Romme and Knight 
1982; Christensen 1985; Denslow 1985; Pickett and White 1985; Turner et al. 
1998). The flow of organisms, genes, and populations provides another excellent 
example of scale-dependent ecological processes (see Chap. 8).

Because ecological data are scale-specific, any model based on these data will 
provide inferences at a specific spatial scale. The scale of inference of statistical 
models is a critical consideration in predictive modeling (see Chap. 4). Some con-
fusion can arise if the variables used to build a model are themselves scaled dif-
ferently. For example, soils variables and terrain features have different 
characteristic scales (Urban et al. 2000). As a consequence a regression based on 
these data would be multi-scaled (Lookingbill and Urban 2004). Peters et al. 
(2004) refer to this approach to landscape modeling as spatially implicit, a nons-
patial model built from geospatial data. By far, most models of species distribution 
are spatially implicit.

By contrast, a spatially explicit model would include predictive variables that 
account for spatial processes explicitly. From a modeling perspective, few 
approaches are currently available to ecologists to account for scale explicitly. 
Multi-level modeling (Gelman and Hill 2007) offers a framework for multi-scale 

T.R. Lookingbill ( ) 
Department of Geography and the Environment, University of Richmond,  
Richmond, VA 23173, USA 
e-mail: tlooking@richmond.edu

Chapter 7
Focused Assessment of Scale-Dependent 
Vegetation Pattern

Todd R. Lookingbill, Monique E. Rocca, and Dean L. Urban 



112 T.R. Lookingbill et al.

models, if the levels of the nested ANOVA design are explicitly scaled by the user; 
that is, the levels specified in terms of variables with known characteristic scaling. 
Thus far, such applications tend to be nested logically (i.e., as treatments nested 
within blocks) rather than in a spatially explicit manner, but there is no reason why 

Fig. 7.1 Schematic diagram of different sources of spatial heterogeneity in fire regimes and fire 
effects. Color gradient represents turnover of species with space (vertical axis) and time (horizontal 
axis). (a) Red represents an early successional species/post-fire colonizers, blue represents late suc-
cessional species/competitors, and orange represents the most severely burned areas; (b) uniform 
landscape with synchronous disturbance; (c) heterogeneity in time-since-fire with uniform fire 
regime; (d) heterogeneity in fire regime (fire frequency) across the landscape; (e) variable fire size 
(note dispersal gradients); (f) heterogeneity in season-of burn (top row burned under driest, hottest 
conditions resulting in orange/high severity; second row burned under mild conditions resulting in 
little setback of successional clock); (g) within-fire variability in fire intensity (fine-scale patchiness 
in intensity indicated by small patches with colors ranging from orange to red to blue) 
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these models could not be framed across spatial scales. Similarly, hierarchical 
Bayesian models (Clark 2005; Gelman and Hill 2007) might be constructed to 
explicitly nest spatial scales, but are a more general construct.

We suggest that the multi-scale nature of ecological processes presents at least 
two challenges to landscape-scale species distribution modeling: choice of sample 
design and choice of inferential model. First, to capture landscape variability, fine-
grained data need to be collected over a large spatial extent – a task that appears, at 
first glance, to be difficult if not impossible (Urban et al. 2002). In this chapter, we 
present a response to this data challenge that identifies and focuses sampling in 
locations of high resource heterogeneity. Ecologists have tended to focus on homo-
geneous environments to understand ecological processes (e.g., Whittaker 1956; 
Peet 1981), deliberately avoiding sampling locations of high local variability. 
However, locations of fine-scale heterogeneity can be extremely informative of 
broader-scale vegetation patterns. Ecotone studies provide the opportunity to effi-
ciently collect detailed data on species-environment relationships at the competitive 
limits of the ecological tolerances of a species (Neilson 1991; Hansen and di Castri 
1992; Risser 1995; but see Gosz 1993 for a warning of the dangers of not strictly 
defining the scale of transition in ecotone studies). Because these regions may be 
especially sensitive to environmental change, an increasing number of studies have 
been gathering data at treeline and other potentially sensitive vegetation ecotones 
(Camarero et al. 2000; Camill and Clark 2000; Fortin et al. 2000; Bunn et al. 
2005).

Next, incorporating the data into predictive models presents a second major 
challenge. Just as it is logistically prohibitive to sample exhaustively at all spatial 
scales, no model can represent all details of an environmental system simultane-
ously. Models, by their nature, must simplify. Identification of dominant scales of 
ecological patterns and processes can be used by modelers to help determine which 
details are important to retain and which can be safely ignored (Levin 1992; Denny 
et al. 2004). Borrowing from fields of mathematics and computer science, much 
attention has been paid to identifying dominant scales of ecological patterns (Greig-
Smith 1961; Dale 1999; Fortin and Dale 2005). Relating these patterns to their 
formative processes requires careful attention to the scale of inference of the statis-
tical model. We provide a review of published approaches for linking pattern to 
process within a scale-specific framework. The direct assessment of these relation-
ships provides opportunities for improved prediction and management of species 
responses to environmental change.

In the sections below, we describe methods for collecting landscape data at mul-
tiple spatial scales, the models that can be used to interpret these observations of 
pattern, and example applications of our approach to modeling scale-dependent 
vegetation pattern for the Sierra Nevada and Cascade Mountains of the western 
United States. The two examples demonstrate how accounting for spatial autocor-
relation, capturing multi-scale pattern, and exploring the causes of pattern at each 
scale can be used to better predict vegetation shifts in response to changing climate 
and to improve fire management.
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7.2  Management Challenge, Ecological Theory,  
and Empirical Framework

7.2.1 Management Challenge

The decision not to take a spatially explicit, cross-scale approach to environmental 
assessment can have profound management implications. Managers dealing with 
rapidly changing systems may not understand how these changes propagate at 
 specific scales and locations on the landscape. A classic example is provided in the 
area of global climate change. Habitat models using the broad-scale predictions from 
global climate models as a basis for their predictions have predicted the upslope and 
northward migration of species in response to increasing temperatures (Peters and 
Darling 1985). The acquisition and protection of habitat corridors parallel to these 
gradients has been advised as a potential mitigation strategy (Noss 2001). However, 
as demonstrated by Halpin (1997) and others, basing management decisions on these 
coarse-scale models without regard to specific spatial characteristics of a site can be 
risky and ill-advised. Predictions based on regional variables such as temperature do 
not capture local-scale factors that drive the water balance (Stephenson 1990, 1998) 
and therefore may badly predict species physiological responses to future climates.
Recent efforts to model species distributions in the context of global change have 
taken more sophisticated approaches and include more physiologically relevant 
data. These include the work of Iverson et al. (2004) to estimate potential migration 
of tree species into suitable habitat using a suite of data on climate, soils, land use, 
and landscape pattern. Biogeography models such as MAPPS (Neilson 1995) also 
use multiple soil, climate, and landscape variables to predict vegetation distribution 
at coarse scales. These models are increasingly linked to biogeochemistry models 
to provide estimates of major shifts in biomes under projected climate change 
(Nielson and Drapek 1998; Bachelet et al. 2001). New predictive models that rely 
heavily on detailed physiological data incorporate factors such as budburst phenol-
ogy, frost hardiness, and drought tolerance (Morin et al. 2007, 2008). However, 
these modeling efforts remain largely coarse-scaled relative to the fine-scale vari-
ability in soils and climate that are critical to species migration patterns.

Wildland fire provides another example of an area in which managers are faced 
with making difficult decisions about a complex, multi-scale process. Despite the 
potential ecological importance of fire-generated heterogeneity at multiple spatial 
scales to ecosystem health (Davis et al. 1989; Moreno and Oechel 1992; Odion and 
Davis 2000; Brooks 2002), fire management rarely adopts a spatially explicit per-
spective that incorporates fine-scale variability. Fire suppression has dominated US 
natural resource policy and management for a century, and only recently has fire 
been reintroduced to some fire-adapted landscapes in the form of controlled burn-
ing. In many western forest types, especially those that historically experienced 
frequent low- or moderate-severity fire regimes, fire suppression has led to heavy 
fuel accumulations and shifts in plant community composition and structure, and 
has increased the risk of catastrophic wildfire (Agee 1998; Stephenson 1999). 
In addition to increasing overall loads, the legacy of fire suppression has also acted 
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to generally homogenize fuel loads in these ecosystems. This homogenization can 
cause continuous, uniform burn patterns at the fine scale and a larger burn patch or 
fire size at the landscape scale. Whereas there is considerable variability in the 
effectiveness of recent fuel reduction efforts across the western US (Schoennagel 
et al. 2004), many fire-adapted landscapes cannot be restored without active man-
agement, nor can fires be entirely controlled (Miller and Urban 1999).

Replicating the full range of natural variability in fire behavior may be critical 
to maintaining biodiversity and ecosystem functioning. However, this goal has not 
been fully embraced by practitioners in the field, perhaps because of the difficulty 
associated with describing multi-scale fire patterns and their ecological effects. As 
a consequence, fire and mechanical thinning restoration treatments have been 
widely used without a clear understanding of the influence of fire on species distri-
bution patterns. These applications tend to focus on the temporal domain in 
attempting to mimic historical disturbance frequency and to restore pre-suppression 
forest structure, but fire also has an important spatial component that creates het-
erogeneity in the physical and competitive environment. Spatial considerations 
have been limited to the among-patch scale (i.e., maintaining a mosaic of patch 
ages). The importance of reproducing the within-patch fire heterogeneity created 
by natural burns deserves further consideration in management prescriptions (Gill 
et al. 2002; Knapp and Keeley 2006; Rocca 2009).

7.2.2 Ecological Theory

Ecology has a rich tradition of studying species response to the variability along 
environmental gradients (Shreve 1922; Austin 1987). In these studies, species or 
communities of co-occurring species often are projected into a parameter space 
derived from environmental “proxy” variables. Some of the seminal examples of 
gradient work are provided by Whittaker (1956, 1960, 1967), who arrayed species 
abundance as distinct domains along elevation gradients in a variety of montane 
systems. However, correlations between species abundance and indirect environ-
mental variables, such as elevation, are at best indicative of the underlying relation-
ships driving the physiological responses of species. The importance of replacing 
indirect gradients such as elevation in vegetation models with direct and resource 
gradients such as temperature and moisture has been strongly emphasized by Austin 
and Smith (1989) among others. Vegetation analysis should be more than just cor-
relation analysis, and studies should be geared more towards developing and testing 
vegetation theory (Austin 1987). This more mechanistic approach to modeling veg-
etation community pattern is reflected in a number of more recent gradient analyses 
(Ohmann and Spies 1998; Lookingbill and Urban 2005; Littell et al. 2008).

However, few empirical studies have attempted to link pattern and process in a 
predictive sense within a framework that explicitly considers the scale of interaction. 
The importance of scale in ecology has been well documented and is central to the 
discipline of landscape ecology (Wiens 1989; Wu and Hobbs 2007). According to 
hierarchy theory, lower levels of organization provide the mechanisms for patterns 
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observed at higher levels (Allen and Starr 1982). Thus, ecological systems can be 
viewed as spatially nested hierarchies and understanding (or managing) pattern at 
the landscape level requires a rather comprehensive understanding of influential 
processes at finer resolutions. For example, disturbance processes of multiple types 
and at multiple times create a mosaic of patches of various ages for a given land-
scape (Pickett et al. 1989). The overlay of these many patch-scale disturbances may 
be expressed as complex landscape patterns.

Wu and Loucks (1995) argue that spatially explicit simulation modeling is the 
only practical approach to deal effectively with these problems of spatial patchi-
ness, scale and hierarchical structure. Certainly, a new approach is required that 
develops a more mechanistic understanding of species patterns at landscape 
extents. We argue that traditional analytic techniques can be adapted to these chal-
lenges, but they require data inputs that are carefully selected to describe the 
multi-scale variability in direct environmental gradients. Conventional empirical 
methods are poorly suited to gather fine-resolution information on the distribution 
of these covariates at extents of kilometers to tens of kilometers. Refining land-
scape models to reflect the relative importance of fine-scale ecological processes 
requires a daunting field effort. One way to constrain this logistical challenge is to 
focus field campaigns on areas where we can expect high rather than low plot 
variability.

7.2.3 Empirical Framework

In his classic paper on pattern and scale in ecology, Levin (1992) provides one 
approach to developing predictive models in light of these issues: (1) describe pat-
tern, (2) look for correlations with pattern to suggest potential mechanisms, and (3) 
improve understanding of pattern through careful examination of relationships with 
new ‘mechanistic’ variables. Though a true mechanistic understanding of ecologi-
cal pattern may not be possible without in situ experimentation, well-designed 
modeling studies can go a long way towards disentangling the complex environ-
mental gradients that are often invoked to explain ecological patterns.

Our approach focuses on the iterative relationship between data and models. The 
model-guided approach to sampling takes advantage of our ability to model at larger 
scales than we would reasonably be able to sample (Urban 2000). Preliminary 
hypotheses can be used to design initial sampling efforts. Field samples are then used 
to build models, which guide future sampling to answer new hypotheses and build 
better models. As an example, coarse-scale data available from land cover and digital 
elevation models can be used to identify areas of high species and environmental 
turnover on the landscape. Once areas of high variability in pattern over a relatively 
small space have been identified, those locations can be sampled intensively to 
attempt to uncover the process that underlies the pattern. The coarse and fine-scale 
datasets can then be compared to assess whether similar mechanisms are acting at the 
different spatial scales.
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7.3 Data Availability and Suitability

The foundation of any predictive model is the structure of the underlying data, which 
are often gathered using a simple random sampling design. Unfortunately, random 
placement of plots can have significant drawbacks for species distribution modeling. 
There is no guarantee when using a simple random design that sample locations will 
be spatially balanced; part of the area being studied may be over-sampled and part 
may have few or no plots at all. This can be particularly troublesome for developing 
models for rare species, species with highly constrained distributions, or when some 
parts of a species range are inherently more informative than others for deciphering 
the ecological mechanisms behind the species distribution.

A systematic sampling design can increase the spatial balance of the sample loca-
tions. An even distribution of plots over the entire landscape ensures that no area is 
over- or under-represented, but is limited by logistical trade-offs in sample grain and 
extent. Very few studies have the luxury of collecting information using a fine- 
resolution grid over a large geographic area. Particular sites also may not be suitable 
for monitoring due to the absence of attributes of interest or due to issues such as 
safety or accessibility. This can leave a “hole” in the uniform sample. Stratification 
can be used to spread samples across a full range of conditions and to guarantee 
minimum sample sizes for different subpopulations. Stratification of samples can 
also make a field campaign easier to operate. For example, roads can be used as a 
stratum to improve ease of access for data gathering (Theobald et al. 2007).

We argue that species are rarely distributed randomly or uniformly and these 
sample designs are inefficient for many modeling efforts. Instead, hybrid designs 
such as Generalized Random-Tessellation Stratified (Stevens and Olsen 2004) and 
adaptive clustering (Philippi 2005) have recently become popular among managers 
interested in gathering spatially sensitive data. Multi-scale designs, in which a sub-
set of plots is sampled at fine resolution, can be highly efficient at collecting data 
over large areas for intensive spatial analysis (Stohlgren et al. 1995, 1997; Urban 
et al. 2002). Multi-stage sampling involves completely different kinds of sampling 
at each stage. Nusser et al. (1998) strongly advocate multi-stage sampling designs 
for detecting broad-scale ecological patterns and for understanding the dynamics 
that produce observed changes in pattern. They provide a useful example using the 
National Resources Inventory (NRI) data.

The NRI sample design was developed to assess natural resource attributes for 
a broad geographic coverage (nonfederal rural lands of the United States) while 
acquiring a sufficient density of sample units for local subpopulation management. 
To accomplish these objectives, a stratified two-stage sample design was used. 
Stratification was based on small political or geographic areas and one to four pri-
mary sample units were located in each stratum during stage one sampling. These 
typically cover a total of between 2 and 6% of the entire land area. In stage two, a 
small number of sample points are placed in each primary sample unit. The exact 
number of sample points depends upon the various demands and constraints at the 
specific locale.
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In addition to sample arrangement, the types of variables sampled at each stage 
determine the kinds of predictive models that can be used. Early stages typically 
rely upon indirect, coarse-resolution variables. For example, basic climate, land 
use, and ownership information is collected in stage one of an NRI sampling. These 
data are used to determine broad-scale trends and to develop initial weighting for 
stage two sampling. For our purposes in modeling complex vegetation pattern, 
these types of coarse variables are less useful than the fine-resolution, resource 
variables that have a more direct bearing on ecological processes. These types of 
more mechanistic but logistically more demanding variables can be sampled during 
later, “focused” stages of a multi-stage design.

7.4 Model and Model Validation Techniques

Spatially explicit, multi-scale data require spatially explicit, scale-specific models. 
These models can be found sprinkled throughout the literature in community, multi-
variate, and spatial ecology. We argue that developing species distribution models from 
spatially focused sampling schemes proceeds most powerfully from modeling and 
validation techniques that meet three criteria. First, they should recognize and account 
for spatial autocorrelation in the data that are used to fit the model. Second, they should 
identify the dominant spatial scales of species distributions and relate these to the 
dominant spatial scales associated with the predictor variables. Finally, we propose 
that techniques that explore quantitative relationships between species occurrences and 
predictor variables across a range of characteristic spatial scales provide the most 
mechanistic and insightful understanding of the drivers of species distributions. The 
first two criteria are well described elsewhere (Cressie 1993; Wagner 2001) and we 
review them only briefly. The final criterion about exploring scale-specific relation-
ships between predictors and species distributions requires more novel methods that 
have only recently been explored by ecologists.

Because intensive focus plot sampling, by definition, collects spatially explicit 
information at fine spatial scales, statistical techniques used to examine species-
environment relationships must account for the spatial autocorrelation present in 
these data as well as in any spatial processes affecting the response (Wagner 2001). 
In an intensive sampling scheme, data points are located close together so that 
closer points are likely to be similar to each other (i.e., each data point is not statisti-
cally independent). Explanatory variables that are autocorrelated inflate the effec-
tive sample size and may bias parameter estimates (Keitt et al. 2002; Dormann 
2007). In working with these data, statistical techniques must either (a) remove 
spatial autocorrelation by averaging or removing data points that are within the 
spatial range of autocorrelation, or (b) explicitly account for spatial autocorrelation 
in explanatory variables, perhaps most simply by including a spatial blocking vari-
able in the model design. Habitat modeling approaches include  geostatistical meth-
ods such as kriging (Chong et al. 2001; Miller 2005), generalized additive models 
(Hastie and Tibshirani 1990), general estimating equations (Zeger and Liang 1986; 
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Gumpertz et al. 2000; Underwood et al. 2007), and  autoregressive models 
(Keitt et al. 2002). Bayesian approaches have also been used (Hoeting et al. 2000; 
Lynch et al. 2006). Several excellent reviews of these methods are available (e.g., 
Dormann et al. 2007; Miller et al. 2007).

Modeling methods should also account for autocorrelation of residuals caused 
by spatially contagious processes that affect species distributions. Ecologically 
important yet many times unmeasured processes, such as propagule dispersal, drive 
species distributions and result in spatially correlated regression residuals (Legendre 
1993; Wagner 2001). It may be difficult to distinguish whether spatial dependence 
in a response from a species is caused by autocorrelation of environmental variables 
or by a spatial biological process. Statistical approaches that go beyond consider-
ation of spatial autocorrelation simply as a “nuisance” and instead describe the 
scales of spatial autocorrelation of both the predictor variables and the response 
may provide insight. Testing carefully crafted hypotheses and investigating spatial 
scales in detail can help to address these issues (Fraterrigo and Rusak 2008). In a 
compelling illustration of this approach, McIntire and Fajardo (2009) use six eco-
logical examples to describe the benefits of using the scales of regression residuals 
to make statistical inferences about spatial processes.

A useful approach to testing for spatial dependence in explanatory variables 
takes advantage of the Mantel statistic (Mantel 1967). The statistic is simply calcu-
lated as the Pearson correlation between the elements in one distance matrix with 
the corresponding elements in a second distance matrix (Manly 1991). For a partial 
Mantel test, control variables are factored out, and the residuals are subsequently 
correlated with the variables of interest in a manner analogous to partial regression 
(Smouse et al. 1986). Mantel tests are ideal for testing relationships between spe-
cies composition and the environment for several reasons. First, the effects of spa-
tial autocorrelation can be tested for explicitly, or partialed out of analyses to detect 
relationships between variables after controlling for space. Second, the significance 
of a Mantel statistic is calculated using permutation procedures that eliminate prob-
lems associated with independence in parametric regression (Legendre and Fortin 
1989). Third, because the correlation is calculated between distance matrices, the 
multivariate effects of multiple predictor variables (environmental factors) and 
multiple response variables (species) can be tested for simultaneously, as long as an 
appropriate distance metric is chosen (McCune and Grace 2002). Mantel tests aver-
age over all distances when calculating correlation coefficients. To identify the 
scales at which the environment and species are spatially autocorrelated, the Mantel 
correlation between a variable and space can be calculated separately within dis-
crete distance classes (Goslee and Urban 2007). The results are displayed as a 
multivariate analog to a correlogram (Rossi et al. 1992), with distance class on the 
x-axis and Mantel correlation plotted on the y-axis.

Recently, Peres-Neto et al. (2006) have advocated principal coordinates analysis 
of truncated distance (neighbor) matrices (PCNM) (Legendre et al. 2008) as a 
means of exploring species turnover at multiple scales. PCNM captures spatial 
structure in terms of sine waves of varying wavelength, and summarizes species 
compositional patterns in terms of the compositional variance (dissimilarity) 
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accounted at different wavelengths (scales). Legendre et al. (2008) argue that this 
new approach has more statistical power than the Mantel tests they had previously 
championed for this type of modeling.

Ecologists have also begun to use wavelet analysis to identify spatial scaling in 
variables. Like a Fourier transform, wavelet analysis decomposes a spatial or temporal 
data series into components at different scales. Wavelets are ideal for ecological data, 
because they can detect scale-specific patterns without the assumptions of station-
arity required by semi-variance analysis or spectral analysis. Wavelet energies 
represent the proportion of variability in a data series expressed at each spatial 
scale, for scales in powers of two. Ogden (1997) provides a computational treat-
ment of wavelets, though several attempts have been made to make wavelets more 
accessible to ecologists (e.g., Dale and Mah 1998; Torrence and Compo 1998; 
Cazelles et al. 2008; Dong et al. 2008). Most of these ecological treatments focus 
on using wavelets for time-series analysis, but data from a regularly spaced spatial 
grid are also appropriate for wavelet analysis (Bradshaw and Spies 1992; Mi et al. 
2005; He et al. 2007).

We expect that relationships between environmental variables and species habi-
tat often will change with spatial scale of analysis (Levin 1992; He et al. 2007). 
Ideally, we would be able not only to describe the scales of spatial variability of 
predictors and response but also to investigate relationships between variables at 
each spatial scale (Keitt and Urban 2005; Blanchet et al. 2008). Wavelet analysis 
can once again prove helpful for meeting this challenge. Wavelet covariance is the 
covariance between the wavelet coefficients for two variables at a defined spatial 
scale (Keitt and Urban 2005). Several ecological studies have demonstrated that 
scale-specific relationships between variables are revealed through analysis of 
wavelet covariance (Keitt and Fischer 2006; termed “wavelet cross-spectrum” in 
Cazelles et al. 2008). In a particularly innovative example, Mi et al. (2005) apply a 
statistical test to compare relationships between two transects.

Keitt and Urban (2005) take scale-specific inference a step further by 
 introducing the concept of wavelet regression. They demonstrate that a linear 
regression between wavelet coefficients, extracted separately by spatial scale, can 
identify scale-specific relationships between several predictor variables and a 
response. Scale-specific regressions using wavelets have not yet caught on in the 
ecological community, yet we propose that they offer a promising approach for 
species distribution modeling. Carl and Kuhn (2008) analyze spatial ecological 
data using wavelet regression, but their objective appears to be to remove the 
effects of autocorrelation in an attempt to predict habitat for a plant species, 
rather than using it to extract scale-specific relationships between environmental 
predictors of habitat and plant occurrence. However, their analysis expands upon 
the methods of Keitt and Urban (2005) in two ways that are of interest to species 
distribution modelers: (1) they demonstrate that wavelet regression can proceed 
in a logistic regression setting, and (2) they take advantage of a two-dimensional 
(grid) dataset. More work is needed to determine how scale-specific regression 
analysis can be applied in a predictive mode, as often desired by species distribu-
tion modelers.



1217 Focused Assessment of Scale-Dependent Vegetation Pattern

7.5 Case Studies in Western US Forests

The best species distribution models will incorporate the influence of all the  important 
variables affecting species distributions, from coarse-scale environmental tolerances 
to fine-scale dispersal and competition processes. We have described the data and 
modeling challenges presented by the need to consider the influences of variables 
whose relationship to species may vary depending on spatial scale. In this section, we 
demonstrate our iterative approach to linking models and data in scale-dependent 
assessments of vegetation pattern with two examples. For the first, we emphasize the 
data aspect of developing multi-scale, mechanistic models. We describe how a multi-
stage sampling design can be used to create a hierarchical set of models and demon-
strate the utility of ecotone focus plots for modeling species distributions in 
old-growth forest habitats of the Pacific Northwest United States. The second exam-
ple emphasizes the analytic side of our approach. We use scale-specific modeling 
approaches – such as wavelet analysis and the Mantel correlogram – to determine 
whether planned fires in Sequoia National Park appreciably homogenize the 
 environment by burning through heavy, continuous fuel beds, thus leading to altered 
distributions of herbaceous species within the park.

7.5.1 Predicting Spatial Shifts in Old-Growth Forest Habitat

In an effort to develop a predictive model of forest community spatial pattern for 
the Western Cascades, we conducted intensive field sampling at areas of spatial 
transition between the Tsuga heterophylla (western hemlock) vegetation zone and 
the Abies amabilis (Pacific silver fir) vegetation zone. An improved understanding 
of this ecotone would better inform the potential impacts of changes in climate or 
management within these ecologically and economically important forests. For 
example, an ecotone formed primarily by differences in growth rates associated 
with temperature may respond linearly to changes in temperature, whereas an 
ecotone maintained primarily by winter precipitation may not simply migrate up 
slope in response to increasing temperature. In this study, we considered directly 
the effect of temperature, snowpack, radiation and moisture on seedling establish-
ment and relative growth rates of trees in an effort to extend our knowledge base 
beyond the simple correlation of plant communities with the elevation gradient 
complex.

The multi-stage approach that we followed relies upon a process of successive 
refinement of the modeled species–environment relationships. The preliminary 
model (Lookingbill and Urban 2005) was based upon the correlation between spe-
cies abundance and terrain proxy variables (e.g., elevation) for 164 (20 × 20 m) 
vegetation samples stratified across the H.J. Andrews Experimental Forest (HJA). 
The HJA is a Forest Service Experimental Watershed and a Long-Term Ecological 
Research site representative of the soils, geology, and climate of the Western 
Cascades (McKee 1998). Elevation varies from 425 to 1,620 m, and the sampling 
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for this initial stage extended across the entire range. Variables included measure-
ments of soil nutrients and chemistry, though only terrain variables were significant 
in the model. The geographic realization of this model identified areas of short but 
steep gradients in which discrete changes in community type were predicted 
(Fig. 7.2). A follow-up stage of new field studies at these key locations provided an 
efficient new set of data to help refine the model and provide a deeper understand-
ing of the fine-scale processes associated with observed vegetation pattern.

Fig. 7.2 Ecotone plot locations (boxes) within the H.J. Andrews Experimental Forest. Red area 
represents transition zone as identified by a forest community CART model using temperature, soil 
moisture and radiation as explanatory variables (described in Lookingbill and Urban 2005)

Six “ecotone focus plots” were designed to explicitly consider fine-scale environ-
mental constraints along this region of active forest community transition. Whereas 
the preliminary model confirmed the well-documented shift from the  
T. heterophylla vegetation zone to the A. amabilis vegetation zone along an elevation 
gradient (Franklin and Dyrness 1988), the second stage of sampling addressed the 
relative importance of temperature, moisture, radiation, and snowpack as potential 
drivers of species distributions within the ecotone. Efforts to identify the physiologi-
cal mechanisms responsible for this transition are surprisingly few, dated, and some-
what contradictory (Krajina 1969; Thornburgh 1969). In this study, we addressed the 
relationship between regeneration and physical drivers through logistic regression of 
point measurement and kriged data. We also considered dispersal constraints through 
bivariate Ripley’s K-analysis of seedling and potential seed tree data. The Ripley’s 
K-function differs from conventional nearest neighbor analyses in that it considers 
distances between all observed points and not just the first or second nearest neighbor 
(Moeur 1997; Haase 1995). An advantage of preserving all spatial relationships in the 
data is that Ripley’s K-tests can assess pattern at multiple scales, and can thus be used 
to evaluate spatial scales of clustering, in a univariate sense, or attraction/repulsion, 
in a bivariate sense (Haase et al. 1996; Lookingbill and Zavala 2000).
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Our focus plots were 20 m in width and between 100 and 180 m in length. 
Within each of the plots, all dead and live trees were measured at breast height, 
cored for age and growth rate analysis, and mapped using a laser surveying system 
(Fig. 7.3). In addition, potential seed trees outside the transects were identified 
according to a plotless sampling design using a 2.5-factor basal area prism along 
the transect centerline. Nested within each transect were 3 (1 × 1 m) quadrats per 
every 20 m in which all seedlings were tallied by size class (young of the year, 
0–10 cm in height, 10–50 cm in height, and 50–137 cm in height). We also mapped 
all seedlings within 1 m and all saplings within 5 m of the transect centerline.

Using the laser surveying system, we recorded critical points of topographic 
change and used these points to interpolate a high-resolution digital elevation 
model (DEM) of the plots. An average of nearly 40 measurements were taken for 
every 20 m of transect. Surface soil moisture (0–20 cm in depth) was recorded 
synoptically at these locations and at all seedling quadrats using a handheld 
 volumetric moisture sampling device (Lookingbill et al. 2004). Three soil depth 

Fig. 7.3 Transect based sampling layout for microtopograpy (drawn on left side) and vegetation 
(right side) on ecotone focus plots. Transects were 20 m wide by 100–180 m in length. Centerline was 
paralleled by 5-m bands used for randomly locating seedling (1 × 1 m) and sapling (5 × 5 m) quadrats. 
All seedlings within 1 m of the centerline were mapped. All trees within the transect were mapped. 
In addition, trees sighted as “in” with a basal area prism were mapped (filled symbols on right). 
Topographic points were surveyed with sufficient density (drawn as x’s) to generate a high-resolution 
DEM. Direct measures of temperature, soil moisture, snow and radiation also were taken



124 T.R. Lookingbill et al.

measurements also were taken at each of the moisture locations using a 1 m tile 
probe. Canopy closure was estimated at the seedling quadrats using a concave 
spherical densiometer. Temperature sensors (Lookingbill and Urban 2003) were 
located at several key locations along each transect, which recorded temperature at 
30-min increments. Several complementary approaches were used to quantify snow 
levels and melt on the plots. First, we synoptically measured snow depth (up to a 
maximum depth of 100 cm) in the spring of 2002 at 1 m intervals along the center-
line of three of the plots. Lichen height acts as a reasonable proxy for the average 
maximum snow depth (Winkler and Schultz 2000), and we recorded the average 
height at which lichens began growing on tree boles for each 20 m plot segment. 
Finally, we distributed additional temperature sensors at ground level across the 
plots. These sampling devices allowed remote monitoring of the beginning and end 
of winter snowcover for specific locations on the plots. When covered with snow, 
these sensors would consistently record a temperature of 0°C.

For each focus plot, we first looked for geospatial patterns in tree regeneration, 
growth, and mortality. No significant spatial patterns emerged in the distribution of 
snags on the plots. The density of dead trees of A. amabilis and A. procera were 
highly variable from plot to plot, but consistently greater than for T. heterophylla. 
These findings are consistent with those of Acker et al. (1996) who found low 
T.  heterophylla mortality relative to A. spp mortality in a 27-year study of a forest 
stand within the ecotone zone at the HJA. We also found that growth rates were not 
significantly associated with elevation, temperature, or any of the other environmental 
variables gathered at this scale (Fig. 7.4). Earlier models relied heavily on these rela-
tionships in predicting how this ecotone would respond to changes in climate (Urban 
et al. 1993). Our models, instead, focus on the importance of regeneration in main-
taining observed community patterns.

To evaluate whether dispersal limitations may be constraining the distribution of 
species, bivariate Ripley’s K-analysis was conducted using a bivariate label permuta-
tion test of seedlings and trees in each of the plots. All tree and seedling locations were 
held constant, while we randomly reassigned the species labels of the seedlings. The 
distances from seedlings to conspecific adults for 99 of these randomized trials 
were then compared with the distances for the actual data (P < 0.01). Observations 
higher than the randomized data were considered to be positively associated. 
Observations lower than the randomized data were considered to be negatively associ-
ated. The scale of positive association should be reflective of species’ dispersal capabili-
ties. The point pattern analysis confirmed that the heavier seeded A. amabilis and A. 
procera may be more prone to dispersal limitations than T. heterophylla, but none of the 
species were likely constrained by dispersal within the extents of the ecotone plots.

Point measurements of the environmental variables were then kriged to 1 m 
resolution grids and logistic regression was used to model the presence or absence 
of seedlings by species as a function of radiation, temperature, soil moisture and 
snow cover along the 1 × 1 m seedling sample quadrats running up the middle of the 
plots. Regressions were also conducted using the point measurements of seedling 
 presence/absence, light, soil moisture, and soil depth at each of the 1 × 1 m seedling 
quadrats. Results of the logistic regression analyses (n = 653 T. heterophylla seed-
lings, n = 603 A. amabilis seedlings, and n = 232 A. procera seedlings) indicated the 
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importance of temperature and moisture as explanatory variables, but emphasized 
the high plot-to-plot variability. Temperature differences were highlighted as the 
strongest predictor of T. heterophylla seedling presence/absence across all plots; a 
finding also supported by regression tree analysis of seedling density in subplots 
(Fig. 7.5). Relationships were not consistent, however. For example, January tem-
peratures rather than July temperatures were significantly different on Plot 3, for 
which soil moisture was the strongest predictor variable of seedling abundance. 

Fig. 7.5 Regression tree model of T. heterophylla seedling density on seedling plots. Circles 
provide mean number of seedlings for the plots described by that end-node. Length of branch 
corresponds to the amount of variance explained by that variable

July Temperature < 14°C

21

5.5

57

10

July Temperature <13.3°C

July Soil Moisture > 30% 

Fig. 7.4 Trends in relative growth rates. In contrast to prior modeling assumptions emphasizing 
the importance of differences in growth rates to species distributions in this system, growth was 
not significantly associated with temperature or any of the environmental variables considered at 
the ecotone scale. Species shown are A. amabilis, A. procera, and T. heterophylla
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Radiation was consistently the least important of the potential explanatory variables 
in the logistic regression and regression tree analyses.

Our results generally suggest that regeneration rather than growth or mortality is 
likely to be limiting the range of T. heterophylla through a combination of snow, 
temperature, and moisture limitation. Therefore, changes in climate that would alter 
the competitive dynamics between species would be most apparent in the regenera-
tion niche. Landscape-level management activities such as timber harvesting within 
the shifting ecotone could result in unattended consequences if these new dynamics 
were ignored. An interesting observation from the bivariate Ripley’s K-analyses was 
that T. heterophylla seedlings were more common under canopies of large trees (of 
any species) than canopy gaps. One explanation for this finding lies in the shade-
tolerance of T. heterophylla. However, A. amabilis, an equally or even more tolerant 
competitor in this vegetation zone (Fonda and Bliss 1969; Mitchell et al. 2007), did 
not show the same spatial patterning. An alternative explanation is suggested by 
examining the patterns of snowpack on the plots. Snowfall interception by branches 
and needles can substantially decrease the amount of accumulation under tree 
crowns. The rate of snowmelt also is modified considerably in the vicinity of large 
stems that can re-radiate longwave radiation (Anderson 1963). It is possible that T. 
heterophylla establishment in the transition zone, and by extension T.  heterophylla 
migration upslope, is aided by these melt cones. The single year of snow sampling 
that we conducted for this analysis is insufficient to definitively address this issue; 
however, the model results using these exploratory data do serve as a guide for future 
work. Targeted data collection to test this hypothesis provides the next round of 
study in our data gathering  modeling  data framework. In light of the potential 
interactions between climate and disturbance, experimental studies of montane coni-
fer regeneration under alternative silviculture systems (Mitchell et al. 2007) may 
be the most efficient way of improving model predictions in this landscape.

7.5.2 Predicting Herbaceous Response to Prescribed Fire

In many ecosystems, fire-adapted landscapes cannot be restored without active 
management. However, how plant communities respond to prescribed fire and how 
these responses may differ from responses under natural fire regimes are poorly 
documented. Some scientists have raised the concern that prescribed fires may be 
too homogeneous to restore pre-suppression forest structure (Bonnicksen and Stone 
1982; Allen et al. 2002). A handful of field-based studies have explored the biodi-
versity consequences of large-scale, fire-generated, environmental heterogeneity in 
Yellowstone National Park (Romme and Knight 1982; Turner et al. 1997, 1999). 
Schoennagel et al. (2008) documented spatial variation in post-fire structure, com-
position, and ecosystem function at multiple scales following the 1988 Yellowstone 
fires, but fine-scale heterogeneity under moderate-severity fire regimes have not 
been thoroughly explored. In the few systems where fine-scale heterogeneity in fire 
effects and species responses have been reported (Davis et al. 1989; Moreno and 
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Oechel 1992; Odion and Davis 2000; Brooks 2002), fires have been shown to rein-
force already existing patterns, neither increasing nor decreasing spatial pattern and 
scale of variability. There are few well-studied examples of the effects of fire inten-
sity and spatial patterning in determining post-fire spatial distributions of species.

We tested the role of within-fire variability in fire severity in structuring under-
story plant communities in a fire-adapted, mixed-conifer forest of the Sierra 
Nevada, California, USA. We examined the effects of six prescribed fires on plant 
community structure and spatial distributions, and compared the effects of two 
management alternatives: early-season prescribed fire (June burn) and late-season 
prescribed fire (October burn). We collected high-resolution floristic, fuels, and 
environmental data at every meter along 256-m transects through six prescribed 
fires (three in each season) and asked whether fire changes the scales of species 
distributions. If fire creates heterogeneity by subdividing previously homogeneous 
forest floor patches, we would expect plants to sort along finer-scale environmental 
gradients after fire and exhibit smaller-scale spatial autocorrelation than they did 
prior to fire. An increased spatial scale of species turnover, by contrast, would sup-
port a model in which fire homogenizes the environment.

Mantel correlograms on species composition show reduced spatial autocorrela-
tion in species distributions after fire with a more pronounced effect observed in the 
June burns (Fig. 7.6). Before fire, species distributions along all transects exhibited 
spatial structure at scales up to approximately 150 m. After fire, species  distributions 
on the October burn transects showed autocorrelation at scales similar to pre-fire 
patterns, whereas June burn transects had a shortened range of approximately 
100 m. Perhaps more importantly, after fire the June burns showed a small (p < 0.05) 
but significantly reduced autocorrelation at scales between 5 m and 100 m 
(the October burns also significantly reduced autocorrelation, but only to a modest 
degree in a few short portions of the range). These results support a model in which 
patchy June burns create heterogeneity in the environment, which in turn increases 
the variability in species distributions at fine-spatial scales. October burns, on the 
other hand, do not appear to appreciably change the scaling of the environment in 
a matter that affects understory herbaceous plants.

To further investigate the fire behavior responsible for these results, we used 
wavelet analysis to examine the spatial scales of burn pattern (for the June and 
October burns) and fire temperature (for the June burns). Then, we asked whether 
fire temperature and burn pattern can be predicted with pre-fire site data on fuels 
and topography, or whether they are affected more by less predictable and difficult 
to measure features such as ignition, moisture, and local wind patterns. In addition 
to the fine-scale measurements of fuel and topography taken at every meter along 
each transect, we recorded maximum fire temperature in the June prescribed burns 
by installing a “pyrometer” (containing streaks of temperature sensitive paints, 
which permanently change appearance once their particular melting temperatures 
are reached) at every meter along the transect.

Our results show that prescribed fires can be remarkably heterogeneous in burn 
pattern (Fig. 7.7) and fire temperature (Fig. 7.8). It appears possible to create a 
patchy burn pattern even within methodically ignited prescribed burns through 
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Fig. 7.6 Mantel correlograms of pre-fire (circles connected by solid lines) and post-fire (squares) 
species distributions, calculated using the Bray and Curtis (1957) index of dissimilarity. Filled 
symbols represent correlation significantly different than zero, and error bars represent 95% con-
fidence intervals

 fire-suppressed forest understories. In this experiment, four out of six management 
burns displayed significantly more variability in burn pattern and fire temperature 
than might have been expected, given high fuel continuity. The four heterogeneous 
fires included all three of the early season (June) burns and one October burn (plot 2). 
Plot 2 spans a relatively wet, level area, and was burned under rather humid weather 
conditions for the time of year. Plots 5 and 6, the other two October burns were 
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considerably more homogeneous in their fire effects. In comparison with the fuels 
in plot 2, fuels in plots 5 and 6 units were uniformly dry, with no areas of moisture 
accumulation encountered along the transect.

The wavelet energies for burn pattern showed a complex relationship in which the 
dominant spatial scales of variability are not easily categorized based on season 

Fig. 7.7 Meters burned along each transect for spring and fall burns (1 = burned, 0 = unburned)

Fig. 7.8 Maximum fire temperatures along the three June transects
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(Fig. 7.9). Plots 5 and 6, October burns that burned almost completely, expressed 
most of their (nominal) variability at the finest spatial scales. Plots 2 and 4 showed 
maximum variability at the 64 m scale. Plots 3 and 9, both highly patchy June burns, 
expressed their spatial variability in burn pattern across a wide range of scales.

The causes of these patterns in burn pattern were explored using a logistic regres-
sion on pre-fire variables related to fuels and topography. Because many of the 
explanatory variables taken prior to the burns are highly correlated, we first con-
ducted a factor analysis on the pre-fire variables to create orthogonal “factors” that 
represent the major components of variability along the transect prior to fire, then 
used the resulting factors as the explanatory variables in the logistic regression mod-
els to predict burn pattern. The six factors identified through factor analysis together 
account for 61% of the original variability in the environmental dataset (Table 7.1).

Surprisingly, the important explanatory variables for predicting burn pattern 
depended on transect orientation more than burn season (Table 7.2). Plots 4 and 5, the 
two transects crossing across hillslopes, had burn patterns driven by fuel load (e.g., 
litter/canopy, woody fuel, and CWD). Burn patterns in the gently sloping, moist 
transects (plots 2 and 3), were also affected by fuel loads, with moisture and elevation 
decreasing the probability of burning. Plots 6 and 9, whose transects go over small 
ridges, depend on fuel to explain their burn pattern. The topographic factors insola-
tion and elevation affected probability of burning, but only for the June burn (plot 9). 
Pre-burn factors account for between 14 and 36% of the variation in burn pattern.

Fig. 7.9 Wavelet energies for burn pattern in the three June burn transects (gray) and the three 
October burn transects (black)
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Table 7.1 Variable loadings from factor analysis

Original 
variables

Factors
“Insolation” “Woody fuel” “Moisture” “CWD” “Litter/canopy” “Elevation”

Elevation 0.51 0.65
Slope −0.75
T-aspect  0.96
Radiation  0.94
Soil moisture 0.56
Light −0.57
Litter cover 0.39
Litter depth 0.56
1-h fuel 0.67
10-h fuel 0.98
100-h fuel 0.26
CWD 1.00
% variability 16.0 13.0 10.2 9.6 7.6 4.5
Cum % 

variability
16.0 29.0 39.2 48.8 56.4 60.9

Factors are combinations of variables that tend to correlate with each other, and loadings are the 
correlation coefficients between the original variable and the factors. We gave factors names to 
make the results easier to interpret. The percent variability in the original dataset that is explained 
by each factor is also provided

This case study demonstrates that prescribed fires can generate remarkable vari-
ability in fire temperature when conducted under particular conditions, and this 
variability can, in turn, play a pivotal role in shaping the distribution of flora. The 
factors that affect burn pattern depend on topographic context more than season. In 
particular, moisture patterns driven by topographic variability had a stronger 

Table 7.2 Results of stepwise logistic regression on burn pattern
Factors % 

Variance 
in burn 
pattern 
explained n“Insolation”

“Woody 
fuel” “Moisture” “CWD”

“Litter/
canopy” “Elevation”

June burns
Plot 3 (+) − + + − 17 242
Plot 4 + + (+) 36 254
Plot 9 + + + + + 33 242

October burns
Plot 2 (+) − + + − 14 236
Plot 5 + + + 21 192
Plot 6 + (+) + (+) 23 242
Positive factors increase probability of burning while negative factors reduce probability of burning. 
Signs in parentheses indicate factors that were included in the optimal model, but were not statisti-
cally significant at the 0.05 level. Percent of variance in burn pattern explained by each model 
(pseudo R2) and sample size (n) are also provided



132 T.R. Lookingbill et al.

 influence on burn pattern than did seasonal differences (i.e., early summer vs. late-
season burns). Despite the large amounts of data collected for this analysis, burn 
pattern and fire temperature were approximately 25% (±15%) predictable, suggest-
ing that random or unmeasured factors (e.g., wind, ignition pattern) have an impor-
tant influence on fire behavior and fire effects. Even so, this improved predictive 
ability translates directly into management recommendations about how prescrip-
tions might be tailored to create within-burn heterogeneity. If fuel loads are con-
tinuous and homogeneous, as they typically are for first-entry burns in much of the 
Sierra Nevada, heterogeneity in fuel moisture due to topographic drainage patterns 
(which influence seasonal soil moisture patterns) or aspect and elevation (which 
influence diurnal fuel drying) can create heterogeneity. Heterogeneity associated 
with either drainage or diurnal drying occurs more often during the early season, 
before fuels are uniformly dry, but may extend later into the summer on moist sites. 
If fuels are distributed heterogeneously, either because of large tree gaps or because 
of previous fuel reduction burns, heterogeneous fuels will probably simulate a more 
natural burn pattern, even in uniformly dry conditions. In areas where both fuel and 
topography are homogeneous, then the possibility of altering ignition pattern 
should be explored in an effort to ensure heterogeneity.

7.6 Conclusions

The multi-scale nature of many ecological processes presents a challenge to modelers 
projecting species distributions across large geographic extents. Our approach of 
coupling focused sample plots with analytic models that explicitly account for vari-
ability in space and scale is appropriate when any one of the following is true:

 1. The ecological process in question occurs at a fine spatial scale, but the manifesta-
tions of that process influence large-scale patterning. In these situations, a more 
traditional sampling scheme may capture the pattern, but it will not distinguish 
between alternative mechanisms for the fine-scale process that creates the pattern.

 2. Data are expensive in terms of time or money. Focusing on areas of high hetero-
geneity may be necessary when the costs of travel across a research area are high 
or when field equipment – such as dataloggers or sensors – are in limited supply 
relative to the size of the study area. Given these restrictions, the most statisti-
cally powerful placement of samples may be in areas of high contrast in one 
variable, controlling for as many other influences as possible.

 3. The ecology of areas of contrast, such as ecotones or edges, is the focus of the proj-
ect. Examples might include tree-line studies of climate change effects or studies of 
the spread of invasive species across land-use boundaries in mixed-use landscapes.

 4. Describing the scales and/or magnitudes of spatial variability of a pattern or pro-
cess is an explicit goal of the study. In many cases, spatially averaged results are 
not adequate for answering a research question. Alternate hypotheses generated 
around ideas of scale can only be tested when spatial scale is explicitly explored.
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Our second case study provides an example of this latter criterion. A better under-
standing of the scale of variability in burn pattern and intensity imposed by human 
prescriptions of fire can provide important insights into the influence of disturbance 
on species distributions. To capture this variability, fine-scale data need to be col-
lected over a large sample area. This can be a daunting task that is often most 
efficiently accomplished by selecting sample locations of high, rather than low, plot 
heterogeneity as demonstrated in our initial case study. Whereas data collected at 
these sites are noisy and may be somewhat limited by small sample sizes, they offer 
the advantage that the environmental variables and demographic processes can be 
measured directly and thoroughly rather than inferred from larger-scale correlations.

Once these data are in hand, they can be analyzed using emerging statistical 
techniques to create powerful predictive models. The challenges of spatial patchi-
ness, scale, and hierarchical structure need not demand a spatially explicit simula-
tion modeling approach. Purely statistical approaches may suffice given that they 
(1) recognize and account for spatial autocorrelation in the data, (2) identify the 
dominant spatial scales of species distributions and of potential predictor variables, 
and (3) explore quantitative relationships between species distributions and predic-
tor variables across the range of characteristic spatial scales.

In general, more landscape studies are needed that attempt to link pattern and 
process in a predictive sense within a framework that explicitly considers the scale 
of interaction (i.e., providing a more mechanistic understanding of species patterns 
and informing specific scales of management). We attempt to address this challenge 
in our work by maintaining a tight link between the data, hypotheses and models. 
The results are often fine-scale field studies that can be scaled up to their landscape-
scale management implications.
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