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Availability of free, high quality Landsat data portends a new era in remote sensing change detection. Using
dense (~annual) Landsat time series (LTS), we can now characterize vegetation change over large areas at an
annual time step and at the spatial grain of anthropogenic disturbance. Additionally, we expect more
accurate detection of subtle disturbances and improved characterization in terms of both timing and
intensity. For Landsat change detection in this new era of dense LTS, new detection algorithms are required,
and new approaches are needed to calibrate those algorithms and to examine the veracity of their output.
This paper addresses that need by presenting a new tool called TimeSync for syncing algorithm and human
interpretations of LTS. The tool consists of four components: (1) a chip window within which an area of user-
defined size around an area of interest (i.e., plot) is displayed as a time series of image chips which are
viewed simultaneously, (2) a trajectory window within which the plot spectral properties are displayed as a
trajectory of Landsat band reflectance or index through time in any band or index desired, (3) a Google Earth
window where a recent high-resolution image of the plot and its neighborhood can be viewed for context,
and (4) an Access database where observations about the LTS for the plot of interest are entered. In this
paper, we describe how to use TimeSync to collect data over forested plots in Oregon and Washington, USA,
examine the data collected with it, and then compare those data with the output from a new LTS algorithm,
LandTrendr, described in a companion paper (Kennedy et al., 2010). For any given plot, both TimeSync and
LandTrendr partitioned its spectral trajectory into linear sequential segments. Depending on the direction of
spectral change associated with any given segment in a trajectory, the segment was assigned a label of
disturbance, recovery, or stable. Each segment was associated with a start and end vertex which describe its
duration. We explore a variety of ways to summarize the trajectory data and compare those summaries
derived from both TimeSync and LandTrendr. One comparison, involving start vertex date and segment label,
provides a direct linkage to existing change detection validation approaches that rely on contingency (error)
matrices and kappa statistics. All other comparisons are unique to this study, and provide a rich set of means
by which to examine algorithm veracity. One of the strengths of TimeSync is its flexibility with respect to
sample design, particularly the ability to sample an area of interest with statistical validity through space and
time. This is in comparison to the use of existing reference data (e.g., field or airphoto data), which, at best,
exist for only parts of the area of interest, for only specific time periods, or are restricted thematically. The
extant data, even though biased in their representation, can be used to ascertain the veracity of TimeSync
interpretation of change. We demonstrate that process here, learning that what we cannot see with
TimeSync are those changes that are not expressed in the forest canopy (e.g., pre-commercial harvest or
understory burning) and that these extant reference datasets have numerous omissions that render them
less than desirable for representing truth.
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1. Introduction

The earth's terrestrial biospherehas changeddramatically during the
past several centuries, due primarily to land use (Lambin et al., 2001).
In addition, climate change associated with both CO2 and non-CO2

greenhouse gases (Hansen et al., 2000) is having an increasing effect on
biological trends (Parmesan andYohe, 2003).Understanding causes and
consequences of biosphere change requires monitoring and modeling
(Running et al., 2004). At a global scale, characterizing changes in
vegetation has become routine with the aid of remote sensing (DeFries
et al., 2000; Friedl et al., 2002). At more local-to-regional scales, Landsat
has long been the workhorse sensor for monitoring vegetation change
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(Cohen & Goward, 2004; Healey et al., 2008). This paper concerns new
trends in Landsat-based vegetation monitoring that involve analyses
of large numbers of annual time series.

Forest change detection with Landsat has a history as long as the
Landsat program itself (Heller, 1975). With few exceptions, most
research and application have focused on 3–10 years or greater image
intervals and one or two Landsat scenes (Singh, 1989; Coppin & Bauer,
1994; Masek, 2001; Lunetta et al., 2004; Masek & Collatz, 2006). Some
studies have encompassed large numbers of Landsat scenes, but by
necessity were limited to relatively coarse time intervals (Skole &
Tucker, 1993; Cohen et al., 2002; Healey et al., 2008; Masek et al.,
2008). The few studies that have evaluated annual or near-annual
datasets have mostly involved only one Landsat scene (Kaufmann &
Seto, 2001; Healey et al., 2006; Schroeder et al., 2006).

Dense Landsat time series (LTS) (i.e., approximately annual interval)
for forest change detection overmultiple scenes is poised to become the
norm. There are several important reasons for this. First, there is
currently tremendous need for temporally and spatially detailed forest
change information over vast areas for carbon modeling (Turner et al.,
2007; Goward et al., 2008) and forest management and policy
considerations (Moeur et al., 2005). Second, the entire historic Landsat
archive in the USGS holdings is now available online for free in highly
preprocessed, standard format (Landsat Science Team, 2008). Third,
advanced automated algorithms capable of processing annual LTS are
currently being developed, tested, and operationalized (Kennedy et al.,
2007 and 2010; Huang et al., 2010).

The development of automated algorithms that use LTS for
detection of forest change over large geographic areas creates a new
problem for validation. For any remote sensing change detection
exercise, validation reference data can be difficult or costly to obtain
because historic observations for the period(s) of interest can be rare
and/or challenging to retrieve. With LTS, this problem is greatly
exacerbated by an annual interval over a period potentially as long as
the Landsat archive. Moreover, there are currently no comprehensive
methods for corroborating the output from automated LTS algorithms
that produce unprecedented types of change information.
Fig. 1.How validation with TimeSync works. TimeSync is controlled through the chip and tra
plot to examine. The plot is examined in all three windows: as a series of image chips, as a sp
Vertices are selected by clicking themouse on the image chips associatedwith the dates of th
where relevant data are entered. When desired, HRI imagery is evaluated for cover percen
involve several new validation approaches, as described in the text.
1.1. Objectives

This paper introduces TimeSync, a LTS visualization and data
collection tool developed to accommodate the need for assessment of
the veracity of output from automated LTS algorithms. One such
algorithm, LandTrendr, is described in a companion paper (Kennedy
et al., 2010). LandTrendr uses temporal segmentation to capture a
wide range of forest change processes ranging from abrupt dis-
turbances and chronic mortality to varying rates of vegetation
recovery. As LandTrendr and other novel processing algorithms use
dense LTS to extend the types of change that can be detected, methods
to corroborate or assess algorithm performance must be similarly
extended.With TimeSync, this is accomplished by using the same data
as the automated algorithm (i.e., the LTS), but by performing a
comparable, human-interpreted segmentation that is otherwise
totally independent of the automated interpretation.

The objectives of this study are to: (1) introduce and summarize
LTS data collected with TimeSync, (2) illustrate how to compare
human and automated interpretations of LTS data, and (3) compare
TimeSync data with other, extant forest change data. We focus on a
sample of four Landsat scenes in the Pacific Northwest, USA, that
represent a broad range of forest cover and cover change processes.

2. TimeSync

TimeSync is an image time series visualization and data collection
tool that consists of four components: an image chip window, a
trajectory window, Google Earth (http://earth.google.com/), and a
Microsoft Access database (Fig. 1). When TimeSync is invoked, both
the image chip and trajectory windows are opened. From the later
window, the user selects an LST database file to work with and selects a
plot from the database to examine. For each image date in the LTS, the
chip window (Fig. 2) displays a plot within a fixed 3×3-pixel square at
the center of each chip. The number of pixels displayed in each chip is
selectable via zooming, allowing one to see each pixel in the plot, aswell
as the greater landscape around the plot for spatial context. The
jectory windows, and through a Google Earth window. The analyst first selects a LTS and
ectral time series in bands and indices of interest, and on a high-resolution image (HRI).
e vertices selected. The database then draws the segment lines in the trajectory window,
tages and entered into the database. Comparisons between TimeSync and LandTrendr

http://earth.google.com/


Fig. 2. Image chips (1985–2007) displayed in the chip window for a plot and its neighborhood. The 3×3-pixel plot is displayed at the center of each chip, which in this case contains
35×35 pixels.
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trajectory window displays the 3×3-mean plot spectral response over
time in any Landsat band or user-defined spectral index (Fig. 3), and the
analyst can toggle amongst the various bands and indices to determine
the plot's temporal spectral behavior in the context of forest change
viewed in the chip window. Regardless of band or index examined, the
plot spectral response is shown as a series of colored dots, where the
Fig. 3. The trajectory window for the plot shown in Fig. 2 after the vertices were selected an
among various other indices or bands. This trajectory consists of three segments: a low in
intensity harvest, and a recovery towards needleleaf forest.
colors are the 3×3-mean plot Tasseled Cap brightness (red), greenness
(green), and wetness (blue) values for each image date. Any band or
index combination could be used, but we rely on the Tasseled Cap
because of its general utility (Cohen & Goward, 2004).

To collect data, each plot's trajectory is handled as a series of
segments, where a given segment has two vertices (start date and end
d data entered. Displayed is the wetness index. Tabs are available to display and toggle
tensity, long duration disturbance associated with pathogens, followed by a medium

image of Fig.�2
image of Fig.�3


Table 2
Basic characteristics of, and number of plot for, the four LTS used in this study.

WRS path-row Area (km2) Number of plots Forest area (km2)

45–27 8826 89 5392
45–29 7939 82 7292
46–29 19,382 200 12,340
47–27 16,690 172 14,490
Totals 52,837 543 39,514
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date) and is associated with a linear trend in spectral response that
can be attributed to disturbance, recovery, or stability (Fig. 3). From
drop-down lists, the analyst selects items that describe each segment,
while simultaneously viewing high-resolution images (multi-date if
available) in Google Earth for the same locations, with the plot
boundaries displayed within Google Earth (Fig. 1). Each vertex of a
given segment is labeled according to its land cover/use class, and the
process (disturbance, recovery, or stability) describing the segment is
selected (Table 1). For disturbance, the agent (e.g., harvest, fire, insect,
etc.), relative intensity (low, medium, and high—the magnitude of
spectral change from pre-disturbance condition to the spectral
condition of bare soil), and number of pixels (from 1 to 9) affected
are selected. As vertices are defined, the segments are plotted in the
trajectorywindow (Fig. 3). There are confidence fields (high, medium,
low) and a comments field for every segment.

3. Methods

3.1. Study area

This study was conducted over an area represented by the
intersection of the Northwest Forest Plan area in the States of Oregon
and Washington, USA (Moeur et al., 2005) and four Landsat scenes
(see Fig. 1, Kennedy et al., 2010). The Landsat scene areas used
(Table 2) were limited to the non-overlapping portions of Landsat
scenes, known as Theissen scene areas (TSAs) derived using a Voronoi
tessellation (Kennedy et al., 2010).

The total area of the study was nearly 53,000 km2, most of which is
forested (Table 2). The four scenes included in this study represent the
strong climatic and topographic gradients of the region, as well as
high diversity in vegetation due to a wide array of private and public
owners and associated management practices and natural distur-
bance regimes (Moeur et al., 2005). Coniferous forests dominate most
of the area, with temperate rainforest near the coast and drier
montane forests in the interior (Franklin & Dyrness, 1988). The
dominant species are Douglas-fir, western hemlock, western red
cedar, and lodgepole and ponderosa pine. For more comprehensive
descriptions refer to Franklin and Dyrness (1988) and Moeur et al.
(2005).

3.2. Sample design

Sampling design flexibility is a key attraction of the TimeSync
approach. Traditional reference data are typically available from
sources that sample only a particular ownership or a subset of years
over which change must be validated. With TimeSync, the entire
landscape can be sampled, and because it utilizes the entire LTS, all
years can be evaluated.
Table 1
Land use/cover classes available for labeling each vertex and the process that can be
attributed to each segment in a given trajectory within TimeSync.

Land use/cover class Process

Forest Stable
Needleleaf forest Recovery
Broadleaf forest Recovery towards needleleaf
Mixed forest Recovery towards broadleaf
Woodland Woody encroachment
Shrubland Harvest
Grassland Fire
Agriculture Pathogen
Wetland Blowdown
Urban Other
Snow/ice
Barren
Water
Other
To illustrate this flexibility here, we used a fully random sample,
stratified by TSA. The goal was to sample approximately 200 plots per
full TSA, with no bias toward any land cover class, ownership, or time
period. The number of plots per TSA was scaled to the proportion of
the full TSA overlapping the study area. For this study, a total of 543
plots was interpreted over the four scenes (Table 2). This number of
plots was a compromise between the time it takes to collect the
information with TimeSync and a larger number that might be
required to more fully sample every type of change encountered.

Another sample design is possible, such as one stratified by change
type, which may make better use of a smaller sample size, but may be
less representative of the map as a whole. Ultimately, the sample
design should be chosen to meet specific objectives, and TimeSync
facilitates the implementation of any desired design because the full
population of pixels over the full time period can be sampled.

3.3. Vegetation cover interpretation

For LandTrendr, vegetation cover and cover change models are
used for filtering potential segmentations (see Kennedy et al., 2010),
requiring that cover be characterized for forested plots. This is
accomplished within TimeSync, using the high-resolution imagery
available for viewing via Google Earth. Of the total number of
interpreted plots, 388 were forested near the end of the time series
(~2005), when high spatial resolution true-color images were
available in Google Earth. For each forested plot we quantified four
components: live tree, other live vegetation, shadow, and open (dead
vegetation and barren) cover (summing to 100%). This was done
ocularly by an experienced photo-interpreter, without reference to
any aids. For a discussion of how these data are used by LandTrendr
see Kennedy et al. (2010).

3.4. Comparisons with LandTrendr

3.4.1. LandTrendr data used
LandTrendr has numerous parameters that define how it segments

each pixel in an LTS. As described by Kennedy et al. (2010), 150,000
combinations of LandTrendr parameters were tested against the 388
TimeSync-interpreted forested plots to determine which sets of
parameters were the most robust to the wide variety of changes
observed.

We chose two runs as examples for evaluation in this paper. One
run was selected for each of two indices evaluated: the normalized
burn ratio (NBR, Key and Benson, 2005) and tasseled cap wetness
(Crist & Cicone, 1984). Wetness and NBR both take advantage of the
contrast between shortwave- and near-infrared reflectance, whichwe
have found to be the most advantageous multispectral contrast for
characterizing vegetated systems (Cohen & Goward, 2004). Wetness
is a well-established and studied index in this context, and is a linear
combination of all six Landsat reflectance bands. Although NBR is
relatively new, it has been demonstrated to be particularly useful for
monitoring wildfire in coniferous systems, such as those studied here.
As NBR is a ratio-based index, in this study, we were interested in
examining NBR's value for change detection more generally, in
contrast to wetness. The parameters of the two runs were chosen to
roughly balance omission and commission errors while maintaining
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high agreement; they were not selected as the best run for any
particular change detection goal. As such, the results presented here
do not represent a validation of the best output from LandTrendr.

LandTrendr output was produced for each plot interpreted with
TimeSync. To match the TimeSync interpretations, which were based
on 9-pixel plots, the 3×3-mean index (NBR and wetness) values for
each plot were calculated for each year of the LTS. LandTrendr was
then run on these plot-level spectral index trajectories. The
trajectories were fitted and labeled as described by Kennedy et al.
(2010). The approach usedwas consistent with TimeSync, in that each
trajectory was fitted as a series of segments having vertices and labels.
TimeSync and LandTrendr rely on direction of spectral change to label
segments as disturbance, recovery, or stable. Disturbance and
recovery in relation to direction of spectral change is spectral index-
dependent. For both NBR and wetness, across our study area,
disturbance is almost always associated with negative change and
recovery with positive change.

3.4.2. Validation approaches and metrics
LandTrendr provides a wide array of products (Kennedy et al.,

2010) based on various combinations of segment label (e.g.,
disturbance and recovery) and duration, vertex-year, and change
magnitude. This unprecedented product richness suite can be
evaluated for errors in a variety of ways, heretofore either irrelevant
or impossible without use of LTS. In this paper we explore a number of
ways to assess error in LandTrendr output as a demonstration of
different strategies for error assessment of LTS products using
TimeSync. Our assessments are of three basic types: vertex-based,
segment-based, and match scores.

3.4.2.1. Vertex-based assessments. Vertices define the beginnings and
endings of segments within a given trajectory. Beginning (or start)
vertices define the years when spectral trajectories change direction.
As such, vertex-based approaches evaluate agreement between the
human interpreter and automated algorithm in terms of when
changes begin. Because segments have labels, we can partition this
agreement into segment category labels (disturbance, recovery, and
stable) associated with the segment tied to each start vertex. The
vertex-based approach requires a fourth category (no vertex) for
when no vertex was observed by either the human or the algorithm,
or both. Traditional error matrices are essentially of this type; i.e.,
examine if a change mapped as occurring during a specific interval of
time actually occur during this interval, if at all. However, recovery
and stability have not heretofore been included in such matrices.

To construct error matrices, it was necessary to tally the segment
label for each year of a given segmented spectral trajectory (or plot)
and accumulate the results across plots. There were four potential
table category labels: (i) disturbance, (ii) recovery, or (iii) stable if a
start vertex was present, or (iv) no vertex if no vertex was present, for
the two independent segmentations (i.e., TimeSync and LandTrendr).
Tallies for each cell of this 4×4 contingency table were used to
calculate standard accuracy-assessment statistics (Congalton, 1991;
Cohen et al., 2002), considering the TimeSync assignments as truth.

To derive contingency tables, four different rule sets were used.
(1) All four table category labels were used, and a vertex-year match-
rule was strictly enforced (i.e., no relaxation in the exact timing of
vertices was allowed). (2)When segments of either recovery or stable
follow each other they were collapsed so only the earliest vertex was
retained for evaluation. This focused the table on three categories:
(i) disturbance, (ii) recovery/stable, and (iii) no vertex, minimizing any
mismatches between the human and the algorithm in the distinction
between recovery and stable. (3 and 4) Like 1 and 2 above, except that
we allowed for a relaxation in agreement on timing of vertices.

Relaxation allowed for agreement when vertices of the same type
were recorded by the algorithm and human interpreter as being within
one year of each other plus an additional allowable offset of one-quarter
of the duration of the segment following the vertex. This timing
relaxation allowed for two conditions for which we did not want to
penalize LandTrendr. These included (a) situations where the human
and the algorithmagree about the occurrence of longduration segments
with only subtle spectral change at the start vertex, but disagree on the
exact start year and (b) agree about the occurrence of an abrupt
disturbance, but because of thin cloud, cloud shadow or haze the
algorithm could not identify the disturbance until the following year.

3.4.2.2. Segment-based assessments. Segment-based approaches are
independent of timing, focusing instead on numbers and labels of
segments. This affords an assessment of the degree of over- or under-
fitting of the automated algorithm, both independent of and with
attention to the specific segment labels. The most basic comparison
ignored timing and label, comparing only the number of segments
across plots. This was done both for all three categories and for two
categories (disturbance vs. no disturbance). Another comparison
summarized the number of segments across plots by category
(disturbance, recovery, and stable).

3.4.2.3. Match scores. Match scores focus primarily on segment labels.
Trajectory match scores summarize label agreement for every year of
each trajectory. To calculate this score, for each year of a given
trajectory, a 1 or a 0 was assigned when the category labels matched
or did not match, respectively. Proportion was calculated as the sum
of the 1s over the total number of years in the trajectory. This was
examined both across and by category (for both the three and two
segment category cases above). This focused our attention away from
matching segment start time to duration of segment overlap. This
novel assessment was not relevant in prior, more interval-based
assessments that considered disturbances as events without duration
and did not consider recovery as a process that was explicitlymapped.

A final type of match score, the summary score, is an integrated
measure of the agreement between the algorithm and reference data,
in terms of how the area or region under study has changed over the
full time period of analysis. At all times, any given plot was in one of
three segment categories (or states): disturbance, recovery, or stable.
To calculate the summary score we derived the proportion of time
each plot was in each category, and calculated the mean proportions
across plots. Unlike other comparisons, this assessment completely
ignores timing of agreement and numbers of segments. It is a very
general assessment of agreement in terms of landscape dynamics
without specific regard to timing or location.

3.4.3. Understanding agreement and outliers
In addition to providing a basis for quantifying agreement between

an automated algorithm and reference data, TimeSync was used to
evaluatedisagreement, as ameans tounderstandunderwhat conditions
disagreement occurs.We re-examinedwith TimeSync all occurrences of
vertex disagreement about disturbance (both false positive and false
negative), noting the most likely cause for disagreement.

We also examined vertex agreement and disagreement with
respect to magnitude of spectral change, by producing histograms of
spectral change magnitude for segments where TimeSync and
LandTrendr agreed that there was a disturbance (agree disturbance)
or a recovery (agree recovery) and where there was disagreement
about disturbance (false positives and negatives).

Finally, to understand the likely causes of plots having low
trajectory match scores, we examined all plots with trajectory
match scores below 0.8 and noted the likely cause of disagreement.

3.5. Secondary validation

The primary reason we developed TimeSync was to fill the void in
calibration and validation data for forest change detection algorithms
and maps. Field visits today are not particularly useful for studying



Table 3
Number of TimeSync segments interpreted, by category, type and intensity, over
forested plots.

Segment category
by intensity
(disturbance only)

Number Per
disturbance
type

Per
disturbance
intensity

Percent

Harvest-high 50 – – –

Harvest-medium 38 – – –

Harvest-low 38 – – –

Harvest – 126 – 0.72
Fire-high 7 – – –

Fire-medium 19 – – –

Fire-low 5 – – –

Fire 31 – 0.18
Pathogen-high 0 – – –

Pathogen-medium 6 – – –

Pathogen-low 8 – – –

Pathogen 14 – 0.08
Other-high 2 – – –

Other-medium 0 – – –

Other-low 3 – – –

Other – 5 – 0.03
Disturbance type total – 176 – 1.00
High – – 59 0.34
Medium – – 63 0.35
Low – – 54 0.31
Disturbance intensity total – – 176 1.00
Disturbance total 176 – – 0.25
Recovery total 250 – – 0.36
Stable total 277 – – 0.39
Segment total 703 – – 1.00
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when, at what intensity, or by what agent a plot was disturbed in the
past. We can accumulate existing field data from historic surveys and
use historic airphotos, but gathering these data is costly and
cumbersome, and they may or may not exist for the areas under
study. Moreover, they do not facilitate the use of a statistically
unbiased sample design. All of these disadvantages associated with
using extant data immediately dissolve when using the exact same
Landsat time series as used by an automated algorithm. The problem,
however, is that we cannot simply assume that a human LTS-
interpreter makes perfectly accurate decisions regarding the changes
that have occurred on any given plot.

To check our interpretations against other, independent observa-
tions, where those observations existed, we accumulated and
evaluated several other datasets. These included burn severity maps
from the Monitoring Trends in Burn Severity (MTBS) project
(Eidenshink et al., 2007), the US Forest Service Forest Health
Monitoring pathogen dataset (http://fhm.fs.fed.us), the US Bureau of
Land Management Forest Cover/Operation Inventory dataset (http://
www.blm.gov/or/gis/data-details.php?data=ds000045) and US For-
est Service (USFS) Forest Activities Tracking System datasets available
via the USFS intranet. These datasets were spatially intersected with
our plots, the relevant forest change information extracted, and cross-
tabulations constructed. We declared a match (i.e., agreement) if the
plot intersected with a given disturbance polygon from a given
Table 4
Number of segments across plots. Totals are numbers of plots weighted by numbers of seg

3 categories

Number of segments TimeSync LandTrendr (NBR) LandTrendr (w

1 247 140 212
2 26 68 53
3 79 79 65
4 19 60 38
5 12 37 16
6 4 4 4
7 1 0 0
Total segments 703 962 769
ancillary dataset, and the datasets agreed on timing within one year.
Otherwise “not disturbed” was declared for that observation.

4. Results

In this section, we first present the results of LandTrendr using the
NBR index (often simply referred to as NBR, for brevity), to illustrate
the different methods of assessment. We then present the results for
LandTrendr using the wetness index, as a means of illustrating how
TimeSync can be used to compare the relative value of different
indices for characterizing forest change.

4.1. Segment-based assessments

Across the 388 forested plots interpreted with TimeSync, there
were a total of 703 individual segments (Table 3). Of these, 25% were
labeled disturbance, and 36% and 39% were labeled recovery and
spectrally stable, respectively. The 176 segments identified as
disturbance were mostly associated with harvest activity (72%),
followed by fire (18%), pathogens (8%) and other (3%), which
included utility right-of-way clearing through a forested plot, road
maintenance clearing, tree death in years subsequent to a fire event,
and unknown causes. There was a fairly uniform distribution of
disturbance intensity levels, with 34%, 35%, and 31% associated with
high, medium, and low.

The number of distinct segments per plot identifiedwith TimeSync
was highly variable, ranging from one to seven for the three segment
categories (Table 4). Over one-third of all segments were within
single segment plots, all of which were in the stable category. More
than one-half of the segments were in plots identified as having three
or fewer segments.

The number of segments fitted by the automated algorithm
relative to the number fitted using TimeSync provides an indication of
the degree to which the algorithm under-fit or over-fit the time series
of the plots evaluated. The LandTrendr NBR run used here character-
ized a total 962 segments, or 37% more than TimeSync (Table 4). For
the two segment category case, NBR and TimeSync were in very close
agreement on total number of segments. The number of segments by
category reveals that over-fitting by LandTrendr for these runs,
relative to TimeSync, was exclusively associated with recovery and
stable segments (Fig. 4).

4.2. Vertex-based assessments

Error (or contingency or agreement) matrices were derived using
four different rulesets, distinguished by number of table categories
and degree of relaxation in agreement on timing. The most finely
resolved comparison used four table categories (disturbance, recov-
ery, and stable vertices and no vertex) and no relaxation of timing
(Table 5). In this strict comparison, NBR exhibited a disturbance
omission rate that was 8% greater than the commission rate. This is
consistent with the segment-based assessment, which indicated
slight tendency towards omission of disturbance segments (Fig. 4).
ments.

2 categories

etness) TimeSync LandTrendr (NBR) LandTrendr (wetness)

254 249 262
21 20 26
83 95 81
14 13 10
12 10 8
3 1 1
1 0 0

686 682 643

http://fhm.fs.fed.us
http://www.blm.gov/or/gis/data-details.php?data=ds000045
http://www.blm.gov/or/gis/data-details.php?data=ds000045


Fig. 4. Number of segments across plots, by category for TimeSync and LandTrendr using both NBR and wetness.

Table 7
LandTrendr vs. TimeSync vertex-year agreement for disturbance, recovery, and stable
as separate categories (relaxed year matching).

TimeSync Disturbance Recovery Stable No Vertex LT Omission

LandTrendr (NBR)
Disturbance 126 3 7 40 0.28
Recovery 0 214 20 16 0.14
Stable 6 42 204 25 0.26
No vertex 29 141 170 7994 0.04
LT Commission 0.22 0.47 0.49 0.01
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Similarly, we also see here, that NBR overestimated the number of
recovery and stable segments relative to TimeSync, with commission
rates being 23% and 21% greater than omission rates, respectively.
Much of the confusion for the LandTrendr runs, relative to TimeSync,
was associated with mislabeling recovery and stable segments, as
revealed in the low omission and commission rates for the aggregated
recovery and stable case (Table 6).

Allowing for a small degree of timing relaxation greatly improved
the results for LandTrendr. The disturbance vertex omission rate for
NBR dropped by 13% and the commission rate dropped by 11%
(Table 7) relative to the use of a strict timing rule (Table 5). Similarly,
omission and commission rates for stable and recovery vertices were
also greatly reduced. When timing relaxation and non-disturbance
vertex aggregation were considered together (Table 8), error rates
were generally quite low.
Table 5
LandTrendr vs. TimeSync vertex-year agreement for disturbance, recovery, and stable
as separate categories (restricted year matching).

TimeSync Disturbance Recovery Stable No vertex LT omission

LandTrendr (NBR)
Disturbance 104 2 6 64 0.41
Recovery 0 160 19 70 0.36
Stable 6 39 188 44 0.32
No vertex 46 191 188 7911 0.05
LT Commission 0.33 0.59 0.53 0.02

LandTrendr (wetness)
Disturbance 92 1 5 78 0.48
Recovery 2 134 38 75 0.46
Stable 9 21 214 33 0.23
No vertex 32 112 104 8088 0.03
LT commission 0.31 0.50 0.41 0.02

Table 6
LandTrendr vs. TimeSync vertex-year agreement for disturbance and a combined
recovery and stable category (restricted year matching).

TimeSync Disturbance Recovery/stable No vertex LT omission

LandTrendr (NBR)
Disturbance 104 0 72 0.41
Recovery/stable 5 443 62 0.13
No vertex 47 54 8251 0.01
LT commission 0.33 0.11 0.02

LandTrendr (wetness)
Disturbance 92 1 83 0.48
Recovery/stable 9 427 74 0.16
No vertex 34 54 8264 0.01
LT commission 0.32 0.11 0.02
Overall accuracy was high (over 90%) in all cases (Table 9), largely
because of the large number of agreement observations for the no
vertex table category. Kappa statistics are more revealing, in that the
LandTrendr (wetness)
Disturbance 116 4 7 49 0.34
Recovery 2 184 40 24 0.26
Stable 9 22 223 23 0.19
No vertex 6 63 93 8172 0.02
LT commission 0.13 0.33 0.39 0.01

Table 8
LandTrendr vs. TimeSync vertex-year agreement for disturbance and a combined
recovery and stable category (relaxed year matching).

TimeSync Disturbance Recovery/stable No vertex LT omission

LandTrendr (NBR)
Disturbance 126 0 50 0.28
Recovery/stable 5 477 28 0.06
No vertex 30 44 8277 0.01
LT commission 0.22 0.08 0.01

LandTrendr (wetness)
Disturbance 116 1 59 0.34
Recovery/stable 9 466 35 0.09
No vertex 8 43 8300 0.01
LT commission 0.13 0.09 0.01

Table 9
Overall and kappa agreement statistics for the four cases examined: four table
categories, three table categories, and restricted and relaxed year matching.

4 table categories 3 table categories

Overall Kappa Overall Kappa

Unrelaxed
NBR 92.5 56.5 97.3 80.9
Wetness 94.4 63.2 97.2 79.2

Relaxed
NBR 94.5 68.1 98.3 87.8
Wetness 96.2 75.4 98.3 87.6
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Table 10
LandTrendr (NBR) vs. TimeSync vertex-year omission rates (relaxed) by disturbance type.

LandTrendr (NBR)

TimeSync Disturbance Recovery Stable No vertex LT omission LT omission by type LT omission by intensity

Harvest-high 45 0 1 4 0.10
Harvest-medium 28 0 2 8 0.26
Harvest-low 14 3 4 17 0.63
Harvest-all 87 3 7 29 0.31
Fire-high 6 0 0 1 0.14
Fire-medium 17 0 0 2 0.11
Fire-low 5 0 0 0 0.00
Fire-all 28 0 0 3 0.10
Pathogen-medium 4 0 0 2 0.33
Pathogen-low 4 0 0 4 0.50
Pathogen-all 8 0 0 6 0.43
Other-high 2 0 0 0 0.00
Other-low 1 0 0 2 0.67
Other-all 3 0 0 2 0.40
All-high 53 0 1 5 0.10
All-medium 49 0 2 12 0.22
All-low 24 3 4 23 0.56
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effect of a disparity in the number of observations among table
categories is minimized.

Focusing on omission, we begin to understand the limits of an
automated algorithm for detecting disturbance in the presence of
noise from both the forest system and sensing environment. Themost
important finding here is how the omission rates change as a function
of intensity of disturbance. The NBR run evaluated here omitted only
10% of all high intensity TimeSync-identified disturbances, with
increasing rates for medium (22%) and low (56%) intensity dis-
turbances (Table 10).

4.3. Match scores

Trajectory match scores measured the proportion of time where
there was agreement between TimeSync and LandTrendr in the
segment label for a given plot. These scores are expected to be high if
the time series contain long segments (as the generally low number of
segments per plot in Table 4 indicates) and there is good vertex
agreement (as indicated in the vertex match matrices of Tables 5–8).
As such, in general, trajectory match scores indicate a very high
degree of concurrence between TimeSync and LandTrendr, especially
for the aggregated segment category case, with less than 6% of the
plots having scores less than 0.80 for NBR (Fig. 5). For the three
segment category case, this percentages was higher, as expected.
Fig. 5. Cross-category plot-level trajectory match score distributions (% of observations) f
(disturbance, recovery/stable) cases.
By segment category, match scores for NBR ranged between 61%,
and 75% (Fig. 6). As these summaries represent the temporal overlap
between LandTrendr and TimeSync, they suggest that, for example,
61% of the time that the study areas were in a state of disturbance, as
declared by TimeSync, the data from the LandTrendr runs examined
here agreed with that assessment.

Knowing specifically when and where changes have happened
across a region is critical for several important applications. However,
for very broad, general assessments, such as comparing disturbance
regimes across regions and using these data in tabular form for carbon
dynamics assessments, it may be sufficient simply to know what
proportion of time an average forested plot is in a disturbed state. In
summary match score terms, LandTrendr and TimeSync agreed quite
well for NBR, with less than 4% disagreement for all segment types
(Fig. 7).

4.4. Outlier vertices and plots

To better understand the reasons for disagreement about
disturbance between TimeSync and the LandTrendr runs used here,
we re-examined the false negative and positive disturbance vertices
for the relaxed timing case (Table 7). With relaxed timing, there were
50 false negative disturbances for NBR. Not surprisingly, we can see
that the proportion of false negatives was a function of numbers of
or both the three category (disturbance, recovery, and stable) and the two-category
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Fig. 6. Trajectory match score distributions by segment category (% of observations).

Fig. 7. Summary match scores, as a percent of an average plot trajectory in the three segment categories.

Fig. 8. Percent agreement about disturbance vertices as a function of numbers of pixels affected.
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pixels disturbed, as identified by TimeSync (Fig. 8). In particular, when
the number of pixels disturbed was in the minority (b5) for a given
disturbance vertex, we see that the proportion of false negatives varied
fromabout 42% (4pixels) to 84% (1pixel) of the vertices associatedwith
disturbance forNBR. This suggests that thedominant reason LandTrendr
missed TimeSync-identified disturbances was that the spectral change
magnitude for those disturbances was relatively subtle.

A more direct examination of plot-level spectral change magni-
tude is to examine histograms for observations of agree disturbance,
agree recovery, and false negative and positive disturbances, with
respect to TimeSync (Fig. 9). Here we see that the agree disturbance
category is strongly dominated by negative spectral change and that
agree recovery exhibits positive spectral change. The false negative
distribution had a strong modal tendency towards zero spectral
changemagnitude, which is the most likely reason for LandTrendr not
detecting these disturbances.

There were 35 NBR false positive disturbances (Table 7). Our
reexamination of these occurrences revealed that these were
predominantly from residual clouds and shadows, ephemeral snow
cover in the transitional snow zone, phenology, spatial misregistra-
tion among image dates, and changes in sun angle and its related
topographic effect. All of the false positives exhibited a very subtle
spectral change magnitude, that as a distribution tended towards
slightly negative, as would be expected for a disturbance (Fig. 9).
Fig. 9. Normalized frequency distributions for vertex agreement (disturbance and
recovery) and disagreement (false positive and false negative disturbance) relative to
TimeSync, in terms of NBR and wetness change magnitudes.
Of the trajectory match scores with values less than 0.80, most of
these were described by TimeSync as having one or two long
segments of recovery and/or stability, where the distinction between
spectral stability and spectral change associated with recovery was
subtle; i.e., near the saturation of spectral response. It is not surprising
that an automated algorithm and a human interpreter would disagree
in these cases.

4.5. NBR vs. wetness

Results from the LandTrendr wetness run highlight the different
behaviors of the NBR and wetness indices in the context of forest
change detection using LTS. With wetness, LandTrendr identified 9%
more segments than the TimeSync interpreter, far lower than NBR for
the three categories of change (Table 4). This lesser tendency to over-
fit trajectories was mostly expressed in the lower number of recovery
segments (Fig. 4). However, there was also a greater tendency than
NBR to under-fit disturbance relative to the TimeSync interpreter.
These observations are confirmed with the vertex-based agreement
matrices (Tables 5 and 7) that reveal greater disturbance omission
bias and the lesser commission bias for recovery with use of wetness.
When the recovery and stable classes are combined (Tables 6 and 8),
the most significant difference between the two LandTrendr runs
remains the greater disturbance omission error associated with
wetness. In terms of overall accuracies and kappas (Table 9), when
the distinction between recovery and stability are important, wetness
performs better. This is consistent with the observation regarding
numbers of segments fit for each spectral index (Table 4). However,
when this distinction is unimportant, the two indices performed
approximately the same (Table 9). Focusing on omission rates, the
greatest difference between NBR (Table 10) and wetness (Table 11),
with respect to disturbance intensity, was the higher rate of omission
(74%) for wetness associated with low intensity disturbances. This
reveals that the main difference between NBR and wetness, as
expressed in the vertex agreement matrices for disturbance, was
associated with lower intensity disturbances.

Considering whole trajectories, using the trajectory match scores,
the difference between the indices was relatively subtle, but most
pronounced for the three category case (Fig. 5). The highest scores
were associated with wetness, and lower scores were associated with
NBR. By segment category (Fig. 6), wetness wasmore closely matched
with TimeSync for the stable category and NBR was more closely
matched for the disturbance category. In terms of summary match
scores, LandTrendr and TimeSync agreed quite well (Fig. 7). By this
measure, for disturbance, wetness actually performed better than
NBR, being in near-perfect balance with TimeSync interpretations.
The greatest distinction was the relatively greater over-characteriza-
tion by wetness of stability and under-characterization of recovery.
The greater sensitivity of NBR to disturbance was again evident when
examining vertex agreement as a function of number of pixels
disturbed (Fig. 8).

4.6. Secondary validation

TimeSync and MTBS agreed 98% about fire occurrence (Table 12).
One low intensity MTBS fire was labeled as harvest using TimeSync,
and was later confirmed to be fire by reexamining the plot with
TimeSync. Five fires not within the MTBS database, but identified
using TimeSync, were confirmed to be fires using alternative USFS
data that included small area fires, below the MTBS threshold size of
1000 acres (Ray Davis, pers. com.).

Comparing the other databases (referred to here as Integrated
FACTS–FOI–FHM) with TimeSync, we learned what the limits are of
human interpretations of Landsat time series data for detecting forest
change (Table 13). The one commercial harvest we could not detect
with TimeSync was a salvage harvest after a high intensity wildfire.
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Table 11
LandTrendr (wetness) vs. TimeSync vertex-year omission rates (relaxed) by disturbance type.

LandTrendr (wetness)

TimeSync Disturbance Recovery Stable No vertex LT omission LT omission by type LT omission by intensity

Harvest-high 46 0 1 4 0.10
Harvest-medium 29 1 0 8 0.24
Harvest-low 10 1 3 23 0.73
Harvest-all 85 2 4 35 0.33
Fire-high 6 0 0 1 0.14
Fire-medium 15 0 2 2 0.21
Fire-low 2 2 0 1 0.60
Fire-all 23 2 2 4 0.26
Pathogen-medium 4 0 0 2 0.33
Pathogen-low 1 0 1 6 0.88
Pathogen-all 5 0 1 8 0.64
Other-high 2 0 0 0 0.00
Other-low 1 0 0 2 0.67
Other-all 3 0 0 2 0.40
All-high 54 0 1 5 0.10
All-medium 48 1 2 12 0.24
All-low 14 3 4 32 0.74
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The seven missed pre-commercial harvest were all described as
partial harvests that occurred in the understory, and were thus not
evident when viewed from above the canopy. Similarly, the two
understory, prescribed burns, were described as ground fires under
the forest canopy.

We also learned from this comparison that of the 10 TimeSync-
identified harvests not contained in the secondary datasets, 8 could be
clearly confirmed by TimeSync (as illustrated in Fig. 10), and simply
represent errors in those datasets. The other two were identified by
TimeSync as low intensity, and although upon reexamination we
confirmed thesewere real, secondary data to support this claim do not
exist. Similarly, although forest clearing associated with road building
and/or maintenance is supposed to be contained in these datasets, the
three identified with TimeSync were absent from those datasets.
Agreement about pathogens was not as good as for other disturbance
agents (Tables 10 and 11), which is at least partially due to the
challenges of using FHM data for this type of assessment (i.e., FHM
data are polygon based and known to have some spatial misregistra-
tion problems). Another reason is that pathogen disturbances tend to
be of lower intensity, on average, than harvest and fire.

5. Discussion and conclusions

5.1. New perspectives on validation of change maps

Change detection using Landsat imagery is undergoing a major
paradigm shift due to the convergence of a need for more temporally
detailed information over larger areas, the free availability of data
from the US archive, and the emergence of automated Landsat time
series (LTS) algorithms. Automated algorithms like LandTrendr
(Kennedy et al., 2010) and Vegetation Change Tracker (VCT)
(Huang et al., 2010) are designed to exploit the Landsat archive by
taking advantage of high temporal densities of data that enhance a
relatively low signal to noise ratio commonly associated with
comparing lower temporal density datasets. Because the change
maps derived from these new algorithms are considerably richer in
Table 12
Matrix of agreement between TimeSync and MTBS for fire disturbances.

MTBS (Intensity)

TimeSync Low Medium High Not disturbed Agreement

Harvest 1 n/a
Fire 8 10 4 5 081
Not disturbed 360 1
Agreement 0.89 1 1 0.99 0.98
temporal detail than their predecessor maps, the challenge of
calibrating and validating them is significantly increased. We
developed TimeSync to address this challenge.

Collecting historic information about forest change can be a
difficult and costly endeavor. Moreover, those data do not exist
everywhere, nor at a temporal detail fine enough to satisfy the needs
of LTS map validation. Using TimeSync, which can ingest the exact
same datasets as those used by the automated algorithm, we have the
best opportunity to assess the quality of LTS maps using a statistically
valid sample design. Because the data are free and already processed
using the automated algorithm, the only cost of validation data
collection is the time it takes to collect and summarize data for the
required number of plots. The remaining challenge is in assessing the
quality of the change detection calls made by the TimeSync analyst.
For this, we can take advantage of whatever existing historic
information there is, in a plot-by-plot comparison, without major
concerns about statistical sampling constraints. This strategy of
primary map validation with TimeSync, followed by a secondary
validation of TimeSync with independent datasets, was successfully
demonstrated in this paper.

Although we speak here of validation, it is important to highlight
that the truth about historic events can be very difficult to ascertain.
Extending photo-interpretation techniques to LTS facilitated visual
detection of a large proportion of relevant historic change processes in
the forest systems under study here, as use of the secondary validation
datasets demonstrated. However, using these datasets we also
learned what the limits of photo-interpretation techniques are,
including detection of processes that do not sufficiently express
themselves in the upper canopy layers (e.g., pre-commercial
harvests), or are relatively subtle and immediately follow a major
change event (e.g., high intensity wildfire followed by salvage
logging). Furthermore, because the extant, secondary datasets we
used here had erroneous omissions (e.g., as much as one-half of the
harvests identified with TimeSync), we cannot simply use these data
as the ultimate truth source to determine the efficacy of TimeSync
interpretations. We propose a perspective that recognizes map
validation more in terms of its agreement with independent
assessments and datasets. Because we know from this study, at least
for the forests examined here, that TimeSync interpretations were
quite accurate for changes expressed in the upper canopy, it was fair
to use those interpretations as the reference against which to compare
automated LTS algorithm output. Although useful for helping us
understand what the TimeSync analyst could not detect (i.e., false
negatives), the secondary datasets had clear limitations for identifying
TimeSync-detected disturbances that were not real (i.e., false
positives).



Table 13
Matrix of agreement between TimeSync and the integrated FACTS–FOI–FHM dataset for a variety of disturbance types.

Integrated FACTS–FOl–FHM

TimeSync Harvest (commercial) Harvest (pre-commercial) Understory burn Insect Road Not disturbed Agreement

Harvest 8 2 10 0.5
Insect 7 1 0.88
Rood 3 0
Not disturbed 1 7 2 143 0.93
Agreement 0.89 0.22 0 1 0 0.91 0.87
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5.2. New capabilities for validation of change maps

Dense LTS change products require new methods for assessing
their quality. Using TimeSync, we took the first steps across that
frontier by examining sample LandTrendr output from several novel
viewpoints.

Segment-based assessments describe the degree of over- or under-
fitting of trajectories. As LandTrendr results depend on the values of a
host of parameters, this is a basic means of determining the sensitivity
of results to various parameters of the algorithm. Sensitivity can be
assessed across and by categories of change. However, these
assessments are in bulk, in that they do not compare specific
segments from LandTrendr with specific segments from TimeSync.

Vertex-based assessments are similar to traditional error matrices,
in that they compare the timing of identified changes between the
automated and human interpreters of LTS. In the past, with interval-
based Landsat datasets, matrices consisted of disturbance classes (e.g.,
harvest, fire) by interval, and a no disturbance class. Here, annual
Fig. 10. Example of a harvest identified by TimeSync but excluded from the integrated second
screen grabs from Google Earth imagery (top) for the same plot (1998 and 2006). The harves
(lack of vegetation).
resolution vertices replace intervals, and the no change class becomes
the no vertex class. Additionally, because we use annual LTS, we can
explicitly focus on recovery and stability as classes.

Match-score analyses were a means of integrating duration of
segments into the assessments. This was particularly important
because many disturbances are subtle but increase in intensity over
many years, and because recovery from disturbance is often a long,
slow process. In these cases, it is important to know not just that a
disturbance or recovery process has begun, but how long it has lasted.

TimeSync facilitated a labeling of disturbance by both agent type
and relative intensity. Agent type was only possible due to the spatial
context afforded by photo-interpretation. Relative intensity was
somewhat subjective, being based on proportion of existing vegeta-
tion canopy disturbed, but was extremely valuable for assessing the
degree to which relative intensity affected LandTrendr's ability to
detect disturbances. It is important to keep in mind here that
expectations for forest change detection mapping errors derived
from past studies that focused on stand-replacing (i.e., high intensity)
ary validation dataset. Shown are the image chips from 2002 to 2007 (bottom) and two
t occurred between 2004 and 2005. Note the plot going from blue (conifer forest) to red
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disturbance (Cohen et al., 2002; Healey et al., 2008; Huang et al.,
2010) must be revised for lesser intensity disturbances (Royle &
Lathrop, 1997; Jin & Sader, 2005). Certainly, we should expect high
intensity disturbances to be at least as accurately mapped as before,
but the mapping of medium and low intensity disturbances is
basically new map information that was not (or only minimally)
previously available via the older methods using coarser time
densities.

5.3. Other TimeSync uses

TimeSync was developed and used here for change detection
algorithm calibration and map validation, but a number of other uses
and investigations, several sample- rather than map-based, are
possible. For example, using TimeSync, supported by secondary
validation datasets, we discovered that fires are the most accurately
detectable disturbance type using LTS, in the forests studied here. We
might hypothesize that the ability to examine each plot in its spatial
context, by zooming out within the chip window, made this possible.
However, this was also the case for LandTrendr, which does not
consider spatial context. There is apparently an inherently spectral
signature associated with fires that is not associated with other
disturbance types.

We might also have begun to learn something about recovery in
terms of spectral residence time. The average number of years per plot
in a recovery state, as characterized by TimeSync was 10.4 years. This
might hint at the length of time following a disturbance that spectral
recovery is detectable, and is consistent with the literature on this
subject (Wulder et al., 2004; Masek et al., 2008). However, this is an
average across plots that were both disturbed and not disturbed
within the time window examined, plots that were disturbed more
than once, and plots that were only partially disturbed. A more direct
assessment, which was beyond the scope of this study, would have
been to isolate high intensity disturbances that occurred within our
time frame, and examine the length of time for these plots to recover
to a spectrally stable condition. We might then further examine the
effect of disturbance agent and geoclimatic regime on this
phenomenon.

Other potential uses of TimeSync using data we collected here
include:

• Comparative explorations of the behavior of a suite of spectral
indices to a variety of vegetation system perturbations across a
variety of vegetation systems. How does NDVI compare to NBR and
wetness for forest change detection in needleleaf forests vs.
broadleaf forests? What spectral indices are best utilized for change
detection in agricultural, shrubland, and grassland systems? Is
woody encroachment detectable with Landsat using LTS?

• Forest vs. non-forest masking. How well do different masking
algorithms accurately map forest vs. non-forest? With TimeSync,
each plot was labeled by land cover type, which would facilitate this
assessment.

• Land use change. How much forest or agriculture is lost over time
due to conversion to other uses? This would be possible because,
with TimeSync, we noted the land cover/use class for the start and
end vertices of each observed segment.

Beyond this study, TimeSync could be used for:

• Examination of spectral change with increases in percent impervi-
ous surface.

• Bridging MSS and TM datasets. How do different spectral indices
behave across time series that include both types of Landsat data?
How do these behave after normalization?

• Intra-annual vegetation characterization. Where intra-annual Land-
sat datasets exist, how well does Landsat data track seasonal
progressions of spectral response relative to MODIS?
• Augmentation of plot-based datasets. For forest inventory or long-
term ecology plots, chip window snapshots can provide a useful
addition to temporally fill those datasets between field measure-
ment dates and to provide spatial context.
Acknowledgements

The development and testing of TimeSync were made possible
with the support of the USDA Forest Service Northwest Forest Plan
Effectiveness Monitoring Program, the North American Carbon
Program through grants from NASA's Terrestrial Ecology, Carbon
Cycle Science, and Applied Sciences Programs, the NASA New
Investigator Program, the Office of Science (BER) of the U.S.
Department of Energy, and the following Inventory and Monitoring
networks of the National Park Service: Southwest Alaska, Sierra
Nevada, Northern Colorado Plateau, and Southern Colorado Plateau.
We wish to particularly thank Dr. Melinda Moeur (Region 6, USDA
Forest Service) for her vision in supporting this work from the proof of
concept to the implementation phase. We also wish to thank Peder
Nelson and Eric Pfaff for their work on the project. This work was
generously supported by the USGS EROS with free, high quality
Landsat data before implementation of the new data policy making
such data available free of charge to everyone.

References

Cohen, W. B., & Goward, S. N. (2004). Landsat's role in ecological applications of remote
sensing. BioScience, 54, 535−545.

Cohen,W. B., Spies, T. A., Alig, R. J., Oetter, D. R., Maiersperger, T. K., & Fiorella, M. (2002).
Characterizing 23 years (1972–1995) of stand replacement disturbance in western
Oregon forests with Landsat imagery. Ecosystems, 5, 122−137.

Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely
sensed data. Remote Sensing of Environment, 37, 35−46.

Coppin, P. R., & Bauer, M. E. (1994). Processing of multitemporal Landat TM imagery to
optimize extraction of forest cover change features. IEEE Transactions on Geoscience
and Remote Sensing, 32, 918−927.

Crist, E. P., & Cicone, R. C. (1984). A physically-based transformation of thematic
mapper data—The TM tasseled cap. IEEE Transactions on Geoscience and Remote
Sensing, 22, 256−263.

DeFries, R. S., Hansen, M. C., Townshend, J. R. G., Janetos, A. C., & Loveland, T. R. (2000). A
new global 1-km dataset of percentage tree cover derived from remote sensing.
Global Change Biology, 6, 247−254.

Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z. L., Quayle, B., & Howard, S. (2007). A
project for monitoring trends in burn severity. Fire Ecology, 1, 3−21.

Franklin, J., & Dyrness, C. (1988). Natural vegetation of Oregon and Washington. Corvallis
(OR): Oregon State University Press.

Friedl, M. A., McIver, D. K., Hodges, J. C. F., Zhang, X. Y., Muchoney, D., Strahler, A. H.,
et al. (2002). Global land cover mapping fromMODIS: Algorithms and early results.
Remote Sensing of Environment, 83, 287−302.

Goward, S. N., Masek, J. G., Cohen, W. B., Moisen, G., Collatz, G., Healey, S., et al. (2008).
Forest disturbance and North American carbon flux. American Geophysical Union
EOS Transactions, 89, 105−116.

Hansen, J., Sato, M., Ruedy, R., Lacis, A., & Oinas, V. (2000). Global warming in the
twenty-first century: An alternative scenario. Proceeding National Academy of
Sciences, 97, 9875−9880.

Healey, S. P., Cohen, W. B., Spies, T. A., Moeur, M., Pflugmacher, D., Whitley, M. G., et al.
(2008). The relative impact of harvest and fire upon landscape-level dynamics of
older forests: Lessons from the Northwest Forest Plan. Ecosystems, 11, 1106−1119.

Healey, S. P., Zhiqiang, Y., Cohen, W. B., & Pierce, J. (2006). Application of two
regression-based methods to estimate the effects of partial harvest on forest
structure using Landsat data. Remote Sensing of Environment, 101, 115−126.

Heller, R. C. (1975). Evaluation of ERTS-1 data for forest and rangeland surveys, Research
Paper PSW-112. Berkeley, CA: USDA Forest Service.

Huang, C., Goward, S. N., Masek, J. G., Thomas, N., Zhu, Z., & Vogelmann, J. E. (2010). An
automated approach for reconstructing recent forest disturbance history using
dense Landsat time series stacks. Remote Sensing of Environment, 114, 183−198.

Jin, S., & Sader, S. A. (2005). Comparison of time series tasseled cap wetness and the
normalized difference moisture index in detecting forest disturbances. Remote
Sensing of Environment, 94, 364−372.

Kaufmann, R. K., & Seto, K. C. (2001). Change detection, accuracy, and bias in a
sequential analysis of Landsat imagery in the Pearl River Delta, China: Econometric
techniques. Agriculture, Ecosystems & Environment, 85, 95−105.

Kennedy, R. E., Cohen, W. B., & Schroeder, T. A. (2007). Trajectory-based change
detection for automated characterization of forest disturbance dynamics. Remote
Sensing of Environment, 110, 370−386.

Kennedy, R .E., Yang, Z., & Cohen, W. B. (2010). Detecting trends in forest disturbance
and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmen-
tation algorithms, Remote Sensing of Environment.



2924 W.B. Cohen et al. / Remote Sensing of Environment 114 (2010) 2911–2924
Key, C. H., & Benson, N. C. (2005). Landscape assessment: Remote sensing of severity,
the Normalized Burn Ratio. In D. C. Lutes (Ed.), FIREMON: Fire effects monitoring and
inventory system, General Technical Report, RMRS-GTR-164-CD:LA1-LA51. Ogden, UT:
USDA Forest Service, Rocky Mountain Research Station.

Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., et al.
(2001). The causes of land-use and land-cover change: Moving beyond the myths.
Global Environmental Change, 11, 261−269.

Landsat Science Team (C.E. Woodcock, R. Allen, M. Anderson, A. Belward, R..
Bindschadler, W.B. Cohen, F. Gao, S.N. Goward, D. Helder, E. Helmer, R. Nemani, L.
Orepoulos, J. Schott, P. Thenkabail, E. Vermote, J. Vogelmann,M.Wulder, R.Wynne).
2008. Free access to Landsat data, Letter, Science 320:1011.

Lunetta, R. S., Johnson, D. M., Lyon, J. G., & Crotwell, J. (2004). Impacts of imagery
temporal frequency on land-cover change detection monitoring. Remote Sensing of
Environment, 89, 444−454.

Masek, J. G. (2001). Stability of boreal forest stands during recent climate change:
Evidence from Landsat satellite imagery. Journal of Biogeography, 28, 967−976.

Masek, J. G., Huang, C., Cohen, W. B., Kutler, J., Hall, F. G., Wolfe, R., et al. (2008). North
American forest disturbance mapped from a decadal Landsat record: Methodology
and initial results. Remote Sensing of Environment, 112, 2914−2926.

Masek, J. G., & Collatz, G. James (2006). Estimating forest carbon fluxes in a disturbed
southeastern landscape: Integration of remote sensing, forest inventory, and
biogeochemical modeling. Journal of Geophysical Research, 111, G01006. doi:
10.1029/2005JG000062.

Moeur, M., Spies, T. A., Hemstrom, M., Martin, J. R., Alegria, J., Browning, J., et al. (2005).
Status and trend of late-successional and old-growth forest under the Northwest
Forest Plan. General Technical Report PNW-GTR-646. Portland, OR: USDA Forest
Service, PNW Research Station.

Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change
impacts across natural systems. Nature, 421, 37−42.

Royle, D. D., & Lathrop, R. G. (1997). Monitoring hemlock forest health in New Jersey
using Landsat TM data and change detection techniques. Forest Science, 43,
327−335.

Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., & Hashimoto, H.
(2004). A continuous satellite-derived measure of global terrestrial primary
production. BioScience, 54, 547−560.

Schroeder, T. A., Cohen, W. B., Song, C., Canty, M. J., & Zhiqiang, Y. (2006). Radiometric
calibration of Landsat data for characterization of early successional forest patterns
in Western Oregon. Remote Sensing of Environment, 103, 16−26.

Singh, A. (1989). Digital change detection techniques using remotely-sensed data.
International Journal of Remote Sensing, 10, 989−1003.

Skole, D., & Tucker, C. (1993). Tropical deforestation and habitat fragmentation in the
Amazon: Satellite data from 1978 to 1988. Science, 260, 1905−1909.

Turner, D. P., Ritts, W. D., Law, B. E., Cohen, W. B., Yang, Z., Hudiburg, T., et al. (2007).
Scaling net ecosystem production and net biome production over a heterogeneous
region in the western United States. Biogeosciences, 4, 597−612.

Wulder, M. A., Skakun, R. S., Kurz, W. A., & White, J. C. (2004). Estimating time since
forest harvest using segmented Landsat ETM+imagery. Remote Sensing of
Environment, 93, 179−187.

http://dx.doi.org/10.1029/2005JG000062

	Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync — Tools for calibration a...
	Introduction
	Objectives

	TimeSync
	Methods
	Study area
	Sample design
	Vegetation cover interpretation
	Comparisons with LandTrendr
	LandTrendr data used
	Validation approaches and metrics
	Vertex-based assessments
	Segment-based assessments
	Match scores

	Understanding agreement and outliers

	Secondary validation

	Results
	Segment-based assessments
	Vertex-based assessments
	Match scores
	Outlier vertices and plots
	NBR vs. wetness
	Secondary validation

	Discussion and conclusions
	New perspectives on validation of change maps
	New capabilities for validation of change maps
	Other TimeSync uses

	Acknowledgements
	References




