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We introduce and test LandTrendr (Landsat-based detection of Trends in Disturbance and Recovery), a new
approach to extract spectral trajectories of land surface change from yearly Landsat time-series stacks (LTS). The
method brings together two themes in time-series analysis of LTS: capture of short-duration events and
smoothing of long-term trends. Our strategy is founded on the recognition that change is not simply a contrast
between conditions at two points in time, but rather a continual process operating at both fast and slow rates on
landscapes. This concept requires both new algorithms to extract change and new interpretation tools to validate
those algorithms. The challenge is to resolve salient features of the time serieswhile eliminating noise introduced
by ephemeral changes in illumination, phenology, atmospheric condition, and geometric registration. In the
LandTrendr approach, we use relative radiometric normalization and simple cloud screening rules to create on-
the-flymosaics ofmultiple images per year, and extract temporal trajectories of spectral data on a pixel-by-pixel
basis. We then apply temporal segmentation strategies with both regression-based and point-to-point fitting of
spectral indices as a function of time, allowing capture of both slowly-evolving processes, such as regrowth, and
abrupt events, such as forest harvest. Because any temporal trajectory pattern is allowable, we use control
parameters and threshold-basedfiltering to reduce the roleof false positive detections. No suitable reference data
are available to assess the role of these control parameters or to test overall algorithmperformance. Therefore,we
also developed a companion interpretation approach founded on the same conceptual framework of capturing
both long and short-duration processes, and developed a software tool to apply this concept to expert
interpretation and segmentation of spectral trajectories (TimeSync, described in a companion paper by Cohen
et al., 2010). These data were used as a truth set against which to evaluate the behavior of the LandTrendr
algorithms applied to three spectral indices. We applied the LandTrendr algorithms to several hundred points
across western Oregon andWashington (U.S.A.). Because of the diversity of potential outputs from the LTS data,
we evaluated algorithm performance against summary metrics for disturbance, recovery, and stability, both for
capture of events and longer-duration processes. Despite the apparent complexity of parameters, our results
suggest a simple grouping of parameters along a single axis that balances the detection of abrupt events with
capture of long-duration trends. Overall algorithm performancewas good, capturing awide range of disturbance
and recovery phenomena, even when evaluated against a truth set that contained new targets (recovery and
stability) with much subtler thresholds of change than available from prior validation datasets. Temporal
segmentation of the archive appears to be a feasible and robust means of increasing information extraction from
the Landsat archive.
.E. Kennedy).
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© 2010 Elsevier Inc. All rights reserved.
1. Introduction

Landsat instruments have witnessed decades of unprecedented
change on the Earth's surface (Wulder et al., 2008), and have the
spatial and temporal properties needed to capture the processes
driving that change (Cohen and Goward, 2004). Traditionally, change
detection studies have focused on comparisons between two images:
one before and one after a change (Coppin et al., 2004; Lu et al., 2004).
To more fully tap the long archive of Landsat data, some studies use
multiple two-date comparisons in sequence to summarize multi-
temporal trends over time (Cohen et al., 2002; Jin and Sader, 2005;
Olsson, 2009). Although these latter approaches are powerful, change
analyses based on two-date change detectionmethods do not fully tap
the interrelationships among many multitemporal images, and may
not be able to separate from background noise the subtle or long-
duration changes in cover condition and vigor that are expected under
climate change (Hicke et al., 2006; Logan et al., 2003). Recognizing
this limitation, methods that simultaneously consider the signal from
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multiple images have been developed over many years with the goal
of improving the signal-to-noise ratio in change detection, and these
methods have begun to flourish with the recent opening of the
Landsat archive by the U.S. Geological Survey (USGS) (Garcia-Haro
et al., 2001; Goodwin et al., 2008; Healey et al., 2006; Hostert et al.,
2003; Huang et al., 2010; Lawrence and Ripple, 1999; Röder et al.,
2008; Viedma et al., 1997; Vogelmann et al., 2009).

These true multitemporal change detection approaches using Land-
sat data can be grouped largely by whether they seek deviations or
trends. Those focusing on deviation use multiple instances of a
presumed stable condition to better define when a persistent change
has occurred that moves the spectral signal away from that stable
condition, allowing better separation of subtle but true change from
background noise (Garcia-Haro et al., 2001; Goodwin et al., 2008;
Healey et al., 2006; Huang et al., 2010). Those that seek trends, in
contrast, use time-series fitting algorithms to separate longer-duration
signals from year-to-year noise caused by phenology, sun angle, sensor
drift, atmospheric effects, and geometric misregistration (Hostert et al.,
2003; Lawrence and Ripple, 1999; Röder et al., 2008; Viedma et al.,
1997; Vogelmann et al., 2009). In essence, the two groups of algorithms
capture either abrupt events or slower processes, respectively, and both
assume the absence of the other type of effect. To describe and
understand our increasingly human-dominated Earth system (Vitousek
et al., 1997), algorithms must be developed that can flexibly capture
both abrupt disturbance events and longer-term stress-induced
degradation and ecological change induced by human and natural
processes.

In this paper, we describe and test LandTrendr (Landsat-based
Detection of Trends in Disturbance and Recovery), a set of processing
and analysis algorithms that move toward the goal of capturing both
trends and events. We previously described one approach toward
meeting this goal by comparing spectral trajectories against idealized
temporal models of land cover change (Kennedy et al., 2007b), but
with LandTrendr we take an entirely different strategy. Rather than
prescribe models of change, the new strategy is one of arbitrary
temporal segmentation: using straight line segments to model the
important features of the trajectory and to eliminate the noise. No
predetermined models of change are required — the data themselves
determine the shape of the change trajectory. The result of temporal
segmentation is a simplified representation of the spectral trajectory,
where the starting and ending points of segments are vertices whose
time position and spectral value provide the essential information
needed to produce maps of change.

Three broad strategies underlie the LandTrendr approach. First, we
seek to track change in cover condition that is durable across years, not
to capture intra-year trends. Becauseof cloud cover, data collectiongaps,
and the 16-day satellite repeat cycle, the annual time step is the
temporal scale for whichwe believe themajority of the Landsat archive
is best suited. Year-to-year variability is thus considered noise. Second,
we move toward a purely pixel-based structure for analysis. Multiple
images per year can be fed to the algorithm, but each pixel's temporal
trajectory is constructed from the series of single best values for each
pixel for each year. Clouds, cloud shadows, and gaps caused by the
Landsat 7 scan-line corrector failure can thus be avoided on a pixel-by-
pixel basis. Finally, the algorithms allow both for the temporal
smoothing of spectral noise in long-duration signals similar to trend-
seeking approaches (e.g. Röder et al., 2008; Viedma et al., 1997) and for
the unsmoothed capture of spectral change for abrupt events similar to
the deviation-seeking strategies (e.g. Huang et al., 2010). Allowing both
in a single pass through the data requires the development of hybrid
fitting approaches that form the core of our analysis. The primary
objective of our paper is to describe the processing and analysis
algorithms needed to achieve temporal segmentation.

By allowing any arbitrary segmentation, we increase the risk of
over- and under-fitting. Therefore, the algorithm requires a series of
control parameters and filtering steps designed to reduce overfitting
while still capturing the desired features of the trajectories. The
secondary objective of our paper is to provide an overview of the
effects of those parameters on the final segment-based representation
of the trajectory, and ultimately on the ability to capture change.

Evaluating parameter effects poses a challenge, however. First, the
algorithm results must be compared to a reference dataset that
captures all of the phenomena of interest (abrupt events as well as
longer-duration processes) over large areas at a spatial grain and
temporal density commensurate with Landsat data. No such datasets
exist. Second, methods to assess change detection algorithms often
focus on verifying capture of abrupt events (Cohen et al., 1998; Hayes
and Sader, 2001), which is only part of our goal. Therefore, in a
companion paper (Cohen et al., in review), we describe the
fundamentally new conceptual approach needed for expert interpre-
tation of the image stacks themselves, allowing delineation of both
abrupt and long-duration processes, and we document the stand-
alone software package developed to facilitate that approach (known
as TimeSync). In this paper, we use TimeSync interpretations to aid in
characterizing LandTrendr performance and sensitivity to parameter
value settings.

2. Methods

2.1. Study area

The project was carried out on a set of randomly-located testing
plots distributed across four Landsat scenes in the Pacific Northwest of
the U.S.A. The work is part of a USDA Forest Service-funded project to
map disturbance within the geographic bounds of the Northwest
Forest Plan (NWFP), a federal management plan designed to protect
the northern spotted owl and other endangered and threatened
forest-dependent species (Haynes et al., 2006; USDI and USDA, 1994).
Forest types are diverse, including wet temperate rainforests near the
Pacific coast; high productivity temperate coniferous forests across
much of mid-elevation areas; high elevation, cold-tolerant forests in
mountainous areas; broadleaf-dominated forests along riparian areas
and in some successional classes throughout; and lower productivity
conifer forests and shrublands in the dry interior regions (Franklin
and Dyrness, 1988; Ruefenacht et al., 2008). The dominant processes
occurring in the forests of the region are anthropogenic harvest (both
clear- and partial-cutting), fire, insect-related mortality, and post-
disturbance regrowth. For the purposes of the NWFP project, desired
detection processes were disturbance timing, magnitude, and dura-
tion, as well as recovery magnitude and onset.

We identified all Landsat scenes (where “scene” refers to the
geographic footprint of a single Landsat World Reference System II
[WRS-II] address) that intersect the NWFP area of Oregon and
Washington, and for each scene delineated the non-overlapping
Thiessen (or Voronoi, see Okabe et al., 2000) polygon that describes
the area closer to the scene center than to adjacent scenes, which we
refer to as the Thiessen scene area (TSA; Fig. 1). From this set, we
selected four TSAs that captured a wide range of environmental and
management conditions found in the larger NWFP. All subsequent
steps were then carried out for the TSAs of these four pilot scenes.

2.2. Overall processing flow

The processing flow of LandTrendr contains familiar steps of image
selection, preprocessing, and analysis, but the requirements of the
trajectory-based approach affect decisions throughout.

2.3. Preprocessing

2.3.1. Image selection
We constructed image stacks for the four pilot TSAs, composed

primarily of images acquired frommid-July to late August, with nearly
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every year between 1985 and 2007 represented (Fig. 2). For years
where clouds were more prevalent or where Landsat 7 SLC-off images
with data gaps were acquired, we used multiple images per year to
improve spatial coverage of usable pixels. In image selection for
LandTrendr, consistency of seasonality trumps absence of clouds as
the highest priority. Clouds and their shadows are typically easier to
mask (see Section 2.3.5) than phenological and sun-angle effects are
Fig. 2. Scene acquisition dates by year for the four pilot scenes. Julian days are calculated
relative to January 1 without reference to leap year; for reference, Julian day 220 is
August 8th.
to model, and the processing algorithms can ingest multiple partially-
clouded images per year to create yearly “on-the-fly” mosaics with
minimal clouds (see Section 2.4). Even for those remaining pixels that
happen to be cloudy in all images of one year, there are frequently
preceding or subsequent images in the annual time series where these
pixels are not clouded, and thus spectral trajectories can still be fit
even with occasional cloud-obscured views.

For efficientmanagement of stacks of imagery, we tracked all relevant
file and processing information in a meta-data structure for each stack
that was passed from module to module in the processing flow.

2.3.2. Geometric correction
Images acquired after the USGS opened the Landsat archive typically

had sub-pixel geolocation accuracies and required no further geometric
processing, but because the project began before that time, we
constructed LTS from a range of sources and, where necessary, used
our automated tie point selectionalgorithm(KennedyandCohen, 2003)
to locate two to five hundred tie points per image for orthorectification.

2.3.3. Radiometric normalization and transformation
Following Schroeder et al. (2006), we used the cosine–Theta (COST)

correction of Chavez (1996) to remove most atmospheric effects for a
single reference image in a given LTS. Dark object values for use in the
COST calculations were based on visual assessment by a trained
interpreter following the rules outlined in protocols found in Kennedy
et al. (2007a). All remaining images in theLTS of a single scenewere then
normalized to the COST image using the MADCAL (multivariate
alteration detection and calibration) algorithms of Canty et al. (2004),
which identify stable pixelswithin a small subset of the larger image.We
expanded thebasic approach to allowuseofmultiple subsets across each
scene and across the stack, greatly speeding the normalization process
relative to a manual scene-by-scene approach. The exceptions were
occasional images in a stack where subsets would violate the assump-
tionsof theMADCAL algorithmand introduce cloudedpixels into the no-
change population. To aid the interpreter in identifying these scenes, we
produced band-wise scatterplots as well as stack-wise summary
statistics to identify anomalies. We emphasize that the method is not
limited to cloud-free scenes, but only that some of the subsets in a given
image be cloud free.

2.3.4. Tasseled-cap transformation
Because the normalization process makes the spectral space

relatively consistent across sensors, it is imperative that a single spectral
transformation be used for all images in the LTS.We chose the tasseled-
cap transformation, and used the coefficients defined for reflectance
data (Crist, 1985), regardless of Landsat sensor.

2.3.5. Cloud, smoke, snow, and shadow screening
Our strategy to identify clouds, smoke, snow and shadows was to

contrast each subject image in the time series with a single reference
image using scores that accentuate the target effect, and then use
manual interpretation to define cloud and shadow thresholds based
on those scores. At their most basic level, the cloud/snow/smoke score
and shadow scores increasedwith increasing and decreasing tasseled-
cap Brightness (TCB), respectively, in the subject image relative to the
reference image. These scores were further modified to reduce
confusion caused by actual land surface change. To reduce effects of
vegetation clearing, the cloud score also increased with increasing
tasseled-cap Wetness (TCW; indicative of clouds, but not cleared
areas) and with decreasing tasseled-cap Greenness (TCG) relative to
TCB and TCW. To improve sensitivity in low-brightness areas, the
shadow score also increased with increasing TCW; to reduce
confusion with vegetation regrowth, shadow scores were masked
out where TCG increased relative to TCB.

Once score images were calculated, the interpreter then manually
determined thresholds of cloud score and shadow score for each
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image by visual comparison of score images against the actual images.
Interpreter derived thresholds were applied to the score images to
create [0,1] masks for cloud/snow/smoke and for shadow, then
combined and spatially filtered with a 3 by 3 median filter to expand
the mask near edges of clouds and shadows, where cloud effects can
bleed into adjacent pixels.

Although we report the details of our cloud masking strategy here,
we note that the mechanics of cloud masking are not our overall focus
in this research. Rather, we focus the algorithm development on
segmentation once clouded pixels have been identified, and have
developed our workflow to allow easy integration of cloud masks
from other sources as necessary (such as those developed for the
Vegetation Change Tracker [VCT] of Huang et al. (2010)). Thus, the
particulars of our masking approach (manual thresholds, post-mask
filtering) are less integral to the method.

2.4. Image stack mosaicking and trajectory extraction

Once the images in a TSA were normalized and cloud mask images
were created, the image stack was arranged for trajectory segmen-
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The overall strategy (Fig. 3) is to identify amaximally-complexmodel of
the trajectory (Sections 2.5.1, 2.5.2, and 2.5.3), then iteratively simplify
themodel (Section 2.5.4), choose the bestmodel based on simple fitting
statistics (Section 2.5.5), and finally remove change that is considered
noise based on a vegetative cover criterion (Section 2.5.6).

2.5.1. Remove spikes
We assumed that noise-induced spikes (residual clouds, snow,

smoke or shadows) would be ephemeral, with the spectral index
returning to pre-spike value in the post-spike year,while real land cover
changes would more persistent, with the post-spike spectral value not
returning to the pre-spike value quickly (Fig. 3a). Therefore, the de-
spiking algorithm would only remove spikes where the spectral value
before and after the spike was similar, with the necessary degree of
similarity set by a control parameter (“despike”; Table 1). The process
was iterative, correcting only the worst spike at each iteration. If no
spikes exceeded the despike parameter, no changes were made.

2.5.2. Identifying potential vertices
Conceptually, a vertex in the time series is the [year, spectral value]

combination that separates a distinct period before it from a distinct
period after it. We employed two complementary strategies to
identify and then cull vertices.

Regression-based vertex identification used a residual-error
criterion to identify vertices (Fig. 3b). The first and last years of the
entire time series were defined as initial vertices, and a least-squares
first-order regression of spectral index versus year was calculated for
all of the points in the time series. The point with the largest absolute
deviation from the fitted regression line was designated as the next
vertex, defining the break between a segment that runs from the first
year to that vertex and a segment that runs from that vertex to the
final year. For each of those two segments, new regressions were
calculated, and then used to determine each segment's mean square
error (MSE). The segment with the larger MSE (greatest residual
error) was identified for the next split, repeating until the segment
count reached the number set by adding the “max_segments” and
“vertexcountovershoot” control parameters (Table 1).

Excess segments were then culled using the angle criterion (Fig. 3c).
Segments were calculated connecting actual values (not regression
fitted) of vertices in [year, spectral value] space. To allow a single angle
Table 1
Value ranges for control parameters used in test runs of the LandTrendr algorithms.

Parameter Description

despike Before fitting, spikes are dampened if the
between spectral values on either side of
desawtooth proportion of the spike itself.
aggressive Nc setting to 1.0 turns off.

pval If best fitted trajectory's p-of-F value exce
trajectory is considered no-change.

max_segments The maximum number of segments allow
recovery_threshold During fitting, if a candidate segment has

1/recovery_threshold (in years), that segm
different segmentation must be used. Set

vertexcount overshoot The initial regression-based detection of p
(max_segments+1) vertices by this value
to the desired number of vertices if overs
for vertex identification.

pct_veg_lossl⁎ Disturbance segments of 1-year duration
change in spectral value, when converted
than this threshold.

pct_veg_loss20⁎ The same as prior, but for segments with
pre_dist_cover⁎ Disturbance segments that start in percen

will be considered no-change. Filters out
Pct_veg_gain⁎ Recovery segments of any duration are co

spectral value, when converted to percen

⁎ All parameters were varied for Phase 1, but only those marked with asterisks were use
criterion to havemeaning across spectral indiceswith different absolute
values, however, spectral values were scaled to make the year and
spectral_value ranges equivalent. The vertex with the shallowest angle
was removed, resulting in the elimination of one segment. A new
segment was drawn between the two vertices adjacent to the one
removed, and then all vertex angles recalculated. This culling process
was repeated until the segment count reachedmax_segments.

2.5.3. Fitting trajectories
Once a final set of candidate vertices was identified, a second set of

fitting algorithms was used to determine the spectral values for each
vertex year that would result in the best continuous trajectory through
the time series (Fig. 3d). Conceptually, the vertex algorithms in the prior
section focused on the x-axis of the time series (identifying the years of
breaks in the time series) while the trajectory-fitting algorithms honed
the y-axis (the spectral values) given the x-axis vertex points.

To capture the full range of land cover dynamics, we propose that
trajectory-fitting algorithms must smooth noise over trends but
faithfully capture abrupt change without smoothing–goals that are
often at odds. We thus employed a flexible fitting approach that
allowed both point-to-point and regression-based fitting between
vertices, working from early to late through the vertices. For the first
segment, either a regression or vertex-to-vertex line (using actual
vertex y-axis values) was used depending onwhich approach resulted
in lower MSE for the segment. For segments other than the first, the
position of the start year of the segment was constrained to connect
with the prior segment; the latter was connected either to the actual
point of the next vertex (point-to-point) or smoothed with a simple
regression anchored at the starting point (regression-based fitting).
The result of the process was a series of connected segments (with the
number of segments controlled by themax_segments parameter) that
best connected the vertices chosen in the prior step.

As an indicator of the goodness of fit, we calculated the p-value of a
standard F-statistic for the fit of this model across the entire trajectory.
We adjusted degrees of freedom for vertex-to-vertex segments, which
have zero deviation, to avoid erroneous reduction in p-value. Note that
this p-value is not a truemeasure of goodness of fit, because there are no
a priorimodels being tested and because temporal autocorrelation is not
accounted for. Rather, it provides a comparison among segmentation
models with different numbers of segments (predictor variables) that,
Values tested

spectral value difference
the spike is less than 1-despike
Lower values filter spikes more

1.0, 0.9, 0.75

eds this threshold, the entire 0.05, 0.1, 0.2

ed in fitting 4, 5, 6
a recovery rate faster than
ent is disallowed and a threshold
ting to 1.0 turns off this filter.

1, 0.5, 0 25

otential vertices can overshoot
; angle-based culling is used to return
hoot occurs. Allows a mix of criteria

0, 3

are considered no-change if their
to percent vegetative cover, is less

10, 15

duration 20 years or greater. 3, 5, 10
t-cover conditions lower than this value
change in.

10, 20, 40

nsidered no-change if their change in
t vegetative cover is less than this threshold.

3, 5, 10

d in Phase 2.
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through experimentation, we found provided the same relative
information as Akaike's information criterion and as a separate
autocorrelation-resistant measure, but at much greater speed.

If the fitting based on the early-to-late regression approach resulted
in a p-value greater than a user-defined threshold (parameter “pval”),
then the entire fitting process was repeated with an approach that
allows all vertex y-values to vary simultaneously rather than in anearly-
to-late sequence. This approachwas based on an implementation of the
Levenburg–Marquardt fitting algorithms (MPFIT, Craig Markwardt,
http://cow.physic.wisc.edu/~craigm/idl/idl.html), and was much more
demanding computationally. The outcome of this second fitting process
was retained, regardless of p-value.

2.5.4. Simplifying models
The result of the prior section was the maximally-complex

segmentation model of the trajectory. The next step was to iteratively
simplify and re-fit the trajectory using successively fewer segments,
resulting in models of the trajectory for segment counts ranging from
max_segments downward to 1 (Fig. 3e). Each simplification of the
trajectory was accomplished through removal of the weakest vertex,
defined by either a recovery rate or an MSE criterion. The recovery
rate criterion (control parameter recovery_threshold) removes a
segment if its slope of spectral recovery would span the entire
spectral range of the trajectory (i.e. minimum to maximum spectral
value for the individual trajectory) in 1/recovery_threshold years. It
reflects the fact that extremely fast recovery in many ecosystems is
more likely caused by inadequate shadow or cloud masking than by
unrealistically robust conditions on the ground.

For each reducedmodel, thefittingprocess described in Section 2.5.3
was re-applied, and fitting statistics recalculated. Because models with
more segments have greater degrees of freedom, simpler models can
have higher fitting scores than the more complex models.

2.5.5. Determining the best model
The final step was to identify the best model using the p-value for

the F-statistic (p-of-f). From the best model, each segment's type
(disturbance or recovery), vertex years and vertex values formed the
core outputs of the LandTrendr segmentation algorithms that were
evaluated against an independent dataset (see Section 2.6). We refer
to these outputs as Phase 1 to distinguish them from those after
filtering described in the next section.

2.5.6. Filtering by change in vegetative cover
To remove small spectral changes captured by the rawsegmentation

algorithms, we examined the impact of filtering using a magnitude-of-
change threshold.

Because the spectral indices themselves are of little inherent
biophysicalmeaning, we filtered based on estimated percent vegetative
cover change. Vegetation cover estimates were determined from aerial
photos using methods described in Cohen et al. (2010). We used two
approaches to link spectral data with these interpreted values to
estimate percent-cover change. In the static model approach, we
developed a regression between spectral values and percent-cover
estimates, then used that static model to calculate percent cover both
before and after each change, and finally subtracted the resultant
percent-cover estimates to calculate vegetation cover change. In the
delta model approach, we modeled change in cover directly. We used a
Table 2
Regression models (and r2 values) linking interpreted vegetative cover⁎ to spectral values.

Spectral index Static model

NBR l6.12+104.65⁎nbr (0.75)
NDVI l.12+84.23⁎ndvi (0.56)
Wetness 100−l00⁎(1−exp(21⁎wetness

⁎ Vegetative cover interpreted at 313 plots (see Cohen et al., in review).
jackknifing procedure to randomly pair different plots, and with
regression we modeled the difference in percent cover between the
plots with the difference in spectral value between the plots. For both
types, we developed models using three different spectral indices: the
tasseled-cap wetness (“wetness”; Crist, 1985), the normalized burn
ratio (NBR; vanWagtendonk et al., 2004), or the normalized difference
vegetation index (NDVI; Tucker, 1979). Summaries of the percent-cover
models are shown in Table 2.

Percent-cover change for each segment was then compared against
control parameters (Table 1) to determine if the segment's change
merited retention. Filtering was done on a sliding scale as a function of
the duration of the segment: changes detected as consistent trends over
20 years of imagery are less likely to be caused by noise, and therefore
could be labeled as change at a lower threshold (control parameter
pct_veg_loss20) than 1-year changes, which are more susceptible to
ephemeral spectral noise and labeled change at a potentially higher
threshold (control parameter pct_veg_loss1). Thresholds for intermedi-
ate-duration trends were calculated with simple linear interpolation of
the 1 and 20 year thresholds. If a segment's change in spectral index
values was less than a user-defined parameter, that segment was
considered a “stable” segment. We refer to segmentation results after
percent-cover filtering as Phase 2 results.

2.6. Evaluating segmentation results

As a potentially complex systemwith many control parameters, the
algorithmsdescribed in Section2.5mustbeevaluated todeterminehow
changing those parameters affects final outcomes. Our evaluation
approach was similar to a sensitivity or optimization analysis: the
complex model (LandTrendr) was run using many combinations of
parameter values and compared to a reference dataset (determined
using the TimeSync tool introduced in our companion paper (Cohen
et al., 2010)) using a variety of scoring metrics.

2.6.1. Parameter variations
TimeSync interpretation was conducted at 543 plots distributed

randomly across the four Landsat TSAs described in Section 2.1. These
plots were then evaluated using the TimeSync tools for interpretation
described in Cohen et al. (2010). Of those, 388 were labeled as being
“forest” at some point in the time period and were used as the
reference dataset for evaluation. For each of the forested plots, we
repeatedly applied the LandTrendr segmentation algorithms de-
scribed in Section 2.5, varying the control parameters across all
ranges of values shown in Table 1 for the wetness, NBR, and NDVI
spectral indices. Each of these “runs” resulted in a set of segments and
vertices for each of the plots that was compared against the segments
and vertices defined by the human interpreter.

As noted above, an important distinction was between Phase 1
runs with and Phase 2 runs without filtering by vegetative cover.
Variation in parameter values for Phase 1 resulted in 2916 unique
combinations of parameter values. Addition of the parameter values
for Phase 2 increased the count to 157,464.

2.6.2. Scoring metrics
There is no simple, unifiedmetric that can be used to compare how

well the automated algorithm captured all of the features of the
trajectory identified by the interpreter. For some purposes, accurate
Delta model

108.46⁎ Δ nbr–0.22 (0.75)
84.17⁎ Δ ndvi−0.03 (0.56)

))8 (0.82) 412.6⁎ Δ wetness+1.48 (0.74)

http://cow.physic.wisc.edu/~craigm/idl/idl.html
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timing of turning points (vertices) is critical, but for others overall
agreement in trajectory shape or temporal overlap of long-duration
processes is more important.

Consequently, the effectiveness of the algorithm can be evaluated
solely by comparing vertices or by evaluating overall match in shape.
The vertex-focused approachevaluates howwell the algorithmmatches
the timing and direction of turning points in the spectral trajectory
(vertices) defined by the interpreter. For either the interpreter- or
algorithm-derived segmentation, each year in a spectral trajectory is
labeled as a disturbance, recovery, or stable vertex depending on the
label for the subsequent segment, or as no-vertex for years where none
is assigned. In contrast, the trajectory match approach evaluates how
well the algorithms match the overall shape of the spectral trajectory
determined by the interpreter. For each year in the trajectory, the
disturbance, recovery, or stable label defined by the algorithms is
compared against thatmadeby the interpreter, and agreement is scored
when the labels agree in the same year, regardless whether at a vertex
point or at a midpoint of a segment. For either the vertex or overall
trajectory match case, standard contingency tables can be constructed
(Fig. 4). From the vertex-based or trajectory match contingency tables,
eight summary metrics were then calculated for each run: five focusing
on timing of disturbance vertices only (Disturbance false negative,
disturbance false positive, disturbance matched, disturbance accuracy and
disturbance kappa), two on timing of transitions to any type (accuracy
and kappa), and one on overall segment agreement across all types
(trajectory match score).

3. Results and discussion

3.1. Example segmentation results

As intended, the algorithms captured abrupt disturbance events,
including fire and harvest, as well as longer-duration processes such as
post-disturbance growth as well as slow loss of vigor caused by insects
(Fig. 5). By flexibly recording both events and processes, the algorithm
also captures situations where one precedes or follow the other, the
sequence of which is often useful for interpretation: for example, the
algorithm can distinguish among abrupt disturbance that follows
decline, growth, or relative stability, allowing distinction between fire
that burns through insect-damaged stands from fire that burns through
regrowing forest. We are currently unaware of other automated
approaches that can capture and characterize arbitrary shapes and
durations of land cover change using a single fitting algorithm.
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Fig. 4. Contingency matrix used for calculation of scoring metrics. Cells within the full
4×4 table were used for vertex-based scores: Matched disturbance, false negative and
positive disturbance, overall accuracy, and kappa. For calculation of disturbance accuracy
and disturbance kappa, cells with same shading were aggregated to a 2×2 table. For
segmentmatching, a similar table is constructed by evaluating match for every year, not
just vertices, making the no-vertex not applicable. Proportional agreement on each
trajectory was calculated as dd+rr+ss /(n_years), where n_years is number of years in
the time series. Mean proportional agreement across all trajectories in a run yielded the
trajectory match score for that run.
3.2. TimeSync interpretation

The TimeSync interpretation of the 388 forested plots resulted in
703 unique segments, of which one quarter were disturbance, one
third recovery, and the remainder stable. Of the disturbances, 126
were harvest, 31 fire, 14 insect or pathogens, and 5 of other type.
Interpreted disturbance intensity across all disturbances was approx-
imately even distributed among magnitude categories. Definitions
used for reference data interpretation and comparisons with other
reference datasets are provided in our companion paper (Cohen et al.,
2010).

3.3. Parameter evaluation

Although our parameter evaluation scheme involved many
repetitions of the segmentation model under different parameter
value combinations, we did not conduct a true sensitivity analysis or
parameter optimization for two reasons. First, landscapes contain
many more combinations of phenomena and timing than can be
observed in a reasonably-sized reference dataset; optimization or
parameter quantification would be an exercise in overfitting the
particular random draw of the landscape captured in our reference
points. Second, our purpose is to broadly describe the impact of the
parameters on the algorithm in a manner that could be applied more
generally in other ecosystems; this is better achieved through a
holistic evaluation of parameter effects and groupings. We evaluated
parameter effects in two ways: by parameter across all runs, and
across parameters within the best runs.

For the former, we arranged all of the runs with a given parameter
value as cumulative distributions ordered according to each of the
eight summary metrics (Phase 1 NBR overall accuracy score shown in
Fig. 6a). The left–right shift of the cumulative distributions is
determined by the variation in the parameter of interest: the greater
the effect of a particular parameter value, the greater the separation
among runs. Although combinations of other parameter values at a
given percentile along the cumulative distribution curve are not
necessarily the same, the rank comparison at a given percentile rank
of the curve nevertheless provides a first approximation of the effect
of varying the parameter, especially if one value always outperforms
the others. This rank effect can then be more concisely captured by
calculating a simple ratio of accuracy scores of the two lower-ranking
parameter values versus the best-ranked parameter value, within
percentile bins of the distributions (Fig. 6b), which can then be
expressed with a standard box-plot approach (Fig. 6c). These box
plots can then be evaluated to determine which value of each
parameterwas best when evaluated from the perspective of any of the
eight summary metrics, or whether there was no separation among
runs of different parameter values (Fig. 7).

Because the cumulative distributions show the impact of only a
single parameter value at a time, they cannot be used to determine
which parameters determine the overall robustness of the runs when
combined with the other parameters. This leads to our second
parameter evaluation approach. We tallied the proportion of runs
associated with each parameter value for the top 5% of all scores of
overall kappa (vertex-based), matched disturbance (vertex-based),
and trajectory match score (overall-agreement based). The more
balanced the counts among parameter values in these best runs, the
less that parameter mattered. If a single value of a parameter
dominated the best runs, we interpret that parameter's value to be
important in controlling overall segmentation success. We used
simple stacked bar plots (Fig. 8) to evaluate parameter value
dominance. Detailed evaluation of parameter effects across all scoring
metrics are provided as Tables A1–A4 in Appendix 1.

Evaluating both within and cross-parameter results (summarized
in Table 3 from Tables A1–A4), several patterns emerge. First,
thresholding change by magnitude of change (here expressed as
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score ratios (b) that can then be expressed concisely as a box plot (c) that distills the
relative impact of the parameter values.
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percent cover) always improves accuracy by diminishing false
positives. This is expected, but highlights the penalty paid by this
flexible fitting method against one that pre-defines the type of
allowable change (such as that we reported earlier; Kennedy et al.,
2007b). Second, selection of potential vertices is a key step, and must
consider both regression and angle-based criteria (as indicated by a
universal need to set the vertexcountovershoot parameter to 3). This
emphasizes the importance of a strategy that identifies vertices in a
forward pass through the trajectory as a separate step from the actual
fitting once vertices are identified. Third, parameter settings that favor
capture of disturbance also result in higher false positive counts,
making them less favorable for capturing the timing of recovery or
stable period or for matching overall trajectory shape.

Indeed, this latter point emphasizes a key characteristic of the
algorithm corroborated by our parameter tests: the central tension in
the algorithm is between high sensitivity to abrupt events and robust
capture of long-term trends. Moreover, the apparent complexity of
both the fitting algorithm and hence parameter choices distills to
essentially two fairly simple groupings of parameter based on that
tension. Success at capturing the most disturbance is achieved
primarily by increasing the maximum number of segments in play
(max_segments) and by lowering the percent-cover thresholds
(pct_veg_loss1 and pct_veg_loss20). To better capture all types of
change, fewer segments should be allowed, robustness of fit should be
set stringently (pval set lower), percent-cover thresholds should be
increased (particularly pct_veg_loss20), and the prohibition on over-
fast recovery should be enforced (setting recovery_threshold to more
stringent values).

3.4. Comparison among spectral indices

Although the purpose of our study is to evaluate effects of
parameters on fitting, comparison of the spectral indices used for
fitting is also instructive. We calculated the mean summary metric
scores for the top 5% runs for all three spectral indices (Table 4). For
our sample, NDVI performed more poorly than the two other indices,
supporting the use of the short-wave infrared region for tracking
change in forests (Fraser and Latifovic, 2005; Hais et al., 2009; Jin and
Sader, 2005; Wilson and Sader, 2002). NBR was most sensitive to
capture of disturbance events (high “matched disturbance” scores),
but was also more susceptible to noise and therefore had slightly
lower overall accuracy and trajectory match scores than did wetness
for Phase 2 results.

3.5. Overall algorithm performance

To maintain reasonable scope, we have focused in this paper on
describing our algorithms and on judging their relative performance
under thousands of runs using different combinations of control
parameters and using different spectral indices. The absolute
performance is difficult to judge and compare against other change
detection tools, even from the summarymetrics in Table 4, because 1)
the reasons for omission and commission cannot be identified
without detailed evaluation of a single run, and 2) the truth set
against which we compare our results (the TimeSync interpretation
set) includes far more subtlety than has been available to other
change algorithms for comparison to date. Therefore, we have split
the evaluation of the interpretation tool and the sources of omission
and commission into a companion paper (Cohen et al., 2010). Based
on detailed evaluation of results from single runs, we found that the
algorithm captures traditional disturbances as well or better than
two-date change methods have in the past (Cohen et al., 1998),
detects with reasonable robustness a wide range of other dynamics
such as insect-related disturbance and growth (Fig. 5), and that errors
of omission and commission are generally confined to very subtle
phenomena.

3.6. Algorithm assumptions and weaknesses

Several assumptions and weaknesses not immediately evident in
the summary data deserve note. First, the core segmentation approach
judges change in a completely relative sense: the definition of change
in any time period of a trajectory depends on spectral properties of the
rest of time series, even if the absolute magnitude of change is small.
This allows capture of subtle but consistent trends, but also leads to
many small-magnitude false positive changes. Thus, the absolute
magnitude-filtering of Phase 2 is useful. This leads to a second issue: if
each year's spectral deviation is judged entirely with regard to the
years before and after it, the spectral deviations of the first and last
years of the trajectory are by definition more difficult to judge than
deviations in all other years. This makes it imperative that cloud and
shadow screening be particularly aggressive in those years. Finally,
the segmentation method considers each plot as an isolated entity;
the behavior of spatially-adjacent areas is not used to improve
robustness of detection.
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3.7. Applicability to other ecoregions and sensors

Although the tests reported here focus on forested systems in the
Pacific Northwest, U.S.A., the general conclusions appear to be
applicable for LandTrendr runs we have begun applying in the northern
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Table 3
Parameter effects summarized by fitting goal.

Fitting goal

Parameter Timing of disturbance Timing of all types Overall shape

despike Only minor effect; should be set to moderate value
pval Equivocal Somewhat improved by setting to lower value
max_segments Critical to set high Critical to set low
recovery_threshold Equivocal Important to set low Somewhat improved by setting

low for some indices
vertexcount overshoot Must be set high for all cases
pct_veg_loss1 Somewhat improved by low values Equivocal
pct_veg_loss20 Improved by low values Improved by higher values
pre_dist_cover Generally equivocal
pct_veg_gain Equivocal Low impact, but avoid high or low values
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screening and consistency of phenological state in image dates are
critical. When sufficient density of imagery across years is available, a
relatively stable set of parameters can be used across all of these
systems, and disturbance and growth patterns are detected robustly.
Where recovery rates after disturbance are very fast, setting the
recovery threshold to 1.0 (turned off) is often required. Where robust
percent-covermodels are not available, afirst approximation based on a
linearfit to spectral values at theminimumandmaximumof vegetation
cover appears to function well. Where persistent cloudiness or gaps in
the archive significantly reduce the density of available pixels in the
time series, we must reduce the number of segments sought by the
algorithm, which changes the focus of change detection from yearly
mapping to simple detection of change across years and detection of
longer-termprocesses. Thus, although the ability to separate ephemeral
change from real change in these systems is still an advantage, other
algorithms targeted to these areas may be more appropriate if year-to-
year change of high-magnitude phenomena is critical.

The temporal segmentation approach need not be limited to the
ThematicMapper sensors. Conceptually, application to timeseriesof other
sensors, including the multi-spectral scanner (MSS) or the moderate
resolution imaging spectrometer (MODIS) can easily be envisioned. In
these cases, however, we anticipate that the differing signal-to-noise
ratios and spectral properties of the different instruments may require
alteration of the despiking, the percent cover, and the p-value thresholds.

4. Conclusions

Segmentation of the time-domain in Landsat imagery appears to
be both a feasible and a powerful approach to capture diverse land
cover dynamics in the forested ecosystems tested here. The use of
regression- and vertex-to-vertex-based trajectory fitting allows
detection of abrupt events such as disturbance as well as longer-
duration processes such as regrowth, and control parameters can be
used to reduce problems associated with overfitting. Because of the
variety of potential phenomena that can be detected, different control
parameters are likely to be useful for different ultimate mapping
Table 4
Dominant parameter values across top 5% Phase I NBR runs evaluated using three summar

Summary m

Parameter Values Kappa

pval 0.05, 0.1, 0.2 0.05+⁎

max_segments 4, 5, 6 4+++
recovery_threshold 0.25, 0.5, 1.0 0.25+
despike 0.75, 0.9, 1.0 1++
vertexcount overshoot 0, 3 –

⁎ Degree of imbalance among parameter values: None (i), slight (number only), large (+
where XXX is the parameter value.
goals. The range of possible mapping is likely greater than hitherto
described, and reflects the power and wisdom of investment in a
consistent, long-term land monitoring satellite system, as well as the
added information content accessible with free access to the entire
Landsat archive.

Acknowledgments

The development and testing of the LandTrendr algorithms reported
in this paper were made possible with support of the USDA Forest
Service Northwest Forest Plan Effectiveness Monitoring Program, the
NorthAmericanCarbonProgramthroughgrants fromNASA's Terrestrial
Ecology, Carbon Cycle Science, and Applied Sciences Programs, the
NASA New Investigator Program, the Office of Science (BER) of the U.S.
Department of Energy, and the following Inventory and Monitoring
networks of theNational Park Service: Southwest Alaska, Sierra Nevada,
Northern Colorado Plateau, and Southern Colorado Plateau. We wish to
particularly thank Dr. Melinda Moeur (Region 6, USDA Forest Service)
for her vision in supporting this work from the proof of concept to the
implementation phase. We also wish to thank Peder Nelson and Eric
Pfaff for their work on the project, and Ray Davis for helpful evaluations
of the early results from the algorithms. This work was generously
supported by the USGS EROSwith free, high quality Landsat data before
implementation of the new data policy making such data available free
of charge to everyone.

Appendix 1. Detailed parameter evaluation results

For the runs of Phase 1, two primary patterns emerge (Table A1).
First, the control parameter value of 3 was always the best for the
vertexcountovershoot. Second, the effect of varying parameter values
depended on whether capturing the most disturbance was the goal
(as represented by the disturbance_match summary metric) or
whether overall accuracy was the goal (as represented by all the
other summary metrics). The behavior of these metrics under
parameter change was generally as expected: more stringent values
y metrics.

etrics

Matched disturbance Trajectory match score

0.1, 0.2 even, no 0.05 0.05++, no 0.2
6+++ 4++ (no 5)
1, 0.5, no 0.25 0.25
0.9, no 1.0 1, no 0.75
0 3++

), very large (++), exclusive (+++). Absence of a value is indicated with “no XXX,”
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of pval and recovery_threshold led to fewer false positives, which
improved overall accuracies, but increased false negatives and
reduced the absolute number of disturbances captured. Variation in
parameter values caused similar responses in both the vertex-based
and trajectory match scores, as well as in the disturbance and overall
accuracy and kappa metrics. The same patterns of relative effect
emerged for the wetness and the NDVI indices (not shown).

The best Phase 1 runs exhibited patterns (Table A2) generally
consistent with those observed when considering each parameter
separately. If all types of change are desired, then parameter values that
avoid false positives are favored: pval of 0.05, max_segments of 4, and
recovery_threshold of 0.25. If maximum capture of disturbance is
favored, then the converse is true: pval of 0.1 or 0.2, max_segments of
6, and recovery_threshold of 1.0 (turned off). In most cases, the
vertexcountovershoot parameter should be set to 3. These conclusions
also hold for wetness and NDVI (not shown), with the exception of the
despikeparameter. For NBR, the best despike value is 1.0 (turned off), but
for wetness it is either 0.9 or 0.75, and for NDVI it is dominantly 0.75.

When filtering by percent cover was introduced (Phase 2), the
patterns of parameter effect were similar in some ways to Phase 1, but
became more variable across summary metrics and across spectral
indices (static model results; Table A3). As before, the vertexcountover-
shoot parameter value of 3 was consistently favored. Also as before, the
capture of the most disturbance events was favored whenmax_segments
was6, pvalwas0.1 or 0.2, and the recovery_thresholdwas1 (turnedoff) or
0.5, while the best capture of all types of processwas favoredwhen those
parameters were set at the complementary values. Unlike the Phase 1
results, however, the two disturbance summary metrics (disturbance
accuracy and disturbance kappa) differed from the other metrics on the
effect ofmax_segments and despike, with high segment counts (5 and 6)
and greater spike-removal (despike values of 0.75 and 0.9) becoming
favored in Phase 2. Variability among NBR, wetness, and NDVI also
increased, particularly in themax_segments and despike parameters.
Table Al
Best parameter values across all Phase 1 NBR runs evaluated using eight summary metrics.

Summary metrics

Parameter Values tested Disturbance: false negative Dis

pval 0.05, 0.1, 0.2 0.l, 0.2−⁎ 0.0
max_segments 4, 5, 6 6++ 4+
recovery_threshold 0.25, 0.5, 1.0 0.5, 1.0 0.2
despike 0.75, 0.9, 1.0 0.75− 1
vertexcount overshoot 0.3 3 3+

Summary metrics

Parameter Values tested Overall: accuracy Ove

pval 0.05, 0.1, 0.2 0.05+ 0.0
max_segments 4, 5, 6 4++ 4+
recovery_threshold 0.25, 0.5, 1.0 0.25+ 0.2
despike 0.75, 0.9, 1.0 1+ 1
vertexcount overshoot 0, 3 3 3

⁎ Separation among parameter values: None (i) moderate (number only), large (+), very
separation refers to the separation between that group and the third parameter.

Table A2
Dominant parameter values across top 5% Phase I HER runs evaluated using three summar

Summary m

Parameter Values Kappa

pval 0.05, 01, 0.2 0.05+⁎

max_segments 4, 5, 6 4+++
recovery_threshold 0.25, 0.5, 1.0 0.25+
despike 0.75, 0.9, 1.0 1++
vertexcount overshoot 0, 3 –

⁎ Degree of imbalance among parameter values: None (i), slight (number only), large (+
where XXX is the parameter value.
The parameters associated specifically with the percent-cover
modeling (Phase 2 parameters) affected the summary metrics in
generally predictable ways (also Table A3). More disturbance events
were captured when percent-cover thresholds were reduced, but
false positives increased and overall accuracies went down. Overall
accuracies increased when pct_veg_loss20 and pct_veg_gain increased,
but were generally unaffected by changes in pct_veg_loss1 or
pre_dist_cover. For disturbance accuracy and kappa metrics, pct_veg_-
gain had little effect, but were improved when pre_dist_cover and
pct_veg_loss1 were increased.

For the most part, the patterns observed when the static change
model was used were exactly matched when the delta change model
was used (not shown). For wetness, however, there were several
differences: max_segments had a reduced effect on both disturbance
accuracy and false positives, despike had an increased effect on the same
(with despike of 0.75 improving scores), and pct_veg_gainwas strongly
favored at a value of 10 (versus 3 or no effect for the static model).

The dominance patterns of parameter values in the top 5% of Phase
2 runs were generally consistent with those seen when parameters
were considered separately (Table A4). The parameter vertexcounto-
vershoot set to 3 was always favored; pval set to 0.05 was generally
favored but set to any value was sufficient for capture of disturbance;
recovery_threshold, and max_segments set to 0.25 and 4, respectively,
favored generality and set to 1.0 and 6, respectively, favored capture
of disturbance. Among parameters used for cover filtering, pct_ve-
g_loss1 and pre_dist_coverwere equivocal for overall accuracy, but set
to 10 and 10, respectively, favored capture of disturbance; pct_ve-
g_loss20 set to 10 favored generality but set lower captured
disturbance. The parameter pct_veg_gain was not relevant for the
disturbance matches, but set to 10, it favored vertex-based accuracy;
set to 3 or 5 it favored overall trajectory match accuracy. As with other
Phase 2 results, the despike showed the most variability among
spectral indices and across summary metrics.
turbance: false positive Disturbance: matched Trajectory match score

5++ 0.1, 0.2− 0.05++
6++ 4+

5 0.5, 1.0+ 0.25+
0.75, 0.9 1
3 3

rall: kappa Disturbance: accuracy Disturbance: kappa

5++ 0.05+ 0.05+
4+ 4

5+ 0.25+ 0.25
1 1.0, 0.9+
3 3++

large (++). When two parameter values are nearly identical, both are listed, and the

y metrics.

etrics

Matched disturbance Trajectory match score

0.1, 0.2 even, no 0.05 0.05++, no 0.2
6+++ 4++ (no 5)
1, 0.5, no 0.25 0.25
0.9, no 1.0 1, no 0.75
0 3++

), very large (++), exclusive (+++). Absence of a value is indicated with “no XXX,”



Table A4
Dominant parameter values in top 5% Phase 2 runs evaluated using three summary metrics.

Parameter Values Kappa Matched disturbance Trajectory match score

Static cover model Delta cover model Static cover model Delta cover model Static cover model Delta cover model

NBR Wetness NDVI NBR Wetness NDVI NBR Wetness NDVI NBR Wetness NDVI NBR Wetness NDVI NBR Wetness NDVI

pval 0.05,
0.1, 0.2

0.05+ 0.05+ . . 0.05+ 0.05+

max_segments 4, 5, 6 4++ 4++ 6+++ 6+++ 4 4
recovery_threshold 0.25,

0.5, 1.0
0.25
+

0.25, 0.5 0.25
+

0.25+ 1, 0.5 1, 0.5 . 0.25 . . 0.25 .

despike 0.75,
0.9, 1.0

1 1+ . 1 0.9 . 0.9 0.9 0.75 0.9 0.9 0.75 1,
0.9

1, 0.9 . 1, 0.9

vertexcount
overshoot

0, 3 3++ 3++ . . 3 . 3++ 3++

pct_veg_loos1 10, 15 . . 10++
+

10++ . .

pct_veg_loss20 3, 5, 10 10
+

. 10+ 10+ 3, 5 3, 5 10
+

. 10+ 10+

pre_dist_cover 10, 20,
40

. . 10, 20 10, 20 . .

pct_veg_gain 3, 5, 10 10 5 10 10 . . 5+ 5 3+ 5+ 5 10+
+

⁎Dominance of indicated parameter(s): No dominance (į), slight (number only), large (+), very large (++), and exclusive (+++).

Table A3
Best parameter values across all Phase 2 NBR runs evaluated using eight summary metrics.

Summary metrics

Parameter Values Disturbance: false negative Disturbance: false positive Disturbance: matched

NBR Wetness NDVI NBR Wetness NDVI NBR Wetness NDVI

pval 0.05, 0.1, 0.2 0.2, 0.1− . 0.2, 0.1− 0.05 0.1, 0.2− . 0.1, 0.2−
max_segments 4, 5, 6 6+ . 4, 5+ . 6++
recovery_threshold 0.25, 0.5, 1.0 0.5, 10 0.5, 1.0 1 0.25− 0.5, 1.0 0.5, 1.0 1
despike 0.75, 0.9, 1.0 0.9 0.9, 0.75 0.9, 0.75 0.9 . 0.75 0.9 0.9, 0.75 0.9
vertexcount_overshoot 0, 3 3 3 3
pct_veg_loss1 10, 15 10 15 10
pct_veg_loss20 3, 5, 10 . 10++ .
pre_dist_cover 10, 20, 40 20, 40− 40− 10, 20−
pct_veg_gain 3, 5, 10 . . .

Parameter Trajectory match score Overall: accuracy Overall: kappa

NBR Wetness NDVI NBR Wetness NDVI NBR Wetness NDVI

pval 0.05+ 0.05+ 0.05+ 0.05 0.05
max_segments 4, 5 4 4 4 4
recovery_threshold 0.25, 0.5− 0.25+ . 0.25 0.25
despike 1 0.9, 1.0 1 . 0.9, 0.1 1 0.9, 1.0−
vertexcount overshoot 3+ 3 3
pct_veg_loss1 . 15− . . .
pct_veg_loss20 10 . 10 10− . 10− 10− . 10−
pct_dist_cover . 40− . . .
pct_veg_gain 5 10 . 10 10 . 10

Parameter Disturbance: accuracy Disturbance: kappa

NBR Wetness NDVI NBR Wetness NDVI

pval 0.05 0.05
max_segments 5.6− 4.5 4− 6 5 6
recovery_threshold 0.25− .
despike 0.9 0.75− 0.75 0.9 0.75 0.75
vertexcount overshoot 3 3
pct_veg_loss1 15 15
pct_veg loss20 10+ 10+
pre_dist_cover 40− 40+ . . 40+ .
pct_veg_gain . .

⁎Separation among parameter values. None (i), slight (−), moderate (number only), large (+), very large (++). When two parameter values are nearly identical, both are listed,
and the separation refers to the separation between that group and the third.
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