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Abstract Communities of archaea, bacteria, and fungi
were examined in forest soils located in the Oregon Coast
Range and the inland Cascade Mountains. Soils from
replicated plots of Douglas-fir (Pseudotsuga menziesii)
and red alder (Alnus rubra) were characterized using fungal
ITS (internal transcribed spacer region), eubacterial 16S
rRNA, and archaeal 16S rRNA primers. Population size
was measured with quantitative (Q)-PCR and composition
was examined using length heterogeneity (LH)-PCR for
fungal composition, terminal restriction fragment length
(T-RFLP) profiles for bacterial and archaeal composition,
and sequencing to identify dominant community members.
Whereas fungal and archaeal composition varied between
sites and dominant tree species, bacterial communities only
varied between sites. The abundance of archaeal gene copy
numbers was found to be greater in coastal compared to
montane soils accounting for 11% of the prokaryotic
community. Crenarchaea groups 1.1a-associated, 1.1b,
1.1c, and 1.1c-associated were putatively identified. A
greater abundance of Crenarchaea 1.1b indicator fragments
was found in acidic (pH 4) soils with low C:N ratios under
red alder. In coastal soils, 25% of fungal sequences were
putatively identified as basidiomycetous yeasts belonging
to the genus Cryptococcus. Although the function of these
yeasts in soil is not known, they could significantly
contribute to decomposition processes in coastal soils

distinguished by rapid tree growth, high N content, low
pH, and frequent water-saturation events.

Introduction

The soil microbial community is a complex assemblage of
archaea, bacteria, and fungi, the composition of which may
impact the rate of terrestrial nutrient cycling. Although all
three major groups of organisms are routinely identified in
a variety of soil ecosystems, few studies have examined the
phylogenetic diversity of more than one group in a single
study [8, 25, 31, 58], and even fewer studies include all
three [15, 35, 41, 57]. Fierer et al. [15] reported comparable
diversity in all three groups among different ecosystem
types, suggesting that the poorly characterized soil archaea
are genotypically diverse and likely involved in a number
of important ecosystem processes.

There is a need for more studies that examine the effect
of soil and environmental variables on soil fungal, bacterial,
and archaeal communities. These factors include dominant
vegetation type [30, 33, 44], nutrient availability [11, 21,
53, 66], and soil pH [34, 54]. Whereas it is possible that
soil and environmental properties equally affect the
composition of all three domains of the soil microbiota,
reports in the literature suggest that some factors differen-
tially shape microbial groups. For example, at the
continental scale, pH has been shown to strongly correlate
to bacterial communities [34], whereas soil nutrient status
has been shown to correlate to fungal composition [34, 64].
Reports on soil archaea are mixed; Oline et al. [46] were
unable to link archaeal community composition to any
environmental correlate, and yet Nicol et al. [45] reported
correlations between crenarchaeal communities, pH, and
vegetation type.
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Forests of the Pacific Northwest region, United States,
west of the Cascade Mountain Range crest are dominated
by Douglas-fir (Pseudotsuga menziesii). This coniferous
species is important to the economy of the region and also
to the structure of forest ecosystems. In these forests, the
most extensively studied soil microorganisms have been
fungi able to form mycorrhizal associations with Douglas-fir.
Fungal species of Cenococcum, Rhizopogan, Russula, and
Piloderma [12, 20, 26] are the most commonly reported
types of ectomycorrhizal fungi, but estimates place the
number of fungal species able to form mycorrhizal
associations with Douglas-fir as high as 2000 [60]. Although
it is presumed that ectomycorrhizae dominate forest fungal
communities, few studies have characterized bulk soil using
molecular methods [1]. Even less is known about the
prokaryotic communities. Some studies suggest that the
bacterium, Pseudomonas fluorescens, may serve as a helper
bacterium in the ectomycorrhizal colonization process [17]
but this species would likely comprise a small fraction of the
diverse prokaryotic community.

The hardwood species, red alder (Alnus rubra) is also a
common tree species in Pacific Northwest forests, especially
in moist locations, such as coastal sites and in riparian areas.
Like Douglas-fir, red alder is also capable of forming
mycorrhizal symbioses. Miller et al. [39] found that only
one fungal species Thelephora terrestris was able to colonize
both Douglas-fir and red alder, even when the trees were
grown in the same soil, suggesting that the dominant tree
species will likely have a dramatic effect on the fungal
diversity. Miller et al. [39] also found that red alder was less
likely to form ectomycorrhizal associations when Douglas-fir
was present. Red alder is also an N-fixing species, forming
root nodules that house populations of the actinomycete
Frankia. Jeong and Myrold [28] reported increased popula-
tions of Frankia in the presence of host plants compared to
conifers, suggesting that the presence of red alder could alter
bacterial composition.

Although direct impacts of these two different tree
species on the soil microbial community is likely profound,
a number of other variables will also influence composition.
For instance, the diversity of understory vegetation can
number in the hundreds of species and tends to vary with
precipitation; the shrub Salal (Gaultheria shallon) is
common in drier, less productive sites, while the Western
Sword Fern (Polystichum munitum) is common in moist
locations [24]. Microbial communities will likely vary in
response to changes in the understory plant populations,
and although outside of the scope of this study, the
distribution of and predation by soil animals undoubtedly
helps to shape microbial community composition as well.
Differences in soil properties also impact particular
groups of the microbial community. For example,
nodulation of red alder roots depends on soil properties

including pH and nitrate (NO3
−) concentration. Martin et al.

[37] reported a reduction in nodulation under increasingly
acidic conditions.

In this study, we examined the general communities of
fungi, bacteria, and archaea to determine if these groups
differed phylogenetically between forests stands in different
ecoregions and planted with different tree species. We
hypothesized that the dominant members of the fungal,
bacterial, and archaeal communities would differ between
coastal and inland mountain forests and between planted
stands of Douglas-fir and red alder. Given previous
findings, we hypothesized that the fungal and bacterial
communities would vary largely based on tree species [28,
34, 64], but other factors including soil C, soil N, and pH
would also correlate with community composition of all
three groups. Lastly, we looked at correlations among the
three communities, examining the extent to which the
composition of these groups may be linked to the same
environmental factors.

Materials and Methods

Site Description and Sample Collection

Experimental plots of planted Douglas-fir and red alder were
established in 1984–1986 at sites in the Oregon Coast Range
(Cascade Head) and in the Cascade Mountains (HJ Andrews)
[49]. Soils were sampled from the two experimental tree
plantations in the spring of 2006 when trees were
approximately 20-years-old. Cascade Head Experimental
Forest is located in an ecoregion of high aboveground net
primary productivity (1.25 kg C m−2 year−1) [62], 1.6 km
from the Pacific Ocean at an elevation of 330 m (45°03′44″
N/123° 57′14″ W). The weathering of basalt headlands has
created a Histic Epiaquand [50] with high soil N content and
a pH of 4 (Table 1) [5]. In 1998, tree height averaged 13.5 m
for red alder and 8.5 m for Douglas-fir [49]. HJ Andrews
Experimental Forest in the West Cascades ecoregion is
located at an elevation of 800 m (44°13′59″ N/122°10′34″
W). Here soils are primarily classified as inceptisols [49] and
aboveground net primary productivity is lower (0.63 kg C
m−2 year−1) [62]. Concentrations of total C, total N, and
NH4

+ were significantly lower in HJ Andrews soils
compared to Cascade Head, but pH was higher (pH 5;
Table 1). In 1998, tree height was found to be significantly
lower at HJ Andrews, averaging 7.5 m for red alder and 5 m
for Douglas-fir [49].

Previous work at these sites indicated differences in
the fungal:bacterial ratio (Table 1) [5] and ammonia–
monooxygenase (amoA) gene composition in ammonia-
oxidizing bacteria and archaea [6]. HJ Andrews soil had a
significantly greater fungal:bacterial ratio than Cascade
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Head (Table 1). Bacterial amoA community structure
differed between the two sites, but did not differ between
Douglas-fir and red alder stands. Archaeal amoA could
only be amplified from Cascade Head soil and differed
between the two tree species.

Plots were organized into randomized blocks, with each
plot measuring 27×27 m. Soil was only collected from
plots that were planted exclusively with Douglas-fir or red
alder. Ten soil cores (3 cm diameter×10 cm depth) were
taken from each of three replicate plots per treatment. The
organic layer was removed so that only mineral soil was
sampled. Cores within plots were homogenized and soils
were transported on ice to the lab for DNA extraction.

DNA Extractions and PCR Amplification

DNA was extracted from soil (0.5 g) using an MOBIO
PowerSoil™ DNA isolation kit (MOBIO Laboratories,
Carlsbad, CA) according to the manufacturer’s instruc-
tions, with the modification that a Bio101 FastPrep
instrument was used to lyse cells (Bio 101, Carlsbad,
CA). The MOBIO bead-beating tubes were shaken for 45 s
using the FastPrep instrument. DNAwas quantified using a
NanoDrop™ ND-1000 UV–Visible Spectrophotometer
(Nanodrop Technologies, Wilmington, DE) and diluted to
25 ng μl−1. Two extracts from each plot were used to make
a composite template by combining 25 μl of each 25 ng
μl−1 dilution.

Quantitative PCR

A brilliant SYBR Green™ Q-PCR Core Reagent Kit
(Stratagene, Jolla, CA) and an ABI 7500 Sequence
Detection System (Applied Biosystems, Foster City, CA)
were used for all Q-PCR assays. Q-PCR was used
to quantify the number of fungal ITS, bacterial 16S, and
archaeal 16S rRNA sequences. Briefly, 2 μl of a
1.25 ng μl−1 dilution was combined with ITS primers
(5.8S and ITS1F) for fungi or 16S rRNA primers (Eub338
and Eub518) for bacteria. PCR conditions have been
described previously [5, 16]. 16S rRNA primers A915-for

(AGG AAT TGG CGG GGG AGC AC) and Arc 1059r
(GCC ATG CAC CWC CTC T) were used to quantify the
archaeal community [67]. Each soil DNA extract and
standard was run in triplicate. An ITS clone of the fungus
Haematonectria haematococca was used as a standard for
fungi, a 16S rRNA clone of the bacterium Pseudomonas
aeruginosa was used for bacteria, and a 16S rRNA clone of
Sulfolobus solfataricus were used for archaea. Plasmid
concentrations ranged from 5.0×10−1 to 5.0×10−7 ng
DNA. Standard curves from each run were analyzed to
ensure r2 values>0.95, efficiency values between 95% and
105%, and to affirm that disassociation curves contained a
single dominant peak.

T-RFLP and LH-PCR Profiles

Approximately 100 ng of DNA was used in each
conventional PCR reaction. The fungal internal
transcribed spacer region (ITS) was amplified with
primers ITS1F and ITS4 [18] as previously described
[2]. Eubacterial 16S rRNA was amplified using primers
16S 8-F [13] and 16S 907-R [40] as described by Hackl et
al. [21]. Archaeal 16S rRNA was amplified using primers
Ar3f [19] and Ar927r [29]. ITS1F, 16S 8-F, and Ar3f
contained FAM labels for sequence detection. Eubacterial
and archaeal 16S PCR products were cleaned using a
Qiaquick™ PCR Purification kit (Qiagen Inc., Valencia,
CA) and restricted using three enzymes. PCR products for
eubacterial 16S rRNAwere restricted using enzymes CfoI,
MspI, and RsaI, and products from archaeal 16S rRNA
were restricted using AluI, MspI, and RsaI. Restriction
enzymes were selected based on in silico digestion
of ∼100 sequences per gene, representing a cross section
of microbial phyla, downloaded from the NCBI website
(data not shown). Restriction products were purified using
illustra Sephadex™ columns (GE Healthcare, Piscataway,
NJ). The fungal ITS PCR products were not restricted and
were instead analyzed for length heterogeneity (LH-PCR).
Both terminal restriction fragment length polymorphism
(T-RFLP) and LH-PCR profiles were generated by Oregon
State University’s Center of Genome Research and

Cascade Head HJ Andrews

Soil characteristics Red alder Douglas-fir Red alder Douglas-fir

Total C(g kg−1 soil) 144±18 128±4 82±21 90±13

Total N(g kg−1 soil) 9.2±1.6 6.7±0.2 3.4±0.3 2.7±0.1

NH4
+ (mg N kg−1 soil) 3.4±0.8 4.5±0.6 2.6±0.8 1.0±0.4

NO3
− (mg N kg−1 soil) 8.0±2.2 4.4±1.7 3.2±0.7 0.3±0.1

pH 3.6±0.0 4.1±0.1 5.1±0.1 5.0±0.1

Water content (%) 113±2 102±5 63±20 68±12

F:B ratio (PLFA) 0.011±0.002 0.010±0.001 0.027±0.009 0.053±0.010

Table 1 Selected soil character-
istics for the four experimental
treatments (n=3) [5]
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Biocomputing using an ABI 3100 capillary DNA
sequencer (Applied Biosystems, Foster City, CA).

Cloning and Sequencing

Clones were generated using a Topo TA cloning™ kit for
sequencing (Invitrogen, Carlsbad, CA) according to manu-
facturer’s instructions. For each of the three genes one PCR
reaction was performed per plot, products from the three
replicate plots were combined, and a single cloning reaction
was used for each site × treatment (n=12). For the fungal and
archaeal libraries 24 clones were selected from each cloning
reaction resulting in 96 clones per gene. For the bacterial
library 35 clones were selected from each cloning reaction
resulting in 140 clones per gene. Clones were plasmid
purified using QIAprep™ Spin Miniprep kit (Qiagen,
Carlsbad, CA) and sequenced by the High Throughput
Genomics Unit (Dept. of Genome Science, University of
Washington, Seattle, WA).

Statistical and Phylogenetic Analysis

T-RFLP and LH-PCR profiles were analyzed using
GenoTyper version 3.7 (Applied Biosystems, Foster City,
CA). T-RFLP and LH-PCR profiles were further analyzed
according to methods described previously [4]. Community
composition was investigated using PC-ORD Multivariate
Analysis of Ecological Data version 4.06 (MjM software,
Gleneden Beach, OR). Non-metric multidimensional scaling
(NMS) was used to visualize community compositional
variation by the Relative Sørensen measure and NMS
constrained to two-dimensions with a stress threshold <10
[38]. Blocked multi-response permutation procedures
(MRBP) were used to determine differences between site
and tree species [38]. MRBP randomizes each row of a
distance matrix and compares it to the original matrix to test
the likelihood of treatment variations. Results include A
statistics which are a measure of within-group variability and
p values (an A statistic=1 indicates no variability within
sample groups) [38]. Indicator species analysis was
performed to determine which fragments contributed to
treatment differences [38]. Indicator species analysis
identifies the members of each community that occur in
treatments at a relatively higher rate than could occur by
chance (random distribution is calculated using a Monte
Carlo test). Finally, Mantel tests were used to test for
significant correlations between community data sets [38].
Here, distance matrices are calculated for each of the
communities and tested against a random distribution to
determine if two communities are more highly correlated
than could occur by chance.

DNA sequences were aligned using ClustalX version
1.81 [59] and alignments were edited using Bioedit

sequence alignment editor version 7.0.5 [23]. Identification
of sequences was made using the NCBI Blast search
engine. Identification of 16S sequences was confirmed
using the software and information from the Ribosomal
Database Project [9]. All sequences were analyzed using
Mallard Version 1.02 (Cardiff University, Boston, MA) to
ensure that no chimeras or other sequencing anomalies
occurred. In cases where Mallard flagged potential chimeric
sequences, the first and second halves of each sequence
were blasted to test for the same match. When the two
halves had different matches, they were excluded from the
data set. Phylogenetic trees were constructed using
Mr. Bayes Version 3.1 [27, 51] and confirmed using Phylip
Version 3.2 [14]. Mr. Bayes was run using an omega
variation model (M3), a codon model that calculates the
likely rate of variation at each site. The model was run for
1 million generations to ensure convergence at a stable
value [22]. Sequences were further analyzed by calculating
richness estimates and examining the numbers of
operational taxonomic units (OTUs) using the DOTUR
program [55]. All sequences were submitted to Genbank
and assigned the following acquisition numbers: fungi
GU366661–GU366750, bacteria GU366751–GU366879,
and archaea GU366880–GU366972.

Results and Discussion

Fungal Community Composition

Fungal community fingerprints clustered based on site and
dominant tree species (Fig. 1). MRBP statistics indicated
that fungal profiles differed significantly between sites
(A statistic=0.1 and p=0.009), and also separated by tree
species (A statistic=0.0 and p=0.009). There were signif-
icantly greater numbers of ITS copies g−1 soil in HJ
Andrews’ soils compared to Cascade Head, but gene copy
numbers did not differ between tree species (Fig. 1).
Although a significant difference in ITS copies g−1 soil
might be indicative of differences in fungal population size,
the magnitude of this difference is hard to discern because
the number of ITS regions can vary from several hundred to
a few thousand copies per genome across different fungal
lineages [52]. Community profiles were also examined for
the presence of indicator fragments, in other words, those
LH-PCR peaks differing significantly between sites or tree
species. Profiles contained a single indicator fragment
for tree species, which was significantly higher in red alder
compared to Douglas-fir soils. Unfortunately, this fragment
was not identified through sequencing. Five indicator
fragments were found between the two sites. One fragment
was not identified through sequencing, but the others are
described below.
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A clone library was constructed to look for dominant
fungal lineages and to help in phylogenetic identification of
indicator fragments. A total of 96 clones were sequenced.
Four sequences were excluded because of chimeras and other
anomalies, leaving 92 clones for analysis: 24 from Cascade
Head red alder, 23 from Cascade Head Douglas-fir, 22 from
HJ Andrews red alder, and 23 from HJ Andrews Douglas-fir.
At a 99% similarity threshold there were 69 unique OTUs
representing 27 fungal families. These families included four
families of ascomycetes that had greater than four sequenced

representatives:Helotiaceae, Hyaloscyphaceae, Pyronemata-
ceae, and Trichocomaceae (Table 2). Sequences were
analyzed in silico for fragment lengths and matched to
LH-PCR peaks. The indicator fragment putatively identified
as belonging to the families Pyronemataceae and Trichoco-
maceae was significantly higher in HJ Andrews’ than
Cascade Head soils (p=0.002; Table 2). Fungi in the family
Pyronemataceae are known to have diverse trophic strategies
[48] and sequences matched both mycorrhizal and saprobic
environmental isolates. Fungi in the family Trichocomaceae

Cascade Head H.J. Andrews
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Figure 1 Non-metric multidi-
mensional scaling ordinations
of fungal LH-PCR and bacterial
and archaeal T-RFLP profiles.
Each point represents an exper-
imental plot coded by treatment
and sized to show the relative
size of the population as deter-
mined by Q-PCR. Tables give
the mean gene copy numbers for
each treatment (n=3) and
ANOVA results for population
differences between sites and
tree species (NS not significant)
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included commonly described saprobes including Penicillium
and Aspergillus. Fungal sequences putatively identified in
Helotiaceae and Hygrophoraceae had fragment lengths of
approximately 593 bp and could not be distinguished using
the LH-PCR methods.

LH-PCR fragment lengths of 553 bp (p=0.004) and
683 bp (p=0.004) were identified as indicator species for
Cascade Head soils (Table 2). These fragments were
putatively identified to match two species of Cryptococcus.
One fragment most closely matched Cryptococcus
terriocola, which belongs to the order Filobasidiales and
the second most closely matched Cryptococcus podzolicus
belonging to the order Tremellales. Twenty-five percent of
the clones recovered from Cascade Head soils matched
these two Cryptococcus species and fungal profiles
contained a mean relative fluorescence of 29±3% of these
two indicator peaks.

Our findings suggest that basidiomycetous yeast may
represent a large portion of the fungal community in
Cascade Head soils. The andic soil at Cascade Head is a
nutrient-rich matrix, low in pH, and typically well-drained
in spite of large annual rainfall. Previous studies have
shown that basidiomycetous yeasts are ubiquitous in soils
[3, 7, 10, 63]. Vishniac [63] reported a high abundance of
C. podzolicus in tropical cloud forest soils (pH of 4.8), and
observed that a correlation existed between the abundance
of C. podzolicus, increased annual rainfall, and net
primary productivity. These conditions may favor popula-
tions of basidiomycetous yeast that likely function in
organic matter decomposition. Recently, using 454
sequencing Buée et al. [7] reported Cryptococcus as the
second most dominant sequence identified in temperate
hardwood forests. Maksimova and Chernov [36] used
culturing techniques to study soil yeast diversity and
reported the dominance of C. terriocola and C. podzolicus
in forest soil mineral layers under bilberry (Vaccinium
myrtillus)-spruce (Picea abies), birch (Betula sp.), and

alder (Alnus sp.). The role of these aerobic, unicellular
fungi in soil ecosystems is unclear. Shubakov [56]
reported that C. podzolicus cultures are able to degrade
xylose and other polymeric carbohydrates.

Bacterial Community Composition

CascadeHead bacterial communities differed fromHJAndrew
communities (Fig. 1), as confirmed by MRBP statistics
(A statistic=0.4 and p<0.001,). Profiles did not separate by
dominant tree species (A statistic=−0.1 and p=0.506).
Similarly, bacterial 16S gene copy numbers g−1 soil did not
differ between sites or tree species, but tended to be lower in
Douglas-fir plots at HJ Andrews in comparison to the other
three treatments (Fig. 1).

Several fragments were identified using indicator
species analysis that significantly differed between
Cascade Head and HJ Andrews communities. These
included six terminal restriction fragments (T-RFs) that
were dominant in at least one soil type and were identified
through sequencing. A total of 132 clones were used in
bacterial sequence analysis (eight sequences were exclud-
ed because of possible chimeras). Six clones were
matched to each indicator T-RF. Indicator fragments for
each of these bacterial groups were summed and the means
for each treatment were compared (Fig. 2). Although it is
doubtful that our sequencing could identify all T-RFs
belonging to members of Acidobacteria, α-proteobacteria,
and δ-Proteobacteria, we chose to use these T-RFs as
putative indicators of these major bacterial groups.

CfoI 277 and CfoI 293-294 were found in all soil
profiles and averaged 11±1% and 7±1% respectively
across all soils. These TR-Fs were found in four and seven
clones, respectively, all matching the phylum Acidobac-
teria. The relative fluorescence of putatively identified
Acidobacteria peaks did not vary between the two sites, but
made up a significantly greater proportion of bacterial

Relative Fluorescence

LH-PCR Cascade Head HJ Andrews

Fungal groups (bp) Red alder Douglas-fir Red alder Douglas-fir

Ascomycetes

Helotiaceaea 593 1.9±1.0 0 0 13.0±3.2

Hyaloscyphaceae 600 1.7±1.0 6.6±2.8 0 0

Pyronemataceae, Trichocomaceae 627 0 0 1.7±0.9 14.8±3.1

Basidiomycetes

Atheliaceae 667 12.6±4.3 0 0 0

Hygrophoraceaea 593 1.9±1.0 0 0 13.0±3.2

Filobasidiales 683 8.3±3.3 14.5±1.8 0 0.6±0.6

Tremellales 553 16.7±2.5 19.5±5.2 2.2±1.2 3.0±0.1

Table 2 Dominant fungal
groups identified through
cloning and sequencing. LH-
PCR fragments were determined
in silico and matched to ITS
LH-PCR profiles to estimate
relative abundance of each
family within a treatment

Relative fluorescence values are
the mean ± SE (n=3)
a Sequences matching Helotiaceae
and Hygrophoraceae both had
lengths of 593 bp
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profiles in Douglas-fir compared to red alder soil (p=0.033;
Fig. 2).

A large majority of sequences matching α-proteobac-
teria belonged to the order Rhizobiales, with sequences
clustering into the families Bradyrhizobiaceae and Hypho-
microbiaceae. Few sequences could be matched to a lower
taxonomic level, but four sequences had >90% similarity to
species of Bradyrhizobium. Surprisingly, Bradyrhizobium
was the only N-fixing bacteria identified in clone libraries,
even though red alder is a host for Frankia. Host plant
species for Bradyrhizobium were present at both sites
(i.e., species of Trifolium and Lathyrus), but no attempt was
made to quantify or characterize the presence of these
understory species. Three T-RFs matched members of
the subphylum α-proteobacteria and were present in most
soil types: MspI 146 (7±3%), RsaI 419 (5±1%), and RsaI
421–422 (12±1%). The sum of the α-proteobacterial
indicators varied significantly between the two sites
(p=0.032) and was nearly significant between the domi-
nant tree species (p=0.058), with the largest proportion
found in the Douglas-fir treatments at Cascade Head.

RsaI 471 was present in HJ Andrews’ soils and averaged
8±1% of the total relative fluorescence. RsaI 471 was
significantly greater in HJ Andrews soils compared to
Cascade Head soils (p=0.008; Fig. 2). Four clones
containing this TR-F matched environmental clones of
δ-proteobacteria. Phylogenetic analysis revealed no close
associations to cultured representatives of δ-proteobacteria
(data not shown). The closest known sequences belonged to
the order Myxococcales (43% sequence similarity). The

high diversity [65] and varied functionality within the
δ-proteobacteria, including complex cell communication
and sulfate reduction, make it impossible to assign a
putative function to the current group of uncultured
bacteria.

Archaeal Community Composition

T-RFLP profiles for the archaeal 16S separated in
ordination space both by site and by tree species
(Fig. 1). MRBP analysis separated the communities
statistically by site (A statistic=0.2 and p=0.003) and
by tree species (A statistic=0.2 and p=0.007). Even more
dramatic than compositional shifts, however, were significant
differences found in the archaeal 16S gene copy numbers
between the two sites. Cascade Head soils contained
approximately fourfold more archaeal 16S copy numbers
g−1 soil compared to HJ Andrews’ soils, with archaeal 16S
accounting for 11±1% of the total prokaryotic population
(Fig. 1). Kemnitz et al. [32] reported a similar percentage in
acidic forest soils with mixed deciduous tree species,
whereas researchers studying agricultural soils reported a
much lower proportion (<1%) [47].

All 16S archaeal clones were putatively placed into
four subgroups of Crenarchaeota: 1.1a-associated, 1.1b,
1.1c, and 1.1c-associated (Fig. 3) [42]. The majority of
clones clustered within the Crenarchaea 1.1c. In silico
analysis of sequences revealed good agreement in T-RFs
for each group. 1.1a-associated sequences all contained
cut site AluI 223; all 1.1b sequences contained RsaI
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Figure 2 Relative fluorescence of bacterial indicator fragments across
the four experimental treatments. Indicators include: acidobacterial
T-RFs CfoI 277and CfoI 293–294; α-proteobacterial T-RFs MspI 146,
RsaI 419, and RsaI 421–422; and δ-proteobacterial indicators RsaI

471–472. Bars represent treatment means (n=3) of the sum of group
indicator fragments with SE bars. Capital letters represent site
differences and lowercase letters represent differences in dominant
vegetation type (p<0.05)
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Figure 3 Archaeal 16S rRNA tree constructed using Bayesian
analysis. Numbers show the probability of clade assignments. Cluster
assignments are made based on Nicol et al. [42] with sequences from
this study appearing in bold. When a single sequence represents an

OTU the clone number is given, in all other cases group assignments
1–18 show OTUs with multiple sequences. Triangles represent clones
from Cascade Head, circles from the HJ Andrews, black symbols
represent Douglas-fir, and gray symbols denote red alder clones
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260-262; 17 clones putatively identified as 1.1c contained
RsaI 90, and all 1.1c-associated sequences contained RsaI
290.

Indicator fragments for Crenarchaea 1.1a-associated
and 1.1c made up the largest fractions of relative
fluorescence (16±1% and 17±1%, respectively), but did not
significantly differ between sites or by tree species. Crenarch-
aea 1.1c have been shown previously to dominate acidic,
forest ecosystems [32, 42], but have not been linked to
specific functions. Crenarchaea 1.1b indictor T-RFs were
significantly greater in red alder (13±2%) compared to
Douglas-fir soil (5±1%; Fig. 4). Previously, we reported a
similar difference in ammonia-oxidizing archaeal compo-
sition (based on amoA T-RFLP) between red alder and
Douglas-fir [6]. Although archaeal amoAwas linked to the
crenarchaea 1.1b group in a soil fosmid [61], the extent to
which amoA genes are distributed among the Crenarchaea
is unclear.

Compositional and Environmental Correlations

A set of standard measurements that included C and N
content, C:N ratio of microbial biomass, and pH were taken
for each soil plot (Table 1) [5]. These soil properties are not
an exhaustive list and cannot capture the complexity of
microhabitats experienced by soil microorganisms. Rather,
these select properties are meant to provide information on
bulk soil characteristics that may contribute to microbial
community differences. For each microbial community, an
NMS distance matrix was created that could be correlated
to soil properties (Table 3). Fungal community composition
significantly correlated with all soil properties measured
(Table 3). The most significant correlations were found
between composition and pH and gravimetric water content
(Table 3). Because of dramatic differences in soil properties
between the two sites and a number of co-variables,
we cannot definitively determine which of these factors, if

Figure 4 Relative fluorescence of archaeal indicator fragments
across the four experimental treatments. Indicators are as follows:
1.1a-associated AluI 223, 1.1b RsaI 260–262, 1.1c RsaI 90, and

1.1c-associated RsaI 290. Bars represent treatment means (n=3)
with SE bars. Lowercase letters represent differences in dominant
vegetation type (p<0.05)

Soil propertya Fungi Bacteria Archaea

R p value R p value R p value

Total soil C (49–176 g kg−1 soil) −0.70 0.012 −0.54 NS 0.12 NS

Total soil N (2.6–12.3 g kg−1 soil) −0.77 0.003 −0.57 NS 0.00 NS

NO3
− –N (0.7–12.2 mg kg−1 soil) −0.64 0.025 −0.42 NS −0.20 NS

NH4
+ –N (0.5–5.4 mg kg−1 soil) −0.67 0.018 −0.87 <0.001 −0.16 NS

Soil C:N ratio (9.2–40.1) 0.62 0.033 0.64 0.025 0.18 NS

Microbial Biomass C:N (11.9–24.4) 0.62 0.030 0.75 0.005 −0.29 NS

pH (3.6–5.3) 0.89 <0.001 0.68 0.014 −0.10 NS

Gravimetric H2O (53–120%) 0.89 <0.001 −0.79 0.002 0.02 NS

Table 3 Correlations between
community profiles of fungi,
bacteria, and archaea and soil
properties

R the Pearson correlation coef-
ficient with two sided p values
compared to a random distribu-
tion (N=12). NS not significant,
p value>0.05
a Soil properties have been pub-
lished previously [5], the range
across all experimental treatments
are given in parentheses
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any, had the greatest effect on fungal composition. It is
possible that different fractions of the fungal community
(i.e., filamentous vs. yeast forms) will be preferentially
affected by a variety of environmental factors, although to
our knowledge no studies have addressed this question.

Bacterial composition was also significantly correlated to a
number of soil properties (Table 3); the strongest correlation
was to soil NH4

+ concentration. Bacterial composition was
not significantly correlated to soil C, N, or NO3

− concen-
trations, however (Table 3). Similar to previous reports [34,
54], bacterial community composition was correlated to pH.

Unlike fungal and bacterial composition, no correlations
could be found between archaeal community composition
and any of the measured soil parameters (Table 3). Oline et
al. [46] observed a similar lack in correlations between
archaeal composition and soil properties. Given the
significant differences we observed between archaeal
composition at the two experimental sites and under the
different vegetation types, this result was surprising. The
lack of correlation between archaeal composition and bulk
soil properties underscores the need to better understand
microhabitat structure, especially in the interest of studying
these yet uncultured microorganisms.

Using the distance matrices for each of the community
profiles, we also examined data for correlations between the
community structures of major groups of microorganisms. All
three microbial groups were significantly correlated (Table 4).
The correlations between the community structure of fungi,
bacteria, and several soil properties suggest the composition
of both communities is in part determined by the same soil
factors. Interestingly, although the structure of the archaea
did not correlate to these soil properties they did correlate to
bacteria and to a slightly greater extent to the fungal
communities. It has recently been suggested that the ability
to carry out ammonia oxidation may be widely distributed
across the Group 1 Crenarchaea [43]. Therefore, we also
compared the 16S archaeal T-RFLP profiles to those of the
archaeal amoA from Cascade Head [6], but found that the
profiles did not correlate (p=0.489). The Crenarchaea 1.1c
and 1.1c-associated, which have not been linked to
nitrification genes, accounted for 20–25% of the archaeal
abundance (Fig. 4) and may have masked any correlation
between the amoA T-RFLPs and groups such as the

Crenarchaea 1.1b. The results may indicate that only a
subpopulation of the Crenarchaea possesses amoA. An
alternative conclusion may be that 16S and archaeal amoA
gene families do not have congruent tree topology, although
Nicol et al. [43] compared 16S archaeal phylogenetic trees to
archaeal amoA trees and reported good agreement between
the two genes.

Conclusion

We observed microbial community compositional and
abundance differences between the two ecoregions, dominant
vegetation types, and soil properties. All three communities
differed between the two experimental sites suggesting that
environmental factors help to shape unique communities of
fungi, bacteria, and archaea. In the case of fungi and bacteria,
these factors include concentrations of mineral N, soil pH, and
water content. Presumably, archaeal compositional differences
also arise from differences in soil properties, but we were
unable to uncover the main drivers for these community
memberships. We eagerly await isolation of the first pure
culture of soil-borne Crenarchaea to study the phenotypes
and gain a better understanding of their niche.

In the N-rich, acidic soils at Cascade Head our community
characterization revealed a fungal community with a high
abundance of unicellular, basidiomycetous yeast. Future
research will focus on these microorganisms in an attempt to
learn more about their distribution and functional significance.
A relatively large population of archaea was also found in the
soils at Cascade Head. From previous research, we know that
the genes for archaeal ammonia oxidation are present at
Cascade Head [6] and that archaea are likely to play an
important role in soil N cycling under acidic conditions [43].
With archaeal populations of 109 gene copies g−1 soil and
representing 11% of the prokaryotic population, they are also
likely to be important in soil C cycling. Greater abundance of
Crenarchaea 1.1b under red alder compared to Douglas-fir
also suggests a linkage between this group and the dominant
tree species. These observations make Cascade Head and HJ
Andrews interesting soil ecosystems that could yield valuable
insights into the functional diversity of forest soil archaea.
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Table 4 Mantel test results of correlations between community
profiles of fungi, bacteria, and archaea. Distances matrices were
calculated for each set of profiles and compared. p values were
determined by Monte Carlo tests

Comparison R2 p value

Fungal ITS x bacterial 16S 0.56 <0.001

Fungal ITS x archaeal 16S 0.48 <0.001

Bacterial 16S x archaeal 16S 0.36 0.003
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