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Ecosystems are highly heterogeneous systems subjected to important levels of en-

vironmental variability; however, it is common in terrestrial biogeochemical models to

assume homogeneous properties of the elements of the system or constant environmental

conditions. For some processes, heterogeneity in these models is treated very simplisti-

cally, but there is not much information about the advantages of including more complex

representations in these models. By environmental variability I refer to the continuous

changes of abiotic drivers in ecosystems, mainly climatic conditions. System heterogeneity

is treated here as the diversity of elements that compose an ecosystem and respond differ-

ently to biotic and abiotic drivers. In this dissertation I performed a theoretical analysis to

evaluate the consequences of ignoring heterogeneity and variability on the representation

of carbon and nitrogen cycling in terrestrial biogeochemical models. For this purpose I

used tools from probability theory and simulation models to test the hypothesis that ig-

noring heterogeneity and variability excludes a variety of system properties and behaviors

that cannot be obtained with simpler models. Explicit treatments of climatic variability

showed that changes in temperature variance alone can modify the amounts of respira-

tion and carbon storage in ecosystems. Additionally, changes in temperature variance

can modify predictions solely based on changes in temperature averages. This behavior



is strongly dependent on the degree and nature of nonlinearity in ecosystems. Effects

of system heterogeneity on carbon and nitrogen cycling are also strongly influenced by

nonlinearities. Extrapolations of average system behavior are only valid when the system

is linear and the elements of the system are distributed homogeneously or symmetrically

around an average value. In all other cases, the nonlinearity of the system and the dis-

tribution of its elements produce complex behaviors that are impossible to predict with

simple models.
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ENVIRONMENTAL VARIABILITY AND SYSTEM

HETEROGENEITY IN TERRESTRIAL BIOGEOCHEMICAL

MODELS

1. INTRODUCTION

This dissertation is primarily concerned with issues of environmental variability and

system heterogeneity in terrestrial biogeochemical modeling. By environmental variability

I refer to the continuous changes of abiotic drivers in ecosystems, mainly climatic condi-

tions. System heterogeneity is treated here as the diversity of elements that compose an

ecosystem and respond differently to biotic and abiotic drivers. Variability and hetero-

geneity have been largely simplified in terrestrial biogeochemical models, so the motivation

of this dissertation is to explore the consequences of their explicit treatment.

In this chapter I will focus on exploring the issue of strict determinism in ecosystem

models. It is not my intent to present here an exhaustive and rigorous analysis, but

rather to provide some ideas that could help to reconcile the discrepancy in approaches

between the empirical and modeling communities in ecosystem science. This chapter also

serves as introduction to the whole dissertation and gives the conceptual support of the

different analyses presented in subsequent chapters. Given the theoretical nature of this

dissertation, it was necessary to touch on some aspects of philosophy and history of science.
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1.1. Background

A little more than fifty years ago a scientific revolution started developing in the

biophysical and ecological sciences. A time series of the concentration of CO2 in the atmo-

sphere has become as iconic as the double helix, E = mc2, or even Leonardo’s Mona Lisa

(Moore 2002, Briggs 2007). The increasing trend it depicted introduced a new paradigm

into the ecological sciences, that of a human-made, rapidly changing environment. Be-

fore this new paradigm became a dominant theme, ecosystem ecology was a small and

emerging discipline mainly concerned with fluxes of matter and energy in natural systems,

dealing with problems such as acid rain, lake eutrophication, and movement of pesticides

and radioactive elements. Today the discipline has gained a predominant role in the nat-

ural and physical sciences, with the important task of understanding how the cycle of

biogeochemical elements are being affected by human actions and how these might be

affecting current and future climate.

The positioning of ecosystem ecology within the broader discipline of Earth System

Science would not have been possible without the level of mathematical conceptualization

that has been accomplished. Mathematical models of ecosystems are the primary tool in

ecosystem science for integration of knowledge as well as for communication with other

disciplines. Models of the biogeochemistry of terrestrial ecosystems are now being coupled

with models of the physics and chemistry of the atmosphere and oceans. These new models

are also being used for diagnosing the state of key environmental variables and prescribe

possible solutions to global environmental problems.

The current generation of terrestrial biogeochemical models incorporates an intricate

mix of equations for different ecosystem processes. Mechanisms for water, carbon and

nitrogen cycling are described with systems of differential or difference equations that

provide exact solutions for the state of the system in space and time. The approach relies
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heavily on their numerical implementation in computers and is highly deterministic.

The ecological sciences have a strong tradition of explicitly addressing variability

and heterogeneity. Early in the history of ecology, statistics became the primary tool for

analyzing field data and framing the scope of the findings. It is therefore puzzling why

ecosystem models have developed in a strict deterministic framework. This mismatch of

approaches between field research and modeling in ecosystem ecology is a topic that may

have been overlooked and deserves more attention. It requires stepping back from our

detailed work in our sub-discipline and looking at the whole discipline from above. Like

the artist methodically working on the finger of an sculpture, or the musician writing an

almost imperceptible oboe melody, they have to stop once in a while and look at the whole

sculpture or symphony. It is also helpful in science to stop our detailed work on a specific

subject and look at the state of the whole discipline to see how all the pieces fit.

1.2. Ecosystem models and classical mechanics

Some of the first ecosystem models appeared in the 1950s and 60s, representing the

ecosystem as a set of pools connected through mathematical relationships. The work of

Eugene and Howard T. Odum conceptualizing energy cycling in ecosystems was funda-

mental for the mathematical representation of ecosystems. At that time, ecosystems were

represented in analogy to electrical circuits and the legacy of that work still remains in

some ecosystem models. Equally important in the development of ecosystem models has

been the work in the area of environmental physiology, which has provided basic equations

for the energy, water, and carbon balance of ecosystems.

Deterministic ecosystem models have been highly valued due to their causal connec-

tions among variables that allow the researcher to explore whole system behavior under

new conditions. This has been particularly useful for exploring the possible response of
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ecosystems to climatic and other environmental changes. These causal connections among

variables are often defined as mechanisms, represented as equations that predict the exact

consequences due to a change in the driving variables. In many cases the exact mecha-

nisms are poorly known or are too complex for explicit mathematical treatment. In these

cases models incorporate relational solutions that mimic these mechanisms. In general,

mechanisms or their approximations are based on some theoretical consideration and con-

tain parameters that need to be estimated for the specific conditions for which the model

is applied. Traditionally, parameters are considered as fixed values, but may change in

the spatial or temporal domain.

The work of the ecosystem modeler contrasts with the work of the field ecologist,

who explicitly deals with variability of the observed data using tools from statistics such as

analysis of variance and regression. The statistical models often used in observational or

experimental studies are considered of lesser value if they are not based on first biological

or physical principles. Rarely, empirical equations are introduced in ecosystem models,

and if they are, they omit a fundamental part of the empirical model: the error term. This

error term is an explicit account of unexplained variability in empirical models, but given

the structure of deterministic ecosystem models it is practically impossible to include it.

The same is true for the measures of variability, usually expressed as standard errors, that

empirical models present for estimated parameter values

It is clear that there is a fundamental difference between the work conducted in

ecosystem science between the modeling and the observational/experimental communities.

Ecosystem models are powerful tools for exploring whole system behavior under different

assumptions of the driving variables, but omit the variability and heterogeneity that field

observations and experiments display. Is this a reconcilable paradox within the discipline?

Can a new generation of ecosystem models incorporate the variability and heterogeneity

found in experiments and observations?
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This paradox between determinism and uncertainty has some similarities with the

history of physics at the beginning of the 20th century. Before this time physics was still

under the paradigms of Newtonian mechanics, but failed to explain some phenomena such

as the mechanics of electrons and atoms. A significant paradigm change was introduced

with Heisenberg’s uncertainty principle, which led to the development of quantum me-

chanics. A good perspective on the state of physics at that time can be gathered from

this passage from Thomas Kuhn’s (1962, p. 84) Structure of Scientific Revolutions:

And Wolfgang Pauli, in the months before Heisenberg’s paper on matrix me-

chanics pointed the way to a new quantum theory, wrote to a friend, “At the

moment physics is again terribly confused. In any case, it is too difficult for

me, and I wish I had been a movie comedian or something of the sort and had

never heard of physics.” That testimony is particularly impressive if contrasted

with Pauli’s words less than five months later: “Heisenberg’s type of mechan-

ics has again given me hope and joy in life. To be sure it does not supply the

solution to the riddle, but I believe it is again possible to march forward.”

Although ecosystem ecology is not concerned with the motion of particles, there

are interesting similarities with physics that deserve some attention. The set of equations

commonly encountered in ecosystem models are the same type of equations used to de-

scribe the dynamics of objects in classical mechanics. In this respect one could say that

ecosystem modeling is at a stage of development similar to that of Newtonian physics at

the beginning of the 20th century, with the main difference that ecosystem models imple-

ment a large set of state variables and parameters in a numerical framework; i.e., with

the aid of computers. In fact, the ecosystem models of today are very similar to the me-

chanical systems that Arthur Tansley envisioned almost 75 years ago when he compared

nature with physical entities.

Heisenberg’s uncertainty principle and the subsequent development of quantum me-
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chanics introduced a fundamental change in the conceptualization of the physical world.

It was realized that the exact position and momentum of particles cannot be estimated

exactly and simultaneously, but rather one could make inferences about the probabil-

ity of their trajectories. It was also a realization that, at certain levels of observation,

deterministic predictions were pointless and probabilistic statements more informative.

There have been attempts to introduce concepts from quantum mechanics in ecology,

mainly for predicting the dynamics of populations and communities. It has been argued

that the relatively low success of applying these concepts was due to the lack of a ‘conserved

quantity’ similar to the total kinetic energy of the molecules in a perfect gas (Maynard-

Smith 1974). However, at the ecosystem level such variables exist. Energy, water, carbon

and nutrients are quantities that follow the principles of conservation of mass and energy,

therefore it is possible to apply the concepts of statistical mechanics in ecosystem ecology.

Whether the exact same concepts and tools from quantum mechanics would be useful is a

different question, but a change in paradigm from deterministic to probabilistic inference

would be an important advancement.

1.3. Variability and uncertainty in ecosystem ecology

As mentioned above, ecology is a discipline that has always been concerned with

variability and heterogeneity. In fact, the modeling and observational communities in

ecosystem ecology seem to be very aware of the limitations and dangers of strict deter-

ministic predictions (e.g., Clark et al. 2001, Raupach et al. 2005). There are a few ways

in which modelers have tried to get around this problem. One is the use of uncertainty

analysis, basically producing uncertainty bounds on the predictions based on different

techniques such as sensitivity analysis or Monte-Carlo uncertainty estimators (H̊akanson

2003). Another way for approaching uncertainty has been through model-intercomparison
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projects, in which different modeling teams compare their model output (e.g., Melillo et

al. 1995, Cramer et al. 2001). More recently, model-data assimilation techniques have

become more popular (Raupach et al. 2005, Williams et al. 2005), but are not widely

applied.

The goal from all these techniques is the same, to produce an estimate of the un-

certainty or variability that cannot be solely explained by the mechanisms included in

the model. However, not all modeling results provide a measure of uncertainty of the

predictions; and perhaps more problematic, there seems to be confusion about the type of

uncertainty that the reported error bars represent: uncertainty in model structure, param-

eters, driving variables, or numerical implementation? Despite this confusion, it is clear

that the paradigm shift is occurring, and although not all model applications currently

report prediction uncertainty, a growing number do.

If prediction uncertainty is reported, in theory we can estimate the probability of an

event occurring, of a data point to be observed, or the likelihood of the model being right

given the observed data. With some exceptions, these types of analyses are rarely done

with terrestrial ecosystem models. Even more interesting analyses about the variability of

the system or the external drivers can be explored with an explicit treatment of variability

in models. For instance, explicit treatments of variability can provide valuable information

about the behavior of the system under nonlinear conditions. Small pushes to the system

caused by environmental variability can produce significant changes in system behavior,

depending on the degree and nature of nonlinearity of the system. In these cases, a basic

understanding of the type of environmental variability is needed for predicting possible

system behavior. Even for linear systems, a basic knowledge of variability and extreme

events is greatly useful.

System heterogeneity is treated explicitly in individual-based or ‘gap’ models. These

type of models follow the fate of individual trees over time and have been used successfully
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for predicting dynamics of populations and communities (e.g., Huston & Smith 1987,

Pacala et al. 1996). They also have been used at the ecosystem level for predicting

carbon dynamics (e.g., Moorcroft et al. 2001) or the effects of forest management on

carbon storage (e.g., Harmon et al. 2009). However, the spatial scale of gap models

differs considerably from the resolution of atmospheric models, so their use for global

scale questions is very limited. Modeling every individual tree on earth is practically

impossible, but important research is currently underway to scale the average behavior of

gap models to large spatial domains (Moorcroft et al. 2001, Medvigy et al. 2009).

There are a significant number of tools from probability theory and other disciplines

that can help ecosystem ecologists move beyond simple representations of uncertainty in

their predictions. In quantum mechanics, probabilistic arguments have been used to de-

scribe general laws about particles. Perhaps explicit treatments of variability and hetero-

geneity can help ecosystem ecologists find general properties of ecosystems that cannot be

explained by simpler, homogenous models. Or even more importantly, these ideas could

expand the theoretical basis of the discipline by going beyond average representations of

system behavior.

1.4. Organization of this dissertation

The main objective of this dissertation is to provide an explicit treatment of vari-

ability and heterogeneity in modeling forest biogeochemical cycling. This is accomplished

by exploring questions related to ecosystem function under climate change that require

explicit accounts of variability. The dissertation consists of three main chapters with

separate and independent questions related to issues of variability and heterogeneity in

ecosystem modeling. More specifically, variability in model drivers is explored in terms of

climatic variability, with a strong emphasis on temperature. Heterogeneity of the system
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is explored for both a forest stand and a soil system. Throughout the document, the main

working hypothesis is that the introduction of environmental variability and system het-

erogeneity produce behaviors that cannot be obtained when these properties are excluded

from models.

1.4.1 Climatic variability

It is common in global change modeling to run an ecosystem model with constant

environmental conditions and perturb it to a plausible future scenario. For example,

the model can be run with the average climatic conditions for a site and be compared

with a run of the average condition predicted for some time in the future. The change

to the new climatic condition can also be accomplished by a linear interpolation, or a

prescribed scenario predicted by a climate model. These three approaches generally ignore

possible changes in the variability of the system (Figure 1.1). At the regional level, climate

variability can increase, decrease or remain constant, with implications for the frequency

and magnitude of extreme events. The combination of changes in the average and variance

of the climate, may expose the system to novel conditions that can have important impacts

in system behavior and cannot be predicted by assuming changes in the average climate

only.

In this dissertation, changes in the variance of climatic conditions were explored

to evaluate the behavior of carbon and nitrogen cycling in forest ecosystems. Chapter

2 contains an analysis of the effects of running an ecosystem model with and without

climatic variability. The main focus is on exploring possible effects in the accumulation

of carbon and the net fluxes over time. A more detailed analysis of the consequences of

temperature variability is performed in Chapter 3, focusing in the soil system and the

heterotrophic component of soil respiration.
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FIGURE 1.1 – Schematic representation of three conceptual approaches to climatic change.
Extracted from IPCC (2001).
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1.4.2 System heterogeneity

Many ecosystem models assume that the system is homogeneous. For example, leaf

physiology is commonly extrapolated directly to entire landscapes and biomes without

introducing spatial variability. Similarly, soils are usually considered homogeneous units

with the same physical and chemical characteristics over large spatial domains. Hetero-

geneity can be introduced in ecosystem models representing the entire system as a mosaic

of discrete units with different process rates. Interactions among the different units can

also be incorporated, creating a level of heterogeneity and connectivity that differs sub-

stantially from a simple homogeneous system (Figure 1.2).

Interactive mosaics allow the estimation of the variability of important ecological

variables such as net carbon fluxes. In Chapter 2 we focus on the estimation of ranges

of variability of carbon fluxes due to the effects of a heterogenous system composed of

trees with different recruitment, growth, mortality and decomposition rates. This is ac-

complished with a gap model that represents a stand of trees growing on a grid with

interactive cells. In Chapter 4 we perform a systematic analysis comparing the differ-

ences of assuming a homogeneous, a mosaic, and an interactive system. In that chapter,

we focus on soil organic matter, evaluating the effects of substrate heterogeneity on the

mineralization of carbon and nitrogen.

Interactions of both climate variability and system heterogeneity are evaluated in

Chapters 2 and 4. The focus of Chapter 2 is in understanding the interactions of climate

variability and gap dynamics that produce variability of net carbon fluxes. Chapter 4

presents a more detailed analysis of the interactions between temperature variability and

substrate heterogeneity in soils as it applies to carbon and nitrogen mineralization.
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FIGURE 1.2 – Schematic representation of three conceptual approaches to heterogeneity
in ecological systems. Extracted from Lovett et al. (2005).
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2. INTERANNUAL VARIATION OF CARBON FLUXES FROM A
TROPICAL, A TEMPERATE, AND A BOREAL EVERGREEN

FOREST: THE ROLE OF FOREST DYNAMICS AND CLIMATE

2.1. Abstract

Interannual variation of carbon fluxes can be attributed to a number of biotic and

abiotic controls that operate at different spatial and temporal scales. Type and frequency

of disturbance, forest dynamics, and climate regimes are important sources of variability.

Assessing the variability of carbon fluxes from these specific sources can enhance the inter-

pretation of past and current observations. Being able to separate the variability caused

by forest dynamics from that induced by climate will also give us the ability to deter-

mine if the current observed carbon fluxes are within an expected range or whether the

ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem

carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a

boreal forest, were explored using the simulation model STANDCARB. We identified key

processes that introduced variation in annual fluxes, but their relative importance differed

among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed

∼ 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites,

where many forest processes occur over longer temporal scales than those at the tropical

site, climate controlled more of the variation among annual fluxes. These results suggest

that climate-related variability affects the rates of carbon exchange differently among sites.

Simulations in which temperature, precipitation, and radiation varied from year-to-year

(based on historical records of climate variation) had less net carbon storage than simula-

tions in which these variables were held constant (based on historical records of monthly

average climate); a result caused by the functional relationship between temperature and

respiration. This suggests that under a more variable temperature regime, large respira-
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tory pulses may become more frequent and high enough to cause a reduction in ecosystem

carbon stores. Our results also show that the variation of annual carbon fluxes poses an

important challenge in our ability to determine whether an ecosystem is a source, sink,

or neutral in regard to CO2 at longer time scales. In simulations where climate change

negatively affected ecosystem C stores, there was a 20% chance of committing Type II

error, even with 20 years of sequential data.

Keywords: Ecosystem carbon fluxes, carbon sequestration, climate variability,

forest dynamics, carbon sources and sinks, hypothesis testing, ecosystem modeling, old-

growth forests.

2.2. Introduction

Terrestrial ecosystems modulate interannual variability in atmospheric CO2 across

the globe (Bousquet et al. 2000, Rodenbeck et al. 2003, Canadell et al. 2007). Inverse

simulations of atmospheric CO2 concentration have identified the magnitude and direction

of carbon fluxes at continental scales (Gurney et al. 2004, Jacobson et al. 2007, Stephens

et al. 2007). However, it is less clear where the terrestrial biosphere is a carbon source

or sink at finer spatial scales. Given that conservation and management of terrestrial

ecosystems for carbon sequestration is only logistically feasible in areas much smaller

than continents, it is important to improve our understanding on the controls of annual

variation in terrestrial carbon budgets at smaller spatial scales.

Within any ecosystem, year-to-year variation in carbon fluxes limits our ability to

assess whether an ecosystem is a consistent carbon source or sink. For example, current

estimates of carbon fluxes from tropical forests are highly variable; ranging from a mod-

erate source of -2.15 Mg C ha−1 yr−1 to a large sink of 5.97 Mg C ha−1 yr−1, and do not

provide any consistent evidence for either a significant source or sink at decadal scales
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(Sierra et al. 2007). It is possible that these forests are in a dynamic carbon balance as

predicted by classical ecological theory (Odum 1969), in which case the available mea-

surements correctly support the null hypothesis of neutrality, i.e., long-term NEP = 0 in

undisturbed ecosystems. However, it is also possible that current observations incorrectly

support the null hypothesis (Type II error), in which case external factors such as global

change may be in fact altering the equilibrium of these ecosystems (Grace et al. 1995,

Phillips et al. 1998). Whichever the case, interannual variability plays a major role in

identifying and understanding potential long-term controls on ecosystem carbon budgets.

Several studies have reported significant ranges of interannual variation in carbon

flux estimates for a variety of forest types (e.g., Loescher et al. 2003, Chen et al. 2004,

Hollinger et al. 2004, Dunn et al. 2007, Richardson et al. 2007), and have identified

changes in climate as the main control over variability in ecophysiological processes (mainly

production and respiration rates). In some cases, climate can act in concert with ecosystem

processes, synergistically enhancing net uptake (Dunn et al. 2007), or fostering net carbon

loss (Loescher et al. 2003). Even though it is recognized that species-level processes are

important drivers of interannual variability, there is a paucity of research linking variability

of species-specific rates of growth, establishment, mortality, and decomposition to annual

ecosystem carbon fluxes (Sierra and Harmon 2008). Furthermore, interactions among

climatic variables and these intrinsic forest dynamics can lead to more complex, non-

linear behaviors not fully explored or understood. Here we focus on how intrinsic forest

dynamics and their interactions with climate control interannual variability in net carbon

fluxes of old-growth forests. By intrinsic forest dynamics we refer here to the interaction

between rates of growth, recruitment, mortality, and decay of the species comprising a

plant community within a site. We focus on old-growth forests because their carbon flux

is assumed to be in equilibrium according to classical ecological theory (Odum 1969), but

current environmental change may be altering this equilibrium state. Departures from
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equilibrium may be easier to detect in the old-growth phase than earlier in succession

when rates of carbon uptake or release are intrinsically high.

The objective of this study was to separate and estimate the degree of variability

in carbon fluxes due to internal forest dynamics versus climate, and use these results to

explore their possible interactions under future climate change. For this latter analysis,

we used a modeling approach and compared our results with observations of carbon fluxes

compiled in a recently published global dataset (Luyssaert et al. 2007a).

2.3. Methods

In this study we used the simulation model STANDCARB, which is a hybrid between

a gap and an ecosystem model (Harmon and Domingo 2001, Harmon and Marks 2002,

Smithwick et al. 2003). It simulates living and dead C pools of forest stands and can

be used to examine the effects of climate, forest dynamics, and species succession on

carbon dynamics. This model was implemented similarly as the ZELIG model (Urban

et al. 1991) in which calculations are made over a grid of cells to simulate interactions

between trees such as competition for light. Each cell can be colonized by 4 different layers

of plants: herbs, shrubs, lower trees, and upper trees. The lower tree layer represents

advanced regeneration and the upper layer dominant trees. Live pools are divided into

seven parts within each layer, and six dead pools are derived from the live parts (Harmon

and Marks 2002). Dead pools in turn form three stable pools derived from decomposing

foliage, wood, and belowground plant parts. The model produces annual estimates of

total carbon stores (TCSi), which is the sum of carbon stores in the live, dead, and soil

pools. Carbon fluxes are calculated as the difference in total carbon stores between the

current (i) and the previous (i − 1) year ∆C/∆t = TCSi - TCSi−1. A detailed model

description can be found in Appendix A as well as in Harmon and Domingo (2001),
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Harmon and Marks (2002), and Smithwick et al. (2003). We used STANDCARB to

simulate carbon dynamics of three contrasting evergreen forest types: a tropical forest,

a temperate coniferous forest, and a boreal evergreen forest. For the tropical forest,

parameters related to growth, recruitment, mortality, and decay were chosen to reproduce

the behavior of four distinctive functional species groups, late and early successional trees,

palms, and legumes. For the temperate coniferous forest we chose parameters to simulate

two common species found in conifer dominated forests of the Pacific Northwest, Douglas-

fir (Pseudotsuga menziesii) and western hemlock (Tsuga heterophylla). For the boreal

forest, we simulated the plant community common in mixed conifer-hardwood forests

of northern Maine, white pine (Pinus strobus), paper birch (Betula papyrifera), balsam

fir (Abies balsamea), red spruce (Picea rubens), eastern hemlock (Tsuga canadensis),

northern white cedar (Thuja occidentalis), and red maple (Acer rubrum).

Simulations were performed over a spatial grid of 20 x 20 cells, with 17 m cell

width and with 10 replicates per simulation, representing 10 plots of ∼11 ha each. We

used existing climate records from these three forest types to simulate climate variability

over a 2000 year period assuming no long-term trend. For the tropical forest we used

14 years of climatic data from the Porce region of Colombia (6◦ 45′ N, 75◦ 06′ W), and

for the temperate forest we used 34 years of data from the H.J. Andrews LTER site in

western Oregon (44◦ 12′ N, 122◦ 15′ W). The boreal forest was simulated using 50 years

of climatic data from Millinocket, Maine to represent processes at the nearby Howland

Research Forest (45◦ 12′ N, 68◦ 44′ W).

Three different sets of simulation experiments were run in STANDCARB to sep-

arate the effects of forest dynamics and climate variation, hereafter called (1) constant

mortality, (2) constant climate, and (3) variable climate scenarios. First, in the constant

mortality scenario, the model was run using a constant mortality rate independent of

competition among cells, but having random variation in the climatic data series. Long-
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term climatic data series were created by adding random variates (anomalies) to monthly

climatic averages. Anomalies were generated using the observed monthly and annual stan-

dard deviations from the local datasets, assuming normal distributions. Second, in the

constant climate simulations, the model was run with mortality represented as a compe-

tition driven processes with a stochastic component (see Appendix A for details). The

long-term average mortality rate was equal to that in the previous simulation set. The cli-

matic data series used in this scenario consisted only of monthly climate averages. Third,

in the variable climate simulation set, we combined both the variation introduced by

a variable climatic dataset with the variation introduced by stochastic and competition

driven mortality. Results from these simulation experiments were used to create hypo-

thetical probability distribution functions (PDFs) of average carbon fluxes at steady-state.

We created 95% confidence intervals of the average carbon flux by estimating the interval

that contains 95% of the area under the PDF.

The simulated time series of annual carbon fluxes were then used to sample random

data points and test whether or not the selected series would reject the null hypothesis

of equilibrium; i.e. average ∆C/∆t = 0. Consecutive data points were randomly selected

in the interval 1001-2000 years, after the ecosystems reached steady-state, in intervals

from 2 to 50 years. This sampling procedure was repeated 100 times for each interval

of consecutive data, from 2 to 50 years. For each time interval of consecutive points,

we tested the null hypothesis ∆C/∆t = 0 with a t-test, and used the 100 repetitions to

calculate the proportion of times in which the null hypothesis was either rejected or not

rejected. The standard deviation in the t-test was adjusted for serial correlation using the

factor
√

(1 + r1)/(1− r1), where r1 represents the first order autocorrelation coefficient

(Zwiers and von Storch 1995, Ramsey and Schafer 2002). Given that we know a priori that

in our simulations the null hypothesis is true, we interpreted the proportion of rejections

as the probability of incurring a Type I Error, i.e., rejecting the null hypothesis when it

is true.
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TABLE 2.1 – Summary statistics, average ± standard deviation, of the simulations with
constant and variable climate for the three forest types evaluated.

Forest type Constant mortality Constant climate Variable climate

Tropical 0.005± 1.262 −0.001± 0.257 0.001± 0.887

Temperate 0.045± 1.832 0.001± 0.116 0.004± 1.375

Boreal −0.001± 0.780 0.002± 0.087 −0.004± 0.455

In a fourth set of simulations, we created new climate time series for each site by

increasing temperature 6◦C across 100 years, and incorporating the natural variability

found in the empirical datasets. Simulations were run using the climatic data from the

variable climate scenario for 1000 years to allow the ecosystems to reach steady-state

before perturbing the system with the new climatic time series containing the temperature

increase. We used the results of this set of simulations to also test the hypothesis ∆C/∆t

= 0 as above, and calculate the probability of incurring in Type II error, i.e., not rejecting

the null hypothesis when it is false.

2.4. Results

All simulations reproduced the pattern of successional development predicted by

classical ecosystem models (Odum 1969, Bormann and Likens 1979). At early stages of

development, our modeled ecosystems accumulated carbon at high rates until reaching a

maximum, then declined slightly to reach steady-state (Bormann and Likens 1979) where

the long-term average net carbon flux (over 100s of years) was ∼0 Mg C ha−1 yr−1 (Figure

2.1, Table 2.1).

The highest level of interannual variation was observed under the constant mortality

scenario, where climate was the only factor responsible for the variability of carbon fluxes

(Table 2.2). Varying internal forest dynamics (i.e., mortality) under a constant climate
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FIGURE 2.1 – Simulation results of total carbon stores for a tropical (upper panel), a
temperate (middle panel), and a boreal forest (lower panel). Black continuous lines represent
simulations in which climate was held constant. Red dotted lines represent simulation in
which climate was variable according to observed climatic records.
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TABLE 2.2 – Variation of annual carbon fluxes attributable to climate (σ2
c ), mortality (σ2

m),
and their interaction (σ2

cm) in a tropical, a temperate, and a boreal forest. Percentage values
compare contributions from climate, forest dynamics (i.e., mortality), and their interaction
to overall variability, calculated as: % Climate alone = 100σc/σcm; % Forest dynamics =
100σm/σcm, and; %Climate interaction = 100 (1− (σm/σcm)).

Source of variability Tropical Temperate Boreal

σ2
c 1.595 3.357 0.636

σ2
m 0.066 0.013 0.08

σ2
cm 0.787 1.891 0.207

Climate alone (%) 142 133 175

Forest dynamics (%) 29.0 8.3 19.6

Climate interaction (%) 71.0 91.7 80.4

had only minor effects on carbon flux variation, but played a key role in shaping flux

variation under a variable climate. Variability due to internal forest dynamics was higher

in the tropical site than in the temperate site, which in turn was higher than the boreal

site (Tables 2.1 and 2.2). However, variability due to climate did not follow this trend.

The highest variability due to climate was found in the temperate coniferous forest (Figure

2.2).

For the three sites simulated, Total Carbon Stores at steady-state were lower using

the variable rather than the constant climate scenario (Figure 2.1). This difference in

carbon stores was observed in the live, dead, and soil organic matter pools (Appendix D),

rather than just one single pool. This suggests that respiration, a process common to all

pools, was more sensitive than other processes to the variation in the climatic data se-

ries. In STANDCARB, respiration is modeled with a Q10 function to represent the effect

of temperature on the rates of autotrophic and heterotrophic respiration (Ryan 1991).

Respiration is an increasing convex function of temperature, therefore its expected value

using a random variable does not provide the same results as the value of the function

using the expected value of the random variable (f(E(x)) 6= E(f(x)), see Appendix B for

a mathematical proof) (see also Rastetter et al. 1992, Ruel and Ayres 1999, Peters et al.
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2004, Ross 2006). Although STANDCARB also models the relationship between temper-

ature and photosynthesis, its functional relationship is not strictly convex or concave in

the interval of temperatures being examined.

2.4.1 Hypothetical ranges of variation

At steady-state, carbon fluxes vary in a range of values around 0 Mg C ha−1 yr−1

as a result of internal forest dynamics and climate (Figure 2.2). We used these simulation

results to produce hypothetical ranges of variation of average carbon fluxes from the three

different forest types (Figure 2.3). We assumed that, at steady-state, average carbon

fluxes are approximately zero and normally distributed. When considering variability

due to forest dynamics alone, we were 95% confident that average carbon fluxes in the

tropical forest at steady-state ranged ±0.5 Mg C ha−1 yr−1. Combining the effects of

forest dynamics and climate variation, this 95% confidence interval increased to ±1.74 Mg

C ha−1 yr−1. For the temperate forest the difference between the two confidence intervals

was higher, increasing from ±0.23 to ±2.7 Mg C ha−1 yr−1 (Figure 2.3). Confidence

intervals for the boreal site were low compared to the other two sites, with forest dynamics

introducing variation in the range of ±0.17 Mg C ha−1 yr−1, and climate in the range of

±0.89 Mg C ha−1 yr−1.

2.4.2 Consequences for hypothesis testing

The probability of incurring a Type I Error decreased as the length of the time series

evaluated increased. This probability was below the confidence level of the hypothesis test

(α = 0.05) only after ∼10 years of consecutive flux data for the tropical forest, ∼20 years

for the temperate forest, and ∼35 years for the boreal forest (Figure 2.4). For time series

shorter than 10 years the probability of incurring a Type I error was between 5 and 17%.

An increase in average temperature of 6◦C over 100 years caused a decline in TCS

for the three ecosystems (Figure 2.5). The decline in TCS was more evident for the
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temperate forest than for the tropical site. However, trends in ecosystem carbon fluxes

were not as evident as for TCS given the large degree of observed interannual variability

(Figure 2.5). These simulations indicate that there are high probabilities of not rejecting

the null hypothesis when the alternative hypothesis is true (Figure 2.6). In other words,

our results suggest that even with more than 10 years of consecutive flux data there

are high chances of not observing a significant and real emission of carbon from these

ecosystems.
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FIGURE 2.5 – Simulation results of Total Carbon Stores (TCS, in Mg C ha−1) and annual
net carbon fluxes (∆C/∆t, in Mg C ha−1 yr−1) for a set of simulations in which temperature
was increased by an average of 6◦C in 100 years. In all cases the model was run for 1000 years
to reach steady-state before applying the climate change function.
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total of 100 t-tests with α = 0.05.
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2.5. Discussion

We used a hybrid ecosystem-gap model to examine the level of interannual variation

of carbon fluxes attributable to internal forest dynamics versus climate in forests at their

equilibrium phase. Although modeling is just one approach to this problem, we believe it

can provide important insights that can complement and guide observational studies and

field experiments. Here, we focused on long-term process as opposed to short-term phys-

iological dynamics common in many biogeochemical models. Results from other models

can be compared with the results presented here to evaluate uncertainties associated with

processes that are not represented explicitly in STANDCARB.

It is also important to point out that the predictions obtained in this study are

not necessarily predictions of the carbon balances of these particular sites into the future.

Our aim was to model three contrasting evergreen ecosystems with different internal forest

dynamics and climate, and to observe the resulting emergent behaviors of the interannual

variability in carbon exchange.

2.5.1 Forest dynamics and carbon fluxes

In this analysis we found that internal forest dynamics can contribute as much as

30% to the total interannual variation of ecosystem carbon fluxes (Table 2.2). Although

this contribution varies among forest types and is scale dependent (smaller plots could

have larger variability), it is a source of variability that is often ignored in analyses of

long-term carbon flux data. Climate obviously played a dominant role in explaining

interannual carbon fluxes, but forest dynamics can potentially modulate or amplify the

signal attributable to climate. The comparison between constant mortality and variable

climate clearly shows a modulation effect (Table 2.1). Furthermore, should climate remain

relatively constant for a series of years, some level of variation in carbon fluxes can be

expected because of stochastic mortality alone, even in systems that are supposed to be
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in steady-state.

The paradigm that old-growth forests are carbon neutral (Odum 1969, Bormann

and Likens 1979) has often been challenged (e.g., Grace et al. 1995, Malhi et al. 1999,

Luyssaert et al. 2008). However, our results suggest that old-growth forests in a state of

dynamic equilibrium can have a significant range of variation around an average carbon

flux of 0 Mg C ha−1 yr−1 (Figure 2.2). Consequently, forests can behave as carbon sources

or sinks for short periods of time (years to decades), without departing from steady-state

in the long-term. This system behavior can complicate the interpretation of short-term

data or observations with relatively high measurement uncertainties.

Forest dynamics play a significant role in determining the structure of forest ecosys-

tems and the level of spatial heterogeneity of the overstory, creating what is known as the

’forest mosaic’ (Shugart 1998) or the ’shifting mosaic steady-state’ (Bormann and Likens

1979). Individual patches may respond differently to environmental conditions according

to their successional stage. For example, a recently opened gap will respond to a temper-

ature increase with a larger amount of carbon release than a closed-canopy because the

photosynthetic component is reduced in the gap. Consequently, the overall response of the

ecosystem to a change in the environment will likely depend on the structure of the forest

mosaic, and the relative contribution by the different patches in terms of photosynthesis

and respiration.

The simulation results showed a consistent reduction of the variability in carbon

fluxes due to intrinsic forest dynamics from the tropical to the boreal sites (Figure 2.3).

This trend is an indication that internal forest dynamics play a larger role in ‘faster’

systems such as tropical rain forests. It also suggests that short-term climatic fluctuations

will play a larger role in determining carbon fluxes in ‘slower’ systems such as boreal

forests (here we consider a system ‘fast’ or ‘slow’ in terms of the relative magnitude of

different process rates among ecosystems).
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2.5.2 Interannual climate variability and carbon fluxes

Variability in environmental conditions occurs over daily, seasonal, annual, and even

longer time scales. Reichle et al. (1975) hypothesized that ecosystems maintain a dynamic

equilibrium with a varying environment through multiple non-linear interactions among

ecosystem components. Similar ideas are embedded in the concepts of resilience and

stability (Holling 1973, 2001). Specifically, there are multiple homeostatic mechanisms by

which ecosystems will maintain a dynamic equilibrium with the environment. In terms of

energy or carbon storage, this dynamic equilibrium depends directly on the frequency and

amplitude of environmental variations and disturbances. Hypothetically, the maximum

carbon storage in an ecosystem will tend to decrease from the maximum potential storage

as frequency and severity (amplitude) of environmental fluctuations and disturbances

increase (O’Neill et al. 1975, Reichle et al. 1975). The results observed in Figure 2.1, in

which TCS were lower in the variable climate scenario, support this hypothetical behavior.

Recent syntheses and local studies have shown that climate plays an important

role in controlling the variation of carbon fluxes at small spatial and temporal scales

(Goulden et al. 1996, Law et al. 2002, Luyssaert et al. 2007a, Luyssaert et al. 2007b,

Richardson et al. 2007). In general, climatic variables can explain up to 80% of the

short-term variation in carbon fluxes, e.g., 30 minute flux averages within a site (Clark

et al. 1999, Loescher et al. 2003, Hollinger et al. 2004), but explain < 50% when

scaled to longer time intervals or across sites (Law et al. 2002, Luyssaert et al. 2007a).

From the perspective of hierarchical theory (Allen and Starr 1982), processes controlled

by high frequency environmental factors should be constrained by factors operating at

lower frequencies. Processes related to forest dynamics such as individual turnover rates

operate at lower frequencies than many climatic variables; therefore they can constrain

the direct effects caused by short-term environmental fluctuation over long periods of

time. Other factors that may constrain carbon fluxes at higher hierarchical levels are
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plant species succession, nutrient accumulation or depletion, and cycles in herbivore and

pathogen populations.

Analyses of long-term climate records have shown that regional increases in tem-

perature are also accompanied by short-term high-frequency variation (e.g., Esper et al.

2002, Luterbacher et al. 2004). Future temperature increases at the regional level will

be most likely accompanied by a significant level of interannual variation. Our analysis

showed that carbon fluxes can also show an important level of interannual variation under

long-term temperature increase. Detection of systematic trends in carbon fluxes can be

problematic because most of our current knowledge on the state of the global carbon cy-

cle is derived from studies that measure carbon fluxes rather than trends in total carbon

stocks TCS (Friend et al. 2007, Luyssaert et al. 2007a), with both methods potentially

subject to significant sources of measurement error (Loescher et al. 2006). We found that

for systems in dynamic equilibrium and then exposed to a systematic climatic disturbance,

the probability of detecting a statistically significant and consistent trend in carbon fluxes

could take as much as 20 to 30 years of continuous data collection. A decline in carbon

storage was most pronounced for the temperate coniferous site where respiration rates are

generally low but can increase dramatically with increases in temperature (Figure 2.5).

For the tropical site where temperatures and respiration rates are already high the proba-

bility of not observing the effects of temperature increase are very low (Figure 2.6). These

results reflect our focus on statistically testing the null hypothesis of flux equilibrium at

three separate measurement sites. Multiple measurements within a site and other anal-

yses such as model-data assimilation, boundary-layer approaches, or complete inventory

methods may provide additional insight into forest carbon balances at shorter time scales.

In the long-term, however, time series of carbon fluxes should at least cover the phase of

decadal or multi-decadal oscillations in climate such us those related with ENSO and the

North Atlantic Oscillation.
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2.5.3 Building on Odum’s equilibrium concept

The concept of equilibrium in ecosystem ecology (e.g., Odum 1969) can be inter-

preted narrowly as a static view of the relationship between an ecosystem and its external

environment. However, more explicit treatments of equilibrium concepts typically rec-

ognize some level of variability at the equilibrium stage. Bormann and Likens (1979)

concept of shifting mosaic steady state recognizes this level of variability, as well as the

concepts of resilience and stability as defined by Holling (1973). The concepts of engineer-

ing and ecological resilience focus on the existence of one or multiple stability domains

(Gunderson 2000), however, in both concepts there is a level of variability around the

stable state(s) that can be quantified within the framework proposed here. The ranges of

variation identified in this manuscript are simply a quantification of these stability con-

cepts in a probabilistic framework. For example, the ranges of variability of NEP could

be interpreted as the width of the valleys of attraction in the common representation of

the resilience concept. Evidence supporting gradual or sudden changes in the state of an

ecosystem away from the expected range of stability would be indicative of an important

disruption of a stable state, and perhaps a shift to an alternative stable state (Gunderson

2000, Scheffer et al. 2001). So the value of the concept of equilibrium (or steady state, or

stable state) resides in its applicability for testing alternate hypotheses about ecosystem

change (Scheffer et al. 2001).

2.5.4 Other implications

Measurements of carbon fluxes in forest ecosystems demonstrate an important de-

gree of variability (Table 2.3). Many short-term individual studies are often used to infer

a source or sink of carbon over the decadal-scale or longer-term. Our analysis shows that

short-term measurements are subject to either Type I or Type II Error. To avoid erro-

neous interpretations of current measurements it has to be acknowledged that ecosystem

functions are intrinsically variable. When determining whether an old-growth ecosystem
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is a significant carbon source or sink, it would be more informative if the null hypothesis

of a near equilibrium carbon flux were stated (and tested) in terms of an expected range

instead of a single static quantity. A null hypothesis stated as H0: NEE = 0, does not

consider the inherent variability that would occur naturally in the system. Sierra et al.

(2007) proposed an alternative way to state this hypothesis using Bayesian statistics con-

sidering that carbon fluxes vary spatially and temporally. Equilibrium under this proposed

method is represented as a null hypothesis in which the average carbon flux lies within

an arbitrary range around zero (H0: NEP ∼ N(µ, σ2)). It is convenient to use Bayesian

statistics and arbitrary a priori information to test this hypothesis since different ranges

of variation around equilibrium can be used. The degree of variation of carbon fluxes

among ecosystems could differ due to dissimilarities in climate and disturbance regimes,

and also as a consequence of intrinsic properties of the populations of species occupying

the system.

For example, observed carbon fluxes in unmanaged tropical, temperate, and boreal

forests show a high degree of variability (Table 2.3). The variability observed in these

studies is not only caused by forest dynamics and climate, but also by a number of en-

vironmental factors within biomes and uncertainties associated with measurements. We

compared these observations with the ranges of variability found in this study for the

three different biomes using the Bayesian approach proposed in Sierra et al. (2007). The

approach consists of finding the probability of the carbon flux given the observed data

P(NEP | NEP∗). The hypothetical ranges of variation were used as prior information

about the expected range for NEP. The posterior probabilities obtained in this compar-

ison provided little evidence for carbon fluxes in old-growth forests outside the range

predicted for forests in equilibrium (Figure 2.7). For tropical forests the probability of the

average NEP being higher than the upper bound of the hypothetical range (1.74 Mg C

ha−1 yr−1) is only 4.3%. For temperate forests the probability of NEP higher than 2.70
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TABLE 2.3 – Estimates of NEP for different late successional-unmanaged forests in the
boreal, temperate, and tropical biomes. Extracted from Luyssaert et al. (2007) database.

Plot/site name Climatic re-
gion

Weighted
NEP

Uncertainty
NEP

Latitude Longitude

Tropical forests
Porce Tropical Hu-

mid
-0.91 3.50 6.75 N 75.10 W

Jacaranda/K34 Tropical Hu-
mid

0.50 4.95 2.60 S 60.20 W

Guyaflux Tropical Hu-
mid

1.51 1.05 5.28 N 52.91 W

Cuieiras/C14 Tropical Hu-
mid

4.72 0.53 2.58 S 60.10 W

Caxiuana Tropical Hu-
mid

5.60 2.10 1.72 S 51.45 W

Tapajos 67 Tropical
Semi-arid

-1.12 0.28 2.81 S 54.95 W

Tapajos 83 Tropical
Semi-arid

-0.63 1.21 3.00 S 54.95 W

Mean 1.38 0.91
Temperate forests
Andrews 12 Temperate

Humid
-1.29 3.50 44.26 N 122.18 W

Andrews 11 Temperate
Humid

-0.90 3.50 44.23 N 122.18 W

Cascade Head 10 Temperate
Humid

1.68 3.50 45.07 N 123.89 W

Cascade Head 12 Temperate
Humid

1.94 3.50 45.04 N 123.90 W

Cascade Head 11 Temperate
Humid

3.47 3.50 45.08 N 123.90 W

Wind River Temperate
Humid

3.87 0.53 45.52 N 121.57 W

Mean 1.46 1.27
Boreal forests
Fyedorovskoye Boreal Hu-

mid
-2.31 0.35 56.45 N 32.92 E

Sodankylä Boreal Hu-
mid

-0.63 0.21 67.36 N 26.64 E

Niwot Ridge Boreal Hu-
mid

0.71 1.05 40.03 N 105.53 W

Yenisey Abies Boreal Hu-
mid

2.70 1.05 61.02 N 89.76 E

Thompson NSA
(NOBS)

Boreal Semi-
arid

0.004 0.09 55.90 N 98.47 W

Prince Albert SSA
(SOBS)

Boreal Semi-
arid

0.64 0.25 53.92 N 104.68 W

Howland Boreal Hu-
mid

1.90 0.08 45.20 N 68.74 W

Mean 0.43 0.23
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Mg C ha−1 yr−1 is 1.2%, and for boreal forests the probability of NEP higher than 0.89

Mg C ha−1 yr−1 is 2.2%. For the temperate forests, however, the probability of a carbon

source is less than 10%, and the obtained probability distribution may be indicative that

these forests have been moved to an alternate state.
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FIGURE 2.7 – Comparison between measured Net Ecosystem Production (NEP) in un-
managed boreal (n = 6), temperate (n =7), and tropical (n = 8) forests and the hypothetical
ranges of variation found in this study. Histogram bars represent the measured data for dif-
ferent sites within the biomes, the continuous line represent the hypothetical ranges from this
study and the dashed line represent the posterior distribution of NEP based on the data and
the hypothetical ranges. Data extracted from Luyssaert et al. (2007) database.

Spatial heterogeneity in ecosystems that results from forest dynamics and temporal

climatic variations can interact in a complex fashion that is sometimes underestimated in
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current models, experiments, and analysis of global change effects on ecosystems (Moor-

croft 2006, Norby et al. 2007). Behaviors such as modulation or amplification of the

carbon flux can emerge as a result of interactions between spatial heterogeneity and vari-

ability of climatic drivers. In many cases, field and modeling experiments exclude these

sources of variation and therefore exclude the possibility of these behaviors emerging. For

example, experimental manipulations in which an environmental factor is changed to a

level predicted for the future, such as increasing temperatures or excluding rainfall to a

specific level, do not correspond to more realistic scenarios in which long-term environ-

mental change itself displays a certain degree of temporal variation. Similarly, simplifying

the analysis by minimizing spatial variation (e.g., using the big-leaf approach in biogeo-

chemical modeling) reduces the domain of responses by excluding spatial interactions.

Our results highlight how internal ecosystem processes and complexity can modulate or

amplify responses to external climatic drivers in ways that are poorly characterized in

many field and modeling experiments.

2.6. Conclusions

Interannual variability of ecosystem carbon fluxes (NEE, NEP, or NECB) can be

explained by both climate and intrinsic forest dynamics. In systems such as tropical forests

where process rates are faster than in other ecosystems, forest dynamics were responsible

for a larger fraction of the interannual variation in carbon fluxes. As a result, forests at

steady-state and under relatively constant environmental conditions can behave either as

a source or sink of carbon for short periods of time. Therefore, the concept of equilibrium

in a carbon balance should be thought as a range of variation around an average carbon

flux of zero.

Our simulations indicate less carbon storage under a variable climate scenario than
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under constant climatic conditions. This behavior, which is controlled by the non-linear

relationship between temperature and respiration, caused larger and more frequent res-

piratory fluxes under elevated temperatures. Given that the shape of this relationship is

consistent across a large number of evergreen and coniferous forests (Law et al. 2002), it

can be inferred from our results that an increase in temperature variability will also lead

to larger in situ respiratory fluxes and reduced carbon stores.

A temperature increase of 6◦C over 100 years caused a consistent decline in carbon

storage for the three simulated forests. However, this climatic forcing was not easy to

detect in terms of carbon fluxes. Depending on the characteristics of the site, it could

take more than 10 years of consecutive flux data to observe a consistent carbon source.
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3. AMPLIFICATION AND DAMPENING OF SOIL RESPIRATION
BY CHANGES IN TEMPERATURE VARIABILITY

3.1. Abstract

Accelerated release of carbon from soils is one of the most important possible feed-

backs related to anthropogenically induced climate change. Analyses studying the mecha-

nisms for soil carbon release through decomposition have focused on the effect of changes

in the average temperature, with little attention to changes in temperature variability.

Anthropogenic activities are likely to modify both the average state and the variability

of the climatic system; therefore, the effects of future warming on decomposition should

not only focus on trends in the average temperature, but also variability expressed as

a change of the probability distribution of temperature. Using analytical and numerical

analyses we tested common relationships between temperature and respiration and found

that the variability of temperature plays an important role determining respiration rates

of soil organic matter. Changes in temperature variability, without changes in the average

temperature, can either increase or decrease the amount of carbon released through respi-

ration over the long-term. Furthermore, simultaneous changes in the average and variance

of temperature can either amplify or dampen the sensitivity of soil organic matter to tem-

perature. A potential consequence of this effect of variability would be lower respiration

in places where the average temperature is expected to increase but its variance decreases.

Keywords: Jensen’s inequality, soil respiration, climate change, environmental

variability, MSC plots.
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3.2. Introduction

One of the most important feedbacks of terrestrial ecosystems to climate change is

the potential release of soil carbon as temperature increases, especially at high latitudes

(Field et al. 2007). The amount of carbon stored in soils worldwide exceeds the amount of

carbon in the atmosphere by a factor of two to three (Houghton 2007), and there is concern

that a large portion of this carbon will be released to the atmosphere as the global average

temperature increases (Schimel et al. 1994, Kirschbaum 1995, Trumbore 1997, Davidson

and Janssens 2006). The temperature sensitivity of organic matter decomposition has

been a topic of major debate (e.g., Giardina and Ryan 2000), and although this debate is

still active, for the most part it is clear that temperature has a significant role controlling

the rates of organic matter decomposition. Less clear though, is how different carbon

pools respond to temperature changes and under what circumstances other factors such

as substrate or moisture limit the rates of organic matter decomposition (Davidson and

Janssens 2006).

Most of the analyses studying the temperature sensitivity of decomposition have

focused on changes in the average temperature, with little attention to changes in tem-

perature variability. Anthropogenic activities are predicted to modify both the average

state and the variability of the climatic system (Räisänen 2002, Brönnimann et al. 2007,

IPCC 2007); hence, the effects of future warming on decomposition should not only focus

on trends in the average, but more broadly on changes in the probability distribution of

temperature. The frequency of hot or cold days and extreme events over long periods of

time can potentially determine the frequency of large respiration pulses and subsequently

the total amount of C stored in an ecosystem. For this reason it would be convenient to

analyze the temperature sensitivity of decomposition in a probabilistic framework.

Recent modeling studies have found important differences in carbon accumulation
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just by adding random white noise to the temperature time series used to run the simu-

lations (Chapter 2, Notaro 2008). Using a Dynamic Global Vegetation Model (DGVM),

Notaro (2008) found a reduction of 20% in total carbon from terrestrial ecosystems when

climatic variability (random noise) was added to the average temperature. A similar be-

havior was found in the predictions from Chapter 2 (Figure 2.1), and we attributed this

result to the nonlinearity of the functional relationship between temperature and respira-

tion. Respiration is commonly modeled by convex functions dependent on temperature,

supported theoretically by enzyme kinetics theory (Davidson and Janssens 2006, Davidson

et al. 2006). Given the convexity of these functions it is reasonable to obtain a higher

average respiration when variability is added to the average temperature; this is explained

by Jensen’s inequality (Jensen 1906, Ruel and Ayres 1999, Ross 2006).

In this study, we explore the effects of changes in climatic regimes, i.e., simultane-

ous changes in the mean and variance of temperature, on the potential amount of carbon

release from ecosystems through soil respiration. To facilitate the analysis, two research

questions are explored separately: 1) would changes in temperature variance alone have

effects on the amount of soil carbon respired from an ecosystem? 2) Would simultaneous

changes in the average and variance of temperature produce complex behaviors in terms

of soil respiration? To address these questions we used analytical and numerical anal-

yses. The first question was addressed using an analytical analysis of random variables

with different variances. A numerical analysis was used to address both questions. Nu-

merical simulations were performed with a set of simulation models of respiration with

stochastic representations of realistic temperature time-series. In the latter analysis, three

contrasting ecosystems were used for comparison purposes.

In the remainder of this introduction, we present Jensen’s inequality and its conse-

quence for predicting the effects of temperature variability on soil respiration. The results

section of this manuscript presents separately the analytical and numerical analyses. The
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methods sections describes in detail the procedure used for the numerical analysis and

describes the datasets employed. Results from both analyses are explored together in the

discussion section.

3.2.1 Jensen’s inequality

Jensen’s inequality is a mathematical property of convex (or concave) functions. It

is particularly useful for predicting the consequences of using either a series of values from

a random variable or the average of these numbers in a non-linear function. According

to Jensen’s inequality, if T is a random variable (e.g., temperature), and f(T ) a convex

function on an interval I, then

E[f(T )] ≥ f(E[T ]), (3.1)

where E is the expected value operator. If the function is concave the sign of the inequal-

ity is reversed (Jensen 1906, Ross 2006). In other words, evaluating the function with

the expected value of the random variable will produce a lower amount than taking the

expected value of the function’s evaluations at each value of the random variable.

We will illustrate the inequality as it applies to soil respiration. Suppose we are

interested in calculating the average rate of soil respiration as a function of soil temper-

ature with the function R = Q
(T−T0)/10
10 (the modified Van’t Hoff equation, see details

below), which is a convex function on I. Suppose further that we have a series of 1000

temperature measurements to estimate respiration with this function. We have two alter-

natives to calculate the average respiration rate: 1) take the average of all the temperature

values and then evaluate the function (f(E[T ])), or 2) calculate all values of respiration

corresponding to each temperature value and then calculate the average respiration rate

(E[f(T )]). Jensen’s inequality tell us that method (1) provides a higher value for the

respiration rate (Figure 3.1).
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FIGURE 3.1 – Graphical representation of Jensen’s inequality to estimate the average
respiration rate using a series of 1000 values of soil temperature. If all the 1000 temperature
numbers (top histogram) are averaged out we obtain a value of 15 degrees Celcius, which
corresponds to a respiration rate of 1.73 (arbitrary units). If all the temperature values
are used to calculate the corresponding respiration rate we obtain 1000 values of respiration
(points on graph and right histogram), which give an average respiration rate of 1.77. The
function used in this case was R = 3(T−10)/10.
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Although the differences in the average respiration rates may seem small (Figure

3.1), important differences result for the cumulative amount of C respired over a long

period of time (e.g., Notaro 2008, Chapter 2).

3.2.2 Functional relationships between temperature and respiration

Historically, the theory behind the temperature sensitivity of organic matter de-

composition has been supported by the equations that relate chemical reaction rates with

temperature. The Van’t Hoff and Arrhenius equations (Table 3.1, equations 3.2 and 3.4)

have been widely used to predict changes in decomposition rate constants and respiration

rates with changes in temperature. An increase in the respiration rates as temperature

increases is expected under this theory, and it can be easily shown that these functions

are convex within the interval of temperatures where most biological processes take place

(Table 3.1).

The Van’t Hoff equation, originally developed in the study of chemical thermody-

namics, is commonly used to predict the rates of organic matter decay or respiration R as

a function of temperature (T in Celcius), and two empirical parameters α > 0, and β > 0

R = αeβT . (3.2)

Convexity can be evaluated by calculating the second derivative of the function (if

the second derivative of the function is non-negative on an interval, then it is convex in

that interval). Since α > 0, then

R′′ = αβ2eβT > 0, ∀ T ∈ (−∞,∞). (3.3)

The Arrhenius equation is a modification of the Van’t Hoff equation and relates the

respiration rate to the energy required for enzyme reactions to proceed (activation energy

Ea), as well as temperature (T in Kelvin), the universal gas constant (< = 8.31 J K−1
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mol−1), and a constant α > 0. The Arrhenius equation is expressed as

R = αe(−Ea/<T ). (3.4)

Since the metabolic rate of most organisms take place in the temperature interval

(in Kelvin) I = [273, 313] (Gillooly et al. 2001), and values for Ea are usually two orders

of magnitude higher than values for T , then

R′′ = e(−Ea/<T )

[(
Ea
<T 2

)2

− αEa
<T 3

]
> 0⇐⇒ Ea � T. (3.5)

Convexity is also a property of other empirical equations used to represent the rela-

tionship between respiration and temperature, such as the modified Van’t Hoff equation

and the Lloyd and Taylor (1994) equation (Table 3.1).
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3.2.3 Temperature variability and respiration in a changing climate

If the relationship between temperature and respiration is convex for a given eco-

logical or biological system, we can use Jensen’s inequality to make practical inferences

concerning biogeochemical studies:

1. Modeling studies using average temperature as a driving variable will obtain lower

values of respiration than if they were using temperature from weather records.

2. Incubation experiments at constant temperatures will result in lower respiration

rates than experiments in which temperature is allowed to vary but without changing

the average value.

These are important implications for artificial systems such as laboratory incuba-

tions and biogeochemical models; however, implications of Jensen’s inequality for natural

systems are hard to envisage since temperature is far from constant in nature.

Jensen’s inequality suggests that changes in climatic variability may play an impor-

tant role determining the rates of organic matter decomposition and subsequent carbon

release. This effect of variability though, may depend on the magnitude and direction

of the change in variance as well as the change in the average climate. Assuming that

temperature is normally distributed around a given mean value, a change in variability is

associated with either an increase or decrease in both hot and cold days. We hypothe-

size that this change in variance would result in different rates of decomposition over the

long-term given the convexity of the relationship between temperature and respiration.

Furthermore, we hypothesize emergent and predictable behaviors of simultaneous changes

in the mean and variance of temperature.
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3.3. Methods

3.3.1 Sites and datasets

For the numerical analysis we used soil temperature data from three contrasting

ecosystems, an arctic tundra grassland, a temperate rain forest, and a tropical rain forest.

Soil temperature data at 20 cm depth from the Toolik lake Long-Term Ecological

Research (LTER) site in Alaska (68◦ 38’N, 149◦ 43’W, elevation 760 m asl) were obtained

from the site’s webpage. The dataset contains daily temperature records from June 1, 1998

to December 31, 2006, with a grand mean of −2.5◦C and 11% of observations missing.

From the H.J. Andrews LTER site in Oregon we used soil temperature data mea-

sured at the PRIMET meteorological station (44◦ 12’ N, 122◦ 15’ W, elevation 430 m

asl). The record contains daily soil temperature values measured at 10 cm depth, starting

on December 26, 1994 until January 24, 2007. The average temperature for this period

was 11.8◦C, with only 2% of observations missing. Detailed information about the soil

temperature record can be found at the H.J. Andrews’ website.

Unpublished high-frequency soil temperatures from La Selva Biological station in

Costa Rica (10◦ 26’ N, 83◦ 59’ W ) were also used. Three platinum resistance thermometers

were used to collect information at 5 cm depth with 2 second execution. Data were

averaged to obtain 30 minute time series. The record extends from January 1, 1998 to

December 31, 2000, with only 1% of missing observations and a global average of 23.7◦C.

3.3.2 Data processing and modeling experiments

The time series from the three sites were filtered with a nine-day moving average

to obtain an estimate of short-term variability. In particular, if Tt represents the daily

temperature observations, then

τt =
1
9

4∑
j=−4

Tt−j , (3.6)
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where τt is a symmetric moving average of the data, a low-pass filter that captures the

seasonal trend. An estimate of the short-term variability is then given by the residuals

ε̂t = Tt−τt, which are basically white noise, i.e., E(ε̂t) = 0, with variance σ2
ε . The average

annual trend can then be defined as τ̄d = 1
N

∑N
n=1 τd,n, where d = t − 365(n − 1) is the

Julian day, n is a year counter, and N the total number of years in the time series.

We used τ̄d and σ2
ε to simulate a reference climatic regime for the three sites, as

well as departures to new climatic regimes. These changes in climatic regimes were per-

formed within the framework provided by Mean versus Standard deviation Change (MSC)

diagrams (Sardeshmukh et al. 2000, Scherrer et al. 2008). Within this framework it is

possible to represent independent and simultaneous changes in the mean and variance of

temperature time series (see Figure 3.2 for details). For the purpose of this analysis we

defined time series of reference climatic regimes as

T̃t = τ̄d + εt (3.7)

where T̃t is a simulated time series lengthened to a decade, i.e., t = {1, ..., 3650}.

The term εt is a series of simulated Gaussian white noise, obtained as εt ∼ iid N(0, σ2
ε ).

Notice that the values of τ̄d are recycled 10 times until the end of the simulation.

New climatic regimes were simulated as a change in the mean and variance of the

reference climatic regime by modifying the εt term in equation 3.7. A combination of

values of mean m and standard deviation s were used to simulate time series with εt ∼

iid N(m, s2), where m = {0.1, 0.2, ..., 2} and s = {0.1, 0.2, ..., 3}. These values of m and

s were chosen such that their combination can fill a wide domain of possibilities in the

MSC plots. In other words, these combinations produce 600 different climatic regimes

that are possible as the regional climate changes at each site. Notice that values of m only

reproduce warming from the starting conditions of the reference regime.
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FIGURE 3.2 – Graphical representation of changes in the mean and standard deviation
on a Gaussian climate distribution A with mean T0 and standard deviation S0 resulting
in distribution B with mean T and standard deviation S. (a) Probability density functions
(pdfs) where the mean from distribution A (continuous) changes to distribution B (dashed),
(b) distributions A and B from (a) in a standardized MSC plot showing standardized changes
in the mean (T -T0)/S0 against standardized standard deviation S/S0, (c) pdfs where the
standard deviation from distribution A changes to distribution B. (d) standardized MSC plot
of (c), (e) pdfs where both the mean and the standard deviation from A change to B, (f)
standardized MSC plot of (e).
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3.3.3 Respiration models

The simulated temperature regimes were used to run common empirical functions

that relate temperature and respiration in terrestrial ecosystems. The modified Van’t

Hoff model (Table 3.1) was used for the three ecosystems with an arbitrary value of the

reference respiration R0 = 1 at T0 = 0, that is

Rt = Q
T̃t−10

10
10 . (3.8)

Since we are only interested in observing emergent patterns after using different

climatic regimes we did not use site specific parameters in this function. The usefulness

of this function, in addition to its familiarity to ecologists, is that it allows us to test for

different levels of convexity with different values of Q10; i.e., as Q10 gets higher so does

the second derivative of the function R′′. We ran the model for Q10 = 2, 3, and 4.

We also simulated respiration using the empirical functions implemented in the

DAYCENT and CENTURY models (Del Grosso et al. 2005), given by

Rt = F (Tsoil)F (RWC) (3.9)

where respiration Rt is represented as the combined effect of soil relative water content

(RWC) and temperature (Tsoil). These individual effects are represented as

F (Tsoil) = 0.56 + (1.46 arctan(π0.0309(Tsoil − 15.7)))/π, (3.10)

F (RWC) = 5(0.287 + (arctan(π0.009(RWC − 17.47)))/π). (3.11)

Since we are only interested in exploring the effects of temperature variability, a constant

water content of RWC = 75% was assumed, so F (RWC) = 3.06 in all simulations.

The benefit of using equation (3.10) is that it has an inflection point at T = 15.7,
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which means the relationship between respiration and temperature changes from convex

to concave at this value. The implication for the three ecosystems being modeled is that

the range of temperatures for the arctic tundra is below this inflection value whereas the

range for the tropical forest is above. For the temperate forest site, this inflection point

lies in the middle of its temperature range.

Equations (3.8 and 3.9) were used to calculate total cumulative respiration for the

whole simulation period (10 years) and compare differences between the reference (A) and

the new (B) climatic regime with the index

δR =
∑3650

t=1 RBt −
∑3650

t=1 RAt∑3650
t=1 RAt

. (3.12)

Results from all 600 simulations comparing the reference regime and a new climatic

regime from all posible combinations of m and s are presented in a single MSC plot.

Calculations were performed in the R environment for computing (R Development Core

Team 2008).

3.4. Results

3.4.1 Analytical analysis: Geometric argument

A real-valued function f(x) is said to be convex on an interval I if

f [λx+ (1− λ)y] ≤ λf(x) + (1− λ)f(y), (3.13)

for all x, y ∈ I, and λ in the open interval (0, 1). Consider now the closed interval

[a, b] which is contained in the interval [c, d] ∈ I; both intervals with an average value x̄,
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c = a− h, d = b+ h, and

x̄ = λa+ (1− λ)b = λc+ (1− λ)d, (3.14)

(Figure 3.3). Using the definition of convexity in equation (3.13) we can show that

f(x̄) ≤ λf(a) + (1− λ)f(b) ≤ λf(c) + (1− λ)f(d). (3.15)

This inequality can be confirmed graphically in Figure (3.3) and analytically in

Appendix C. Geometrically, this inequality implies that the end points of two intervals

with the same mean produce different means after convex transformation.

A change in variability of a random variable such as temperature implies a change

in the interval of possible values that this variable can take. Equation (3.15) suggests that

changes in the variance alone, without changes in the average value of a random variable,

produce different values of the average of all the function evaluations. Although this

geometric argument is informative, the implications can be better studied in a probabilistic

setting.

3.4.2 Analytical analysis: Probabilistic argument

Assume that respiration is a function of temperature R = f(T ), which is a strictly

convex function on an interval I, so by definition f ′′(T ) > 0, ∀T ∈ I. Let’s now assume

that there are two random variables T1 and T2 that are normally distributed with equal

mean but with different variance, so T1 ∼ N(µ, σ2
1) and T2 ∼ N(µ, σ2

2). Let’s also assume

that σ2
1 > σ2

2. For simplicity, T1 and T2 can be transformed to z1 = (T1 − µ)/σ1 and z2 =

(T2 − µ)/σ2, respectively. The expected value of E[f(T1)] = E[f(σ1z1)], and E[f(T2)] =
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λf (c) + (1-λ)f (d )
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FIGURE 3.3 – Graphical representation of the inequalities in equation (3.15). x̄ is the
center point of both intervals [a, b] and [c, d], and λ = 1− λ.
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E[f(σ2z2)] can be calculated as

E[f(σ1z1)] =
∫ ∞
−∞

f(σ1z1)
1√
2π

exp
(
−z2

1

2

)
dz,

=
1√
2π

[∫ ∞
0

f(σ1z1) exp
(
−z2

1

2

)
dz +

∫ 0

−∞
f(σ1z1) exp

(
−z2

1

2

)
dz

]
,

=
1√
2π

[∫ ∞
0

(f(σ1z1) + f(−σ1z1)) exp
(
−z2

1

2

)
dz

]
. (3.16)

Similarly,

E[f(σ2z2)] =
1√
2π

[∫ ∞
0

(f(σ2z2) + f(−σ2z2)) exp
(
−z2

2

2

)
dz

]
. (3.17)

According to the properties of convexity it can be shown that f(σ1z1)+f(−σ1z1) >

f(σ2z2) + f(−σ2z2) (equation 3.15); therefore,

E[f(T1)] > E[f(T2)]. (3.18)

Equation (3.18) confirms the hypothesis initially posed, changes in temperature

variance alone can produce differences in respiration. The magnitude and functional

relation of the effect of different variance can be evaluated by calculating the difference

∆ = E[f(T1)] − E[f(T2)]. For simplicity, we will calculate ∆ for the specific case of the

exponential function R = exp(T ), assuming σ2
1 is η times σ2

2 (σ2
2 = σ2

1/η), which gives

∆ = E[f(σ1z1)]− E[f(σ2z2)],

=
1√
2π

[∫ ∞
−∞

f(σ1z1) exp
(
−z2

1

2

)
dz −

∫ ∞
−∞

f(σ2z2) exp
(
−z2

2

2

)
dz

]
,

=
1√
2π

[√
2π exp(−σ1)−

√
2π exp(−σ2)

]
,

= exp(−σ1)− exp(−σ1/η). (3.19)
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FIGURE 3.4 – Relationship between η (proportional change in temperature variance) and
∆ (difference in average respiration) for an exponential function R = exp(T ).

Equation (3.19) summarizes the effects of a change in the variance of T over R. It

shows that the value of η affects the magnitude of the difference in expected values. This

can be visualized in Figure (3.4), which shows that for an exponential function an increase

in variance (from σ2
1 to σ2

2, and η < 1) produces an increase in the average respiration

(∆ > 0), and a decrease (∆ < 0) when variance diminishes (η > 1).
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3.4.3 Numerical analysis

The results obtained using the modified Van’t Hoff model (equation 3.8) were similar

for the three ecosystems modeled, so we will focus on the results for the H.J. Andrews forest

only. The differences between the reference and the set of new climatic regimes, evaluated

with δR, confirm the hypotheses initially posed. First, the results from the simulations

show that changes in the variance of temperature alone can increase the amount of carbon

respired (Figure 3.5). This can be observed in the MSC plot by changes along the vertical

axis at a fixed value of 0 in the horizontal axis. For example, an increase of about 6%

of carbon respired over 10 years can be achieved by a 2.5 times increase in the standard

deviation. Second, the MSC plot shows that respiration is more sensitive to proportional

changes in the average temperature than to changes in variance. The same 6% increase

in respiration obtained with a 2.5 times increase in standard deviation could have been

achieved by increasing the average temperature by a factor of 0.5. Third, simultaneous

changes of the average and the variance of temperature show that increases in variance

amplify the effects of increases in the average. In contrast, decreases in variance dampen

the effects of the increase in the average temperature. This can be observed in the MSC

plot by changes in δR in the vertical direction at any fixed point in the horizontal axis.

The degree to which δR responds to changes in variance was highly dependent on

Q10 (Figure 3.6). As the value of Q10 decreases the convexity of the function decreases

(value of the second derivative gets smaller) and the effect of variability on respiration

becomes less important. This behavior was consistent for the three ecosystems studied.

The pattern observed in Figure (3.5) was also consistent seasonally (Appendix D).

Differences between seasons for each value of m and s were almost in a 1:1 correspondence

(Figure 3.7). This same pattern was consistent for different values of Q10, but the sen-

sitivity of respiration to temperature variability decreased as Q10 got smaller (data not

shown), similar to what was described previously.
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FIGURE 3.5 – MSC plot for H.J. Andrews using the modified Van’t Hoff equation with
Q10 = 4. Colors represent values of δR, i.e., the proportional increase in respiration over
10 years from one climatic regime over the other. The dashed horizontal line represents
simulations in which variance remained constant relative to the reference climatic regime.
S/S0 > 1 represents increase in variance and (T-T0)/S0 > 0 represents increase in average
temperature.
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The approach used in the DAYCENT and CENTURY models (equation 3.9) pro-

duced different results for the three ecosystems analyzed. For the arctic tundra site the

pattern observed was similar to the overall patterns observed with the Van’t Hoff equation

(Figure 3.8a). For the H.J. Andrews though, the DAYCENT approach shows no sensitiv-

ity of respiration to temperature variance (Figure 3.8b). For the tropical forest the results

are the converse, showing a dampening effect with increases in the average temperature

and amplification with decreases in the average (Figure 3.8c).

3.5. Discussion

The results from this analysis provided strong support to the hypotheses initially

posed. First, we found that changes in the variance of temperature alone can either

decrease or increase the amount of soil respiration in terrestrial ecosystems. This was

confirmed by both the analytical and numerical analyses. Second, changes in temperature

variance can either amplify or dampen the effects of changes in the average temperature

on soil respiration. These effects are predictable and depend on the degree of convexity

or concavity between temperature and respiration (value of the second derivative of the

relationship) and the magnitude of the change in variance (η in equation 3.19).

3.5.1 Climate variability and change

Changes in climate variability and its effects on ecosystems have been studied less

intensively than changes in the mean climate. The ongoing modification of the climatic

system by changes in albedo, aerosols and prominently greenhouse gases, affects not only

the mean state of the climate system but also its variability (Räisänen 2002, IPCC 2007,

Brönnimann et al. 2008). Changes in temperature variability may result in changes in

the frequency of events apart from the mean state such as unusual warm or cold events.

Significant attention has been given to extreme climatic events such as heat waves or floods
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FIGURE 3.8 – MSC plots for Toolik lake (a), H.J. Andrews (b), and La Selva (c) using the
DAYCENT and CENTURY approach. Contours represent values of δR, i.e., the proportional
increase in respiration over 10 years from one climatic regime over the other.
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for their dramatic effects on populations. However, less extreme but still unusual events

can have important implications for the functioning of ecosystems over the long-term

(Jentsch et al. 2007).

Important changes have been observed in temperature variability for different re-

gions in the recent past. In Europe, where climate records are longer than in other conti-

nents, important changes in the variance of temperature have been described. Della-Marta

and Beniston (2007) report an increase in the variance of summer maximum temperature

of 6◦C for the period 1880-2005 in Western Europe. This increase in variance accounts for

at least 40% of the increase in the frequency of hot days after accounting for the increase

in the average temperature. Although significant changes in temperature variability have

not been observed for Central Europe over the past decades, most climate models predict

increases in summer temperature variability for the 21st century (Scherrer et al. 2007).

Changes in climate variability are not expected to be homogenous globally. A

comparison of 19 atmosphere-ocean general circulation models (AOGCMs) showed that

as a consequence of doubling CO2, temperature variability is expected to decrease during

the winter of the extratropical Northern Hemisphere (Räisänen 2002). Conversely, the

AOGCMs show that temperature variability is expected to increase during the summer in

low latitudes and northern midlatitudes. A more recent analysis using an updated version

of one climate model confirms these results, which also suggest decreases in temperature

variability for fall, spring and winter in the northern hemisphere (Stouffer and Wetherald

2008).

These expected changes in temperature variability most likely will have consequences

on the total amount of carbon emitted to the atmosphere from terrestrial ecosystems. Our

results showed that changes in variance produce a variety of effects on respiration in addi-

tion to the predicted effects of changes in average temperatures alone. At a global scale,

differences in temperature sensitivities of respiration and in the magnitude of change in
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temperature variance for different regions will produce a variety of responses. For example,

at high latitudes in the Northern Hemisphere, where the mean temperature is expected

to increase and the variance is expected to decrease, respiration would probably be lower

than the predicted by changes in mean temperature alone. These regions are expected

to contribute the most to the positive feedback between temperature and respiration, but

this effect may be overestimated in simulation models. At low latitudes, where both the

mean and variance of temperature are expected to increase, the amount of respiration

would be higher than the predicted by changes in mean temperature alone. These pre-

dictions obviously depend on the assumption of a convex relationship between respiration

and temperature.

3.5.2 Convexity of respiration functions

The relationship between temperature and respiration historically has been de-

scribed using empirical convex functions (Table 3.1). Although there have been important

criticisms to simple empirical models and more mechanistic representations are currently

being discussed (e.g., Luo and Zhou 2006, Davidson et al. 2006), it is clear from the many

modeling approaches that these two variables have a convex relationship, independent of

the type of model employed. In some cases, however, this relationship shows a change to

concavity at higher values of temperature, which could be explained by the interacting

effects of water content and substrate availability (Del Grosso et al. 2005, Davidson et al.

2006), among other factors.

Independent of the type of model being used, the number of pools represented, or

the main drivers included in the model, the results obtained in this study will apply to all

predictions of future respiration if its relationship with temperature is other than a simple

straight line. They also apply to all temperature ranges where most biological process

take place, except where the respiration function changes from convex to concave. As the

simulations in the temperate forest showed, a change in convexity can cause the effects of



74

concavity at one part of the temperature range to compensate the effects of convexity in

the other part of the range.

In general, simulation models use one single equation to described the relationship

between temperature and respiration, with the modified Van’t Hoff model being the most

common. Although there is important work trying to predict Q10 values for different

ecosystem types (e.g., Chen and Tian 2005, Fierer et al. 2006), this modeling approach

only considers one single functional relationship between temperature and respiration.

For some systems it is possible that this relationship is other than convex or changes

to concavity at some point in the temperature range; therefore, more effort should be

directed to understand local scale relationships to be incorporated in models and whether

these relationships are generalizable within and across major biomes.

3.5.3 Implications

Although ecologists are well aware of the importance of climate variability (e.g.

Ruel and Ayres 1999, Pasztor et al. 2000, Knapp et al. 2002, Jentsch et al. 2007), studies

looking at the effects of climate change on ecosystem function have given perhaps too much

attention to changes in the average climate, but not to the full probability distribution of

the climate system. The findings of this study can greatly modify past predictions about

the effects of future average temperatures on ecosystem respiration, especially for large

temporal and spatial scales. However, soil respiration not only depends on temperature

but also on moisture and substrate availability. New climatic regimes will be associated

with different soil moisture regimes and different plant phenologies that control substrate

supply. There has been a considerable amount of work showing the effects of variable soil

moisture on respiration through drying/wetting cycles (see Borken and Matzner 2009 for

a review). If combined with the results from this study, changes in both temperature and

precipitation variance would likely produce complex behaviors not currently incorporated

in simulation models.
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The effects of new climatic regimes with different variances would not only affect

the mineralization of C measured as soil respiration, but also the production of dissolved

organic and inorganic forms of C as well as other elements such as N. Autotrophic respi-

ration is also likely to be affected by changes in the variance of temperature since they

usually correlate well with a modified Van’t Hoff model (Ryan 1991). In general, any

ecosystem process that is related with a climatic variable through a convex or concave

function is likely to be subject to the effects of variance presented here (see Drake 2005

for an example of temperature variability effects on growth rates of zooplankton).

To our knowledge, very few published laboratory or field experiments have looked at

the effects of temperature variability on respiration (however see Lomander et al. 1998).

These type of experiments, in addition to corroborate what is presented here, would

allow one to test the interacting effects of temperature, moisture and substrate variability.

Vegetation models also need to be improved so they can predict the complexities of new

climatic regimes. Probabilistic modeling is a very useful approach for this purpose as

shown here and by others modeling the effects of precipitation variability (Daly et al.

2008).

3.6. Conclusions

Using analytical and numerical analyses as well as empirical models that relate tem-

perature and respiration, we found that changes in the variance of temperature alone can

potentially increase the amount of respiration from terrestrial ecosystems over decadal

time scales. Furthermore, simultaneous changes in temperature variance can either am-

plify or dampen the net effect of mean temperature increase, depending on whether the

change in variance is positive or negative, or the respiration function is concave or convex.

An important consequence of this behavior is that the increase in mean and decrease in
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variance expected for high latitude regions would result in lower amounts of respiration

than that estimated from changes in mean temperature alone.
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Acta Mathematica 30:175-193.



78

17. Jentsch, A., J. Kreyling, and C. Beierkuhnlein. 2007. A new generation of climate-

change experiments: events, not trends. Frontiers in Ecology and the Environment

5:365-374.

18. Kirschbaum, M. U. F. 1995. The temperature dependence of soil organic matter

decomposition, and the effect of global warming on soil organic C storage. Soil

Biology and Biochemistry 27:753-760.

19. Knapp, A. K., P. A. Fay, J. M. Blair, S. L. Collins, M. D. Smith, J. D. Carlisle, C. W.

Harper, B. T. Danner, M. S. Lett, and J. K. McCarron. 2002. Rainfall Variability,

Carbon Cycling, and Plant Species Diversity in a Mesic Grassland. Science 298:2202-

2205.

20. Kucera, C. L. and D. R. Kirkham. 1971. Soil Respiration Studies in Tallgrass Prairie

in Missouri. Ecology 52:912-915.

21. Lloyd, J. and J. A. Taylor. 1994. On the Temperature Dependence of Soil Respira-

tion. Functional Ecology 8:315-323.

22. Lomander, A., T. Katterer, and O. Andren. 1998. Carbon dioxide evolution from

top- and subsoil as affected by moisture and constant and fluctuating temperature.

Soil Biology and Biochemistry 30:2017-2022.

23. Luo, Y. and X. Zhou. 2006. Soil respiration and the environment. Academic Press.

316 pp.

24. Notaro, M. 2008. Response of the mean global vegetation distribution to interannual

climate variability. Climate Dynamics 30:845-854.

25. Pasztor, L., E. Kisdi, and G. Meszena. 2000. Jensen’s inequality and optimal

life history strategies in stochastic environments. Trends in Ecology & Evolution

15:117-118.



79

26. R Development Core Team. 2008. R: A language and environment for statistical

computing. R Foundation for Statistical Computing, Vienna, Austria.
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4. SUBSTRATE HETEROGENEITY AND ENVIRONMENTAL
VARIABILITY IN THE DECOMPOSITION PROCESS

4.1. Abstract

Soil organic matter is a complex mixture of material with heterogeneous biological,

physical, and chemical properties. However, traditional analyses of organic matter de-

composition assume that a single decomposition rate constant can represent the dynamics

of this heterogeneous mix. Terrestrial decomposition models approach this heterogeneity

by representing organic matter as a substrate with three to six pools with different sus-

ceptibilities to decomposition. Even though it is well recognized that this representation

of organic matter in models is less than ideal, there is little work analyzing the effects of

assuming substrate homogeneity or simple discrete representations on the mineralization

of carbon and nutrients. Using concepts from the continuous quality theory developed by

Göran I. Ågren and Ernesto Bosatta, we performed a systematic analysis to explore the

consequences of ignoring substrate heterogeneity in modeling decomposition. We found

that the compartmentalization of organic matter in a few pools introduces approximation

error when both the distribution of carbon and the decomposition rate are continuous

functions of quality. This error is generally large for models that use three or four pools.

We also found that the pattern of carbon and nitrogen mineralization over time is highly

dependent on differences in microbial growth and efficiency for different qualities. In the

long-term, stabilization and destabilization processes operating simultaneously result in

the accumulation of carbon in lower qualities, independent of the quality of the incoming

litter. This large amount of carbon accumulated in lower qualities would produce a major

response to temperature change even when its temperature sensitivity is low. The interac-

tion of substrate heterogeneity and temperature variability produces behaviors of carbon

accumulation that cannot be predicted by simple decomposition models. Responses of
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soil organic matter to temperature change would depend on the interacting effects of the

sensitivity of different pools to decomposition, the amount of carbon stored in the pools,

the variability of climatic drivers, and the degree and nature of the nonlinearities in the

system.

Keywords: continuous quality theory, representation error, organic matter de-

composition, coupled carbon and nitrogen cycling, ecological heterogeneity, temperature

sensitivity of decomposition.

4.2. Introduction

The decomposition of soil organic matter is a process as important as plant photo-

synthesis in terms of the cycling of carbon and driving other important biogeochemical

cycles (Swift et al. 1979, Schlesinger 1997). At a global scale, the magnitude of carbon

release to the atmosphere by the decomposition of organic matter is relatively similar to

the amount of carbon that plants fix in their biomass. However, relatively little attention

has been given to the study of decomposition. In a search on the Ecology and Environ-

mental Sciences database of Web of Science c© we found 53% more studies containing the

term photosynthesis than decomposition; and 74% more studies containing the term net

primary production than the term heterotrophic respiration. This disparity in number

of publications is perhaps an indication of the current lack of understanding in many

belowground processes associated with carbon and nutrient cycling. Another indication

is the crude representation of decomposition processes, in contrast with photosynthetic

processes, in terrestrial biogeochemical models (Davidson & Janssens 2006, Luo & Zhou

2006, Manzoni et al. 2009).

Organic matter in soils is a highly heterogenous mix of detritus from plants, as

well as a mix of macro- and microorganisms with the products of their metabolic activity
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(Swift et al. 1979). Despite its heterogeneity, soil organic matter is often represented as

a single homogenous pool or a mix of a few homogenous pools. Some models such as

FAEWE, PnET-II, or TEM only represent one soil carbon pool, while some of the most

popular models, such as Biome-BGC, CASA or CENTURY, contain 3 pools (Parton et

al. 1987, Potter et al. 1993, Burke et al. 2003, Luo & Zhou 2006). Although significant

progress in the understanding of terrestrial biogeochemical cycling has been achieved by

the use of these models in the past decades, it is still unclear what are the implications

of simple categorizations of soil organic matter when it is well known that it is highly

heterogeneous.

There are several reasons to believe that substrate heterogeneity is an important

factor for predicting the amounts of carbon and nutrient release from soils. One is that

a heterogeneous substrate is composed of material with different chemical and physical

characteristics and different levels of accessibility to decomposers. The total amount of

substrate that can be consumed by decomposers therefore depends on the relative pro-

portions of substrate at different levels of accessibility. If the proportion of inaccessible

substrate is higher, less carbon can be consumed than if the proportion of inaccessible sub-

strate is lower or if the substrate is homogeneously distributed in all levels of accessibility.

The rates at which carbon and other elements can be mineralized would therefore depend

on the different proportions of accessible substrate. Another reason is that substrates with

different properties will respond differently to environmental drivers such as temperature

and moisture, so the total response of the system to a change in the environment will

depend on the relative proportions of material with different characteristics. Additionally,

internal interactions within the soil may constantly change the physical and biophysical

make up of the substrate leading to complex behaviors over time.

In this chapter we explore the consequences of treating substrate heterogeneity ex-

plicitly in a decomposition model. We also explore the consequences of this heterogeneity
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for interactions between soil organic matter and temperature. Our main hypothesis is

that substrate heterogeneity produces a set of system behaviors that cannot be predicted

by assuming a single homogenous pool. We will focus on the mineralization of carbon

and nitrogen since these are highly relevant ecosystem process. For this purpose, we make

extensive use of the continuous quality theory developed by Ågren and Bosatta (1998).

In the first part of this manuscript we present a systematic analysis of the con-

sequences of introducing heterogeneity in a cohort of organic matter subject to decom-

position. Then we extend the analysis to multiple cohorts with heterogeneous inputs,

and lastly we study the interactions of substrate heterogeneity with an abiotic driver:

temperature.

4.3. Substrate heterogeneity

Although it is well recognized that organic matter is a highly heterogeneous mix

of material with different chemical and physical properties (Swift et al. 1979), models

representing organic matter decomposition usually separate it in a few discrete categories

(Burke et al. 2003, Luo & Zhou 2006). This categorization is often based on the resis-

tance of organic matter to decomposition, therefore each category is associated with a

specific decomposition rate constant. Some authors have pointed out the limitations of

this compartmentalization approach and suggested that, more realistically, organic matter

should be distributed in a continuum of quality ranging from high to low decomposition

resistance (Carpenter 1981, Bosatta & Ågren 1991).

4.3.1 Number of pools and approximation error

If soil organic matter is distributed in a continuous range of qualities, a compart-

mentalization into discrete categories can introduce error in its representation within de-

composition models. The error is conceptually similar to the error obtained with nu-
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merical approximations of a definite integral by a Riemman sum (Figure 4.1). The de-

composition rate for each pool generally describes the average decomposition rate within

the pool, which geometrically is similar to the midpoint approximation of the Reimman

method. The absolute error for approximating the area under a curve using the midpoint

method is E = (b−a)
24 h2f ′′(ξ), where a and b are the lower and upper limits of integration,

h = (b − a)/m is the width of the compartments, and m the total number of compart-

ments or pools. This error also depends on the second derivative of a point ξ within each

compartment. As the number of compartments m increases, h decreases as well as the

absolute error (E = O(h) as h→ 0).
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FIGURE 4.1 – Approximation error by representing decomposition rates with three discrete
pools within the quality continuum. Hypothetical relationships between quality q and decom-
position rate k are presented as a) linear (k = q, f ′′(q) = 0), b) convex (k = q3, f ′′(q) > 0),
and c) concave (k = q1/3, f ′′(q) < 0).

The choice of arbitrary discrete pools with constant decomposition rates necessarily

implies lumping specific amounts of organic matter within these categories. Since abrupt

discontinuities may not necessarily represent accurately the distribution of carbon in or-

ganic matter, another representation error is introduced here (Figure 4.2). Similarly, this

error depends on the number of pools and is equal to E = (b−a)
24 h2g′′(ξ).

In its simplest representation, the decomposition of organic matter follows an expo-
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FIGURE 4.2 – Approximation error by representing the distribution of carbon in soil organic
matter ρC with three discrete pools within the quality continuum. Hypothetical relationships
between quality q and ρC are presented as a) symmetric centered on an average quality value,
b) asymmetric skewed towards low quality quantities, and c) asymmetric skewed towards high
quality.

nential mass loss over time (Olson 1963). When the total amount of carbon is partitioned

in m number of pools with specific decomposition rates k for each pool i, the decomposition

process can be represented as

Ct,i = Ct=0,i exp(−kit), (4.1)

where Ct,i is the amount of carbon in the pool i at time t. The total amount of carbon at

any given time is then

Ct =
m∑
i=1

Ct,i. (4.2)

Both terms in equation (4.1) depend on the number of pools in which total carbon is

partitioned; therefore, the representation error imbedded in both propagates to the total

amount of carbon at each time step as

E2
Ct,i
∝
(

(b− a)
24

h2f ′′(ξ1)
)2

+
(

(b− a)
24

h2g′′(ξ2)
)2

, (4.3)
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or

E2
Ct,i

= O(h2) as h→ 0. (4.4)

Two important consequences can be inferred from equation (4.3). First, the two

sources of error depend on the degree of convexity or concavity of the functions being

approximated. As the concavity or convexity increases, measured by the second derivative

of the function, the error increases. Second, when the relationship between quality and

decomposition rate is linear, f ′′(q) = 0, so there is no approximation error for k and the

total error is dominated by the error incurred approximating the distribution of Ct=0.

As a consequence, the approximation error can only be zero when both functions can be

described by straight lines.

As expressed in equation (4.4), the error in modeling decomposition decreases as h

tends to zero; i.e., as the number of pools increases. The relative error for any different

number of pools can be calculated easily using equation (4.1) and different values of m.

We calculated the relative approximation error for different combinations of the functional

forms presented in Figures (4.1) and (4.2). This error was calculated for t = 5, before

all the remaining organic matter was completely decomposed. The results show that the

approximation error is large when only a few pools are considered. For example, when

only three pools are considered, the approximation error can be as large as 30-40% (Figure

4.3).

4.3.2 Coupled carbon and nitrogen dynamics in heterogeneous substrates

Models of organic matter decomposition are of primary importance for predicting

carbon fluxes from soils as well as the cycling of other elements such as nitrogen and

phosphorus. Most models use a limited number of pools that introduce approximation

error as suggested above. However, there are models that represent organic matter as

a continuous variable, as opposed to abrupt compartmentalizations. One of the most

relevant is the continuous quality model (Ågren & Bosatta 1998). This model has been
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FIGURE 4.3 – Approximation error in modeling the decomposition of organic matter by
different number of pools m. The relative error was calculated as (Cm

t=5 −C500
t=5)/C500

t=5, where
Cm

t=5 is the amount of carbon remaining after 5 time steps using m number of pools and
C500

t=5 the same amount using 500 different pools. a) Combination of a linear decomposition
rate and a symmetric distribution (thin black), an asymmetric distribution skewed towards
low quality (thick red), and asymmetric skewed towards high quality (dashed blue). b) Same
combinations as in (a) but with a convex function between q and k. d) Same combinations but
with a concave function. The vertical line indicates the predicted values when decomposition
is modeled with only 3 pools.

widely used for theoretical predictions of ecosystem behavior, mostly using analytical

solutions of systems of differential equations centered on the first moment (i.e., the mean)

of the distribution of qualities.

We implemented the continuous quality model in a numerical framework to explore

the effects of different representations of substrate heterogeneity in the cycling of C and

N. One of the advantages of our approach is that we can represent different shapes of the

distribution of carbon in the quality continuum without restricting our analysis to the

first (mean) or second moments (variance) of these distributions.

4.3.3 Model description

Göran I. Ågren and Ernesto Bosatta developed a mathematical theory for carbon

and nutrient cycling using the concept of quality continuum. Their continuous-quality

theory has been developed over the years and it is well described in Bosatta & Ågren
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(1985, 1991), and Ågren & Bosatta (1998). Here we briefly present the main equations

used to implement the continuous quality theory in a numerical framework. We begin by

presenting the conceptual dynamic equations for carbon and nitrogen and then we present

particular solutions for this system. Specific details about the solutions presented here

can be found in Ågren & Bosatta (1998).

The dynamic equation for carbon is given by

∂ρC(q, t)
∂t

= −fCu(q)ρC(q, t)
e(q)

+
∫ ∞

0
fCD(q, q′)u(q′)ρC(q′, t) dq′, (4.5)

and for nitrogen by

∂ρN (q, t)
∂t

= −fCu(q)
e(q)

ρN (q, t) +
∫ ∞

0
fN (q)D(q, q′)u(q′)ρC(q′, t) dq′, (4.6)

where ρC(q, t) and ρN (q, t) are the density functions of carbon and nitrogen, and ρC(q′, t) dq

is the amount of carbon in the interval of qualities [q, q + dq]. Additionally, fC and fN

are the concentration of carbon and nitrogen in the decomposer biomass, which here are

assumed to be constant or homeostatic (Sterner & Elser 2002). The decomposer growth

rate as a function of litter quality is represented by u(q), with an efficiency e(q) that

represents the production-to-assimilation ratio of the decomposers. D(q, q′) is a function

that represents how carbon is moved from quality q′ to q. The first term in both equations

(4.5 and 4.6) represent the net amount of carbon and nitrogen that is taken up by the

decomposers from the soil organic matter. The second term represents how carbon and

nitrogen is transferred within the range of qualities. Since changes in quality do not imply

gains or losses of substrate (conservation of mass),
∫∞
0 D(q, q′)dq = 1, we can simplify
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equation (4.5) to obtain the time derivative of the amount of carbon

dC(t)
dt

=
∫ ∞

0
−fCu(q)ρC(q, t)

e(q)
+ fCu(q)ρC(q, t) dq (4.7)

= −
∫ ∞

0

1− e(q)
e(q)

fCu(q)ρC(q, t) dq (4.8)

= −
∫ ∞

0
k(q)ρC(q, t) dq, (4.9)

where

k(q) = fCu(q)
1− e(q)
e(q)

. (4.10)

A simple solution for equation (4.9) can be obtained assuming that decomposers do

not modify the quality of the substrate, in which case

ρC(q, t) = ρC(q, 0) exp(−k(q)t), (4.11)

and

C(t) =
∫ ∞

0
ρC(q, t)dq. (4.12)

Notice that equation (4.11 and 4.12) are the continuous equivalents of equations (4.1

and 4.2), but in this case the decomposition rate k is expressed in terms of the growth

rate and the efficiency of the decomposers (equation 4.10).

The solution of equation (4.6) can be obtained similarly as above for carbon, as-

suming initial conditions for the N:C ratio in litter given by r0 = N(0)/C(0), which yields

ρN (q, t) = ρC(q, t)
[
fN
fC
−
(
fN
fC
− r0

)
exp (−fCu(q)t)

]
, (4.13)

and

N(t) =
∫ ∞

0
ρN (q, t) dq. (4.14)
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The dependency of e and u on q can be represented by the following equations

e(q) = e0 + e1q
α, (4.15)

u(q) = u0q
β, (4.16)

with q expressed in relative terms; i.e, q ∈ [0, 1]. The coefficients α and β represent

the rate at which e and u increase with quality. One interpretation of β is that it can

represent the degree of physical protection of organic matter (Bosatta & Ågren 1985,

Ågren & Bosatta 1996). As the quality increases, the material can become more physically

accessible increasing its surface area. A value of β = 3 captures this physical protection.

4.3.4 Numerical implementation

Given that the set of equations above provides an analytical solution to the dy-

namic problem (equations 4.5 and 4.6), the numerical implementation of this model does

not incur errors associated with finding a solution for the system of partial differential

equations. However, this numerical implementation may introduce approximation error,

but as shown in Figure (4.3), with a large number of pools the approximation error is

basically zero.

The first step for the numerical implementation of the model was defining quality

as a vector of length m (number of pools), such q = {q1, q2, . . . qm}. Then we can define

the initial conditions for the distribution of carbon in vector form ρC(q, 0) calculating the

density for each element of q from a known probability density function. Initial conditions

for nitrogen are then given by the vector ρN(q, 0) = r0ρC(q, 0). Total amounts of carbon
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and nitrogen at each time step are calculated as

C(t) =
m∑
q=1

ρCq , (4.17)

N(t) =
m∑
q=1

ρNq . (4.18)

For each quality q, ρCq and ρNq are calculated with equations (4.11) and (4.13),

respectively. To assure a negligible approximation error, we ran the model for m = 500.

4.3.5 Distribution of carbon and decomposition rates in the quality contin-
uum: effects on carbon and nitrogen release

There are two important characteristics that help to define how heterogeneous a

substrate is. One is the way different amounts of carbon are distributed along the quality

axis, and the other is how decomposition resistance changes with quality. The combi-

nation of these two characteristics can potentially create behaviors in the dynamics of

carbon and nitrogen that might be impossible to predict by modeling decomposition with

a homogeneous substrate.

Different combinations of the shapes of the relationships between quality and de-

composition resistance, and quality and carbon density, were considered in this analysis.

Different parameter combinations of the model described above were used to define quality

in various forms (Table 4.1, Figure 4.4). The purpose of these different definitions was to

explore how different function shapes can affect litter decomposition and the subsequent

mineralization of carbon and nitrogen.

Since the decomposition rate k is a familiar concept to ecologists and it encapsulates

the effect of decomposers on the decomposition process (equation 4.10), we chose four

different functional forms of the relationship between decomposition rate and quality to

represent substrate heterogeneity. For comparison purposes, the first functional form

considered was a constant decomposition rate for all qualities. This is similar to assuming



93

TABLE 4.1 – Functional relationships considered for representing the efficiency e(q) and
growth rate u(q) of decomposers. See also Figure 4.4.

Function
shape

e(q) = u(q) = Comments

Constant 0.2 0.25 Efficiency and growth rate are inde-
pendent of quality.

Linear 0.2 0.5q The growth rate of decomposers
only depends on quality. No physi-
cal protection.

Convex 0.2q2.4 0.5q3 Efficiency grows faster for lower
than for higher qualities (Figure D-
8). Organic matter is physically
protected.

Concave 0.2q0.5 0.5q3 Efficiency grows faster for higher
than lower qualities (Figure D-
8). Organic matter is physically
protected.

a homogeneous substrate that decomposes at a single rate (Figure 4.4). Biologically,

this assumption is equivalent to a process in which the efficiency and the growth rate of

decomposers is always constant and independent of quality (Table 4.1).

The second functional form chosen was a linear and increasing relationship between

decomposition rate and quality (Figure 4.4). The assumption is that decomposition re-

sistance increases linearly as quality decreases. This shape is obtained by assuming that

decomposer efficiency is constant for all qualities and decomposer growth rates increase

linearly with quality (Table 4.1). In this case β = 1, which is equivalent to assuming that

the accessibility of the substrate increases linearly with quality (Bosatta & Ågren 1985,

Ågren & Bosatta 1996). Physical protection of organic matter was represented by setting

β = 3, which is the parameter chosen for the other functional forms considered.

Convex and concave relationships between quality and decomposition rate were also

considered to contrast the rates at which decomposition resistance decreases with increases

in quality (Figure 4.4). For lower qualities the resistance to decomposition can decrease
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thin-dashed red, convex: thick blue, concave: thick-dashed purple. See Table 4.1 for details
about assumptions for each functional shape.
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rapidly, which leads to a concave functional form. In contrast, if decomposition resistance

decreases slowly as quality increases the functional form is convex. These functional shapes

were obtained by representing the efficiency of decomposers as either concave or convex

functions of quality (Table 4.1).

These functional forms were combined with different assumptions about the initial

distribution of carbon among different qualities (Figure 4.5). For this purpose we used

different probability density functions to assign values of carbon density to all the m

ranges of quality. First, we considered the assumption that all carbon is centered around

an average value of quality µ1 with variance σ2
1, which can be represented with a density

function S1 = f(q) ∼ N(µ1, σ
2
1). The second distribution of qualities assumed was also

centered on an average value µ1 but with larger spread, such that its variance was twice

as large as the variance considered in the first distribution assumed; i.e., σ2
2 = 2σ2

1 and

S2 = f(q) ∼ N(µ1, σ
2
2) (Figure 4.5).

We also assumed that the initial amount of carbon in the substrate can be skewed

towards either lower or higher qualities. To represent these assumptions we used the Beta

probability distribution, scaled to an arbitrary range of qualities (Figure 4.5). These two

distributions mirror each other, so S3 = f(q) ∼ B(a, b) and S4 = f(q) ∼ B(b, a). Values

for a and b were chosen such that σ2
3 = σ2

4 = σ2
2.

The combination of these assumptions provided insights into the effects of substrate

heterogeneity on the temporal dynamics of carbon and nitrogen during decomposition of

a single cohort of organic matter (Figures 4.6 and 4.7). We observed that an increase

in variance of the distribution of qualities did not affect the behavior of the release of C

and N (Figure 4.6). However, more interesting behaviors were obtained with the differ-

ent functional forms for the relationship between decomposition rate and quality. The

assumption of constant decomposition rate for all qualities provided the same results as

the assumption of a linear increase of decomposition rate with quality. This result sug-
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gests that the assumption of a homogeneous substrate can be valid when decomposition

rate increases linearly with quality, provided that the distribution of the substrate in the

quality continuum is symmetric (see below). Relative to the constant and linear assump-

tions, convexity or concavity of the relationship between k and q can lead to slow or fast

carbon release, respectively (Figure 4.6a, b). The same was true for nitrogen, with a

convex function leading to nitrogen immobilization (demand driven N accumulation) and

a concave function leading directly to mineralization without an immobilization phase.

This result is a consequence of the differences in decomposer efficiencies represented in

the two functional forms (Table 4.1).

Introduction of skewness in the distribution of the initial amount of carbon provided

additional interesting insights. The results showed that with asymmetric distributions the

constant and linear shapes produce different behaviors in the mineralization of carbon

and nitrogen (Figure 4.7). This result suggests that the assumption of an homogeneous

substrate does not hold when carbon is skewed to recalcitrant or labile fractions, even when

quality and decomposition rates are linearly related. Another interesting result is that

the asymmetry of the distribution of carbon determines how fast element mineralization

proceeds. If the substrate is skewed towards low quality substrate, element mineralization

proceeds slowly, and the opposite behavior is true for substrate skewed to high quality.

This behavior is the result of the weighting of the decomposition rates by the distribution

of carbon in different qualities. In addition, the skewness of the substrate contributes to

determine the timing and the amount of nitrogen mineralization (Figure 4.7).
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FIGURE 4.6 – Temporal dynamics of carbon and nitrogen for two different assumptions
about the initial distribution of carbon in different qualities. Panels a) and c) N(µ1, σ

2
1);

b) and d) N(µ1, 2σ2
1). The shape of the function between quality and decomposition rate is

represented with different colors in all panels: constant: thin black, linear: thin-dashed red,
convex: thick blue, concave: thick-dashed purple.
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FIGURE 4.7 – Temporal dynamics of carbon and nitrogen for two different assumptions
about the initial distribution of carbon in different qualities. Panels a) and c) asymmetric
distribution skewed towards lower qualities B(a, b); b) and d) asymmetric skewed towards
higher qualities B(b, a). The shape of the function between quality and decomposition rate is
represented with different colors in all panels: constant: thin black, linear: thin-dashed red,
convex: thick blue, concave: thick-dashed purple.
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4.3.6 The C:N ratio

In all simulations above the initial C:N ratio of the substrate was 100:1. As time

proceeds the C:N ratio for each quality class can be calculated as

ρC(q, t)
ρN (q, t)

=
1

fN
fC
−
(
fN
fC
− r0

)
exp(−fCu(q)t)

. (4.19)

When q 6= 0 the C:N ratio of the final substrate approaches the C:N ratio of the

decomposers, since

lim
t→∞

ρC(q 6= 0, t)
ρN (q 6= 0, t)

=
fC
fN

. (4.20)

When q = 0 the growth rate of the decomposers is zero for all of the assumptions

above, except when we assume a constant growth rate for all quality classes (Figure 4.4,

Table 4.1); therefore the C:N ratio of the lowest quality class is the same as the ratio of

the initial substrate since

lim
t→∞

ρC(q = 0, t)
ρN (q = 0, t)

=
1
r0

=
C(0)
N(0)

. (4.21)

The lowest quality class, which has a decomposition rate k = 0 in most assumptions

being considered in this analysis, remains undecomposed so the final C:N ratio of the

whole cohort reflects the C:N ratio of the class that does not decompose. Although the

amount of carbon and nitrogen remaining in this class is small, the total final C:N ratio

is highly sensitive to the C:N ratio of the lowest quality class.

4.3.7 Quality transformations during decomposition

In the previous sections we have assumed that the quality of the substrate does

not change over time. This assumption is problematic because it is well known that

decomposers transform organic matter in a myriad of different chemical compounds (Swift

et al. 1979, Sollins et al. 1996). It is also well known that, over time, a portion of the
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original organic matter that enters the soil is sequentially transformed into recalcitrant

compounds. Recalcitrant organic matter is highly resistant to degradation by microbes

and enzymes with prolonged turnover times in soils.

In addition to microbial transformations, other physical and chemical factors in-

teract to produce stable organic matter. Stabilization is the integrated effect of different

biological, physical, and chemical mechanisms that protect organic matter from mineral-

ization (Sollins et al. 1996, Lützow et al. 2006). A substrate could be stable but not

necessarily recalcitrant if it is physically or chemically protected; nevertheless, a stable

substrate is highly resistant to degradation and has long turnover times.

Simultaneous to stabilization is the process of destabilization (Sollins et al. 1996).

This process yields material that is more susceptible to microbial consumption and is

controlled by the same factors that lead to stabilization but acting in opposite directions.

Although destabilization is a process as important as stabilization it has not received as

much attention (e.g., Baldock et al. 2004, Lützow et al. 2006). In theory, a model of

decomposition should include both processes simultaneously.

The continuous quality theory presented above (section 4.3.3) is adequate to repre-

sent changes in quality due to microbial transformations that lead to recalcitrance, but

falls short in representing the more broad process of organic matter stabilization and

destabilization in soils. Solutions to the dynamic system (equations 4.5 and 4.6) have

been developed using dispersion models that depend on the growth rate and efficiency of

the decomposers (Ågren & Bosatta 1998, Bruun et al. 2009). Although it would be useful

to introduce physical and chemical controls on these dispersion functions the solution to

the system of PDEs might be analytically intractable.

Here we take a different approach for representing transformations in litter quality

during the decomposition process. Our main assumption is that the substrate is contin-

ually being transformed in quality, but not necessarily as a direct effect of decomposer
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activity. The change in quality is represented as a Markov process, in which quality is

considered as a state variable with finite transition probabilities within the quality domain.

4.3.8 The Markov process

Transformations in the quality of organic matter at each time step are represented as

a Markov process (Bharucha-Reid 1960), in which a transition matrix is used to calculate

the amounts of substrate that are transferred among quality classes.

Assume that at each time step the transition from quality j to quality i is given by

the transition matrix P

P =



p11 p12 · · · p1j · · · p1m

p21 p22 · · · p2j · · · p2m

...
...

. . .
... · · ·

...

pi1 pi2 · · · pij · · · pim
...

...
...

...
. . .

...

pm1 pm2 · · · pmj · · · pmm


and the distribution of carbon in all m qualities at time t = 0 is given by the vector

ρC(q, 0); i.e., the initial state of the system

ρC(q, 0) =



ρC(1, 0)

ρC(2, 0)
...

ρC(m, 0)


.

We can set values for all transition probabilities pij according to certain assumptions

about the behavior of the system, with the only requirement that
∑

i pij = 1. Transitions

from time-step n to n+ 1 can be obtained by the product P ρC, but we need to represent

the dynamic behavior of the system first.



103

We will continue using the approach of representing quality in m different classes,

but now instead of using m analytical solutions we will find m numerical approximations

to the system of differential equations for each time step n, with l representing the size of

each time increment. This approach will allow us to introduce the transition scheme at

each time step. The state of the system at some time n+ 1 will be represented by Un+1,

which is the result of the update of the system by the transition matrix P and an r-order

finite difference approximation Drf
′(Un) to the system of differential equations for C and

N, so

Un+1 = P(Un + l Drf
′(Un)). (4.22)

which is equivalent to

Un+1 = P





ρC,q1(n) ρN,q1(n)

ρC,q1(n) ρN,q1(n)
...

...

ρC,qm(n) ρN,qm(n)


+ l



Drf
′(ρC,q1) Drf

′(ρN,q1)

Drf
′(ρC,q2) Drf

′(ρN,q2)
...

...

Drf
′(ρC,qm)t Drf

′(ρN,qm)




, (4.23)

where for each q ∈ {q1, . . . , qm} the system of differential equations is given by

f ′(ρC,q) =
dρC,q
dt

= −kqρC,q (4.24)

f ′(ρN,q) =
dρN,q
dt

=
−fCuq
eq

ρN,q + fNuqρC,q. (4.25)

The finite difference approximation chosen to find solutions for the m systems in

(4.23) was the fourth-order Runge-Kutta method, which in general provides solutions with

high accuracy; that is E = O(l4) (LeVeque 2007).
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4.3.9 Stabilization and destabilization of organic matter

Since we already have relationships to obtain values of uq and eq for each quality

class, we only need to specify P to solve equation (4.22). Although the Markovian struc-

ture of (4.22) provides opportunities for representing complex transitions in the quality

domain, we will take a very simple approach here to test two different assumptions about

sequential transformations of quality. First, we assume that at each time step a portion of

the carbon is transferred to the immediately adjacent quality class in the direction towards

lower quality. There are no transitions to better quality classes. This is equivalent to as-

suming no destabilization mechanisms, or that stabilization outweighs any destabilization

process.

Assuming that at each time step the amount of carbon that is transferred to the

adjacent quality class is 50% of the current amount, then

P1 =



1 0.5 0 · · · 0

0 0.5 0.5 · · · 0
... 0 0.5 · · ·

...
...

...
...

. . . 0.5

0 0 0 · · · 0.5


.

Notice that the first element implies that once a certain amount of carbon is trans-

ferred to the lowest quality class, it remains confined there indefinitely. In other words,

once certain amount of carbon is transformed to a stable compound it cannot be trans-

formed into a substrate of better quality.

The second assumption considered includes destabilization processes for each quality

class. At each time step we assumed that 50% of the substrate stays in the same class

while 25% is transferred to the adjacent higher quality class and 25% gets transferred

to the adjacent lower quality class. For the lowest quality class we assumed that 25%
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of the material is destabilized at each time step, so the transition matrix for our second

assumption is defined as

P2 =



0.75 0.25 0 · · · 0

0.25 0.5 0.25 · · · 0

0 0.25 0.5 · · ·
...

...
...

...
. . . 0.5

0 0 0 · · · 0.5


.

We incorporated this Markovian approach in the decomposition model for the two

different assumptions P1 and P2 also assuming that the initial amount of carbon was

normally distributed, and m = 200.

The model successfully represented the gradual change in the overall quality of the

substrate over time as well as a reduction in the total amount of carbon and nitrogen as

an effect of decomposer activity (Figure 4.8). Over time, for the stabilization assumption

(P1), an increasing amount of carbon accumulates in the lowest quality class because

the decomposition rate there is zero and the material does not transition to other quality

classes. However, when the decomposition rate is constant for all quality classes, including

the lowest quality class, carbon and nitrogen is lost continually from the system (Figure

4.8a and 4.10a). At the end of the simulation, all the carbon remaining is stored in

the lowest quality class, with the total amount depending on the functional relationship

between k and q (Figure D-9). For the assumption of simultaneous stabilization and

destabilization, the final amount of carbon was stored in a wider range of quality classes,

mainly of lower quality, with the exception of the constant functional shape (Figure D-10).

Decomposition proceeded faster when the relationship between k and q was repre-

sented with a concave function and slower when represented with a convex one (Figure

4.8c, d and 4.10). Although this was already observed in previous simulations, it can be
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FIGURE 4.8 – Distributions of the density of carbon in the quality continuum at dif-
ferent time steps t assuming only stabilization processes (P1). Each panel depicts different
assumptions about the relationship between k and q: a) constant, b) linear, c) convex, and d)
concave.
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FIGURE 4.9 – Distributions of the density of carbon in the quality continuum at different
time steps t assuming simultaneous stabilization and destabilization processes (P2). Each
panel depicts different assumptions about the relationship between k and q: a) constant, b)
linear, c) convex, and d) concave.
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FIGURE 4.10 – Temporal behavior of the remaining amounts of carbon and nitrogen for
the different assumptions of the relationship between k and q: constant: thin black, linear:
thin-dashed red, convex: thick blue, concave: thick-dashed purple. Panels a and b for the
assumption of stabilization only (P1), and panels c and d for the assumption of simultaneous
stabilization and destabilization (P2).
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seen in Figures (4.8c and d) that the convex shape leads to higher accumulation of stable

undecomposable substrate. Since lower quality substrate decomposes faster in the concave

functional form, decomposition proceeds faster and less material accumulates in the more

stable fractions.

When both stabilization and destabilization were considered in the transition ma-

trix, very small amounts of stable substrate remained at the end of the simulation period

(Figures 4.10c and d). With the exception of a constant decomposition for all qualities,

most of the remaining substrate was accumulated in the lower quality classes, decreasing

exponentially to higher classes (Figure D-10). This is a more realistic distribution than

when destabilization was not included in the transition matrix (Figure D-9). The assump-

tion of constant decomposition leads to a final material similar in quality to the initial

distribution of the substrate.

Similarly as carbon, the amount of nitrogen decreases over time and accumulates in

the lower quality classes (Figure D-11). Although the amount of carbon and nitrogen is

proportionally constant for the initial substrate; i.e., constant C:N ratio, the relative pro-

portion of these elements in the substrate changes over time with a tendency to accumulate

substrate of the same C:N ratio in the lower qualities.

4.4. Environmental variability

Until this point we have considered the process of decomposition for a single co-

hort occurring without perturbations of the external environment. We now will explore

potential interactions of environmental variables on the decomposition process. However,

before that we will introduce another important component to this model, which is the

recurrent addition of multiple cohorts of substrate to the soil.
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4.4.1 Litter inputs and their heterogeneity

Litter from aboveground plant parts and roots is by far the dominant input of

organic matter to the soil. This litter enters the soil in a variety of amounts and qualities

that depend on the dominant vegetation, its phenology, and the climate, among other

factors. Litter quality for different pools is often defined by the chemical characteristics of

the material such as the contents of nitrogen and carbon as well as the relative proportions

of compounds such as lignin, cellulose, polyphenols, etc.

In this analysis we used a qualitative description of the distribution of carbon in

different qualities for a small set of plant parts. Leaves, fine roots, branches, wood, bark

and coarse roots were the different pools considered, and we defined hypothetical shapes

of their carbon distribution in the quality continuum (Figure 4.11).

The distribution of carbon and nitrogen entering the soil at each time step n is given

by

Ln = Llv
n + Lfr

n + Lbr
n + Lwd

n + Lbk
n + Lcr

n (4.26)

where L is a m-by-2 matrix that represents the distribution of carbon and nitrogen of

incoming litter for each quality class. The subscripts represent different plant parts:

lv: leaves, fr: fine roots, br: branches, wd: wood, bk: bark, cr: coarse roots. These

distributions were produced using Beta probability distribution functions with arbitrary

parameters selected to reproduce hypothetical shapes for each pool (see Figure 4.11).

The system of equations for representing organic matter decomposition can now be

expressed to include litter inputs by simply adding the Ln term to (4.22),

Un+1 = P(Un + l Drf
′(Un)) + Ln, (4.27)

so now the system includes both inputs and losses to and from the soil. To include
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variability in the inputs of litter, we selected random amounts of carbon from a normally

distributed average amount of inputs for each pool.

4.4.2 Accumulation of carbon and nitrogen over time

If only stabilization is included in the transition matrix, carbon and nitrogen accu-

mulates linearly over time (Figures 4.12a and c). However, when decomposition is constant

for all quality classes, the system quickly reaches steady state. In contrast, when stabi-

lization and destabilization are both included in the transition matrix, the total amounts

of carbon and nitrogen accumulate asymptotically (Figures 4.12b and d).

The final distribution of carbon tends to accumulate most of the substrate in the

lower quality classes, with the exception of the constant functional shape, which presents

a distribution of carbon similar to the distribution of the incoming litter (Figure 4.13).

For the concave shape, which decomposes the substrate faster and reaches equilibrium

faster than the other shapes, the amount of carbon in higher qualities is relatively high.

This reflects the relative importance of the incoming material once the system has reached

equilibrium.

A similar pattern was observed for nitrogen (Figure 4.14). The assumption of con-

stant decomposition rates produces a distribution of nitrogen similar to the distribution

in the incoming litter. For the other functional shapes, nitrogen tends to accumulate in

the lower quality classes, but with a significant amount in higher qualities representing

the incoming litter.

These results suggest that the substrate that accumulates over time tends to be

of similar quality, with an important fraction accumulated in the lower qualities and a

fraction accumulated in higher qualities representing the fresh litter. This distribution of

substrate in different quality classes depends on the shape of the relationship between q

and k. The concave shape, which decomposes lower quality faster than the other shapes,

tends to accumulate significantly higher proportions of carbon in high quality classes.
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FIGURE 4.12 – Carbon and nitrogen stores over time for the assumption of stabilization
only (P1) (panels a and c), and for the assumption of simultaneous stabilization and desta-
bilization (P2) (panels b and d). Line colors represent the different functional shapes of the
relationship between k and q. constant: thin black, linear: thin-dashed red, convex: thick
blue, concave: thick-dashed purple.
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FIGURE 4.13 – Distribution of carbon at the final time step when both stabilization
and destabilization are included in the transition matrix P2. Each panel represent different
assumptions about the relationship between decomposition rate and quality, a) constant, b)
linear, c) convex, and d) concave.
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FIGURE 4.14 – Distribution of nitrogen at the final time step when both stabilization
and destabilization are included in the transition matrix P2. Each panel represent different
assumptions about the relationship between decomposition rate and quality, a) constant, b)
linear, c) convex, and d) concave.
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4.4.3 Temperature effects on decomposer growth rates

The rate at which decomposers grow and mineralize carbon and nutrients is highly

dependent on temperature (Price & Sowers 2004, Davidson & Janssens 2006). The tem-

perature dependance of microbial growth rates fit remarkably well the exponential models

proposed by Arrhenius and Van’t Hoff in the late 19th century (see Chapter 3). These

exponential models can also be derived from thermodynamic concepts, which Bosatta &

Ågren (1999) used to propose an equation for decomposer growth rates as a function of

quality and temperature:

u(q, T ) = u0e
−Ea/<Tq, (4.28)

where Ea is the activation energy, < is the universal gas constant, T is the absolute tem-

perature in Kelvin and u0 a reference growth rate. In this equation the growth rate of the

decomposers responds exponentially to changes in quality, which does not conform to the

theoretical framework we have developed in this manuscript. An alternative representation

can be given by

u(q, T ) = (u0q
β)e−Ea/<T (4.29)

Equation (4.29) takes as a reference growth rate what would be predicted by each

quality at a reference temperature and adjusts it by the sensitivity to temperature. Alter-

natively, the modified Van’t Hoff model (Chapter 3) can be used to represent the temper-

ature sensitivity of microbial growth using the Q10 parameter and a reference temperature

Tref as

u(q, T ) = (u0q
β)Q

(T−Tref )

10
10 . (4.30)

With this representation we obtain a temperature response of microbial growth for

each quality class, with less increase in decomposer growth for the lower than for the

higher qualities (Figures D-12, D-13, and D-14).

We ran this model for a hypothetical average temperature of 12◦C over 10 years
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and increased it gradually to 16◦C over 5 years and observed the behavior of the system

for an additional decade. As expected the model predicted a reduction of carbon after the

temperature increase, but also provided some insights about which pools were losing more

or less carbon (Figure 4.15). In all cases there were no reductions of carbon in the higher

quality classes. This can be explained by the fact that carbon in these classes decays fast

inherently so increases in temperature cannot further affect this high quality substrate.

When decomposition is assumed to be constant for all quality classes, carbon is reduced

in proportion to where it is most abundant, so the losses of carbon occur proportionally

to the quality of the incoming litter. In all other cases, carbon is lost primarily from the

most stable pools even though increases in temperature for these pools do not increase

microbial growth as much as for higher qualities (Figures D-12, D-13, and D-14). The

larger amounts of carbon released in low quality classes are due to a considerable amount

of carbon stored there.

4.4.4 Interactions between substrate heterogeneity and temperature variabil-
ity

In the previous chapter we found that due to the convexity of the relationship

between temperature and soil respiration, increases in temperature variance amplify the

amount of respiration whereas decreases in variance reduce it. In theory, the results from

the previous chapter should apply also to the overall process of decomposition. However,

in that analysis we assumed an homogeneous soil layer. To test whether or not the

predictions of changes in variance would also apply to heterogeneous substrates, we ran

our decomposition model for the different assumptions of heterogeneity, increasing and

decreasing temperature variance by a factor of 2.

After running the model with different variances, we found that predictions of the

previous chapter only applied to the assumption of constant decomposition for all qualities;

i.e., only for homogeneous substrates. An increase in variance increased the carbon losses
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FIGURE 4.15 – Changes in the distribution of carbon due to an increase in the average
temperature of 4◦C. The thick line represents the distribution of carbon at 12◦C and the thin
line the distribution at 16◦C. a) Constant, b) linear, c) convex, and d) concave.



119

which resulted in a decrease in soil carbon stores under this assumption (Figure 4.16a).

Similarly, a decrease in variance resulted in an increase in carbon stores relative to a

scenario with no changes in variance. However, complex behaviors emerged for the other

functional shapes. When the decomposition rate increase linearly with quality, a decrease

in variance did not result in an increase in carbon stores as expected: both the increase

and decrease in variance resulted in a decrease in carbon stores relative to a scenario with

no changes in variance (Figure 4.16b). The complete opposite result was obtained when

the relationship between quality and decomposition rate was concave (Figure 4.16d). In

contrast, for the convex relationship, the results were relatively similar to the assumption

of a constant decomposition rate, but the changes in variance produced a larger effect

(notice difference in scale in Figure 4.16c).

For nitrogen the results were similar to those of carbon (Figure 4.17), which suggests

that changes in variances can also affect the mineralization and storage of nitrogen in soils.

These changes in variance most likely will have a larger effect on substrate of higher quality,

that is, in relatively fresh litters, but can also affect the storage in more stable pools if

the relationship between decomposition and quality is convex (Figure 4.17c).

4.5. Discussion

The results obtained in this analysis provide support for the hypothesis initially

posed: the inclusion of substrate heterogeneity in modeling decomposition introduces

properties and behaviors that cannot be obtained by representing homogeneous substrates.

Heterogeneous substrates are characterized by having different proportions of material

with different susceptibilities for decomposition. In general, the behavior of the system

over time in terms of carbon and nitrogen mineralization would reflect this arrangement

of the substrate in different quality classes. In addition, variability of the environment can
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FIGURE 4.16 – Effect of changes in temperature variance in the final distribution of
carbon (δρC) after increasing the average temperature by 4◦C. Red lines represent the effect
of increasing the variance by 2 and the blue line the effect of reducing variance by half. a)
Constant, b) linear, c) convex, and d) concave.
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FIGURE 4.17 – Effect of changes in temperature variance in the final distribution of
nitrogen (δρN ) after increasing the average temperature by 4◦C. Red lines represent the effect
of increasing the variance by 2 and the blue line the effect of reducing variance by half. a)
Constant, b) linear, c) convex, and d) concave.
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further modify the rates of carbon and nitrogen mineralization of heterogeneous substrates.

Despite the realism of representing the quality of organic matter as a continuous

variable, most models have traditionally used a compartmentalization approach. From

more than 200 decomposition models reviewed by Manzoni & Poroporato (2009), only

three represent quality as a continuous variable; a very surprising number given the con-

ceptual generality and flexibility of the continuous approach. The concept of continuous

quality was first proposed almost three decades ago (Carpenter 1981), and it has been

treated exclusively in theoretical models with analytical solutions. This might explain its

lack of attractiveness among modelers. However, as shown here, quality as a continuous

variable can be easily implemented in numerical models. One of the main advantages

of this approach is that the number of parameters needed to represent decomposition

rates for different pools is reduced to just one or two parameters describing a functional

relationship between quality and decomposition rate.

Finding parameters and functions to describe growth rate and efficiency of decom-

posers with quality may be challenging though. There are a number of laboratory tech-

niques that seem to be promising for providing representations of substrate quality in a

continuous fashion. Bruun et al. (2009) reviewed a large number of methods with poten-

tial application for describing substrates in a continuum of qualities. The methods can be

grouped in physical, chemical, and biological fractionations, as well as spectroscopy meth-

ods. Although there is not much research on applications of these methods for modeling

decomposition in the continuous quality framework, there are enormous research oppor-

tunities. Many laboratory methods are currently used for parameterizing compartment

models but it is still an open question if the operationally defined partitioning of chemical

or physical fractions correspond to the assignment of quality compartments in models.

The continuous approach in this case may actually help to solve this dilemma since the

compartmentalization is not necessary when quality is treated continuously.
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4.5.1 Overall rates of carbon and nitrogen mineralization

Traditionally, it has been assumed that the overall rate of carbon mineralization can

be described by a single decomposition rate (e.g., Olson 1963). As the results from this

analysis showed, this assumption is only valid when the substrate subject to decomposi-

tion has homogeneous properties and its quality does not change over time. The overall

decomposition rate of a substrate is the result of a combination of decomposition rates

for different qualities weighted proportionally to the amount of carbon in those qualities.

If more carbon is stored in lower than in higher qualities the overall rate of carbon re-

lease would be slower than if a higher proportion is stored in higher qualities. Therefore,

decomposition rates by themselves only provide part of the information needed to deter-

mine how fast decomposition proceeds for a given substrate. The same can be said for

nitrogen, but in this case the amount and the timing of immobilization would depend on

this proportional localization of substrate in the quality range.

The behavior of decomposers’ growth and efficiency in lower quality ranges is also a

significant factor determining the overall rates of mineralization. As the substrate becomes

less accessible, decomposers might decrease their activity drastically or more moderately,

which results in convex or concave shapes of their activity on the quality axis, respectively.

This marginal response can produce dramatic differences in the overall rates of carbon and

nitrogen mineralization in addition to the relative proportions of substrates in different

qualities.

Moreover, the continuous redistribution of organic matter to different qualities re-

sults in a gradual accumulation of material of lower qualities. On the whole, this process

tends to reduce the overall rates of mineralization. When we considered simultaneous

stabilization and destabilization process in our model the proportions of material passing

to low and high qualities were equal for most of the quality range. However, since the ma-

terial at lower qualities has lower decomposition rates more carbon accumulates in lower
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quality classes, which eventually results in a decrease of the overall mineralization rate.

The continuous transformation of organic matter results in a relatively similar dis-

tribution of substrate regardless of the incoming litter. This behavior in our model is

consistent with observations of 13C nuclear magnetic resonance (NMR), which show that

the proportions of complex molecular structures such as alkyls, O-alkyls, aromatics, and

carbonyls are remarkably similar in soils worldwide independent of land use, climate, and

management (Mahieu et al. 1999). Results from long-term large-scale decomposition

studies suggest that litter tends to reach a phase of slow decomposition in the long-term

(Harmon et al. 2009), which could be explained by the accumulation of low quality sub-

strate. This accumulation of substrate in lower qualities is also consistent with the concept

of convergence of the decomposition process (Swift et al. 1979), by which the branching

of substrate degradation through different food webs converges to final products of similar

characteristics. Since under certain mathematical conditions Markov chains converge to

stationary distributions regardless of the initial conditions (Bharucha-Reid 1960), they

appear to provide useful representations of transformations of soil organic matter quality.

4.5.2 Temperature sensitivity of organic matter pools

The response of organic matter to temperature change is a topic that has recently

received a great deal of attention (Trumbore 1997, Liski et al. 1999, Ågren 2000, Giardina

& Ryan 2000, Knorr et al. 2005, Reichstein et al. 2005, Davidson & Janssens 2006).

An important part of this discussion has centered on the question of what carbon pools

will be more sensitive to mineralization under higher temperatures. A topic of contention

has been whether or not recalcitrant-stable pools are more sensitive to decomposition

with climate change. Unfortunately, the arguments supporting or rejecting the hypothesis

of higher sensitivity for recalcitrant pools have been based on analyses of compartment

models with one or two pools (however see Bosatta & Ågren 1999). The results from

the analysis presented here provide some information that may enrich the debate on the
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temperature sensitivity of organic matter pools.

We found that the overall release of carbon is a combination of the temperature

sensitivity and the amount of carbon available for decomposition at each quality class. Low

quality substrate may require high activation energies and therefore have low sensitivity

to temperature changes, but if large amounts of carbon are stored in low quality classes

the overall release of carbon can still be significant. If in contrast, the sensitivity of low

quality pools is higher for low qualities (Bosatta & Ågren 1999, Ågren 2000) a drastic

release of carbon can be expected from warmer soils because most organic matter tends

to be accumulated in low quality classes (Mahieu et al. 1999).

In addition to the response of increases in the average temperature, soil organic

matter responds to changes in the variance of temperature. This response to variability

tends to amplify or dampen the change in decomposition generated by changes in the

average temperature, but differs by quality classes. The response of different quality classes

to variability is highly dependent on the nonlinearity of the system, primarily the response

of decomposers to temperature change along the quality domain. A better understanding

of the functional relations of decomposer growth rates with temperature in the quality

continuum would greatly improve predictions of the possible effects of climate change on

carbon release from ecosystems. The different responses observed in this analysis could

produce drastically different projections of carbon release with different consequences for

projections of future climate.

4.6. Summary and conclusions

Although some of the limitations of using one or a few homogenous pools to de-

scribe soil organic matter have been discussed previously, this is, to our knowledge, one

of the few systematic analysis that report the consequences of excluding heterogeneity
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from modeling organic matter decomposition. This analysis confirmed the hypothesis

that substrate heterogeneity introduces behaviors in the decomposition of organic matter

that cannot be predicted when homogeneous substrates are assumed. Our main findings

were: i) dissecting organic matter into relatively few compartments introduces representa-

tion error in both the distribution of carbon in the different pools and the decomposition

rates assigned to each class. The total approximation error is proportional to the size of

the compartments and the functions that best represent substrate heterogeneity. ii) The

temporal behaviors in the mineralization of carbon and nitrogen are highly dependent on

the functions that describe the efficiency and growth rate of decomposers with quality; i.e.,

the convexity of the relationship between decomposition rate and quality. The assump-

tion of homogenous substrates imply equal efficiencies and growth rates for all different

substrates present in the soil organic matter. This assumption can only provide realistic

behaviors when the relationship between quality and decomposition rate is linear and the

substrate is symmetrically distributed around an average value. In all other cases, the

assumption of homogeneous substrates produces different amounts and rates of mineral-

ization for carbon and nitrogen. iii) The continuous transformations of organic matter

in the soil tend to accumulate carbon in organic matter of low qualities independent of

the quality of the incoming litter. This can only be represented by stabilization and

destabilization mechanisms operating simultaneously. Without destabilization processes,

carbon will accumulate indefinitely in soils. iv) The additional amounts of carbon that

can be mineralized as an effect of increases in temperature depend largely on the amounts

of substrate available for decomposition. Even though low quality substrate may not be

very sensitive to temperature, its abundance in most soils can provide large amounts of

material to be utilized by microbes with the additional energy provided by higher temper-

atures. v) Substrate heterogeneity and temperature variability produce complex behaviors

in the mineralization of carbon and nitrogen. Temperature variability can either amplify
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or dampen the response of the system to increases in the average temperature, but this

response depends on the degree of nonlinearities within the system.
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5. CONCLUSIONS

The different tests and analyses performed throughout this dissertation provided a

variety of theoretical evidence that suggests that variability and heterogeneity introduce

behaviors in ecosystem models that cannot be predicted by simpler models. Since ecosys-

tem models are mathematical conceptualizations of natural systems, it is possible to use

mathematical tools for synthesis and generalizing patterns. In this chapter I present some

generalizations that emerged from explicit treatments of environmental variability and

system heterogeneity. Specific conclusions pertaining each chapter are also presented.

5.1. Generalizations from explicit treatments of environmental variabil-
ity

Climate variability is an integral part of the natural environment of ecosystems.

Although the average climatic conditions for a region gives important information that

can be used for predicting ecosystem properties, climate variability gives a greater amount

of information that can substantially change predictions based on average conditions alone.

Throughout this dissertation we examined variability of climate and its effects on the total

amounts of carbon and nitrogen stored in an ecosystem. Effects of changes in variability

were contrasted with the effects predicted by changes in average conditions alone. We

found that variability introduces important behaviors in the mineralization of carbon and

nitrogen, which are likely dependent on the degree of nonlinearity of the system, so changes

in environmental variability become highly relevant for nonlinear systems.

It is therefore important to look at the concept of nonlinearity more carefully. There

are two main interpretations of this term in the ecological literature. One interpretation,

also a synonym of complex systems, is that nonlinear systems are those whose behavior
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cannot be expressed as the sum of the behaviors of the individual parts. Another interpre-

tation is that nonlinear systems are those whose response is not proportional to a forcing

variable; with the implication that small changes in the forcing can push the system across

a threshold. In mathematics, nonlinear functions are defined as those who do not satisfy

additivity

f(x1 + x2) 6= f(x1) + f(x2), (5.1)

or homogeneity

f(αy) 6= αf(y). (5.2)

These two equations correspond exactly to the interpretations of nonlinearity for ecological

systems given above.

The non-additivity characteristic of nonlinear systems has always focused on the

internal elements of ecosystems. However, the results of this dissertation suggest that

this property also applies to the temporal dimension when the environment is constantly

changing. If x1 and x2 are considered periods of time with different but relatively ho-

mogeneous climatic characteristics, then we can infer that the behavior of a nonlinear

system over a given period of time cannot be expressed as the sum of the behaviors of the

system in shorter time intervals. This property is scale dependent; i.e., depends on how

homogeneity in climatic conditions is defined.

In its simplest form, nonlinearity can be characterized as the convexity of the rela-

tionships between independent and response variables. For convex relationships we can

constrain the initial predictions of equation (5.1) using Jensen’s inequality. If for example

a strictly convex system experiences climatic conditions X, we can predict that the aver-

age response is always larger than the response of the system under average conditions,

that is

f(E(X)) < E(f(X)). (5.3)
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The importance of this inequality is that it goes beyond stating that the responses are

different; it gives a qualitative ranking of the values that these responses can take.

Now, we can make a further generalization if we assume two variables X and Y

symmetrically distributed around the same mean value, but with different variances, so

Var(X) < Var(Y ). An extension of Jensen’s inequality derived in this dissertation is that

E(f(X)) < E(f(Y )). (5.4)

This inequality implies that increases in variance of the forcing result in an increase

of the average response of the system, in the convex case. For concave systems the response

decreases. A consequence of this inequality is that changes in the variance of climate alone

can produce changes in the average behavior of nonlinear systems.

Another generalization, which can be deduced from the numerical results of Chap-

ter 3, is that changes in variance amplify or dampen the effects of changes in average

conditions. If the average forcing (average climatic conditions) increase in proportion to

a quantity α > 1, then

αE(f(X)) < E(f(αX)) < E(f(αY )). (5.5)

The left hand side inequality is a special case of the non-homogeneity property of

nonlinear systems (equation 5.2). It implies that the average behavior of the system due

to a proportional increase in the climatic conditions is higher that the same proportional

increase of the system under average conditions. The right hand side of (5.5) implies that

the average response of the system is higher if the variance of the climatic conditions

increases. The sign of the inequality is reversed if the system is concave or the variance

of X is lower than the variance of Y . A possible consequence of this inequality is that

small pushes of the system by a slight increase in the frequency of rare events can bring
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the system across a threshold.

5.2. Generalizations from explicit treatments of system heterogeneity

The results from Chapter 4 showed that the behavior of a system for which all parts

are assumed to be homogeneous is different than the behavior of a system for which the

parts are assumed heterogeneous. This corresponds to the principle of non-additivity of

nonlinear systems presented above (equation 5.1), but differs somewhat from the general-

izations presented for climatic variability.

The heterogeneity of a system can be characterized by the relative frequency of

different elements comprising the system. If a higher frequency of elements with rela-

tive similar characteristics compose the system, then the average behavior will be largely

influenced by the response of this set of frequent elements.

Taking as example equations (4.11 and 4.12),

C(t) =
∫ ∞

0
ρC(q, 0) exp(−k(q)t)dq, (5.6)

we can make some generalizations about the overall behavior of an heterogeneous system

Y represented by a function f(X, t) that depends on a property X with a continuous

density function g(X),

Y (t) =
∫
g(X)f(X, t)dX. (5.7)

In the case the property X is broken in a discrete number of qualities xi with probabilities

p(xi),

Y (t) =
∑

p(xi)f(xi, t). (5.8)

In both cases (equations 5.7 and 5.8), Y (t) matches the definition of the expected value

of a function, E(f(X, t)) = Y (t).



135

Equations (5.7) and (5.8) show that the behavior of the system depends on two of

its properties, one is the density function or relative frequency of heterogeneous elements,

and the other is the functional relationships between driving and response variables. The

simulation results from Chapter 4 showed that for linear systems with homogeneous dis-

tributions or symmetric distribution around an average value

E(f(X, t)) = f(E(X, t)). (5.9)

That is, the behavior of the system at each time can be predicted by the average element

of the system. In all other cases

E(f(X, t)) 6= f(E(X, t)). (5.10)

More specific generalizations about the sign of possible inequalities in (5.10) depend

on both the symmetry of the density functions and the linearity of the system. Even for

linear systems, the asymmetry of the distribution of elements produce behaviors inconsis-

tent with the behavior of the average element or the behavior of an homogeneous system.

A diversity of responses can be obtained by the different combinations of nonlinearity and

asymmetry.

5.3. Philosophical implications

Nonlinear behavior is ubiquitous throughout ecological systems; indeed, it is much

more difficult to find examples of linear than nonlinear systems in nature. Similarly,

there are hardly any examples of systems in which the elements are homogeneous or

symmetrically distributed around an average value. In contrast, examples of terrestrial

biogeochemistry models assuming linearities, homogeneity, or symmetry abound. This
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discrepancy implies that our models cannot predict important properties and behaviors

of natural systems. Ignoring variability and heterogeneity reduces the domain of possible

responses of ecosystems to environmental changes.

A first step to advance in our understanding of natural systems and how we are

changing them is recognizing the inherent variability and heterogeneity of natural systems.

A second step is implementing models that explicitly treat complex nonlinear systems

using tools from probability and statistics. The current generation of computers are

powerful enough to deal with large probabilistic models, and even bigger more powerful

ones are on the assembly line.

5.4. General conclusions

My working hypothesis was confirmed throughout the multiple analyses presented in

this dissertation: environmental variability and system heterogeneity introduce behaviors

in terrestrial biogeochemical models that cannot be predicted in simpler models that ignore

these properties. Along the way other important conclusions were obtained:

1. Interannual variability of ecosystem carbon fluxes can be explained by both climate

and intrinsic forest dynamics. As a result, forests at steady-state and under relatively

constant environmental conditions can behave either as a source or sink of carbon

for short periods of time. Therefore, the concept of dynamic equilibrium in a carbon

balance should be thought as a range of variation around an average carbon flux of

zero.

2. Variation of annual carbon fluxes poses an important challenge in our ability to

determine whether an ecosystem is a source, sink, or neutral in regard to CO2 at

longer time scales. Simulations that included climatic variation and stand dynamics

(system heterogeneity) showed that the probability of incurring in Type I and II error
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is above 10% for time series shorter than 10 years. In some cases the probability

of error does not drop below 10-20% given the natural variation of climate and the

heterogeneity of the system.

3. The concepts of stability, steady-state, or resilience can be quantified explicitly us-

ing probability distributions of the net carbon flux in forest ecosystems. This ap-

proach helps to interpret field observations and calculate the probabilities of possible

changes of system behavior.

4. Changes in the variance of temperature alone can potentially increase the amount

of respiration from terrestrial ecosystems over decadal time scales. Furthermore,

simultaneous changes in the average and variance of temperature can either amplify

or dampen the net effect of mean temperature increase, depending on whether the

change in variance is positive or negative, or the respiration function is concave or

convex.

5. This implies that the increase in mean and decrease in variance expected for high

latitude regions would result in lower amounts of respiration than the estimated by

change in mean temperature alone.

6. Separating organic matter into few compartments introduces approximation error in

both the distribution of carbon in the different pools and the decay rates assigned

to each class. The total approximation error is proportional to the size of the

compartments and the functions that best represent substrate heterogeneity.

7. The temporal behaviors associated with the mineralization of carbon and nitrogen

are highly dependent on the rate of change of the efficiency and growth rate of

decomposers with quality; i.e., the convexity of the relationship between decompo-

sition rate and quality. The assumption of homogenous substrates implies equal

efficiencies and growth rates for all substrates present in the soil organic matter.
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This assumption can only provide realistic behaviors when the relationship between

quality and decomposition rate is linear and the substrate quality is symmetrically

distributed around an average value. In all other cases, the assumption of homoge-

neous substrates produces different amounts and rates of mineralization for carbon

and nitrogen.

8. The continuous transformations of organic matter in the soil tend to accumulate

carbon in organic matter of low qualities independent of the quality of the incoming

litter. This only occurs when stabilization and destabilization mechanisms are op-

erating simultaneously. Without destabilization processes, carbon will accumulate

indefinitely in soils.

9. The additional amounts of carbon mineralized as an effect of temperature increases

depend largely on the amounts of substrate available for decomposition. Even when

low quality substrate is not highly sensitive to temperature increases it can provide

large amounts of material to be respired by microbes.

10. Substrate heterogeneity and temperature variability produce complex behaviors in

the mineralization of carbon and nitrogen. Temperature variability can either am-

plify or dampen the response of the system to increases in the average temperature,

but this response depends on the degree and nature of nonlinearities within the

system.
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70. Lützow, M. V., I. Kögel-Knabner, K. Ekschmitt, E. Matzner, G. Guggenberger, B.
Marschner, and H. Flessa. 2006. Stabilization of organic matter in temperate soils:
mechanisms and their relevance under different soil conditions - a review. European
Journal of Soil Science 57:426-445.

71. Luyssaert, S., I. Inglima, M. Jung, A. D. Richardson, M. Reichstein, D. Papale, S.
L. Piao, E. D. Schulze, L. Wingate, G. Matteucci, L. Aragao, M. Aubinet, C. Beer,
C. Bernhofer, K. G. Black, D. Bonal, J. M. Bonnefond, J. Chambers, P. Ciais, B.
Cook, K. J. Davis, A. J. Dolman, B. Gielen, M. Goulden, J. Grace, A. Granier,
A. Grelle, T. Griffis, T. Grunwald, G. Guidolotti, P. J. Hanson, R. Harding, D.
Y. Hollinger, L. R. Hutyra, P. Kolari, B. Kruijt, W. Kutsch, F. Lagergren, T.
Laurila, B. E. Law, G. Le Maire, A. Lindroth, D. Loustau, Y. Mahli, J. Mateus, M.
Migliavacca, L. Misson, L. Montagnani, J. Moncrieff, E. J. Moors, J. W. Munger,
E. Nikinmaa, S. V. Ollinger, G. Pita, C. Rebmann, O. Roupsard, N. Saigusa, M. J.
Sanz, G. Seufert, C. A. Sierra, M.-L. Smith, J. Tang, R. Valentini, T. Vesala, and I.
A. Janssens. 2007a. CO2 balance of boreal, temperate, and tropical forests derived
from a global database. Global Change Biology 13:2509-2537.

72. Luyssaert, S., I. A. Janssens, M. Sulkava, D. Papale, A. J. Dolman, M. Reichstein, J.
Hollmen, J. G. Martin, T. Suni, T. Vesala, D. Loustau, B. E. Law, and E. J. Moors.
2007b. Photosynthesis drives anomalies in net carbon-exchange of pine forests at
different latitudes. Global Change Biology 13:2110-2127.

73. Luyssaert, S., E. D. Schulze, A. Borner, A. Knohl, D. Hessenmoller, B. E. Law,
P. Ciais, and J. Grace. 2008. Old-growth forests as global carbon sinks. Nature
455:213-215.

74. Mahieu, N., D. S. Powlson, and E. W. Randall. 1999. Statistical analysis of published
carbon-13 CPMAS NMR spectra of soil organic matter. Soil Science Society of
America Journal 63:307-319.

75. Malhi, Y., D. D. Baldocchi, and P. G. Jarvis. 1999. The carbon balance of tropical,
temperate and boreal forests. Plant, Cell and Environment 22:715-740.

76. Manzoni, S. and A. Porporato. 2009. Soil carbon and nitrogen mineralization: The-
ory and models across scales. Soil Biology and Biochemistry 41:1355-1379.

77. Maynard-Smith, J. 1974. Models in ecology. Cambridge University Press, Cam-
bridge.

78. Melillo, J. M., J. Borchers, J. Chaney, H. Fisher, S. Fox, A. Haxeltine, A. Janetos,
D. W. Kicklighter, T. G. F. Kittel, A. D. McGuire, R. McKeown, R. Neilson, R.
Nemani, D. S. Ojima, T. Painter, Y. Pan, W. J. Parton, L. Pierce, L. Pitelka,
C. Prentice, B. Rizzo, N. A. Rosenbloom, S. Running, D. S. Schimel, S. Sitch,



146

T. Smith, and I. Woodward. 1995. Vegetation/ecosystem modeling and analysis
project: Comparing biogeography and biogeochemistry models in a continental-
scale study of terrestrial ecosystem responses to climate change and CO2 doubling.
Global Biogeochemical Cycles 9:407-438.

79. Medvigy, D., S. C. Wofsy, J. W. Munger, D. Y. Hollinger, and P. R. Moorcroft.
2009. Mechanistic scaling of ecosystem function and dynamics in space and time:
Ecosystem Demography model version 2. J. Geophys. Res. 114.

80. Moorcroft, P. R., G. C. Hurtt, and S. W. Pacala. 2001. A method for scaling vege-
tation dynamics: The ecosystem demography model (ED). Ecological Monographs
71:557-585.

81. Moorcroft, P. R. 2006. How close are we to a predictive science of the biosphere?
Trends in Ecology & Evolution 21:400-407.

82. Moore, B. 2002. Challenges of a changing Earth. Pages 7-17 in W. Steffen, J. Jager,
D. J. Carson, and C. Bradshaw, editors. Challenges of a changing Earth: Proceed-
ings of the Global Change Open Science Conference, Amsterdam, The Netherlands,
10-13 July 2001. Springer, Berlin.

83. Norby, R. J., L. E. Rustad, J. S. Dukes, D. S. Ojima, W. J. Parton, S. J. DelGrosso,
R. E. McMurtrie, and D. A. Pepper. 2007. Ecosystem responses to warming and
interacting global change factors. Pages 23-35 in J. G. Canadell, D. E. Pataki, and
L. Pitelka, editors. Terrestrial ecosystems in a changing world. Springer, Berlin-New
York.

84. Notaro, M. 2008. Response of the mean global vegetation distribution to interannual
climate variability. Climate Dynamics 30:845-854.

85. Odum, E. P. 1969. The strategy of ecosystem development. Science 164:262-270.

86. Olson, J. S. 1963. Energy storage and the balance of producers and decomposers in
ecological systems. Ecology 44:322-331.

87. O’Neill, R. V., W. F. Harris, B. S. Ausmus, and D. E. Reichle. 1975. A theoretical
basis for ecosystem analysis with particular reference to element cycling. Pages 28-
40 in F. G. Howell, J. B. Gentry, and M. H. Smith, editors. Mineral cycling in
southeastern ecosystems. Proceedings of a symposium held at Augusta, Georgia,
May 1-3, 1974. U.S. Energy Research and Development Administration, Office of
Public Affairs/Technical Information Center.

88. Pacala, S. W., C. D. Canham, J. Saponara, J. A. S. Jr., R. K. Kobe, and E. Ribbens.
1996. Forest models defined by field measurements: estimation, error analysis and
dynamics. Ecological Monographs 66:1-43.



147

89. Parton, W. J., D. S. Schimel, C. V. Cole, and D. S. Ojima. 1987. Analysis of Factors
Controlling Soil Organic Matter Levels in Great Plains Grasslands. Soil Sci Soc Am
J 51:1173-1179.

90. Pasztor, L., E. Kisdi, and G. Meszena. 2000. Jensen’s inequality and optimal life
history strategies in stochastic environments. Trends in Ecology & Evolution 15:117-
118.

91. Peters, D. P. C., J. E. Herrick, D. L. Urban, R. H. Gardner, and D. D. Breshears.
2004. Strategies for ecological extrapolation. Oikos 106:627-636.

92. Phillips, O. L., Y. Malhi, N. Higuchi, W. F. Laurance, P. V. Nez, R. M. Vásquez,
S. G. Laurance, L. V. Ferreira, M. Stern, S. Brown, and J. Grace. 1998. Changes
in the carbon balance of tropical forests: evidence from long term plots. Science
282:439-442.

93. Potter, C. S., J. T. Randerson, C. B. Field, P. A. Matson, P. M. Vitousek, H. A.
Mooney, and S. A. Klooster. 1993. Terrestrial Ecosystem Production: a Process
Model Based on Global Satellite and Surface Data. Global Biogeochem. Cycles 7.

94. Price, P. B. and T. Sowers. 2004. Temperature dependence of metabolic rates for
microbial growth, maintenance, and survival. Proceedings of the National Academy
of Sciences of the United States of America 101:4631-4636.

95. R Development Core Team. 2008. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
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A APPENDIX STANDCARB Model description

Tree mortality is calculated one of two ways depending on the time an upper tree has

occupied a cell. In the case of the lower trees, mortality occurs each year of the simulation.

In the case of upper trees, however, the layer may either represent a population or a single

individual depending on the amount of time it has occupied the upper tree layer. For a

given cell, upper tree mortality occurs each year that the time a species has occupied the

upper canopy layer is less than the age required for a single tree to occupy a cell. There

are two rates of mortality. One is a fraction of the value determined by the maximum

age, and the other is that value set by the maximum age. A major assumption used to

calculate mortality rates is that as the amount of light absorbed by the stand increases,

the mortality rate for trees increases.

STANDCARB contains 11 major modules that perform specific functions. The

following section describes each module as well as modifications relative to version 1.0 of

the model (Harmon and Marks 2002).

A1 PLANT AND DIEOUT Modules

The PLANT and the DIEOUT modules determine the ”birth” and ”death”, respec-

tively of plant layers and are the most analogous to those found in a typical gap model.

The PLANT module determines when herb, shrub, upper tree layer or lower tree layers

establish in a cell and determines which tree species will establish in a cell depending upon

the local abundance of species as well as the light, temperature, and moisture conditions

present as predicted by the NEIGHBOR and CLIMATE modules. The DIEOUT module

determines when the upper tree layer is replaced given that trees have a finite lifespan.

Trees are represented by a cohort of multiple individuals until they reach an age when

self-thinning would leave a single tree and tree crowns reach their maximum horizontal

extent. Tree mortality at this point means that the upper tree layer has to be replaced by



152

the PLANT module. In version 2.0 the time a cell reaches a single upper tree is determined

stochastically once the minimum age has been reached.

A2 NEIGHBOR Module

This module simulates the interaction among the cells arranged on the rectangular

grid work regarding light. Diffuse radiation can be blocked in eight directions (every 45

degrees), whereas direct radiation is only blocked on the east, southeast, south, southwest,

and west facing directions. The degree of shading is determined by the relative heights of

trees in cells and the distance among cells. The height is estimated from the age of the

upper tree layer in each cell and a Chapman-Richards equation that specifies the maximum

height of a species and the age that maximum was reached. Boundary effects, a problem

in all spatially explicit models, are addressed by assuming the surrounding forest height

was the same as average of the simulated forest. In version 2.0 the maximum tree height

is a function of site index.

A3 GROWTH Module

This module calculates the mass of the seven live parts or C pools and is divided into

nine functions which perform specific calculations including the absorption of light and

foliage growth; the allocation of production to fine roots and woody plant parts; respiration

from living parts; heartwood and heart-rot formation; losses from mortality, litterfall, and

pruning; calculation of live stores; and conversion of bole mass to wood volume. Each of

these functions is invoked for each plant layer present in a cell. Parameters controlling

these functions are specific to plant layers and in the case of trees, are specific to species.

The growth of each layer is a function of the amount of foliage present in a layer

that is, in turn, dependent on the amount of light absorbed by them. Light is expressed

as a percentage of full sunlight and we assume that if taller layers are present they will

absorb light before underlying layers. The light coming into a cell can be reduced by
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shading from surrounding cells (see NEIGHBOR module); although in version 2.0 a small

proportion of direct light is allowed to pass through neighboring cells to account for the

sun flecks passing through minor openings. Layers are able to increase their foliage mass

until the light compensation point for that layer or species of tree is reached. The amount

of light remaining below the foliage of each layer is a function of the mass of foliage of

that layer as defined by a Beers-Lambert equation.

The photosynthate produced by foliage is allocated to the sapwood, branches, fine

roots and coarse roots by assuming that rates of allocation are fixed. In version 2.0 the

production of the trees changes with age, so that as trees reach their maximum height

their production declines by an amount set by the user. This was done to account for

the fact that production in older forests appears to be limited relative to younger forests

(Acker et al 2000, Acker et al 2002). While there is some dispute about the exact cause

of this phenomenon, there is little doubt it occurs in many types of forests (Ryan et al

1997). Allocation rates are set to give the proportions of a typical tree ¿50 cm diameter

at breast height as solved by allometric biomass equations (Means et al. 1994). We used

this diameter range because the proportions of tree parts become relatively stable at this

size.

Losses to live parts occur as respiration, mortality, and formation of new materials

(e.g., sapwood forms heartwood). Respiration losses are deducted from the allocation

added to woody plant parts. Respiration of all plant parts except heartwood is estimated

from their mass and a respiration rate that is a Q10 function of mean annual temperature

(Ryan 1990). The mass transferred from sapwood to heartwood for each tree layer is

determined by the rate of heartwood formation and the mass of sapwood. The rate of

heartwood formation is parameterized so that the proportion of boles in sapwood matches

the values in mature trees of the various tree species (Lassen and Okkonee 1969). In

version 2.0 heart-rot is formed from heartwood after trees reach a minimum age, although
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the year heart-rot begins to form in a particular cell is stochastic. Losses for parts occur

as tree mortality or in the case of non-bole parts via pruning (i.e., branches and coarse

roots) or normal turnover (i.e., litterfall or fine root death). Losses can also occur due to

timber harvest (see HARVEST module) and fire (see BURNKILL module).

A4 MORTALITY Module

This module determines the mortality rate of foliage, fine roots, branches, and coarse

roots when entire trees die and/or when parts are pruned. Sapwood and heartwood are

only transferred to dead pools when entire trees die. Foliage, branches, fine roots, and

coarse roots are transferred to dead pools when both entire trees die and when these parts

are self pruned. The turnover of foliage and fine roots are constants based on the longevity

of these parts. It is assumed that as the amount of light absorbed by the stand increases,

pruning of branches and coarse roots as well as the mortality rate for entire trees increases.

However, mortality of upper trees also depends upon the time a species has occupied a

cell. When a single tree is in the upper tree layer, then mortality is a function of tree

longevity and becomes independent of light.

A5 DECOMPOSE Module

This module simulates the input, decomposition, and storage of C in dead and stable

pools. The functions contained in this module calculate the total amount of input from

the various layers and parts, the effect of substrate quality on decomposition, the rate of

decomposition, change in detritus stores, the transfer to and loss from stable pools. All

detritus pools are named after the corresponding live plant parts with the prefix Dead

added with the exception that heart-rot contributes to dead heartwood. In version 2.0

dead sapwood and dead heartwood are separated into standing and downed material to

account for the different microclimates of these two positions. Another change in version

2.0 was made to account for the fact a period of decomposition is required before stable
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materials are formed, dead pools are tracked using a cohort structure for each years input

for a cell. Once a lag time modified by climatic conditions has been exceeded a dead

pool cohort is stochastically transferred to the appropriate stable pool. Another change

in version 2.0 is that there are three stable pools. Dead foliage is transferred to stable

foliage (i.e., the organic horizon), aboveground dead wood pools to stable wood, and dead

fine and coarse roots to stable soil.

The balance for each detritus pool is the inputs minus the losses from decomposition,

consumption by fire, salvage harvest of dead wood, and transfers to the stable pools. For

any given year, input can come from several sources: 1) litterfall, pruning, and mortality,

2) the dying out of the upper tree layer, 3) thinning and harvesting, and 4) fire killed

plants. The decomposition rate of each dead pool cohort is dependent on the weighted

average substrate quality of the inputs to that pool. The overall decomposition rate

is calculated from the substrate quality effect and the effects of the abiotic factors as

calculated in the CLIMATE module. Losses from harvest and fire are calculated by the

HARVEST and SITEPREP modules.

Changes in a stable pool C is determined by the balance of C transferred from the

dead pools minus the losses from decomposition as a function of the particular stable

pool in question and the effects of temperature and moisture calculated by the CLIMATE

module. It is assumed that stable foliage decomposes faster than stable wood, which in

turn decomposes faster than stable soil.

A6 SOIL TEXTURE Module

The maximum amount of water storage in a soil is based upon the soil texture,

depth, and fraction of soil free of coarse particles (< 2 mm diameter). The fraction of the

soil volume that can store water between field capacity and the wilting point is based on

soil texture and the fraction of the soil profile with soil particles.
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A7 CLIMATE Module

This module estimates the effect of temperature, precipitation, and solar radiation

on the establishment of tree species, growth of plants, autotrophic respiration, and de-

composition. The processes of water interception, evapotranspiration, and water stores,

as well as the effects of climate on decomposition and growth are calculated each month

on each cell, whereas for plant respiration effects are calculated annually. The effect of

temperature on plant part respiration is modeled as a Q10 relationship. For the dead

pools we assumed there is an optimum temperature for decomposition.

To estimate the amount of water available for plant growth and decomposition,

the interception by the canopy, woody detritus, and forest floor is calculated. Monthly

total potential evapotranspiration of the site is calculated using a modification of the

Priestly-Taylor method (Bonan 1989, Jensen 1973, Campbell 1977). Total potential evap-

otranspiration for a month is assumed to be proportional to the estimated solar irradiance,

the monthly mean air temperature, and number of days in a month. The constants used

to solve the Priestly-Taylor method are empirically derived after Jensen and Haise (1963)

and Jensen (1973) from elevation and the mean minimum and mean maximum daily

temperatures for the warmest month of the year. To estimate the potential amount of

transpiration by plants, the total potential evapotranspiration is reduced to account for

the evaporation portion of the water loss. The actual transpiration losses each month are

controlled by the soil water stores and a linear function of foliage mass. The effect of soil

moisture on transpiration is calculated from a modification of the relationship developed

by Emmingham and Waring (1977). Volumetric moisture content is converted to water

potential using a reciprocal function similar to Running and Coughlan (1988)

The moisture content of six detritus pools and the mineral soil is calculated monthly

and represents the balance of inputs through precipitation/throughfall and outputs via

evapotranspiration. The loss of water from the mineral soil is controlled solely by the
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transpiration from plants. The rate that water is lost from detritus pools is calculated

from the monthly evaporative demand (a function of radiation received and temperature)

multiplied by a pool-specific drying constant. Decomposition is limited by moisture when

either it is too low (i.e., a matric effect) or too high water (i.e., a limitation of oxygen

diffusion).

A8 HARVEST, BURNKILL, AND SITEPREP Modules

The HARVEST, BURNKILL, and SITEPREP modules determine if a cell is to be

disturbed by silvicultural treatments, timber harvest, or fire and the degree to which these

disturbances reallocate the C in the living and dead pools.

If a harvest activity occurs in a given simulation year, then the HARVEST module

determines which type and spatial pattern of activity is to occur. Activities include

cutting and harvesting of trees (cut trees can be left onsite), salvage of dead wood, and

site preparation fires. Cutting and removal may be performed on either the upper or lower

tree layer or for certain target species on all or a subset of cells.

The BURNKILL module determines the timing and amount of live vegetation killed

by natural- or management-caused fire reducing the amount of live C in the GROWTH

module and transferring some to the DECOMPOSE module as fire-killed detritus inputs.

Not all the live vegetation killed by fire is necessarily transferred to detritus; some is

consumed by the fire itself. The fraction of plant material killed and consumed by fire

also increases with fire severity. Above- and below-ground plant parts are consumed by

fire to different degrees, with below-ground parts having less material consumed for a

given fire severity.

When a natural- or management-caused fire occurs the SITEPREP module deter-

mines the degree that dead pools are reduced. The degree that the dead pools are reduced

is determined by the user; we have assumed that as fire severity increases from low to high

the fraction of each of the above-ground detritus pools removed by fire increases. It is
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assumed that the stable soil pool does not decrease when there is a fire.
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B APPENDIX A probabilistic argument to explain less carbon storage
under the variable climate scenario

In general, STANDCARB models the effect of temperature T on autotrophic and

heterotrophic respiration using a Q10 factor and an equation of the form:

f(T ) = R = R10Q
(T−10)/10
10 (B.1)

WhereR represents the respiration rate of a given carbon pool, andR10 the respiration rate

of that pool at 10◦C. Equation (B.1) is a convex function with respect to temperature.

Because we are interested in obtaining a measure of central tendency using equation

(B.1), we can calculate either the expected value of the function, i.e. E[f(T )], or evaluate

the function at the expected value of the random variable, i.e., f(E[T ]). These two

cases correspond to the variable and constant climate scenarios used in our simulations,

respectively. f(T ) can be expanded using a Taylors series about µ = E[T ],

f(T ) = f(µ) + f ′(µ)(T − µ) +
f ′′(ξ)(T − µ)2

2
(B.2)

where ξ is a value between T and µ. Since f ′′(ξ) ≥ 0,

f(T ) ≥ f(µ) + f ′(µ)(T − µ). (B.3)

Taking expectations at both sides gives

E[f(T )] ≥ f(µ) + f ′(µ)E[T − µ] = f(µ) (B.4)

E[f(T )] ≥ f(E[T ])

Equation (B.4) is commonly known as Jensens inequality in probability theory.
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From this equation we can infer that the average respiration rate will always be higher

under the variable climate scenario than the respiration rate of the average temperature.

This respiration function will also produce larger respiration fluxes with small but finite

probabilities because the resultant probability distribution for respiration is skewed to

larger values.
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C APPENDIX Derivation of geometric inequality

The point x̄ can be defined as the average value of both [a, b] and [c, d], so x̄ =

λa+ (1−λ)b = λc+ (1−λ)d. Applying the definition of convexity (equation 3.13) we can

see that

f(x̄) = f(λa+ (1− λ)b) ≤ λf(a) + (1− λ)f(b). (C.1)

Now, the points a and b can be expressed as a linear combination of c and d

a = αc+ (1− α)d, (C.2)

b = (1− β)c+ βd. (C.3)

Given that α = β = λ and λ+ (1− λ) = 1, λ and (1− λ) can be expressed in terms of α

and β as

λ = λα+ (1− λ)β, (C.4)

(1− λ) = λ(1− α) + (1− λ)(1− β). (C.5)

We can now express the right-hand side of (C.1) in terms of c and d as

λf(αc+ (1− α)d) + (1− λ)f(βc+ (1− β)d)

≤ λαf(c) + (1− α)f(d) + (1− λ)βf(c) + (1− β)f(d)

≤ f(c)[λα+ (1− λ)β] + f(d)[(1− α) + (1− β)(1− λ)]

≤ λf(c) + (1− λ)f(d). (C.6)
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Therefore,

f(x̄) ≤ λf(a) + (1− λ)f(b) ≤ λf(c) + (1− λ)f(d). (C.7)
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D APPENDIX Additional figures
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FIGURE D-1 – Live biomass for a tropical (upper panel), temperate (middle panel), and
a boreal (lower panel) under the constant climate (black continuous line) and the variable
climate scenarios (red dotted line).
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FIGURE D-2 – Dead biomass for a tropical (upper panel), temperate (middle panel), and
a boreal (lower panel) under the constant climate (black continuous line) and the variable
climate scenarios (red dotted line).
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FIGURE D-3 – Soil organic matter for a tropical (upper panel), temperate (middle panel),
and a boreal (lower panel) under the constant climate (black continuous line) and the variable
climate scenarios (red dotted line).
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FIGURE D-4 – MSC plot for H.J. Andrews in the months of December, January and
February using the modified Van’t Hoff equation with Q10 = 4. Colors represent values of δR.
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FIGURE D-5 – MSC plot for H.J. Andrews in the months of March, April and May using
the modified Van’t Hoff equation with Q10 = 4. Colors represent values of δR.
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FIGURE D-6 – MSC plot for H.J. Andrews in the months of June, July and August using
the modified Van’t Hoff equation with Q10 = 4. Colors represent values of δR.
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FIGURE D-7 – MSC plot for H.J. Andrews in the months of September, October and
November using the modified Van’t Hoff equation with Q10 = 4. Colors represent values of
δR.
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FIGURE D-8 – Functional relationships between quality q and decomposer efficiency e(q)
for the constant and linear scenarios. Continuos line: e(q) = 0.2q0.5; dashed line: e(q) =
0.2q2.4.
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FIGURE D-9 – Final distribution of carbon after 100 years of decomposition for the four
functional shapes considered and assuming stabilization processes only (P1). Upper left:
constant, upper right: linear, lower left: convex, and lower right: concave.
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FIGURE D-10 – Final distribution of carbon after 100 years of decomposition for the
four functional shapes considered and assuming simultaneous stabilization and destabilization
processes (P2). Upper left: constant, upper right: linear, lower left: convex, and lower right:
concave.



175

0 10 20 30 40 50

0.
0e
+0
0

1.
0e
-2
4

2.
0e
-2
4

q

ρ N

0 10 20 30 40 50

0.
0e
+0
0

5.
0e
-0
7

1.
0e
-0
6

1.
5e
-0
6

q

ρ N

0 10 20 30 40 50

0e
+0
0

2e
-0
5
3e
-0
5
4e
-0
5

q

ρ N

0 10 20 30 40 50

0e
+0
0

2e
-1
1

4e
-1
1

q

ρ N

FIGURE D-11 – Final distribution of nitrogen after 100 years of decomposition for the
four functional shapes considered and assuming simultaneous stabilization and destabilization
processes (P2). Upper left: constant, upper right: linear, lower left: convex, and lower right:
concave.
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FIGURE D-12 – Surface plane for decomposer growth rates u(q, T ) as a function of sub-
strate quality q and temperature T when β = 0.
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FIGURE D-13 – Surface plane for decomposer growth rates u(q, T ) as a function of sub-
strate quality q and temperature T when β = 1.
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FIGURE D-14 – Surface plane for decomposer growth rates u(q, T ) as a function of sub-
strate quality q and temperature T when β = 3.




