Stable Isotopes in Ecology and Environmental Science

Second Edition

Edited by: Robert Michener (Boston University) and Kate LAJTHA (Oregon State University)

Series: Ecological Methods and Concepts

Description

This book highlights new and emerging uses of stable isotope analysis in a variety of ecological disciplines. While the use of natural abundance isotopes in ecological research is now relatively standard, new techniques and ways of interpreting patterns are developing rapidly. The second edition of this book provides a thorough, up-to-date examination of these methods of research.

As part of the Ecological Methods and Concepts series which provides the latest information on experimental techniques in ecology, this book looks at a wide range of techniques that use natural abundance isotopes to:

- follow whole ecosystem element cycling
- understand processes of soil organic matter formation
- follow the movement of water in whole watersheds
- understand the effects of pollution in both terrestrial and aquatic environments
- study extreme systems such as hydrothermal vents
- follow migrating organisms

In each case, the book explains the background to the methodology, looks at the underlying principles and assumptions, and outlines the potential limitations and pitfalls.

Stable Isotopes in Ecology and Environmental Science is an ideal resource for both ecologists who are new to isotopic analysis, and more experienced isotope ecologists interested in innovative techniques and pioneering new uses.

Table of Contents

Contributors
Abbreviations
Introduction
1. Stable isotope chemistry and measurement: a primer. Elizabeth W. Sullman
Introduction
What isotopes are, what makes them distinct
Properties of ecologically useful stable isotopes
Technological advances and current trends in the ecological use of isotopes
Acknowledgments
References
Introduction
Carbon isotopes
Nitrogen isotopes
Hydrogen and oxygen isotopes
Conclusions
References
3. Natural 15N- and 13C-abundance as indicators of forest nitrogen status and soil carbon dynamics. Charles T. Garten, Jr, Paul J. Hanson, Donald E. Todd, Jr, Bonnie B. Lau, and Deanne J. Brice
Introduction
Significance of 15N-abundance to soil carbon sequestration
Vertical changes in soil 13C-abundance and soil carbon dynamics

Conclusions
Acknowledgments
References

4. Soil nitrogen isotope composition. R. Dave Evans
Introduction
Sources of variation in soil △15N
Patterns of soil nitrogen isotope composition
Conclusions
References

5. Isotopic study of the biology of modern and fossil vertebrates. Paul L. Koch
Introduction
Vertebrate tissues in the fossil record
Controls on the isotopic composition of vertebrae tissues
Preservation of biogenic isotope compositions by vertebrae fossils
Paleobiological applications
Conclusions
A post-script on workshops and literature resources
References

6. Isotopic tracking of migrant wildlife. Keith A. Hobson
Introduction
Basic principles
Marine systems
Terrestrial systems (excluding deuterium)
Using deuterium patterns in precipitation
Conclusions
References

7. Natural abundance of 15N in marine planktonic ecosystems. Joseph P. Montoya
Introduction
Background
Isotopic variation in marine nitrogen
Source delineation and isotope budgets
Animal fractionation and food web processes
Isotopic transients in marine systems
Compound-specific nitrogen isotope analyses
Conclusions
Acknowledgment
References

8. Stable isotope studies in marine chemolithotrophically based ecosystems: An update. Cindy Lee Van Dover
Introduction
Isotopic tracing of carbon at methane seeps
Whale falls
Hydrothermal vents
Conclusions
References

Introduction
Methods of assessing food webs
Phytoplankton and particulate organic carbon
Phytoplankton and particulate organic nitrogen
Marine food webs
Stable isotopes in marine conservation biology
Conclusions
Acknowledgments
References

10. Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. Jacques C. Finlay and Carol Kendall
Introduction
Overview of river food webs and stable isotope approaches
Stable isotope ratios of organic matter sources in stream ecosystems
C, N, and S isotopic variability and its applications in river ecology
Conclusions
Acknowledgments
References

11. Stable isotope tracers in watershed hydrology. Kevin J. McGuire and Jeff McDonnell
Introduction
Basic concepts in watershed hydrology
Why are stable isotopes needed?
General concepts in isotope hydrology
Applications of isotope hydrology in watershed and ecosystem studies
Conclusions
Acknowledgments
References

12. Tracing anthropogenic inputs of nitrogen to ecosystems. Carol Kendall, Emily M. Elliott, and Scott D. Wankel

Introduction
Isotopic compositions of major N sources to ecosystems
Processes affecting the isotopic composition of DIN
Separating mixing of sources from the effects of cycling
Applications to different environmental settings
What sources of agricultural and urban sources of nitrate can be distinguished using isotopes?
Other tools for tracing anthropogenic contaminants
Conclusions
References

Introduction
Designing consistent model-data linkages and comparisons
Principles and techniques of stable isotope modeling
Conclusions
Acknowledgments
References

Introduction
Why use compound-specific stable isotopes?
Analytical considerations in compound-specific stable isotope analysis
Applications of compound-specific stable isotope approaches in ecology and paleoecology
Conclusions
References
Index

About the Author

Robert Michener is the Laboratory Manager of the Boston University Stable Isotope Laboratory and has been running the internationally recognized facility for 18 years. His research interests include aquatic ecology, food web systems, and how stable isotopes can be applied to tracing pollutants, comparing pristine and impacted systems.

Kate Lajtha is a Professor in the Department of Botany and Plant Pathology at Oregon State University and the Editor-in-Chief of Biogeochemistry. She is a terrestrial biogeochemist who studies soil organic matter stabilization and soil solution chemistry.

Detailed contents


7/22/2008