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MODELING SLOPE STABILITY UNCERTAINTY: A CASE STUDY
AT THE ANDREWS EXPERIMENTAL FOREST, OREGON

1. INTRODUCTION

1.1. Background

The Pacific Northwest of the United States contains some of the most pro-
ductive temperate forests in the world and timber harvesting has been a primary
land use in the area for over 100 years. Much forest land in the region is in moun-
tainous terrain with areas of weak rock and soil and steep slopes prone to various
types of debris slide processes. Land use activities can decrease slope stability and
therefore may increase rates of mass movements [1], [2], and [3]. One of the major
concerns associated with debris slides is the cumulative effect it has on the entire
watershed, such as decreased water quality, loss of spawning habitat, and debris
jams that may break during peak river flows, thereby scouring channels and dis-
turbing riparian vegetation. Thus, the ability to predict location of slope failure
and understand basic controls on the process is useful in evaluating impacts of
forestry practices and minimizing undesirable effects [4].

While methods such as ground and aerial surveys can aid in locating ex-
isting and potential debris slide areas, they also suffer several disadvantages. For
example, in the western Cascade Range, ground surveys are difficult to conduct
since accessibility is a major problem in a region characterized by steep slopes, few
roads, and thick vegetation cover [4]. This effectively reduces the extent of terrain
that can be covered, which in turn may lead to an underestimation of debris slide

occurrences and misinterpretation of management effects.
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Similarly, there can be difficulties in obtaining and interpreting suitable
aerial photography as a result of highly variable weather and climate conditions.
Seasonal considerations consequently limit accurate photographic interpretation.
Debris slides tend to occur during the winter rainy season during major storms.
This would be the optimal time to conduct a debris slide inventory. Unfortunately,
this is when cloud cover is most prevalent and access is most limited. Also, some
debris slides may be too small to be detected by aerial photography [5]; too difficult
to identify because they are either hidden under the dense forest canopy [6], masked
in shadow by steep, narrow ridges and tall, dense vegetation [7].

Another approach to examining debris slide patterns is to use a Geographic
Information System (GIS) to model debris slide hazard potential by considering
the critical topographic factors that influence spatial patterns of slope stability.
Field and theoretical studies indicate that slope steepness, soil and vegetation are
major determinants of slope stability. GIS techniques permit large-scale evaluation
of influences of topographic and other factors on geographic patterns of slope
stability. These techniques commonly lack consideration of the uncertainty of
the final output resulting from errors occurring in the topographic parameters
used to model potential slope failure. GIS fosters an environment in which data
transformations can be performed quickly without the need to understand how
the result is achieved. These operations use spatial relations implicit in the source
data and, in the process, transform the existing uncertainty and subsequently
propagate this uncertainty through the operations performed on the source data
[8], [9]. In order to maintain an assessment of the data quality in a GIS-based
analysis, the propagation of this uncertainty must be accounted for throughout
the entire process. This provides a dependable data quality analysis from the

source to the final output of the GIS analysis.
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Ideally, formal mathematical models would be applied to illustrate and
state explicitly how particular data transformations alter error in source data, the
modeling process, and the final output. This approach requires established error
models for spatial data handling processes and knowledge of error propagation
behavior when using spatial databases. Only a limited number of error models are
available and generally do not provide sufficient detail to describe the complexity
of the error and error propagation inherent in the GIS transformation of spatial
data [9]. Consequently, obtaining an actual assessment of uncertainty and its
propagation through GIS analysis is not trivial and is not part of the focus of this
thesis.

As an alternative, Hunter and Goodchild [10] developed an experimental
uncertainty assessment technique employing a stochastic mechanism to generate
a series of perturbed input values for spatial models. These values were then
used in a GIS analysis to produce a visual representation indicating the functional
relationship between the final output and the source data and subsequent data
transformations. This approach provided a first approximation of the effects of
uncertainty in the DEM and is easily accomplished. Moreover, it has wide appli-
cations in many fields of spatial data handling, such as land suitability /capability
analysis, soil classification, viewshed calculations, and hydrologic modeling in gen-
eral.

This study applies the uncertainty model developed by Hunter and Good-
child [10], [11] to examine the uncertainty in a slope stability model by utilizing
digital elevation models (DEM) for the Andrews Experimental Forest in the west-
ern Cascades of Oregon. The debris-slide model combines slope gradient values
with a generalized geology map to yield debris slide hazard classes. Different, but

equally probable, versions of source DEMs were created through the creation of
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random, spatially-autocorrelated elevation noise files. The DEMs were then pro-
cessed to produce a family of slope class maps for which the effects of error in
the DEM upon the final debris slide model indices could be assessed. Using this
alternative model, formal mathematical error analysis is bypassed, yet a simple
but effective visualization and qualification of the uncertainty is achieved.

This study applies the uncertainty model developed by Hunter and Good-
child [10], [11] to examine the uncertainty in a slope stability model by utilizing
digital elevation models (DEM) for the Andrews Experimental Forest in the west-
ern Cascades of Oregon. The debris-slide model combines a slope gradient map
with a geology map to yield a debris-slide hazard map and is a common manner
in which a GIS is used to produce a new map. However, this approach commonly
contains no consideration of the uncertainty associated with the final stability map.
Application of the uncertainty model to assess the cumulative effect upon the final
debris-slide hazard rating derived for each cell is used, given that the slide hazard
map is a function of: 1) the DEM resolution and its estimated elevation error, 2)
the slope gradient calculation for each cell, and 3) the method of classifying the
slopes and rock types to derive the index. Using this alternative model, formal
mathematical error analysis is bypassed, yet a simple but effective visualization

and qualification of the uncertainty is achieved.

1.2. Characteristics of Andrews Experimental Forest

The Andrews Experimental Forest is used as a site for examining effects of
error in spatial databases used in watershed studies. The Andrews Forest is located
approximately 80km east of Eugene, Oregon. The Lookout Creek basin, the test

area, comprises the forest and drains nearly 6400 hectares in the western Cascade
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Range. The overall site was established as an Experimental Forest in 1948 after
which trial forest harvests, concomitant road construction, and various watershed
and ecological studies occurred throughout the 1950’s and 1960’s. Since 1970, site
emphasis has shifted to ecosystem research and the levels of timber harvesting and
road building have been reduced.

The Andrews Forest geologic history contains discrete stages of volcanism
interspersed with periods dominated by weathering, erosion, and the reworking of
volcanic material [12]. Since the late Pliocene alluvial, glacial, and mass move-
ment processes have shaped the present Lookout Creek basin. The upper areas
of Lookout Creek Basin are formed from lava flows ranging in age from 3 to 13
million years, while lower areas are underlain by older (14 to 25 million years BP),
more weathered and hydrothermally altered clastic volcanic rocks.

Two types of landslides occur in the basin. The most common are relatively
small (averaging approximately 2000 cubic meters), shallow, rapid debris slides
comprised mainly of soil, colluvial, vegetative material that take place on hillslopes
during intense rainfall and rain-on-snow events [12]. The second type is relatively
large, deep-seated, slow-moving earthflows that move seasonally at rates varying
from centimeters to meters per year. Earthflows tend to occur in volcaniclastic
rock terrains where lava flow rocks cap clastics [12]. This instability occurs in
part, because overlying lava flows have open fractures and joints that permit rapid
movement of water into the contact zone and into the marginally stable rock below
the contact zone. During heavy rain storms the rapid influx of water creates high
pore water pressures, increasing the probability of a mass movement of both types.

Extensive inventories have been conducted which documented over 140 de-
bris slides since 1950 in the basin [13], [14], [4]. The mapping of mass movements

conducted by Swanson and James [12], Swanson and Dyrness [14], and Dyrness
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[13] has demonstrated that the bedrock geology and slope steepness exercise a sig-
nificant influence on the occurrence of deep and shallow mass movements in this

area of the Western Cascades.



2. LITERATURE REVIEW

2.1. GIS Error History

Traditionally, cartographers compensate for errors and uncertainty with the
use of experience and expert knowledge to prepare maps and analyze map-based
data. For example, consider the case in which a stream appears on a map to flow
upwards based on the configuration of the contour lines. The cartographer would
adjust the contour lines or move the stream to compensate for this error. The
advent of digital processing of spatial data with a GIS has led to the automation
of map preparation, including combining multiple data sources in a transparent
and automated manner and using multiple scales, projections, and data models.
While this approach is significantly faster than traditional methods, a considerable
amount of cartographer experience in error detection and elimination is lost. Citing
the previous example, the capability of a GIS to manipulate the stream/contour
line relationship is limited to a special case implementation of a specific algorithm;
i.e. one cannot describe in general terms an algorithm that will enforce accuracy in
the GIS transformation process. Furthermore, GIS data output has a high level of
numerical precision (determined by the machine floating point arithmetic) which
provides the illusion of accuracy. This accuracy is generally not warranted; for
example, the location of a feature on a printed map may only be accurate to three
significant figures, but a computer can store and calculate many more figures [15].

Several authors have described GIS processing errors in detail ( [16], [17],
[18], [19], and [20]). In general GIS errors are found in 1) source data, 2) data
transformation, 3) data processing, and consequently in 4) the data output. Source
data errors are of the type that arise from mistakes made taking the measurements,

from faulty recording or measuring equipment, or from the inherent properties of
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nature (fuzzy data). Data transformation errors arise when data are transformed
from a non-GIS source, (such as a paper map or a satellite image) into a GIS
format. Data processing errors range from blatant errors such as overlaying two
maps with different coordinates to inappropriate phrasing of spatial queries (i.e.
data are not suited for the question). Some other sources of data processing error
in GIS processing include the generalization (or aggregation) and de-generalization
(or disaggregation) of data, and similarly classifying and reclassifying data. Lastly,
with this potential for error at each step of GIS processing, it is not surprising
that the data output will contain some amount of error that has been propagated
through the process.

While a reasonable understanding of most of the source errors listed above
exists, research is lacking for the theory and modeling of error propagation that
considers the interaction of spatial database accuracy, formal methods of error
propagation [21] and methods using standardized techniques to quantify and re-
port error [22], [21]. Error propagation modeling applies mathematical techniques
to describe the manner in which source error is modified by GIS transformation
functions [21]. Error propagation is not well understood for most GIS transforma-
tions; little is known about the theory of GIS error propagation and models that
describe propagation are not generally available. The use of a rigid mathematical
description to describe the mechanism of the modification of source error in the
data transformation process is one approach to modeling error propagation. This
mathematical approach may be based on statistical theory, probability theory, or
series expansions [21]. Unfortunately, the formal technique is unwieldy as little is
known about the theory of error propagation, and models describing propagation

remain to be developed.
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Alternatives exist to the formal approach. One popular methodology is to
use a Monte Carlo technique [21]. This scheme is based on the random introduction
of error to create a set of scenarios that represents the nature and magnitude of
error present. This result is subsequently passed through the transformation func-
tions in an iterative manner to calculate an error summary based on assumptions
about the nature of the error in the products of the transformations. Similarly,
another study simulated the effect of input data error by introducing random ’er-
ror’ to the line co-ordinates in map data [18]. This random ’error’ simulates the
combined source map and map processing errors by slightly altering the shape of
the line. This process is repeated until a statistically sound number of results has
been produced, and these results are then compared with the normal, unvaried
maps.
Another approach to the modeling of errors in spatial data is the "Perkal
epsilon band method’ developed by Perkal and subsequently modified by Chrisman
[23](Figure 2.1).

FIGURE 2.1. Depiction of the Perkal epsilon method.

This technique is based on the concept that the true position of a line can

be described as some displacement from the measured position. This concept es-
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sentially defines a mean probable location of the line within a probability density
function, resulting in a technique for the measurement of errors in area. Several
authors ( [15], [24]) dispute the usefulness of this model in describing errors as it
does not provide a stochastic process to model error. For example, the observed
position of an edge of a polygon may lie inside or outside the true position; the
integral of this curve over the polygon would result in these edge effects essentially
canceling each other in an area calculation, overestimating the true uncertainty.
Goodchild suggests the use of distorted lines or polygons as a basis for the com-
prehensive analysis of error and it provides a stochastic process of modeling the

error (Figure 2.2).

FIGURE 2.2. Depiction of of alternate Perkal epsilon method.

In this thesis presentation, yet another alternative model, the Uncertainty
Model [10], is presented as a relatively easy to use tool that can give users an
understanding of how sensitive their data may be to uncertainty and its subsequent

propagation.
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2.2. The Uncertainty Model

Before discussing the uncertainty model used in this research, some ex-
planatory remarks are required regarding the term uncertainty’. In general terms,
it denotes a lack of sureness or definite knowledge about an outcome or result. In
the context of GIS, it has been suggested that there is a clear distinction between
‘error’ and 'uncertainty,” since the former implies that some degree of knowledge
has been attained about differences between actual results or observations and the
truth to which they pertain. On the other hand, 'uncertainty’ conveys the notion
that it is the lack of such knowledge that is responsible for our hesitancy in accept-
ing those same results or observations without caution. The term ’error’ is often
used when it would be more appropriate to use 'uncertainty.’

The uncertainty model used here is a version of the one originally developed
by Goodchild et. al. [9]. In general it may be defined as a stochastic (random)
process capable of generating a population of distorted versions of the same spatial
data set, with each version being a sample from the same population. The tradi-
tional Gaussian model (where the mean of the population is an estimate of the true
value and the standard deviation is a measure of the variation in observations) is
one attempt at describing error, but it says nothing about local variation or the
processes by which it has accumulated. The model applied here is viewed as an ad-
vance over the simple Gaussian approach because spatial variation in uncertainty
can be shown. The model also has the capacity to include in its simulations the
probable effects of error propagation resulting from the various algorithms and pro-
cesses that have been progressively applied to the data sets employed. By studying

different versions of the final output, it is possible to see how differences in input



12
affect the outcome, and in essence the purpose of the model could be described as
an attempt to "find a Gaussian distribution for maps” [9].

It has been argued by Hunter and Goodchild [11], that while it is possible to
distort a data set according to an error description (e.g. the root mean square error
(RMSE)) without any consideration of the likely spatial autocorrelation between
sample elevations, the process may be stochastic but inevitably lacks a certain
‘truthfulness’. In this case, adjacent elevations in DEM which are otherwise similar
in value can be severely distorted, thereby creating large topographic pits and peaks
which often may not occur in nature. This type of distortion approach produces
what are known as 'random maps.’

On the other hand, the assumption of complete spatial dependence between
neighboring points produces simulations of a DEM which appear 'truthful’ but
not stochastic. Elevations are unnaturally constrained to maintain their relative
differences to each other and the introduction of a noise component has the effect
of shifting all DEM elevations up or down by a constant amount. Hence, there
is a need to find a value in the domain 0 < p > 0.25 (where p is a measure of
spatial autocorrelation) which meets the requirement of being both stochastic and
’truthful.” The limit of 0.25 ensures stationarity (as discussed in Cliff and Ord [25]
when the Rook’s case (cells that a chess 'rook’ could move to) is used to test a

cell’s elevation against its four neighbors sharing a common edge.

2.3. Errors in Digital Elevation Models

As the main error source in the debris-slide hazard model is the USGS
DEM, this section describes the DEM and the errors that are associated with it.

The United States Geological Survey (USGS) is the primary producer of extensive
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DEMs in the United States. DEMs are constructed by digitizing contours on
existing maps or by scanning stereomodels of aerial photographs. Data in a DEM
are supplied as a grid of point elevations typically as a 7.5 minute quadrangle map
with a 30-meter horizontal ground resolution. These models can then be used to
derive a variety of variables, including slope, aspect, slope orientation (combination
of slope and aspect), viewshed calculations, and mean, maximum, and minimum
altitude.

The USGS classifies DEM errors into three categories; blunders, system-
atic, and random [26]. Blunders are gross errors that are usually detected and
corrected before the DEMs are released. Systematic errors are non-random errors
that evolve from procedures that introduce biases and artifacts into the DEM, such
as vertical elevation shifts, misinterpretation of terrain surface due to trees, build-
ings and shadows, and fictitious ridges, tops, benches or striations. One example
is striping that occurs when elevation values along one axis are re-sampled at a
higher spatial resolution than was used to initially collect the elevation values [26],
Theobald 1989). It has been estimated that about 1/3 of the 30m DEMs show
this striping (Elassal and Caruso 1983). The third type of error, termed random,
results from measurement error that reduces precision (exactness), but does not
introduce bias (systematic error). The USGS tests DEM accuracy by comparing
elevation values of the DEM with no less than twenty points of known elevation.
These discrepancies are usually mapped to a single index representing horizontal
accuracy, root mean square error (RMSE). This global representation of the error
does not provide any information about where the error may be occurring. The
RMSE is then calculated and used to classify DEMs into three qualitative levels,

I, 11, and III [26], [27] .
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Level I DEMs contain no elevation points with an error of more than 50

m and are considered to be the lowest quality. Level II DEMs have no points
where the elevation is in error by more than twice the contour interval and the
maximum RMSE is 7m. Level IIT DEMs are more accurate and are similar to
Level II DEMs and the RMSE of one-third of the contour interval not exceeding
7m is the maximum allowed. However, these RMSE values are applied globally to

the entire DEM and thus, provide no information on how accuracy varies across

the DEM.

2.4. Summary

A GIS can perform automated map preparation and analysis used for the
combination of various spatial data sources. Unfortunately, when uncertainty ex-
ists in the source data, these uncertainties are propagated through the GIS trans-
formation process and degrade the accuracy of the final output. Digital elevation
models are often used in many GIS-based natural resource assessments, and are
known to contain varying amounts of error. Furthermore, other variables, such as
slope and aspect, derived from a DEM are susceptible to uncertainty depending on
the terrain. Error modeling can be used to assess the accuracy of the final output
of a GIS analysis. Few error models consider the transformation and propagation
of error within the GIS analysis. Models describing specific GIS transformation
functions (e.g. buffer and overlay) have been developed. However, the understand-
ing of many more GIS operations remain to be explored. Alternatives have been

developed, such as the Monte Carlo technique and the uncertainty model.
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3. DATA SOURCES

3.1. Field Data

Debris-slide hazard data were collected in the field by various individuals
at the Andrews Forest and stored in a database provided by the Forest Science
Data Bank, a partnership between the Department of Forest Science, Oregon State
University, and the U.S. Forest Service Pacific Northwest Research Station, Cor-
vallis, Oregon. It contains information such as debris-slide initiation site (hollow,
hillslope, or streamside slide, or streamside earthflow), elevation, and the slope
at each of the debris slides. Table 3.1 provides summary information about the

landslide initiation site type.

Total Number
Hillslope slides 48
Hollow slides 29
Streamside earthflows 22
Streamside slides 23
Points 121

TABLE 3.1. Summary information for field collected slide hazard data.

3.2. USGS Digital Elevation Model

To produce a DEM for the Andrews Forest, several Level I DEMs (30m x

30m cell resolution; 7m RMSE) produced by the United States Geological Survey
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(USGS) were used. (The study site DEM was clipped from the following merged
DEM’s: Carpenter Mountain, Tamolitch Falls, Blue River, McKenzie Bridge, Belk-
nap Springs, and Tidbits Mountain). The Andrews Forest occupies some 70,026
cells or 53 percent of this merged DEM (Figure 3.1). Elevations in the basin range

from 411 meters above sea level in the southwest to 1615 meters in the northeast.

Elevation

411 - 546
546 - 681
681 - 816
[ ]816-951
I 951 - 1086
I 1086 - 1221
I 1221 - 1356
I 1356 - 1491
I 1491 - 1626

FIGURE 3.1. DEM of the Andrews Experimental Forest.

3.3. Debris-Slide Hazard Map

To produce the debris-slide hazard map, two maps in grid form are required.
The first is a map displaying geologic information at the same grid cell size and geo-
referencing as the DEM. In this geology map, bedrock was classified by strength,
with young lava flows and intrusive bodies being graded as strong; intermediate-

age, clastic rocks, including well-welded ashflow units, as moderate strength; and
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old, hydrothermally altered clastic rocks (18-25 millions BP) as weak (Figure 3.2).

The second map is a slope class map which is derived from the DEM. (see section

42).

Bedrock strength

I weak
[ | moderate

[ |strong

FIGURE 3.2. Bedrock strength classes of the Andrews Experimental Forest.

3.4. Debris-Slide Location Map

The location of the debris slides found in the field (see section 3.1) were dig-
itized into the ARC/INFO POINT map LSPOINTS (provided by the Department
of Forest Science). This map allows one to determine attributes of a particular
point where a debris slide occurred. Figure 3.3 shows the original debris-slide haz-
ard map with the location of the debris slides measured in the field. Additionally,
the type of land use area attribute was added into the LSPOINTS map for each
debris slide location. Table 3.2 provides summary information about the land use

type in the LSPOINTS map.
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FIGURE 3.3. Original slide hazard map with inventoried slides shown as a '+’.

Total Number Area (approx. ha)
Forest 56 4418
Clearcut 65 1310
Road 25 236
Points 145 6000

TABLE 3.2. Summary information for debris slide inventory data.
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4. PROCEDURES

4.1. Debris-Slide Attributes

Using the ARC/INFO Grid module function CELLVALUE, attributes such
as slope, slopeclass, landuse type, and debris-slide hazard rating can be determined
at each of the 145 debris-slide sites that were measured in the field (see section
3). These data are stored into the LSPOINTS map. The function CELLVALUE
returns the value of the attribute in the center of the cell. Slope and slope class
refers to the slope from the DEM and not from the field data.

The attributes can then be downloaded into an ascii text file using the
UNLOAD function in the ARC/INFO module TABLES. These data are then used
to perform an analysis of the field and original data, and an analysis on the original

and perturbed data.

4.2. Debris-Slide Hazard Map

The procedure described here to create the debris-slide hazard map is iden-
tical whether you are using the original or the perturbed DEMs. In deriving
the debris-slide hazard map, the slope gradient is calculated for each cell in the
DEM (using the 4-neighbor SLOPE function within the ARC/INFO Grid module)
(Equation 4.1) and then reclassified into 3 categories - greater than 20° represent-
ing steep slopes, 10-20° for moderate slopes, and < 10° for gentle slopes to produce

a slope class map (Equation 4.2).

grid_slope = slope(DEM) (4.1)

grid_slopec = slice(grid_slope, table, classi ficationtable) (4.2)
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Using the ARC/INFO Grid function COMBINE, the geology map and the

slope class maps (Figure 4.1) are combined to produce the debris-slide hazard map
(Figure 4.3). This map is then reclassified into the three levels of debris-slide

hazards - high, moderate, and low (Table 4.1 and Figure 4.2).

grid_hazard = combine(grid_slope, geology) (4.3)

Slope classes

I gentle
[ ] moderate

[ high

FIGURE 4.1. Slope gradient classes of the Andrews Experimental Forest.



bedrock strength
slope |strong moderate weak
0° < 10°| low low moderate
10° — 20°| low moderate moderate
> 20° low high high

TABLE 4.1. Derivation table for debris-slide hazard rating.

Debris-slide hazard rating

I low
[ ] moderate

[ high

FIGURE 4.2. Debris-slide hazard map of the Andrews Experimental Forest.
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4.3. The Uncertainty Model

Application of the uncertainty model consists of four stages (Figure 4.3),
with the first stage requiring the user to combine whatever data, processes and
models needed to generate the desired output - in other words, applying the GIS
as would normally occur without any consideration of uncertainty [28]. In this
study, a debris-slide hazard map is generated (see section 4.2).

In the second stage, the parameters necessary to create perturbed DEMs
are obtained. This includes the number of rows and columns in the original DEM,
the cell size, and geo-referencing details. An error estimate for the original DEM
will also need to be identified as this is usually a global value of the elevation error
present. In this case the RMSE as supplied by the DEM producer is used. These

parameters will be required in stage three of the uncertainty model (Table 4.2).

parameters value

CELL SIZE(m) 30
XMIN UTM COORDINATE (m)| 558946.072
YMIN UTM COORDINATE (m)|4893975.967

Number of rows 308
Number of columns 427
DEM RMSE(m) 7

TABLE 4.2. Parameters necessary to create the perturbed DEM.

In stage three of the methodology, ten perturbed DEMs of each initial p
value are generated using p values of 0.0, 0.05, 0.10, 0.15, 0.20, 0.21, 0.22, 0.23,

0.24, 0.245, and 0.249. The first step in producing perturbed DEMs is to create



Stage 1 (Apply spatial database to derive the intend product)

Slope class map

Original DEM

Original debris-
— + slide hazard map

Bedrock map

l

Stage 2 (Determine parameters from the original DEM for perturbation process)

- Number of grid cells

- Size of grid cells

- Coordinates (georeferencing)

- Error estimate for source data (RMSE)
- Processing commands used

Initial noise

files with
parameters
N(0,1,p)
p=0.0
p=27?
p=27?
p=0.249

Stage 3 (Perform a small number of initial perturbed DEMs for inspection)

d

- Default range of rho values applied

- Add error grid to DEM
- Apply processing commands from Stage 2
- Display perturbed model output

|

Stage 4 (Choose technique/s for reporting uncertainty)

- Produce perturbed hazard maps at chosen rho values

- Study variation in output

- Assess output uncertainty by trying differenct
combinations of data, algrorithms, and models.

- Apply parameters from Stage 2 e

- maps
- graphs

- maps

- graphs

- histograms
- reports

FIGURE 4.3. The four stages of the uncertainty model.
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noise grids containing random numbers drawn from a normal distribution with
mean zero and standard deviation of 1. Each of these noise grids are reprocessed
to take into account the desired p value, by systematically computing a new value
for each cell to be equal to the sum of the four adjacent cells multiplied by p plus
the original random value y, as in equation 4.4 below where €, j) is the new error

component for the cell in row(i) and column(j).
€ij = P€j1 + €y + € +6n) i (4.4)

To illustrate this process, figures 4.4, 4.5, 4.6, and 4.7 display several of
these noise grids. Note that for p values up to 0.20 no distinct patterns occur,
indicating no major differences in the spatial autocorrelation. Distinct patterns
do begin to emerge as the p value increases above 0.20, especially as the value
approaches 0.25 (the maximum spatial autocorrelation). At p values higher than
0.20 clustering is seen in small groups of cells. At p = 0.245 the clustering effect
is strong and the variation in the values between neighboring cells is heavily con-
strained. In effect, there will no longer be neighboring cells with radically different
values and so large transition zones appear surrounding white and black clusters
that represent extreme values. In addition, the high p values also act as a filter
that removes the extreme values from the simulation and only the more general
trends remain. Therefore, at high p values a very smooth image with no abrupt
changes in value would be expected.

In the next step,the noise grid first needs to have the mean and standard
deviation adjusted to equal that of the DEM to which it will be added. To do
this, the noise grid mean and noise grid standard deviation from each noise grid
are obtained using ARC/INFO. These values are used to create a temporary grid

which will have a mean of zero (the value usually adopted by data producers



FIGURE 4.4.
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p=0.10

Simulated elevation noise grids for p values 0.0, 0.05, and 0.10.



FIGURE 4.5.

Simulated elevation
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noise grids for p values 0.12, 0.14, and 0.16.



FIGURE 4.6.
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Simulated elevation noise grids for p values 0.18, 0.19, and 0.20.
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p=0.245

FIGURE 4.7. Simulated elevation noise grids for p values 0.22, 0.24, and 0.245.
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in the absence of other information that suggests a non-zero mean error), and a
DEM standard deviation of 7 meters (determined from the USGS estimate of the
standard deviation of the error in the DEM), as shown in equation 4.5 (using the
ARC/INFO Grid module).

grid_normal = ((error_grid — mean) x 7)) /standard_deviation_of _error_grid

(4.5)

Each noise grid is then converted from a floating point grid to an integer
grid to permit georeferencing ( equation 4.6 ) to the Andrews Forest boundary.
Once georeferenced the noise grids are clipped to the coordinates Andrews Forest
boundary using the ARC/INFO LATTICECLIP function. The resulting grids are

composed of the parameters determined in stage two (see Table 4.2).
grid_align = shift(integer_grid, 558946.072, 4893975.967, 30) (4.6)

A perturbed version of the DEM is then generated by adding the geo-
referenced noise grid to the original DEM as shown in equation 4.7 (using the

ARC/INFO - GRID module).
perturbed_DEM = (grid_align + DEM) (4.7)

The final debris-slide hazard maps are then created as described in section
4.2.

The last step of stage three is to determine the spatial autocorrelation value
to use for the final perturbed debris-slide hazard maps (stage four). This is done
by graphing the number of cells with a high slide hazard value in each of the
ten final debris slide hazard maps against the 11 p values ( Figure 4.8). The
graph indicates that the number of high values increases slightly from p = 0 to

approximately p = 0.19, then drops rapidly as p approaches 0.25. The value of p
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FIGURE 4.8. Graph of the number of cells scoring a ‘high’ debris-slide hazard
rating in each trial perturbed DEM versus variation in the p rating.

= (.19 was estimated as the turning point (in terms of p) which marks the balance
between ensuring that a stochastic approach is in operation yet the results still
retain some degree of 'truthfulness’ (see section 2.2).

In stage 4 of the uncertainty model this entire procedure was repeated fifty
times at the chosen p value of 0.19 to produce a set of fifty perturbed debris-slide
hazard maps. Figure 4.9 shows a perturbed debris-slide hazard map produced by

averaging the fifty maps.
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Perturbed debris-slide hazard ratings
I low
[ | moderate

[ high

FIGURE 4.9. Perturbed debris-slide hazard map created using a p of 0.19.
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5. RESULTS

It is believed that the DEM for the Andrews Experimental Forest depicts
slope gradients about 10° less than the field measured values as a result of the tall
canopy of dense forest vegetation obscuring the ground surface topography [29].
To validate this difference, the difference between the field and the DEM-derived
slopes at each available debris-slide data point were examined. Secondly, all cells
in the perturbed debris-slide hazard model were examined to assess the sensitivity
of this model to perturbations in the original DEM, and lastly, differences between
the original DEM and perturbed DEM debris-slide hazard ratings at each available
debris-slide data point were examined. In all cases a general assessment of the data
was conducted, and then in order to determine if there was a particular situation
in which the data might be more or less sensitive, the analyses were subdivided

into two categories: 1) landuse and 2) debris-slide initiation site.

5.1. Field Data

The error associated with the field obtained slopes is unknown, and thus the
field measurements cannot necessarily be regarded as true. Additionally, determin-
ing what to measure in the field is difficult, for example, should the measurement
be at the axis of the sliding surface, or as an approximation of the pre-slide ground
surface slope, or the average or maximum of these two? But, we can look at how
different the measurement is between field and DEM-derived slopes. The distribu-
tion of these differences is plotted in Figure 5.1. The histogram shows a roughly
normal distribution, with a mean of -16° and a standard deviation of 11°, indicat-
ing that on average the slopes at the 145 known debris slides are underestimated by

the USGS DEM by approximately 16° . The minimum (-48.9) and maximum (4.9)
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differences indicate some areas are prone to large differences. Overall, ninety-one
percent of the field slope measurements are higher than the DEM-derived slope

estimates.

40

35

30

25

20

Frequency

15

10

ol |

-55 -45 -35 -25 -15 -5 5 15
Difference in slope (degrees) between DEM and field values)

FIGURE 5.1. Histogram of differences between DEM and field slope (°).

Slides in the Andrews Forest area tend to occur on the steepest slopes
(approximately 32-40°), excluding cliffs. Steep microsites where slides initiate are
likely to have slope values which are steeper than the mean slope of a 30m x 30m
DEM cell that contain the slide site. These results are expected because the field-
measured slope value is determined for the axis of the slide scar, which is generally
a narrow, steep, linear feature. A DEM slope value is the mean for a 30m x 30m
area, which is generally larger and more gently sloping that the axis of the slide

scar.
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5.1.1. Debris-Slide Type

Using the debris-slide location map, the affect of how the coarse resolution of
the DEM affects the ability to predict slope was examined for each debris-slide type.
For each debris-slide type the difference was calculated by subtracting the field
slope from the DEM-derived slope. As expected, the average field measurement is
much higher than the average DEM-derived slopes, especially in streamside and
streamside-earth sites (Table 5.1). This may be an indication of the inability of
the DEM to measure the slope of an event at a smaller scale than the resolution of
the DEM. In particular, streamside earthflow slides zone are narrow and bordered
by landforms with a gentler slope. That is, the slope of an earthflow is typically less
than a non-earthflow hillslope landforms, but where the actual slide is occurring at
the streamside edge is steep. Thus, the DEM is measuring a relatively low slope,

but the actual slope where the slide occurred is high.

Slide type |Field mean|Field s.d.DEM mean|DEM s.d.|Diff. in mean
hollow 33.66 7.53 19.99 5.97 -13.67
hillslope 34.96 6.68 22.41 7.5 -14.97

streamside 37 4.39 19.94 6.9 -17.06

s. earthflow| 41.45 6.9 16.15 7.38 -25.30

TABLE 5.1. Difference between original DEM and field slope (°)



5.1.2. Landuse Type

Using the debris-slide inventory map, how the coarse resolution of the DEM
might affect the ability to predict slope was examined for each landuse type. For
each debris slide in each landuse category the difference was calculated by subtract-
ing the field slopes from the DEM-derived slopes. As expected, the average field
slope is much higher than the average DEM-derived slopes, especially in forested
areas (Table 5.2). This may be an indication of the source error associated with
DEM data collection, in particular recording measurements of the tree height as
the elevation instead of the ground elevation. It is also important at this stage

to evaluate when maps or photos as sources of the topographic data were made

relative to time of logging.

landuse category|Field mean|Field s.d.DEM mean|DEM s.d.|Diff. in mean
forest 37.02 8.05 18.6 8.21 -18.42
clearcut 36.48 6.4 21.32 6.34 -15.16
road 33.86 5.87 20.97 7.23 -12.89

TABLE 5.2. Summary information for field and DEM slopes (°).

It is evident that the field slopes are much higher overall than DEM-derived

slopes, no matter what the landuse category.
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5.2. Debris-Slide Hazard Model

5.2.1. FElevation

To verify that the error incorporated into the original DEM was stochastic,
an elevation difference map (original elevation - perturbed elevation) was produced
to visualize the difference in elevation (Figure 5.2). The histogram (Figure 5.3)
shows a roughly normal distribution with a mean of -0.13 and a standard devia-
tion of 0.95 meters which is expected as the mean and the standard deviation of
the original DEM and the perturbed DEM should be N(0,1) (as dictated by the

Uncertainty Model).

Elevation difference (original - perturbed)
[ ]-4.36to -3.369

[ ]-3.369 to -2.378

[ |-2.378t0-1.387

[ ]-1.387 to -0.396

I -0.396 to 0.596

I 0.596 to 1.587

Il 1.587 to 2.578

Hl 2.578 to 3.569

Il 3.569 to 4.56

FIGURE 5.2. Elevation difference map for p = 0.19 (m).
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FIGURE 5.3. Graph of Original DEM - perturbed DEM elevation (m).
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5.2.2. Slope

A single perturbed slope map was created by averaging the 50 perturbed
slope maps. While the elevation map indicates no significant trends, the slope
difference map (original slope - perturbed slope) map reveals the effect of the in-
troduced error (Figure 5.4). The histogram shows a negatively skewed distribution
with a mean of -0.96 and a standard deviation of 1.21 (Figure 5.5). The minimum
(-9.5) and the maximum (2.62) indicate that there are definite areas where the

perturbed slope is different than the original slope.

Difference in slope (original - perturbed)
-9.5 to -8.153

-8.153 to -6.806

-6.806 to -5.458

-5.458 to -4.111

-4.111 to -2.764

-2.764 to -1.416

-1.416 to -0.069

-0.069 to 1.278

Il 1.278 to 2.626

|| i

FIGURE 5.4. Slope difference map for p = 0.19 (°).

The largest negative differences in slopes appear mostly where the slope
is < 10° or in the riparian and stream bed areas. This is a direct result of the
slope algorithm used in ARC/INFO as it uses a maximum slope algorithm that
prevents a negative slope from being calculated. Thus, if perturbing a set of cells

results in a negative slope effectively the algorithm converts it to an absolute
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FIGURE 5.5. Graph of original DEM - perturbed DEM slopes(°).
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value, thus the perturbed slope will always be higher than the original, resulting
in a negative difference. This will occur until the value of the slope is greater than
the RMSE divided by 2*Ax at which point there is a 50/50 probability that the
slope will increase or decrease. The magnitude of the RMSE also plays a direct
role in when the probability of the perturbed slope being higher than the original
is 50/50. This hypothesis was tested by developing a simplified model to calculate
the slope. Using a 3x3 elevation grid, the slope algorithms from ARC/INFO, a
triangular distribution, and by varying the slope in only one direction, the effects
of the increase in slope and the magnitude of the RMSE are shown in Figure 5.6.
Test runs were made at half the RMSE (0.5*7m) and twice the RMSE (2*7m). In
the case of the smaller RMSE, it would be expected that the rate at which the
percentage approaches 50% would be higher, as a value of +/- 3m will have even
less effect than the 7m. If the RMSE is greater than the +/- 7m, the rate at which
the percentage approaches 50% should be reached more slowly than the other two
cases. Indeed this is the case as the graph reflects the hypothesis that as slope
increases the probability of the perturbed slope being higher than the unperturbed
slope asymptotically approaches 50%, and the magnitude of the RMSE affects the
rate at which the percentage of perturbed slopes being higher than the unperturbed

slopes asymptotically reaches 50%.

5.2.3. Slope Classes

The effect of the error seen in the slope is further propagated into the
derivation of the slope classes. Figure 5.7 indicates where slope class has changed.
The majority of the points do not change (indicated by a slope class difference of

0), but a considerable number of slopes are reclassified into a higher slope class
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FIGURE 5.6. Probability of the perturbed slope being higher than the unper-
turbed slope (RMSE = 3, 7, and 14 m).
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(indicated by areas with a -1). Very few slopes were reclassified into a lower slope
category. As we would expect, the areas most affected are areas of low relief where

the slopes are increased due to the perturbations.

Difference in slope class
-1
[ ]0
R

FIGURE 5.7. Difference in original DEM - perturbed DEM slope class.

More detailed information can be determined by using a confusion matrix.
A confusion matrix shows the counts of the actual versus predicted values and
can show overall how well the model predicts and presents the details needed to
see exactly how things have changed. In this case, it can be used to look at
the slope classes and the debris slide hazard ratings. In general, the columns
represent the unperturbed data, the rows reflect the perturbed data, the cells of
the matrix indicate the count of the number of observations for each (column,
row) combination. The diagonal elements show agreement between unperturbed
and perturbed; a perfect match is indicated by all zero off-diagonals. Errors of
omission (discrimination between classes) are calculated by dividing the incorrect

in a row by the total in the row. These errors occur when a value is not identified
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as belonging to a particular class. Errors of commission (discrimination within
classes) are calculated by dividing the incorrect in a column by the total in the
column. These errors result when the value is included in another class.

To illustrate how the slope class changes, in Table 5.3, of the 36659 cells
classified as steep, 32018 cells were classified as steep in the perturbed slope class
map, leaving 12% (4406+145/36659) as the error of omission. Similarly, of the
36659, 3013 cells were improperly classified as moderate or low, producing a com-
mission error of 8% (3013/36659). Of the 36659 cells the percent correctly classified
as steep is 88% (32018/36659). Mapping accuracy for each slope class is deter-
mined as the number of correctly identified cells, divided by that number plus
error cells of commission and omission. The overall map accuracy is determined
by summing the diagonal values and dividing by the total number of cells, in this
case 73% (32108 + 14919 + 4321)/70026).

The overall trends from the confusion matrix indicate that the likelihood
of a cell’s debris-slide hazard rating starting out as steep then being reclassified
as gentle is small. The same holds true for gentle to steep. However, by being
in the middle, a moderate slope class is more likely to be reclassified into either
a steep or gentle slope class. The low percentage of accuracy in the gentle (35%)
and moderate (44%) reflect the effect of the actual slope (see Figure 5.6) and the
ARC/INFO slope calculation algorithms. These two slope class categories appear
to have a big impact on the overall accuracy (73%) of the map, as the percentages
of omission (12%) and commission error (8%) for the steep class is relatively low.

The percentage of cells in the original DEM likely to be converted into a
new slope class category is shown in Table 5.4. As expected, if a cell is classified as
steep, there is an 87.7% chance it will remain steep. The steep slope class ranges

from 20° to 65°, thus, the introduction of error with an RMSE of 7m will not often
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Slope Class
steep moderate gentle|row total|% match
steep 32108 4406 145 | 36659 88%
moderate | 6968 14919 3864 | 25752 58%
gentle 252 3617 4321 | 8190 53%
column total| 39328 22942 8330 | 70601 73%
% omission|% commission|% match

steep 12% 8% 73%

moderate|  42% 31% 44%

gentle 47% 49% 35%

TABLE 5.3. Confusion matrix for slope classes.

have an effect. However, lower slopes are more sensitive to the DEM perturbations
as only 58.4% of the moderate slopes remain moderate (and both ends of this range
are subject to change) and only 54.9% of the gentle slopes remain gentle. In these
cases, the RMSE of 7m does affect the resulting slope calculation and a cell is more
likely to be reclassified into another slope class category.

While the previous tables show exactly how the error affects each slope
class, the overall number of cells that change their slope class is different. Table
5.5 shows the number of cells that were reclassified 'out’ of their original class
and the number of cells that were reclassified ’in to’ their original class. The

differences between the two show that there is an overall decrease in the moderate

slope category and gains in the steep and gentle slope classes.
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Slope Class

steep moderate gentle

steep |87.7% 12.0% 0.39%
moderate|27.3% 58.4% 15.1%

gentle | 3.2%  45.9% 54.9%

TABLE 5.4. Percentage of cells in original DEM likely to be converted into a new
slope class category.

Slope Class

out in difference

steep | 4551 7220 +2669
moderate|10832 8023 -2809

gentle | 3869 4009 4140

TABLE 5.5. Overall change in number of cells for each slope class
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5.2.4. Debris-Slide Hazard

As a last step in the model generation, the debris-slide hazard model is
created. As expected, the error seen in the slope, and subsequent slope class
derivation, propagates into the debris-slide hazard model output. A confusion

matrix for the debris-slide hazard rating is shown in Table 5.6.

Slide Hazard
high moderate low |row total|% match
high 8574 1347 26 9947 86%
moderate | 2911 8795 1205 | 12912 68%
low 102 1445  45620| 47167 97%
column total[11587 11587 46851 | 70026 90%
% omission|% commission|% match (perturbed matches original)
high 14% 30% 66%
moderate|  32% 22% 56%
low 3% 3% 94%

TABLE 5.6. Confusion matrix for debris-slide hazard rating.

Interestingly, the overall accuracy of the perturbed DEM to the original
DEM is 90%. This is by virtue of the design of the debris slide hazard model. The
high slope class accuracy (94%) for the low debris-slide hazard category results
because any cell classified with strong rock characteristics will be classified into
Thus, the

the low debris slide category regardless of the slope or slope class.

perturbation effect on slope and the subsequent slope class derivation does not
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alter the low debris-slide hazard category. This in effect aids to raise the overall
accuracy percentage.

The 30% commission error in the high debris-slide hazard category, indi-
cates that a large number of slides were classified as high when they should not
have been, and the 32% omission error in the moderate debris-slide hazard cat-
egory indicates that a large number of slides were classified as something other
than moderate. Considering the commission and omission percentages for slope
class, the actual effect of those errors on the debris-slide hazard model is less than
expected. This is a direct result of the structure of the debris-slide hazard model.
The stability of the low debris-slide hazard rating (94% slope class accuracy) in-
creases the overall map accuracy to 90% even when the slope class accuracy for
high (66%) and low (56%) is relatively low.

While Table 5.6 shows exactly how the error affects slide hazard category,
the overall number of cells that change their debris slide hazard class is different.
Table 5.7 shows the number of cells that were reclassified 'out’ of their original
class and the number of cells that were reclassified ’in to’ their original class.
The differences between the two show that there is an overall increase in the high
debris-slide hazard category and a definite loss in the moderate and low debris-slide
hazard category.

Similarly, we can look at the percentage of cells in the original DEM that
are likely to be converted into a different slide hazard category (Table 5.8). Low
and high slide hazard ratings appear to be relatively unaffected by the introduced
error, but moderate slide hazard ratings appear to be particularly sensitive to the
perturbations. As described earlier, by virtue of the design of the slope hazard
model it is unlikely that a cell classified as low will be reclassified into high, and

only a small chance it will be reclassified into a moderate slide hazard as this can
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Slide Hazard

out 1in difference

high (1373 3013 41640
moderate|4116 2792 -1324

low 1547 1231  -316

TABLE 5.7. Overall change in number of cells for each debris slide hazard cate-
gory.

only occur when the cell is in the moderate geologic stability category. Similarly,
it is unlikely that a high debris-slide hazard will be reclassified into a low debris-
slide hazard category, but with a slightly higher chance at being reclassified as a
moderate slide hazard (cells classified in either the moderate or the weak geology
category can be reclassified into the moderate debris-slide hazard category). Thus,
the percentages seen in Table 5.8 reflect not only the perturbations introduced
into the DEM, but the design and structure of the debris slide hazard model.

To get an idea of how the overall area of each debris-slide category is af-
fected by the introduction of perturbations, the percentage of area affected by the
random perturbations is shown in Table 5.9. The original debris-slide hazard
model predicts a 2.3% smaller area will fail than does the perturbed debris-slide
hazard model. Conversely, the area classified as having a moderate debris-slide
hazard potential is underestimated by the perturbed debris-slide hazard model by
1.8%.



Slide Hazard
high moderate low
high (86.2% 13.5% 0.3%
moderate|22.6% 68.1%  9.3%
low 02% 31% 96.7%
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TABLE 5.8. Percentage of cells in original DEM likely to be converted into a new
slide hazard category.

Area affected

Slide hazard|Original|Perturbed|Difference
high 14.2% | 16.5% -2.3%
moderate | 18.3% | 16.5% 1.8%
low 67.4% | 66.9% 0.5%

TABLE 5.9. Percentage of area in each debris-slide hazard for both original and

perturbed.
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5.2.5. Scoring

One last method to determine the overall sensitivity of the model is to use
a method of ’scoring.” Each cell in the debris-slide hazard map is assigned an
attribute of ’high.” If a cell was classified as having a high debris-slide rating, it
was assigned a value of 1, if not, it was assigned a 0. This was done in the original
debris-slide hazard map and for the each of the 50 perturbed debris-slide hazard
maps. The 50 perturbed debris-slide hazard maps were then added together using
only the "high’ classification. That is, the resulting cell value attribute of ’high’
denoted the number of times each cell scored a high rating in the range of 0-50.

In order to visualize the results, the original hazard map was overlaid with
all grid cells with a high hazard rating for the study site (Figure 5.8). For com-
parison, cells that scored a high rating at least once (Figure 5.9), together with
those that achieved the maximum score of 50 (Figure 5.10) were shaded black and

overlaid on the same map.

I Not scored as high
| | Scored as high

FIGURE 5.8. Original hazard map scoring a ‘high’ hazard rating.
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I Not scored as high
[ ] Scored as high at least one time

FIGURE 5.9. Perturbed (p=0.19) debris-slide hazard map indicating where a
"high’ debris-slide hazard rating was ’scored’ at least one time.

In the original debris-slide hazard map, the Boolean nature of the slope
reclassification into categories with thresholds at 10 and 20 meant that a cell could
receive only one rating. However, with the proposed method, even though the
same thresholds are maintained (and their values are not in question here), we can
see how the hazard rating for a cell behaves under variation of the input DEM.
Obviously, cells lying on weak or moderate rock and having slope gradients close
to either of the thresholds are most likely to exhibit variation in their hazard.
The number of high cells in the original debris-slide map and the area of test site
affected are compared with the number of cells achieving a high score between 0-50

in the cumulative realized grids (Table 5.10).

5.3. Debris-Slide Inventory Sites

The debris-slide point map was used to examine if any particular areas

could be determined as being more sensitive to the elevation perturbations. An
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I Not scored as high
[ ] Scored as high maximum 50 times

FIGURE 5.10. Perturbed (p=0.19) debris-slide hazard map indicating where a
’high” debris-slide hazard rating was ’scored’ the maximum 50 times.

High score [No. of cells|Area of site[Site area (ha)

0 24477 36% 2203

>1 22982 33% 2068

> 10 15937 23% 1434

> 20 12087 17% 1088

> 30 9336 13% 840

> 40 6723 9.6% 605

20 2583 3.7% 232
Original DEM| 9947 14% 895

TABLE 5.10. Relationship between ’high’ hazard cell scores and the area of the
site affected.
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overall summary of the 145 points is shown in a confusion matrix (Figure 5.11).
In the case of just these 145 points, none of the high debris-slide hazard cells were

reclassified, only a few of the low, and a large number of the moderate.

Slide Hazard

high moderate low|row total|% match

high |52 0 0| 51 | 100%
moderate | 19 42 0 61 69%
low 0 6 27 33 82%

column total| 70 48 27 145 83%

% omission|% commission|% match
high 0% 37% 3%
moderate|  31% 10% 63%
low 18% 0% 82%

TABLE 5.11. Confusion matrix for slide hazard rating using the debris-slide haz-
ard points.

5.3.1. Debris-Slide Type

To explore the idea that land use at the debris-slide initiation site may affect
how well the DEM estimates slope, the mean slope in each category of debris-slide
initiation site was calculated (Table 5.12). The perturbed slopes are higher than
the original slopes. Streamside and streamside earthflow slides appear to be the
most affected. These type of slides are much smaller than hollow or hillslope type

slides, and the ability of the DEM to determine the slope at these microsites is



54
limited. Additionally, the slope of the adjacent landforms factor into the slope

calculation (see Section 5.1.1).

Slide type |Pert. mean|Pert. s.d.|DEM mean|DEM s.d.|Diff. in mean
hollow 20.6 5.96 19.81 6.61 -0.79
hillslope 23.2 7.35 22.5 7.87 -0.70

streamside 21.66 6.72 20.78 7.49 -0.88

s. earthflow 16.7 6.7 15.27 7.54 -1.43

TABLE 5.12. Mean slope for each debris-slide initiation site category (°).

The overall change in the 145 points is shown in (Table 5.13). It reflects

the pattern seen in the overall debris-slide hazard model.

Slide Hazard

out in difference

high 0 15 +15
moderate| 15 6 -9

low 6 0 -6

TABLE 5.13. Overall change in number of cells for each debris-slide hazard cate-
gory.

Confusion matrices were made for each debris-slide initiation site (Tables
5.14, 5.15, 5.16, and 5.17). Streamside and streamside earthflow slide sites have

the lowest overall percentage of matching between the perturbed and the original
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slide hazard value while hollow and hillslope fare well. In each category all slides
in the high slide hazard category were correctly matched (100%). This is most
likely due to the fact that very few points were reclassified into a lower slope class
category because of the slope algorithm or because the slope was much greater than
20°. However, the lower percentage match values that incorporate omission and
commission errors for the high and moderate slide category reflect the tendency of

the cells to be reclassified into a higher slope category.

Slide Hazard: streamside sites

high moderate low|row total|% match
high 7 0 o] 7 100%
moderate | 6 5 0 11 45%
low 0 2 3 D 60%
column total| 13 7 3 23 65%
% omission|% commission|% match
high 0% 86% 54%
moderate|  55% 18% 38%
low 40% 0% 60%

TABLE 5.14. Confusion matrix for debris-slide hazard rating at streamside slide
sites.



Slide Hazard: streamside earthflow sites

high moderate low|row total|% match
high 5 0 0 5) 100%
moderate | 1 13 0 14 93%
low 0 3 0 3 0%
column total| 6 16 0 22 82%
% omission|% commission|% match
high 0% 20% 83%
moderate ™% 21% 76%
low 100% 0% 0%
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TABLE 5.15. Confusion matrix for debris-slide hazard rating at streamside earth-

flow slide sites.



Slide Hazard: hillslope sites

high moderate low|row total|% match
high 24 0 0 24 100%
moderate | 6 8 0 14 57%
low 0 0 9 9 100%
column total| 30 8 9 47 87%
% omission|% commission|% match
high 0% 25% 80%
moderate|  43% 0% 57%
low 0% 100% 100%

S7

TABLE 5.16. Confusion matrix for debris-slide hazard rating at hillslope slide

sites.
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Slide Hazard: hollow sites

high moderate low|row total|% match
high 7 0 o] 7 100%
moderate | 2 8 0 10 80%
low 0 1 11 12 92%
column total| 9 9 11 29 87%
% omission|% commission|% match
high 0% 29% 8%
moderate|  20% 10% 73%
low 8% 0% 92%

TABLE 5.17. Confusion matrix for debris-slide hazard rating at hollow slide sites.
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5.3.2. Landuse Type

To explore the idea that debris-slide initiation site may affect how well the
DEM estimates the slope, the mean slope in each category of landuse type was
calculated (Table 5.18). As has been the pattern thus far, the perturbed slopes
are higher than the original slopes. Forested and roaded areas indicate more of a
difference than clearcut. This may be due to an artificial flattening of the elevation,
that is, in a forested area the tree height is often misread as the true elevation and

would appear flatter than the actual ground gradient.

Slide type|Pert. mean|Pert. s.d.|DEM mean|DEM s.d.|Diff. in mean

Forest 19.78 7.65 18.8 8.46 -0.98
Clearcut 21.58 6.58 20.79 7.09 -0.79
Road 23.17 7.38 22.22 8.29 -0.95

TABLE 5.18. Mean slope for each landuse category (°).
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The overall change in the 145 points is shown in (Table 5.19). It reflects

the pattern seen in the overall debris slide hazard model.

Slide Hazard

out in difference

high 0 19 +19

moderate| 19 6 -13

low 6 0 -6

TABLE 5.19. Overall change in number of cells for each debris-slide hazard cate-
gory.

Confusion matrices were made for each landuse type. (Tables 5.20, 5.21,
and 5.22). In clearcut and roaded areas moderate slide hazard is most affected.
In forest areas low slide hazard areas are most affected. In each category all slides
in the high slide hazard category were correctly matched (100%). This is most
likely due to the fact that very few points were reclassified into a lower slope class
category because of the slope algorithm or because the slope was much greater than
20°. However, the lower percentage match values that incorporate omission and
commission errors for the high and moderate slide categories reflect the tendency

of the cells to be reclassified into a higher slope category.



Slide Hazard: forest sites

high moderate low|row total|% match
high 14 0 0 14 100%
moderate | 6 23 0 29 89%
low 0 4 9 13 69%
column total| 20 27 9 56 82%
% omission|% commission|% match
high 0% 43% 70%
moderate|  21% 14% 70%
low 31% 0% 69%

61

TABLE 5.20. Confusion matrix for debris-slide hazard rating at forest sites.
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Slide Hazard: clearcut sites

high moderate low|row total|% match

high 25 0 0 25 100%

moderate | 10 16 0 26 62%
low 0 1 12 13 92%
column total| 35 17 12 64 83%
% omission|% commission|% match
high 0% 25% 80%
moderate|  50% 17% 43%
low 14% 0% 86%

TABLE 5.21. Confusion matrix for debris-slide hazard rating at clearcut sites.



Slide Hazard: road sites

high moderate low|row total|% match
high |12 0 0] 12 | 100%
moderate | 3 3 0 6 50%
low 0 1 [ 7 92%
column total| 15 4 6 25 84%
% omission|% commission|% match
high 0% 40% 1%
moderate|  38% 4% 59%
low 8% 0% 92%
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TABLE 5.22. Confusion matrix for debris-slide hazard rating at roaded sites.
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6. DISCUSSION AND CONCLUSIONS

In this study, a process has been described whereby a simple model used in
identifying areas susceptible to landslides with the aid of a GIS has been modified
to assess the uncertainty in the final debris-slide hazard map as a result of elevation
error in the original DEM and its propagation effects upon the intermediate pro-
cesses involved. Several different, but equally probable, versions of the input DEM
were created through the addition of random, spatially autocorrelated noise (er-
ror) files, and then processed to produce a family of landslide susceptibility maps.
By examining the resulting output for each grid cell, users may then evaluate the
spatial variation in uncertainty throughout the data set.

There are two benefits to the research. Firstly, the inclusion of uncertainty
assessment in the process has the potential to facilitate improved land manage-
ment decisions in relation to timber harvesting in regions susceptible to landslides.
And secondly, the application of the uncertainty model to applications such as
that described here provides a new approach to understanding the quality of our

geographic information and its inherent strengths and weaknesses.

6.1. Summary of Results

Results from this study show that error affects this slide model in two
particulars ways. Low relief areas are heavily affected by the slope algorithm used
in ESRI's ARC/INFO, and moderate and high relief areas are particularly affected

by the structure of the debris-slide hazard model.
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6.1.1. Algorithm and RMSE Effects

Slopes on the order of the RMSE divided by 2*Ax are most likely to increase
when the DEM is perturbed. This occurs in part because the slope algorithm
used prevents the calculation of a negative slope by squaring the slope. As the
slope increases, on average, the effect of the RMSE is negligible and the likelihood
that the perturbed slope will be higher than the original slope is the same as the
likelihood it will be smaller. Additionally, the rate at which the probability of the
perturbed slope being higher than the original slope approaches 0.50 is correlated
to the RMSE value. The lower the value of the RMSE the quicker it’s affect is
lost and the subsequent corresponding slope value is lower. Conversely, the slope
value at which point the probability is approximately 0.50 becomes higher at the
RMSE increases. Thus, the algorithms, the source error, and their subsequent

interactions should be examined when modeling with a GIS.

6.1.2. Debris-Slide Model Effects

The derivation of the debris-slide categories and its effect on the perturbed
output is evident. The perturbed slope class cell values matched the original slope
class cell values approximately 73% of the time. Yet, the percentage of matching
debris-slide hazard values between the perturbed and original is relatively high, i.e.
90%. This is directly related to the derivation of the debris-slide model. In the case
of the strong bedrock category, any change in slope class does not produce a change
in the hazard rating. In this case, no matter the slope class, the slide hazard rating
will be classified as low. The most change will be seen in the moderate bedrock
category. This is the only case in which a change in slope class will produce a

change in the slide rating every time and also the only time a change in slope
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class can potentially lead a cell to be reclassified into a low slide hazard category.
The last bedrock category, weak, allows only change from a moderate to high slide
rating and vice-versa. The other interesting effect, is that if a cell changes from
slope class moderate to gentle, or gentle to moderate, no change in slide hazard
will occur. The only time a hazard rating change will occur is when cells with a
steep rating are reclassified into a lower slope class, or when cells with a moderate
or gentle slope class rating are reclassified into the steep category.

Lastly, because the model uses slope classes and not the slope itself, once
the slope is greater than 20° +RMSE, the effect of error is negligible. That is,
if a slope is 45°, with the RMSE of 7m, the ability to perturb the elevation such
that the slope value will be less than 20° is not likely. Thus, any perturbation to
elevation will permit large slope values to remain in the same slope class category

as in the original model output.

6.1.3. Landuse and Slide Initiation Site

Streamside slide sites exhibited a tendency to be more affected by the per-
turbation of the DEM, however, in general the points used reflect the patterns seen

in the entire debris-slide map.

6.2. Scale Issues

In this study, scale plays a very important role. The scale of the DEM, of
the RMSE (as mentioned above), of the landscape feature being interpreted, and
of the products all can affect the output of this model. For example, there are

currently available finer-resolution and higher accuracy DEMs (e.g. LIDAR). How
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one of these DEMs would be behave in a process similar to the one used in this

study opens a whole new set of questions and is an area for further research.

6.3. Uncertainty Model Implications

From a land management perspective, where areas susceptible to debris
slides are to be protected from harvesting, selecting all cells that achieve a high
hazard rating at least once is clearly the most cautious approach. This leads to an
overestimation of the true area where the model predicts high slide potential. On
the other hand, selecting only those cells that attain a high score the maximum 50
times is the least cautious approach and more than likely underestimates the true
area of the site susceptible to debris slides.

Clearly there is no right or wrong answer to the selection problem, and
the level of risk a user is prepared to accept in the end product is a matter of
institutional and/or personal choice. In other words, users must live with some
degree of uncertainty in their geographic information outputs and make value
judgments according to individual project requirements. In circumstances where
several parties with opposing views are involved in land management decisions, it
may be more appropriate to adopt a compromise value (verified by random field
checks) such as grid cells that score a high debris-slide hazard index 40 out of 50
times are to be protected from harvesting and road construction, and in this way a
measure of uncertainty can be introduced to the decision making process based on
the uncertainty associated with the GIS outputs. Of course, the process adopted
here could also be applied to test the effects of uncertainty in source data sets.

Finally, positional uncertainty in the geological boundaries used to interpret

rock strength is another error source which affects the hazard index. At this stage,
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the uncertainty model described here is not capable of handling this aspect since
a solution requires perturbation of the original vector-based geological polygon
boundaries. However, research is currently being conducted in this area and Hunter
et. al. [30] describe the experimental work that has been done to date to overcome
the problem.

The potential of this model lies in four areas [28]. First, regions of maps
may be highlighted to represent areas susceptible to change in parameter values.
For instance, Hunter and Goodchild [11] showed that slope aspect calculations
from the DEM were susceptible to variations in elevation in relatively flat terrain
while steep hillslopes remained relatively stable. Additionally, parameter value
differences could be used for input to a sensitivity analysis to study the effects on
the decision making process, as in landuse suitability and capability studies.

Second, the technique is also useful in cases where differences may not be as
important as determining the particular class in which a cell resides. For example,
one might calculate which cells are visible or invisible from a particular viewing
point in a viewshed computation.

Third, a reverse engineering approach might be applied to areas identified
on a map that exhibit unacceptable levels of uncertainty. This process begins
by applying various techniques of uncertainty reduction (e.g. recollecting data
at a higher accuracy) to the data contained within the questionable areas. The
uncertainty model can then be applied to the modified maps to determine the effect
of the uncertainty reduction technique on the final outcome, before one returns to
the field site or purchases an alternative data set. Finally, one may wish to compare
several realizations of a map to study the amount of variation associated with the
processes of interest. For example, several realizations can be produced to assess

the impact of a raster-to-vector conversion, such as deriving contour lines from a
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DEM. In this case, the impact of elevation uncertainty and the variation due to

the contour line interpolation process can be determined.

6.4. Future Uncertainty Models

The uncertainty model discussed thus far only considers raster or grid data.
Spatial data are also available in vector form and are susceptible to many of the
same errors and uncertainty as raster data. An experimental uncertainty model
for vector data has been proposed by Hunter et. al. [30]. This technique is based
on the same principles as the raster model. If one assumes that, within a vector
data set, any error or uncertainty possesses a circular normal distribution (defined
earlier see section I1.3.A), and that the x and y vector components are indepen-
dent, it is possible to combine the original data set with a set of positional error
vectors to create a new, but equally probable, description of the data. This is ac-
complished by the creation of two independent, normally distributed, error grids,
one for each of the x and y component directions. These perturbed grid data sets
are constructed based on control information, such as residuals at control points
obtained in the digitization process or data quality information furnished with to-
pographic or resource data. Combining these perturbations with the original data
set (via the GIS OVERLAY function) results in the creation of a distorted output
data set, i.e., a set consisting of the data (x + uncertainty, y + uncertainty).

This perturbation process is performed in a consistent manner, with the
error grids consisting of normally distributed values with a mean and standard
deviation corresponding to the horizontal error estimate of the original data set
(i.e., from the topographic description). In this process, it is necessary to employ

spatial autocorrelation to avoid an inconsistent result. As an example, consider the
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case in which the perturbation of neighboring cell data is in opposite directions.
If the perturbation magnitude is large, it is possible to actually interchange the
source cell data between the two neighboring cells in the output. This situation
will create extreme, undesirable distortions or transpositions of the features in the
data set. The grid point separation distance may be selected arbitrarily. However,
it should not be larger than the smallest x or y distance that describe the features

in the original data.

6.5. Conclusion

This study indicates that when using GIS even uncertainty can be consid-
ered with scrutiny, a certain amount of rigor, and understanding. The ease in which
data can now be downloaded, stored, and manipulated leads to many steps in the
process for introduced error and subsequently propagated error. Users must live
with some degree of uncertainty in their geographic information and decide what
level of error they are willing to accept. This may be dependent on the project,
time, or finances. To aid in these decisions any type of uncertainty analysis has the
potential to make any GIS analysis more robust and at least associate the amount

of error or uncertainty associated with the output.
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