
June 2004 / Vol. 54 No. 6 •  BioScience 535

Articles

The discipline of ecology has undergone tremendous
growth and diversification over the past century. These

advances were driven by a variety of sociological, political,
environmental, and technological developments that fos-
tered new theory as well as new applications. Public concern
over the state of the environment, which had been increas-
ing over the decades leading up to the 1960s, led to landmark
sociopolitical action. The Clean Air Act of 1963, later amended
in 1970 and 1990, was perhaps the most important initial 
legislative action. Another major legislative event was the
Endangered Species Act of 1973. Emerging environmen-
talism led to the establishment of an annual event known as
Earth Day, first celebrated in 1970 and continuing today.

With regard to technology, the foundations were laid in the
1960s and 1970s for what would become widely known as 
geographic information systems (GIS). Electronic comput-
ing, revolutionized with the development of microprocessors
in the early 1970s, ushered computing into the realm of
environmental research, which ultimately enabled GIS to
pervade environmental modeling.

On the theoretical forefront at the time was the develop-
ment and appreciation of what by the 1990s was to become
perhaps the dominant concept in ecology: scale. With re-
spect to advancement in applications of spatial (and to a
lesser extent temporal) scaling theory, there has been perhaps
no greater catalyst than remote sensing. At the core of devel-
opments in remote sensing has been the Landsat program.

Launch of the Sputnik satellite in 1957 ushered in the
Space Age. In 1962, John Glenn became the first human to 
orbit the Earth. During the manned Gemini and Apollo 
programs from 1965 to 1972, numerous pictures were taken

of Earth from space, and a discipline known as remote sens-
ing was born. With the launch of the first Landsat satellite in
1972, scientists could suddenly view tangible human im-
pacts on the whole Earth system on a regular basis. By ne-
cessity, field measurements and experiments focused (and have
continued to focus) mainly on plots with sizes up to several
square meters (m2). Remote sensing enabled scientists to
spatially reference their plots to images showing the land-cover
and landform context of their data. Because Landsat data were
digital, they could be used with other, thematic data sets in
cartographic modeling schemes using GIS. This enabled spa-
tially explicit ecological models to expand from local into re-
gional applications.

For regional monitoring applications relying on temporal
data sets, Landsat has several advantages. First, with more than
30 years of Earth imaging, it offers the longest-running time
series of systematically collected remote sensing data. Second,
the grain size (or spatial resolution) of the data facilitates 
characterization of land cover and cover change associated
with the grain of land management. Third, Landsat 
Thematic Mapper (TM) and the later Enhanced Thematic
Mapper Plus (ETM+) acquire spectral measurements in 
all major portions of the solar electromagnetic spectrum
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Landsat’s Role in Ecological
Applications of Remote Sensing
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Remote sensing, geographic information systems, and modeling have combined to produce a virtual explosion of growth in ecological investigations
and applications that are explicitly spatial and temporal. Of all remotely sensed data, those acquired by Landsat sensors have played the most piv-
otal role in spatial and temporal scaling. Modern terrestrial ecology relies on remote sensing for modeling biogeochemical cycles and for characteriz-
ing land cover, vegetation biophysical attributes, forest structure, and fragmentation in relation to biodiversity. Given the more than 30-year record
of Landsat data, mapping land and vegetation cover change and using the derived surfaces in ecological models is becoming commonplace. In this
article, we summarize this large body of work, highlighting the unique role of Landsat.
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(visible, near-infrared [NIR], shortwave-infrared [SWIR]),
providing Landsat TM and ETM+ significant advantages
over less capable sensor systems. Fourth, in recent years Land-
sat data have become more affordable, as have the comput-
ers needed to process these data, making it possible to acquire
and analyze large volumes of observations.

In the remainder of this article we give a brief historical
overview of the Landsat program, paying particular attention
to the initial vision for the program, the quality of its sensors,
its role in the evolution of remote sensing, and its current sta-
tus. This is followed by a discussion of the importance of Land-
sat to the development of spectral vegetation indices and to
the emergence of the power of SWIR reflectance in ecologi-
cal applications of remote sensing. We then present a section
highlighting various ecological applications of Landsat data,
including their integration with ecological models. We finish
with a summary of the importance of remote sensing to
ecology today, describing how Landsat has been—and will
continue to be for the foreseeable future—a key contributor
to spatiotemporal scaling in ecology.

Historical overview of the Landsat program
The tradition of taking the high ground to get a better per-
spective on landscapes and ecosystems is probably as ancient
as human curiosity. The technology to support such efforts
took a major step forward in the mid-1800s, when cameras
were first taken aloft in hot air balloons to better record spa-
tial variations in the land surface. At the end of World War II,
scientific understanding and several emergent technologies
came together to produce the type of systematic, global land-
monitoring observatories that are available today. Landsat was
the first spacecraft system deployed to conduct terrestrial
monitoring, and it remains the preeminent observatory for
monitoring regional land dynamics.

The scientific basis for Landsat originated from the un-
derstanding that photosynthetically active vegetation pro-
duces a unique solar reflectance spectrum, with low re-
flectance in visible wavelengths and high reflectance in NIR
wavelengths. There are early reports on the use of NIR photo-
graphy in ecology, but it was only during and shortly after
World War II that remote sensing systems began to fully take
advantage of the potential for multispectral measurements in
terrestrial research.

The unique vegetation reflectance spectrum served as the
basis for color-infrared (CIR) photography, which was used
for camouflage detection by the military. Such photography
also began to be used for high-altitude acquisitions from the
US U-2 spy planes, because, by avoiding the shorter-wave-
length (blue) visible wavebands, the imagery was less contami-
nated by haze, giving a clearer view of the land surface from
these high altitudes (approximately 18 kilometers [km]).
Similar significant success was achieved from space in the
Apollo/Gemini program. This imagery proved valuable for
land-cover assessments, agricultural surveys, and forest in-
ventories. Thus, the CIR approach was deemed optimal for
unmanned, spaceborne imaging systems.

Technical components of the Landsat concept consisted of
Earth-orbiting spacecraft, electronic sensors, and electronic
computers. All of these components primarily emerged fol-
lowing World War II. The late 1950s found the United States
and the Soviet Union in a cold war battle to achieve primacy
in these areas. The efforts to orbit television cameras for
gathering weather information represented a US success in this
direction. By the early 1960s, the US military was beginning
to declassify these technologies and encourage government
and university scientists to more fully explore their value 
for civil uses. Research teams at institutions, including 
the University of Michigan, the University of California–
Berkeley, Purdue University, and the US Department of
Agriculture (USDA) research laboratory in Weslaco, Texas,
began to explore the details of how to exploit the new elec-
tronic, multispectral measurements.

By the mid-1960s, the National Aeronautics and Space
Administration (NASA), primarily through the Apollo pro-
gram, had encouraged the US Department of the Interior and
USDA to consider the value of a dedicated land observation
mission. The head of the US Geological Survey (USGS) at that
time, William T. Pecora, took a particular interest in this con-
cept, producing the initial proposal for an Earth Resources Ob-
servation Satellite. Ultimately, NASA was given the lead to de-
velop the Earth Resources Technology Satellite (ERTS, later
renamed Landsat). The first observatory was launched in
1972. USGS was given the archival responsibility to capture
and distribute these data at the new Earth Resources Obser-
vation System Data Center in Sioux Falls, South Dakota.
From 1972 to date, there have been seven Landsats launched—
one launch approximately every 3 years through Landsat 5,
which was launched in 1984, followed by two more launches
in the 1990s. Landsat 6 was launched approximately 9 years
after Landsat 5, in 1993, but failed to achieve orbit. Interest-
ingly, this was the only satellite in the series that did not in-
volve NASA oversight. Landsat 7 was launched in 1999, 6 years
after Landsat 6.

When ERTS was under construction, the primary obser-
vation instrument was considered the three-band (red, green,
NIR) return beam vidicon (RBV) instrument. In simple
terms, this was a shuttered television camera that imaged a
185-km by 185-km land area. The assumption was that the
radiometry and mapping geometry of this system was the best
that could be achieved at the time, at least with electronic sys-
tems in which the data were transmitted to the ground. In
addition, a proposal to fly a four-band multispectral scanner
sensor (MSS), with green, red, and two NIR bands, originated
out of the multispectral work being pursued at Michigan, Pur-
due, Berkley, and elsewhere. The goal of the MSS system was
to explore the potential of numerical multispectral imaging,
particularly as analyzed by electronic computers. Ultimately,
both systems were flown to provide an opportunity to com-
pare them. Shortly after launch, electrical problems with
the RBV camera resulted in its being shut down. The MSS
system became the sole source of imagery from near the
beginning of the mission. Interestingly, comparisons of the
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early RBV and MSS image pairs demonstrated that the MSS
system provided better imagery. The three-band RBV system
was flown on Landsat 2 but not used nearly as much as the
MSS system. For Landsat 3, the RBV was converted to a
panchromatic system at higher spatial resolution (30 m), in
an effort to complement the MSS system. Unfortunately,
analog transmission of the RBV data made them quite noisy
when compared with the digitally transmitted MSS data. The
RBV system was discontinued after Landsat 3.

In the early 1970s, NASA researchers were assigned the task
of developing a more advanced MSS system, in the view that
it would produce considerable advances in land evaluations
based on its enhanced performance characteristics. This sys-
tem, which ultimately became Landsat TM, was deployed on
Landsat 4 in association with an MSS system that duplicated
the sensor used on Landsats 1, 2, and 3. The TM instrument
is similar to the original MSS system in that it is a multispectral
scanner. However, the technical capabilities of the TM 
instrument are a substantial enhancement over those of the
MSS. Whereas the MSS instrument had a four-band, six-bit
radiometry and a nominal 80-m instantaneous field of view
(IFOV, the area viewed on the ground, which was technically
79 m by 56 m), the TM instrument is a seven-spectral-band
sensor (one of which is thermal and has a 120-m IFOV)
with eight-bit radiometry and a 30-m IFOV. Although the
MSS was continued on Landsats 4 and 5, interest quickly
shifted to the science and applications of the TM instrument
after its first deployment in 1982 on Landsat 4. Landsat 7 
introduced ETM+, which included a 15-m IFOV panchro-
matic band, two radiometric sensitivity ranges, and a 60-m
IFOV thermal-infrared band. Also, for Landsat 7, an auto-
matic, systematic acquisition scheme was introduced to 
ensure that clear scenes for most of the globe were acquired
seasonally. With a 16-day return time, this scheme made it 
possible to obtain clear views of the greater part of the ter-
restrial surface one or more times per year.

In many ways, the politics and varying management ap-
proaches that have surrounded Landsat are as interesting
and significant as the scientific and technical accomplishments
of the mission. From the beginning, budgetary administra-
tors in Washington have had concerns about NASA (or any
other federal agency) taking on major new operational obli-
gations, such as the weather satellites or agricultural surveys.
Ultimately, NASA was given approval to pursue the Landsat
concept as an “experiment.” This justification lasted through
Landsats 1, 2, and 3 and the launch of Landsats 4 and 5. In
the early 1980s, the White House took initial steps toward
commercializing Landsat by moving mission management
to the National Oceanic and Atmospheric Administration
(NOAA). The Reagan administration sped up the process
and called for industry bids. A consortium of Hughes Air-
craft Company and RCA Corporation formed the Earth
Observation Satellite Company, or EOSAT, and won the
bid to commercialize the mission. This was a bumpy road
for everyone involved and was brought to an end in 1992,
when Congress acted to bring the mission back under direct

government management. Landsat 6 was lost on launch
shortly thereafter, and a major effort, under the direction of
NASA and the Department of Defense (DOD), was under-
taken to quickly construct Landsat 7.

During the development of Landsat 7, DOD dropped out
of mission management because the instrument the depart-
ment had planned to add was not funded. By presidential di-
rective, Landsat was turned over to NASA, NOAA, and USGS.
NOAA dropped out in 1998, when its requested budget for
Landsat was also denied. Today, the mission operations for
Landsat 7 (as well as Landsat 5) have been turned over to
USGS, with NASA supplying technical support. NASA also
undertook development of possible advanced sensor tech-
nology designs and orbited the Earth Observer–1 (EO-1)
satellite with the Advanced Land Imager and the Hyperion hy-
perspectral sensor to test these possible future directions for
continuation of Landsat beyond Landsat 7.

On the political front, there continues to be considerable
pressure, under the 1992 public law and other congressional
directives, to identify a mission approach that would involve
private industry in the continuation of Landsat. From 2001
to 2003, NASA and USGS pursued a government-industry
partnership to provide Landsat continuity, involving the re-
lease of a request for proposals in November 2002 for the
Landsat Data Continuity Mission (LDCM). However, no
satisfactory proposal was received and the LDCM procure-
ment was canceled in late 2003. At the time of this writing,
other options for the continuity of data beyond Landsat 7 are
under consideration, as required by the 1992 law. It should be
noted that in May 2003 the operation of one component of
the Landsat 7 ETM+ sensor malfunctioned, resulting in a loss
of 20% to 25% of the data in every full scene. Compositing
approaches to fill in the gaps in the data are being imple-
mented. For most applications, composited products should
meet observation requirements.

The Landsat mission is remarkable in many ways. It is an
exceptionally successful outgrowth of the US space program,
derived primarily from the effort to place a man on the moon
(the Apollo program). It has defined a new way of monitor-
ing Earth’s land areas, particularly the condition and sea-
sonal dynamics of the vegetated land cover. It has stimulated
much international interest in such observations, both through
international ground stations and through the development
of similar observatories by countries such as France, Russia,
Japan, India, Brazil, and China. The Landsat program has now
achieved a record of these measurements for more than 30
years and appears to be headed toward at least another decade
of measurements, thus surviving despite the turmoil and
chaos of Washington politics. One should expect, when look-
ing back on the 50th anniversary of these measurements,
that recognition will be given to the remarkable innovation
that was developed in the United States in the mid-20th cen-
tury and permitted scientists to begin truly monitoring life
on Earth.
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Landsat and the development 
of spectral vegetation indices
A few years before the launch of ERTS (i.e., Landsat 1), Birth
and McVey (1968) evaluated the color of grass turf using a ra-
tio of NIR (750-nanometer [nm]) to red (650-nm) reflectance,
which they called the turf color index. Shortly thereafter, Jor-
dan (1969) used a similar index to relate the quality of light
on the forest floor to the leaf area index (LAI). This NIR-red
ratio is now commonly referred to as the simple ratio and rep-
resents an example of the now-numerous algebraic combi-
nations of multispectral measurements that have come to be
known as spectral vegetation indices (SVIs). SVIs have been
at the heart of ecological applications of remote sensing, and
this section briefly describes their development and Landsat’s
seminal role in the process.

SVIs were originally applied to satellite remote sensing
using the first Landsat MSS system.A precursor to what is now
called the normalized difference vegetation index (NDVI,
defined as [NIR – red]/[NIR + red], or the difference di-
vided by the sum of reflectances in the red and NIR spectra),
was used by Rouse and colleagues (1974) to track what they
called the “greenwave effect”over the growing season in grass-
lands of the Great Plains. Others soon followed with a demon-
stration that the phenology of various vegetation types could
likewise be monitored with an SVI of MSS data, and that SVIs
were more sensitive to phenology than were individual spec-
tral bands (e.g., Blair and Baumgardner 1977).

The simple ratio and NDVI represent ratio-based SVIs,
using visible and NIR reflectance, that result in a single index.
Given their simplicity and use of commonly acquired spec-
tral ranges, these SVIs have been widely applied over time to
numerous data sets from a variety of sensors. However, Land-
sat data were also key to the development of algebraic com-
binations of spectral bands that result in related sets of SVIs,
including those that utilize SWIR bands.

Consideration of the spectral development of crops or
open-canopy vegetation over a growing season invariably
leads to a consideration of soil spectral properties. One of the
original conceptual models for this was the “tasseled cap”
(Kauth and Thomas 1976). Recognizing that all four spectral
channels of MSS data contain useful information, Kauth and
Thomas statistically rotated the full MSS data space into a
physically meaningful set of SVIs, the primary ones being
brightness and greenness. The key point here is that soil re-
flectance is variable and that it is desirable to have an SVI that
responds to amount of green vegetation irrespective of soil
reflectance, which, as demonstrated by Kauth and Thomas,
exists as a plane in multidimensional MSS space (at the base
of what formed a tasseled cap). This was quickly followed by
a simplification of the plane of soils to a conceptual soil line,
with new MSS SVIs as spectral measures of the amount of veg-
etation independent of soil conditions.

With the launch of Landsat 4 and the wide availability of
TM data, a new index was added to the tasseled cap to account
for new information available from SWIR. In a model dubbed
the “TM tasseled cap,” a new series of indices—brightness,

greenness, and wetness—was derived. Brightness and green-
ness were reformulated to account for new sensor charac-
teristics, and wetness was designed to contrast the SWIR
bands against the visible and NIR bands in an effort to express
the water content of soils and other scene components (Crist
and Cicone 1984). With the addition of wetness, it was now
possible to fully express the tasseled cap model in three spec-
tral dimensions, which together formed the plane of vegeta-
tion (brightness and greenness), the plane of soils (brightness
and wetness), and the transition zone (wetness and greenness).

Whereas the weighting of the different bands in the orig-
inal tasseled cap was based on maximizing contrasts for a sin-
gle Landsat MSS image from Illinois, the TM version was based
on three TM scenes, one from the Midwest (Iowa) and two
from the South (covering portions of Arkansas, Tennessee, and
North Carolina).Although this facilitated a greater exploration
of features other than soils and crops, forests remained largely
unexplored. This changed with Li and Strahler (1985), who
used brightness and greenness to identify the spectral prop-
erties of scene components for use in their geometric-
optical model of forest structure, and with others who used
these SVIs to evaluate forest succession. Cohen and colleagues
(1995) examined the three main TM tasseled cap indices,
finding that wetness was essentially unaffected by topographic
variation in closed conifer stands and thus more powerful than
brightness and greenness for predicting forest structural 
attributes, given that both brightness and greenness responded
more to topographic variation than to forest condition.

Landsat-based SVIs also played a large role in the devel-
opment of methods to detect changes in vegetation condition.
Numerous approaches to change detection have been devel-
oped, but one of the more conceptually interesting and en-
during ones, change vector analysis, was based originally on
MSS data (Malila 1980). Change vector analysis describes
two-date pixel spectral changes in two dimensions (namely
brightness and greenness) in terms of a vector with both di-
rection and magnitude. Later, the conceptual framework was
developed to extend change vector analysis into three spec-
tral dimensions to accommodate TM data. Collins and Wood-
cock (1994) used a different conceptual model to derive
change information from TM data, defining both stable and
changing components of brightness, greenness, and wetness.

Although it is convenient to give spectral indices names that
conjure up visions of what in the Earth system they are sen-
sitive to, it must be kept in mind that spectral data are not that
well behaved.As already described, the NDVI responds to both
vegetation greenness (or amount) and soil reflectance. Fur-
thermore, brightness and greenness can be more sensitive to
topographic variation than to soil or vegetation properties,
in which case they can also be very highly correlated to each
other.

Emergence of the power of shortwave-
infrared reflectance 
The previous section indicated that Landsat was the first
Earth-observing satellite system to include SWIR channels and
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to emphasize the importance of the TM tasseled cap index of
wetness (which contrasts SWIR against all other spectral
channels) in characterizing vegetation environments. At this
point, we turn our attention to demonstrating the importance
of Landsat TM and its successor, ETM+, to ecological appli-
cations of remote sensing, precisely because these systems con-
tain SWIR channels. The importance of SWIR is most widely
recognized in the study of forest vegetation.

Horler and Ahern (1986) conducted the first detailed ex-
amination of the forestry information content of TM data.
They discovered that the SWIR bands contained more in-
formation about conifer and hardwood forests of western On-
tario and Arkansas than the other bands. Later, it was found
that TM SWIR was an important spectral region for estimating
forest volume and LAI in conifer forests (e.g., Eklundh et al.
2001). In the greater Yellowstone ecosystem, Jakubauskas
(1996) found that SWIR bands explained most of the vari-
ance in TM data associated with forest structure. This is sim-
ilar to the finding that wetness was the most important tas-
seled cap index for assessing forest structure in western
Oregon (Cohen et al. 1995, 2001). Working in Australia,
Lymburner and colleagues (2000) reported that SWIR (in ad-
dition to visible) bands were the most important TM bands
for characterizing variations in specific leaf area across diverse
forest and crop types. In the Amazon, Steininger (2000)
found the SWIR bands to be the most important TM bands
for mapping age and biomass.

Considering the importance of SWIR bands for charac-
terizing forest conditions, it is not unexpected that SWIR
bands are also important for assessing forest changes. Using
TM simulator data, Williams and Nelson (1986) found that
SWIR bands enabled more accurate and detailed character-
izations of insect damage in conifer and hardwood forests of
North Carolina. Rock and colleagues (1986) likewise found
with TM simulator data that a ratio-based SVI that included
SWIR was able to detect stress associated with acid rain in Ver-
mont forests. With TM data, the SWIR region has been iden-
tified as important for characterizing fire scars, windfall,
thinning, and deforestation (e.g., Skole and Tucker 1993,
Olsson 1994). Landsat’s SWIR capabilities were a central rea-
son that Coppin and colleagues (2001) proposed the system
for operational monitoring of the forests of Minnesota.

The importance of SWIR reflectance has also been noted
for nonforest applications. Lee and colleagues (1988) re-
ported that the SWIR was the best spectral region for broad
soil classification in leaf-off conditions because of its sensi-
tivity to surface texture, organic matter content, and moisture.
May and colleagues (1997) found TM to be better than other
satellite multispectral data for mapping in a shrub-meadow
complex because of its SWIR advantage.

Ecological applications of Landsat data 
Landsat data have been translated into useful ecological in-
formation for more than 30 years, with both the methods and
the applications growing increasingly sophisticated. In this sec-
tion, we summarize Landsat applications in ecology, high-

lighting (a) the diversity of the uses of Landsat data to char-
acterize the state and dynamics of ecosystems and (b) the in-
creasing complexity of Landsat’s integration with ecological
models.

State and temporal dynamics of ecosystems. Ecosystems can
be described by their condition (i.e., their state) and by
how they are changing (i.e., their temporal dynamics). Since
Landsat data became available, they have been regularly
used for both purposes across a number of ecosystem types.
Numerous studies have evaluated relationships between
Landsat data and a number of attributes of vegetation, with
some studies using derived maps in environmental appli-
cations. Analyses of Landsat have involved both the spectral
and the spatial domains of the data, and Landsat data now
figure prominently in large-area, operational mapping and
monitoring.

Thematic classification. Forest classification (figure 1) has
been a popular use of Landsat data for assessing such things
as timber volume, wildlife habitat, successional stage, for-
est fragmentation, invasive species, rare and endangered
plant species, biodiversity, and (with multidate data from a
single growing season) characteristics of species (e.g., Gluck
and Rempel 1996, Poole et al. 1996, Cohen et al. 2001,
Dymond et al. 2002, Hansen et al. 2002). In other ecosystem
types, classifications derived from Landsat data have been
used to model wetland fish productivity, to map bird habi-
tat in mixed cover types, to assess the cover density and pro-
ductivity of coral reefs, to conduct fire risk assessment in
shrublands, and (using multidate, single-season imagery) to
map crop types in agricultural regions (e.g., Maselli et al.
1996, Oetter et al. 2001). The usual approach involves iden-
tifying spectral properties associated with classes of inter-
est and then assigning class labels to image pixels with those
properties.

Biophysics. While spectral-based classification of land-
scapes into discrete cover types is a prominent application of
Landsat data, the use of these data for deriving continuous 
estimates of vegetation biophysical characteristics has been
equally important (figure 2). Inversion of spectral models for
isolated vegetation characteristics such as LAI, specific leaf area,
biomass, canopy moisture content, and canopy cover has
been used across a variety of vegetation types (e.g., Kanemasu
et al. 1977, Lymburner et al. 2000, Steininger 2000). In forests,
continuous representations of stand age have been derived
(Cohen et al. 2001). Model inversions for simultaneous esti-
mation of basic ecosystem component fractions such as soil,
vegetation, and shade have been accomplished using mixture
modeling approaches (Smith et al. 1990). Continuous surface
properties not directly related to vegetation have also been
studied with Landsat. Notably, the thermal band of Landsat
TM has been used to characterize surface temperature 
(Holifield et al. 2003), and soil properties such as organic 
carbon content, phosphorus concentration, and pH have
been estimated as continuous variables with Landsat data (e.g.,
Skidmore et al. 1997).
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Temporal dynamics. Characterizing both seasonal 
(intra-annual) and interannual dynamics of ecosystems has
consistently been an important emphasis in Landsat ecologi-
cal applications. Although the maximum number of images
from any single Landsat sensor has been approximately two
per month at any given location, cloud cover and some-
times-complicated acquisition strategies have usually re-
stricted the actual temporal density of images for a given lo-
cation to something significantly less. Nonetheless, for much
of the Earth’s surface, this has been sufficient to capture im-

portant phenological events. Following the early
work of Blair and Baumgardner (1977), who
were among the first to demonstrate that Land-
sat 1 data captured the greening and senescence
of hardwood tree canopies, Dymond and col-
leagues (2002) used intra-annual Landsat data
to map hardwood and mixed forests at the
species level. For assessing conifer forest struc-
ture, Lefsky and colleagues (2001) compared the
value of intra-annual TM data with that of
single-date TM data, digital airborne data at
fine spatial resolution (approximately 1 m),
hyperspectral airborne data, and lidar (light
detecting and ranging, an active sensor) data. Of
the passive sensor data sets compared, intra-
annual TM significantly outperformed other
data sets.

Assessment of interannual changes in vege-
tation state using remote sensing is commonly
referred to as “change detection.” Landsat data
have been used for change detection within
and across a variety of ecosystem types (figure
3). In forests, there have been successful char-
acterizations of changes associated with clear-
cut harvesting, thinning, tree mortality, acid
rain, insect damage, windfall, salvage logging,
succession, and transition rates among classes
(e.g., Rock et al. 1986, Williams and Nelson
1986, Skole and Tucker 1993, Olsson 1994,
Collins and Woodcock 1996, Helmer et al. 2000,
Cohen et al. 2002).

Spatial patterns. Landsat data have been
used to evaluate vegetation spatial patterns in re-
lation to ecology and management. Haralick
and colleagues (1973) were among the first to
develop textural measures for use with Landsat
data. These measures, which are based on neigh-
borhood functions that describe local patterns
in image brightness, have been used with Land-
sat data to assist in classification of urban and
linear features, forest cover, sand dunes, and
ice-related features (e.g., Gurney and Town-
shend 1983, Chou et al. 1994). Woodcock and
Strahler (1987) developed a local variance func-
tion, based on successive coarsening of image
spatial resolution, that characterizes spatial
pattern as a function of this resolution.

Characterization of landscapes with spatial metrics 
applied to Landsat data and with maps derived from these 
applications has been common. Gluck and Rempel (1996)
used TM data to characterize patch size, shape, and other 
metrics for disturbed forests in Canada, finding that clear-cuts
were larger and more irregularly shaped than wildfire 
disturbances. Silbernagel and colleagues (1997) used TM
and historic data to assess changing patterns of human set-
tlement and found that human preferences for specific land-
scape conditions have not changed since prehistoric times.
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Figure 1. Maps of land and forest cover for 7-kilometer (km) by 7-km sections
of boreal forest in northern Canada (left) and mixed deciduous-evergreen
forest in eastern Massachusetts (right), derived from Landsat Enhanced 
Thematic Mapper Plus data.

Figure 2. Maps of leaf area index (from 0 to 8 square meters leaf area per
square meter land surface) for two 7-kilometer (km) by 7-km sections of
grassland in Kansas (left) and agricultural land in Illinois (right), derived
from Landsat Enhanced Thematic Mapper Plus data.
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Semivariograms, graphical descriptions of spatial auto-
correlation in spatially explicit data sets, are another impor-
tant spatial analysis tool used with Landsat data. Such uses 
include inventory of waste disposal sites, evaluation of the 
relationship between light transmittance and spectral 
response of forest canopies, assessment of the effects of
autocorrelation on predictive linear regression models that 
estimate tree cover from spectral response, and mapping 
of LAI in a boreal forest (e.g., Lathrop and Pierce 1991,
McGwire et al. 1993).

Large-area mapping. Maturity of the Landsat program,
computing power, and significant knowledge of how to
process the data are now developed to the point where op-
erational use of Landsat for mapping large areas is feasible.
Lunetta and colleagues (1998) describe the North American
Landscape Characterization (NALC) data set, which con-
sists of 1970s, 1980s, and 1990s MSS data, radiometrically and
geometrically processed in a consistent manner to prepare
them for use in land-cover and cover-change analyses at the
continental level. Heilman and colleagues (2002) used the
NALC data set to quantify forest fragmentation over the con-
terminous United States. Vogelmann and colleagues (2001)
describe the early-1990s National Land Cover Dataset for
the conterminous United States, based on TM data, and 
discuss its follow-on based on a more recent TM data set (circa
2000). Homer and colleagues (1997) describe the use of TM
to map vegetation cover over the state of Utah within the con-
text of the Gap Analysis Program, which has similar objec-
tives and applies similar methods state by state across the
United States. McRoberts and colleagues (2002) describe a pro-
totype exercise for eventual use by the US Forest Service in
which TM data are the basis for stratifying forest and non-
forest at the national level. Cihlar and colleagues (2003) 
describe a procedure developed in Canada for processing up
to hundreds of ETM+ scenes that does not compromise
quality of information over that of more localized analyses.

Integration with ecological models. Soon after ERTS was
launched, MSS data were being incorporated into ecological
models. Over the past three decades, the number and com-
plexity of models that use Landsat data have grown consid-
erably. Concomitantly, the ways in which Landsat data have
been used to initialize and drive ecological models have di-
versified.

Physiological models. Physiologically based process mod-
els are one important class of models that ingest Landsat
data. Kanemasu and colleagues (1977) used an LAI derived
from MSS data, along with climate data, to drive a simple daily
model of evapotranspiration from wheat fields. Kaneko and
Hino (1996) estimated surface energy balance over a forested
area using parameters derived from TM data. For modeling
conifer forest productivity, Nemani and Running (1989)
used LAI estimates derived from TM data to test a proposed
theoretical equilibrium between LAI and site hydrological
properties. With a similar model, Franklin and colleagues
(1997) used LAI estimates derived from a combination of TM

and GIS to determine how closely modeled and actual LAI
were related in mixed forest stands. A light-use-efficiency
(LUE) model was used by Goetz and Prince (1996) to derive
estimates of boreal forest net primary production (NPP),
with intra-annual MSS data used to drive a simple radiative
transfer model for calculating light interception by the canopy.
As part of a validation of global NPP products derived from
the MODIS (Moderate Resolution Imaging Spectrora-
diometer) sensor, Turner and colleagues (2002) used an LUE
model over an agricultural region parameterized with LAI es-
timates and stratified by land cover type, with both LAI and
land-cover estimates derived from ETM+ data. Law and col-
leagues (forthcoming) integrated ecological modeling; eddy
covariance flux tower data; plot data; climate data; and land
cover, forest age, and LAI derived from TM and ETM+ to
model NPP, gross primary production, and net ecosystem 
production over a 50-km by 300-km conifer forest area in 
western Oregon.

Accounting models. Carbon accounting models also uti-
lize Landsat data. Cairns and colleagues (2000) used a rela-
tively simple approach of assigning biomass values to land-
cover classes derived from an existing map that was updated
with TM data. Comparing this with a similarly derived bio-
mass map for an earlier date, they were able to estimate car-
bon fluxes over the tropical region of Mexico between 1972
and 1992. Cohen and colleagues (1996) employed a more
comprehensive strategy to account for changes in carbon
storage over a coniferous forest area in the western United
States. The approach relied on a series of integrated models
that account not only for temporal changes associated with
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Figure 3. Landsat Thematic Mapper imagery represent-
ing three dates for a small (3-kilometer [km] by 5-km)
section of forestland in western Oregon and a map of
forest harvest activity derived from these data. Images
are displayed as tasseled cap indices of brightness, green-
ness, and wetness (red, green, and blue, respectively).
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management-driven and geoclimatically driven forest-cover
dynamics but also for changes in wood utilization standards
and in the forest products processing sector (figure 4). Land-
sat data were an integral component of this work, both for
mapping vegetation cover (Cohen et al. 2001) and for track-
ing disturbances (Cohen et al. 2002) over broad geographic
areas.

Habitat assessments. Studies of wildlife habitat and bio-
diversity have used Landsat data in a number of ways. The sim-
plest approaches have involved habitat mapping (e.g., in
tropical forest, boreal forest, and mixed forest–grassland;
Sader et al. 1991, Poole et al. 1996). Mack and colleagues
(1997) developed coarse estimates of bird species–area rela-
tionships over a woodland area on the basis of TM data.A spa-
tially explicit habitat capability model for the northern spot-
ted owl, developed and tested by McComb and colleagues
(2002), relies on Landsat data for habitat characterization.

Socioeconomic studies. Socioeconomic studies, especially
those that pertain to land use, increasingly rely on remote sens-
ing for basic information on land cover and land-cover
change. However, the grain of the observation (i.e., spatial res-
olution of imagery) must be small enough to detect the
changes. In many cases, (e.g., forest harvesting; Cohen et al.
2002), Landsat and similar sensors are the best choice. In a

Landsat-based study of land ownership-induced patterns in
a conifer forest landscape of Oregon, Stanfield and colleagues
(2002) found that ownership structure explained up to 40%
of the variability in forest cover. Helmer (2000) used Land-
sat data to characterize deforestation in the tropics and then
relate observed spatial and temporal land-cover patterns to
physical and socioeconomic drivers. Spies and colleagues
(2002) describe one of the more complex and highly integrated
studies to date that rely on Landsat-derived cover maps to pro-
vide basic land-cover and change information (figure 5).
That study illustrates the potential for landscape ownership
pattern to have a strong influence on ecosystem goods and ser-
vices at local to regional levels and for integrated research to
help visualize the ecological consequences of varying man-
agement policies when there are complex and diverse land-
management objectives.

Landsat’s growing legacy
Over the past several decades, ecological sciences have been
greatly influenced by sociopolitical changes. Contempora-
neously, technological advances have permitted ecologists to
address increasingly complex scientific questions formulated
in response to heightened concerns over environmental health
and global change. Together with greatly enhanced computing
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Figure 4. Conceptual model for the development of a time-integrated carbon flux map for approximately
800,000 hectares of forestland in western Oregon. The model uses Landsat imagery for a single date to initialize
the forest condition and imagery for multiple dates to detect forest disturbance and succession. These data are
used by a series of models to account for carbon dynamics in the forest system and in the forest products sector.



power, maturity in GIS, and advances in cartographic and eco-
logical modeling, remote sensing has been at the center of a
spatial (and, to a lesser extent, temporal) explosion in appli-
cations of ecology. The ambassador of remote sensing in this
context has been the Landsat series of satellites.

Landsat represents the longest-running program for ob-
servations of Earth’s surface from space. By maintaining a fo-
cus on data continuity, incorporating improvements in sens-
ing technology, and adapting to lessons learned from earlier
sensors and related applications, the Landsat program has re-
mained vital. Much of the development in spectral vegetation
indices, widely used to extract both spatial and temporal
ecological information from remotely sensed data, has been
facilitated by the broad availability of high-quality Landsat data
whose grain size is commensurate with land-use and man-
agement activity. The discovery that SWIR reflectance facil-
itates improved extraction of ecological information over
large spatial extents came with Landsat 4 and the TM sensor.
Landsat data have been applied across a large array of eco-
logical problems in a variety of environmental settings. Their
explicit incorporation into ecological modeling has led to
tremendous expansion in modeling sophistication.

The future of Landsat and Landsat-like sensors, and their
increasingly integrative role in ecological modeling and ap-
plications, is promising. The follow-on to Landsat 7, currently
known as the Landsat Data Continuity Mission, should en-
sure that these high-quality data will be available through at
least the end of the next decade, hopefully without a tempo-
ral gap in data availability. Development of mapping programs
to use large amounts of Landsat data at national and conti-
nental scales should foster improvements in ecological mod-
eling and facilitate ecological applications at those scales. We
would be remiss, however, if we did not caution that many im-
portant ecological properties cannot be remotely sensed with

sufficient reliability or with the detail desired, particularly with
passive sensors like those on board Landsat satellites. There
will remain a strong need for process-based field-oriented
studies and for measurements that are best made by other
technologies. Integration of Landsat data with data from
other, complementary sensors will be the key to improvements
in the extraction of information from remotely sensed data.
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