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ABSTRACT 

Gradient analysis as a study of community pattern has a long and distinguished 

history in montane systems.  The elevation complex stands out from these studies as the 

most consistent environmental correlate with changes in forest community composition.  

As a result, major vegetation zones typically are described along elevation gradients. 

Trees are not affected by elevation, however, but rather by variables such as temperature 

and precipitation that covary with elevation.  Because these variables are difficult to 

measure at large spatial scales, I propose an iterative approach of leveraging traditional 

gradient analysis studies to (1) develop new hypotheses regarding the dynamics of forest 

communities, (2) identify major data needs and shortcomings, and (3) target locations on 

the landscape that are best suited to test new hypotheses and fill data gaps.  

I developed a working model of community pattern from a landscape sample of 

old-growth forest stands in the Lookout Creek Watershed of the H.J. Andrews 

Experimental Forest, Oregon. Analytic techniques in classification, ordination, and 

spatial regression were used in synthesis to identify major forest communities and the 

terrain and soil factors influencing their distribution.  Elevation and spatial location were 

highlighted as the strongest explanatory variables.  These results, though typical of a 

gradient analysis study, allow for considerable variability in the interpretation of the 

underlying mechanisms. To make educated predictions of how these forests may respond 

to environmental change, such as that predicted under greenhouse warming scenarios, 

requires a more detailed description of the interactions between forest communities and 

their environment. 
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To refine the working model, I developed a series of novel sampling and analytic 

approaches to study fine-grain environmental patterns over large geographic areas.  These 

methods include: 

• new approaches to empirically interpolate relative differences in temperature, 

radiation and soil moisture across landscapes; and 

• a replicated study of plant demographics (growth, mortality and regeneration) at 

the dominant community ecotone. 

These studies were intended to replace elevation and basal area from the working 

model with more plant-relevant explanatory variables and the demographic components 

that they affect.  The landscape-scale models illustrate that using elevation to 

approximate environmental variability ignores the multi-scale structure of the physical 

template.  Similarly, the focused study of the Tsuga heterophylla-Abies amabilis ecotone 

illustrates that a coarse-scale analysis of community distributions might not accurately 

reflect the dynamics within active areas of community transition. I conclude with a 

summary of the findings and approach, an example of how the results could be relevant 

to management under potential climate change scenarios, and a discussion of how the 

methods can be transferred to other montane systems. 
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CHAPTER 1 Introduction 

Gradient Analysis 

 Community ecology conducted over landscape scales has been largely an 

inferential science dependent on correlations between vegetation and easily derived 

environmental “proxy” variables (Hobbs 1997, Wiens 1999).  In montane systems, these 

studies largely have taken the form of gradient analyses (Merriam 1899, Whittaker 1956, 

Zobel et al. 1976, Gauch et al. 1981).  The elevation complex stands out from this work 

as the most consistent environmental correlate with pattern.  As a result, major vegetation 

zones typically are described along elevation gradients (Vankat & Major 1978, Ohmann 

& Spies 1998, Franklin & Halpern 2000). 

A major shortcoming of these studies is that elevation is not directly relevant to 

plants.  Although elevation may be strongly correlated with landscape pattern, elevation 

differences are not responsible for landscape pattern.  Trees do not respond to elevation, 

but rather to variables such as temperature and precipitation that covary with elevation. 

Gradient studies with largely topographic explanatory variables can be thought of as a 

guide for more sophisticated analyses that attempt a more mechanistic description of 

ecological patterns (Austin 1987, Levin 1992).  Stephenson (1990, 1998) presents a 

detailed discussion of how biologically meaningful variables are better predictors of plant 

distributions than commonly used environmental surrogates. 

Correlative relationships with biologically irrelevant proxy variables may work 

well for describing pattern under reference conditions, but if conditions were to change, 
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these relationships might no longer be valid. For example, in response to rising 

atmospheric CO2 levels, temperature is projected to increase by 1.4-5.8 oC over the next 

100 years (IPCC 2001).  Potential changes in precipitation due to global climate change 

are less certain, and features that affect water storage and drainage, such as soil depth and 

local topography, are unlikely to change. Predicting vegetation responses to climate 

change scenarios requires an understanding of how each of these specific factors is 

related to plant distributions (Halpin 1997, Urban et al. 2000).  Using elevation as a proxy 

variable to study plant-environment relationships is complicated by the fact that elevation 

is highly related to many of these factors.  For example, temperature is correlated with 

elevation, but so are soil properties. Loose soil particles creep downslope over time and 

collect on gentler slopes and lower elevations, while rock outcrops and volcanic ejecta 

are more common at higher elevations.  Amount and persistence of snowpack, climate, 

and disturbance also are correlated with elevation (Franklin & Dyrness 1988, Clark 

1990).   

Despite the importance of isolating more biologically meaningful determinants of 

landscape pattern, few ecological studies attempt to quantify and relate the variability in 

these factors to plant community pattern at the landscape scale.  This is largely due to the 

difficulty of studying ecosystems at this scale.  Intensive, fine-grain studies are able to 

capture the complex patterns in environmental variability explicitly (e.g., Yeakley et al. 

1998), and much of this fine-scaled detail averages away at regional to global scales (e.g., 

Neilson 1991). But at landscape scales, detailed environmental variability cannot be 

ignored, nor can its influence be captured empirically using conventional sampling 
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techniques (Chen et al. 1999).  Despite the lack of information, management decisions 

typically must be made at the landscape scale (Christensen et al. 1996, 2000). 

Ecotones: Communities in Transition 

I offer an examination of plant-relevant explanatory variables to attempt to 

understand the spatial transition in community dominance from the Tsuga heterophylla 

(western hemlock) to Abies amabilis (Pacific silver fir) vegetation zones in the Oregon 

Western Cascades.  An improved understanding of this ecotone is needed to assess the 

potential impacts of changes in climate or management that may alter the correlation 

structure among environmental variables in these prized forests.  This type of assessment 

is not possible without extending our knowledge base beyond the simple correlation of 

plant communities with the elevation gradient complex. 

Ecologists historically have focused on homogeneous environments to understand 

ecological processes (Whittaker 1956, Peet 1981, Acker et al. 1998). Ecotones need 

further study.  These are areas of maximum habitat variability and often maximum 

diversity (Neilson 1991). Because many species are at the competitive limits of their 

ecological tolerances at ecotones, these regions may be especially sensitive to 

environmental change (Fortin et al. 2000). Neilson (1991) suggests that ecotones could be 

used as early warning systems of regional change, particularly for global climate change. 

The T. heterophylla-A. amabilis ecotone has been well documented in the Pacific 

Northwest (Fonda & Bliss 1969, Zobel et al. 1976, Franklin & Dyrness 1988), but efforts 

to identify the ultimate causes of the transition have been minimal. Those studies that 
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have focused on describing mechanisms for this transition are somewhat contradictory 

(e.,g., Krajina 1969, Thornburgh 1969). 

Thornburgh (1969) suggested that the influence of snowpack on T. heterophylla 

seedlings might be critical to this transition.  According to his line of reasoning, T. 

heterophylla seedlings do not establish until up to a month after the first snowmelt, while 

A. amabilis can germinate almost immediately.  The T. heterophylla seedlings therefore 

have limited growth over their first growing season. This low growth combined with the 

drooping nature of T. heterophylla seedlings make them highly susceptible to damage by 

snowpack and accompanying debris over their first winter.  Although the logic of this 

snowpack theory is compelling and has been invoked in simulation modeling (Urban et 

al. 1993) and general descriptions of the system (Franklin & Dyrness 1988), empirical 

support for the theory is limited. Krajina (1969) suggested an alternative hypothesis.  He 

argued that low drought limited the distribution of A. amabilis and described the 

transition from T. heterophylla to A. amabilis along an increasing precipitation gradient. 

The long history of gradient analysis provides an additional potential explanation.  

Implicit in these studies is the assumption that community transitions are caused by trade-

offs in tolerances and growth rates.  Species develop tolerances to low levels of 

environmental resources at the cost of reduced growth rates even when resources are not 

limiting. Following the general model described by Smith and Huston (1989), T. 

heterophylla would not be competitive at higher elevations because of limited cold 

tolerance (Packee 1990).  A. amabilis, conversely, would not be competitive at lower 

elevations because of slower growth rates.   
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The competing postulates have different implications under greenhouse warming 

scenarios. For example, an ecotone formed primarily by differences in growth rates 

associated with temperature may respond linearly to changes in temperature, while an 

ecotone maintained primarily by winter snowpack may exhibit less predictable shifts in 

response to increasing temperature.  In this analysis, I consider directly the effect of 

temperature, snowpack, radiation and moisture on seedling establishment and relative 

growth rates of trees.   

Study Goals and Objectives 

The primary goals of this study are twofold: (1) to better understand the 

mechanisms behind the spatial transition from T. heterophylla to A. amabilis 

communities, and (2) to develop general approaches to capture multi-scale environmental 

variability in montane ecosystems. These goals are tightly entwined in this dissertation 

and it is only through the latter that I am able to accomplish the former. 

The dissertation is organized chronologically, in a sense, and represents a 

systematic approach to extending popular methods of community ecology to large spatial 

extents.  The approach follows closely Levin’s (1992) description of how to analyze 

ecological pattern with attention to scale: (1) describe pattern, (2) look for correlations 

with pattern to suggest potential mechanisms, and (3) improve understanding of pattern 

through careful examination of relationship with new ‘mechanistic’ variables. Though a 

true mechanistic understanding of ecological pattern may not be possible without 

experimentation (Platt 1964), I argue that well-designed observational studies can go a 
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long way towards disentangling the complex environmental gradients that are often 

invoked to explain ecological patterns. 

I begin by developing a working model that delineates the major vegetation zones 

of the H.J. Andrews Experimental Forest, a Long Term Ecological Research site in the 

Oregon Western Cascades (Chapter 2). The model uses an efficient sampling design and 

a traditional community ecology approach to classify communities and ordinate them 

along common environmental surrogates.  I complement the community analysis with 

partial regression techniques from landscape ecology in an attempt to quantify the 

relative importance of potential explanatory variables in a spatial context. Predictably, 

elevation and spatial location are identified as the strongest predictors of community 

composition.  The results would constitute an end-product for many community studies, 

but I use them as a point of departure to suggest further studies.  Specifically, I dissect the 

complex elevation gradient into its relevant environmental components and use the model 

to identify locations on the landscape for a focused study of the relationships between 

fine-scale environmental variability and demographic processes (Figure 1.1).  

In the next part of the dissertation, I describe new empirical approaches to 

quantify the landscape-level distribution of environmental variables that likely are 

important controls of vegetation pattern, but were left out of the working model because 

of lack of data. These variables include radiation (Chapter 3.1), temperature (Chapter 3.2) 

and soil moisture (Chapter 3.3). I also include in this section a comparison of my 

empirical moisture model to models of greater and lesser complexity (Chapter 3.4).  I 

emphasize the scaling of fine-grain environmental detail to large spatial extents in this 
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section, because without this information it would not be possible to extend relationships 

revealed in the subsequent section to the landscape level. 

In the final part, I use the working model from Chapter 2 to identify sites of active 

community transition for a focused investigation of the effects of temperature, moisture, 

radiation and snowpack on establishment, growth and mortality at the T. heterophylla-A. 

amabilis ecotone (Chapter 4).  Here, I show how forest demographics interact with the 

physical template in creating spatial pattern.  

The study concludes (Chapter 5) with a summary of the findings and approach 

and a discussion of how the methods can be transferred easily to other montane systems. I 

revisit the working model armed with new information regarding the landscape-level 

distribution of physiologically important physical variables. I also address how 

demographic processes provide more valuable descriptions of forest community 

transitions than simple trends in the relative abundance of tree species.  The specific 

results are applicable to the dynamics of transition at the most common forest-forest 

ecotone in the Oregon Western Cascades.  The general approach, however, is more 

generic and this study may be viewed as a case study in ecology by iteration, whereby 

field samples are used to build models, which guide future sampling to answer new 

hypotheses and build better models. 
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Figure 1.1.  Schematic overview of research approach. The study follows an iterative 
rocess, alternating between field sampling and modeling, to explain community pattern 
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at the landscape scale.  First, I describe the current state of the system using measures 
forest composition and common environmental proxy variables such as elevation, slope, 
aspect and soil attributes (Chapter 2).  In the next phase, I replace the proxies with 
variables relevant to plant performance and examine how demographics such as growth, 
mortality and reproduction influence pattern.  Hierarchical patch dynamics dictates that 
pattern at a given, focal level can be derived from constraints at higher levels and 
mechanisms at lower hierarchical levels (Urban et al. 1987, Wu & Luocks 1995).  Here, I
scale environmental variables down (Chapter 3) and scale biotic processes up (Chapter 4
to a common level of study.  
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SECTION 2: A PRELIMINARY MODEL 

CHAPTER 2 A 3D Exploration of Landscape Pattern in 
the Oregon Cascades: Three Techniques Based on 

Ecological Dissimilarity 
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Abstract 

Management of species and ecological communities requires a landscape 

perspective.  Yet, information at these scales is sparse.  Methods in community ecology 

have been applied to landscape extents with limited success. The most direct route to 

landscape ecology from community ecology (i.e., do the same sorts of studies but over 

larger areas) does not admit that there are aspects of landscapes that call for different 

tactics in data collection, analysis, and modeling. Analytic techniques in classification, 

ordination, and spatial regression can be used in synthesis to identify broad scale patterns 

in forest communities. Tree abundance levels and common environmental variables on 

164 plots were sampled in the western Oregon Cascades using a multi-scale stratified 

cluster sampling design. Spatial location significantly influenced observed species 

composition.  Conventional community ecology methods ignore important spatial 

dependencies and, as a result, may overemphasize the importance of autocorrelated 

environmental variables.  Elevation was highly correlated with the transition in basal area 

from Tsuga heterophylla to Abies amabilis community types, even after accounting for 

significant autocorrelation within the data.  Results from studies that explicitly track 

spatial location can be mapped back into geographic space and used to identify new field 

locations for follow-up studies to test model uncertainties. 

 

Keywords: classification analysis, ordination, Mantel test, Bray-Curtis, Classification 

and Regression Tree 
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Introduction 

Analyses of community data rely heavily on techniques in classification and 

ordination to identify relationships between species composition and the environment.  

Patterns in species composition are typically described in terms of species groups. 

Classification analysis is a useful tool in uncovering these associations. A variety of 

classification techniques have been developed to relate compositional trends in vegetation 

to environmental variables, each with its own strengths and weaknesses (Sneath & Sokal 

1973, Gauch & Whittaker 1981).  Ordination techniques are well suited for examining 

continuous patterns on the landscape. The study of species responses to continuous 

environmental gradients also has a long history in community ecology (Shreve 1922, 

Whittaker 1956, Stephenson 1990).  Temperature and moisture consistently emerge from 

these studies as proposed determinants of pattern.  Because measuring gradients in these 

variables directly is often logistically impossible, factors such as elevation, slope, aspect 

and soil variables are frequently used as proximate measures.  

Used together, ordination and classification can provide a broad interpretation of 

ecological pattern (Jongman et al. 1995, Legendre & Legendre 1998). This combination 

of complementary tools can describe discrete groupings of species along continuous 

environmental gradients. They do not account, however, for collinearities or spatial 

autocorrelation in the environmental data complex.  Although tools exist that explicitly 

attend to the spatial structure of ecological data, community ecologists have not as a 

group embraced their use.  By ignoring important spatial relationships, studies can 

overemphasize the importance of autocorrelated environmental variables (e.g., elevation).  
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Ecologists can better interpret their results in a landscape context by thinking more 

explicitly about the spatial elements to their data.  These analyses also can lead to new 

hypotheses about spatial processes not considered in more traditional studies of 

community pattern.   

I present a synthetic approach to identifying potential natural communities in 

species distributions and associating these communities with environmental patterns in a 

spatial context. Specific objectives of the study include an investigation of the following 

questions.   

1)  Are species grouped into discrete clusters?  

2)  If so, what species indicate groups?  

3)  How do these groups map onto a continuous gradient? 

4)  How do patterns in the environment relate to patterns in species 

distributions? 

5)  How do spatial relationships confound plant-environment associations? 

6)  Are there significant spatial residuals in species composition that are not 

accounted for by commonly measured environmental variables? 

Zobel et al. (1976) argued that topography is more important than soil differences 

in controlling vegetation in these forests.  On a regional basis, Ohmann and Spies (1998) 

suggested that elevation and associated macroclimate are the major correlates with 

community composition throughout Oregon.  My study reexamines these relationships in 

a spatially explicit context.  I conclude with a discussion of the ecological significance of 

observed trends and a perspective on how to view the current results.  The statistical 

12 



model created can be readily mapped back into geographic space and used to identify 

new field locations for follow-up studies to test model uncertainties. In a sense, gradient 

studies of this sort can be viewed as providing a framework within which to pursue a 

more refined understanding of species-environment relationships.  What historically have 

been viewed as final, static models that describe ecological patterns can be 

recharacterized as preliminary, dynamic models that dictate where to proceed next. 

Methods 

Site description  

The H.J. Andrews Experimental Forest (HJA) is located on the west slope of the 

Cascade Mountains.  It is comprised of the Lookout Creek watershed, 80 km east of 

Eugene, Oregon. The Long Term Ecological Research (LTER) site covers 6400 ha and 

ranges in elevation from 410 m to 1630 m (McKee 1998). The watershed lies within the 

Blue River Adaptive Management Area, one of 10 such areas devoted to the development 

and evaluation of progressive management strategies for northwestern forests (Cissel et 

al. 1999).  At the time of its establishment in 1948, the HJA was an intact forest with 

about 65 percent of the land in old-growth (i.e., 400-500 years old).  Since that time, old-

growth forest has been reduced to 40 percent of the total area due to logging activities.   

Climate is characteristic of the Pacific Northwest, with dry summers and wet 

winters. Annual precipitation ranges from 2200 mm at the base of the watershed to 3400 

mm at upper elevations, with less than 300 mm normally falling during the summer 

growing season (Grier & Logan 1977). Soils are mostly deep, well-drained Inceptisols.  
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In the Western Cascades, soils are derived primarily from colluvial and residual parent 

materials.  Andesetic, basaltic, and pyroclastic rock types are most common, but are 

mixed with some volcanic ejecta (Franklin 1965).  Lower-elevation soils of the HJA are 

older than upper-elevation soils, dating back to the Oligocene-lower Miocene.  Upper-

elevation soils are composed of younger andesite lava flows and High Cascade rocks.  

Textures range from gravelly, silty clay loam to very gravelly, clay loam (Grier & Logan 

1977). Rooting occurs almost entirely in the upper 200 cm of soil. 

Pseudotsuga menziesii (Douglas-fir), Tsuga heterophylla (western hemlock), and 

Thuja plicata (western red cedar) are the dominant species at lower elevations, while 

Abies amabilis (Pacific silver fir), Abies procera (noble fir), and Tsuga mertensiana 

(mountain hemlock) dominate upper elevations (Franklin & Dyrness 1988).  The seven 

species with the greatest basal area in the study plots were analyzed in this study (Figure 

2.1).  These species are tallied in Table 2.1. None of the other species recorded 

contributed as much as one percent to the total basal area observed in the sampling. 

Data  

The data for this study were collected over three years of sampling (1997-1999) in 

old-growth stands within the HJA. We collected georeferenced data on vegetation and 

site characteristics at 164 plots (Figure 2.2).  Data were gathered using a stratified-cluster 

sampling design, whereby 20x20-m (0.04 ha) plots were clustered along transects across 

the landscape. Clusters consisted of three or four plots located at random distances (<100 

m) and random azimuths from a cluster center-point on the transect (Figure 2.3).    

Cluster center-points were separated by 200 m to 400 m.  Transects were separated by 
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Figure 2.1. Dominance-diversity curve for 20 species sampled on 164 plots in the HJA.  
Species are ordered on the x-axis according to the percentage of total basal area 
contributed by that species.  Species codes are provided in Table 2.1 for the seven species 
that contributed at least 1 percent to the total observed basal area on the plots. 
 
 
Table 2.1. Seven dominant species observed on 164 plots in HJA, along with the 
frequency, mean density and mean, maximum and standard deviation basal area of each 

 

observed in the study.   
    

Frequency
 

Density 
 

BA (m2/ha) 
Code Scientific Name Common Name (%) (#/ha) Mean Max. St. Dev.

ABAM Abies amabilis  Pacific silver fir 42.7 173.6 5.2 57.9 10.7
ABPR Abies procera Noble fir 24.4  47.6 6.0 96.4 16.0
PSME Pseudotsuga menziesii Douglas fir 78.0 110.1 50.5 168.2 42.6
TABR Taxus brevifolia Pacific yew 40.9  58.4 0.9 13.3 2.2
THPL Thuja plicata Western redcedar 38.4  52.7 5.2 83.1 12.2
TSHE Tsuga heterophylla Western hemlock 82.9 231.4 15.5 71.0 16.6
TSME Tsuga mertensiana Mountain hemlock 13.4  42.2 2.6 107.8 12.1
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Figure 2.2. Locations of 164 sample plots in the HJA.  Sampling of vegetation was 
conducted in old-growth stands, stratified across elevation, slope/aspect, and vegetation 
type.  Shading indicates decreasing elevation with increasing shading.  Elevation ranges 
from 410 m to 1630 m. 
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100s to 1000s of meters. The stratified cluster design integrates information across 

multiple scales, collecting the same data at the stand (plots), facet (clusters of plots), and 

landscape scales (transects).  Stratified clusters have been shown to be more efficient at 

capturing fine-scaled pattern over large extents than either random or stratified random 

sampling (Urban et al. 2002). The diameter and species of all trees on the plots were 

recorded.  Diameters were converted to basal area, which was summed for each of the 

species on each plot.  

Topographic variables collected on the plots included slope, aspect, and slope in 

each of the four cardinal directions (Table 2.2).  Aspect was transformed to a more direct 

measure of relative heat load on a scale of –1.0 (northeast-facing slopes with low 

afternoon radiation) to 1.0 (southwest-facing slopes with high afternoon radiation): 

Taspect  = -cos(45-Aspect) (after Beers et al. 1966).  Percent slope measurements in each 

of the four cardinal directions were averaged to generate a Terrain Shape Index (TSI; 

McNab 1989), which ranged from –12.75 to 14 with positive numbers indicating coves 

and negative numbers indicating domes.  Elevation was derived from GPS measurements 

and ranged from 485 m to 1567 m. 

Information on the soils also was collected at the sites (Table 2.2).  Three 10-m 

transects were marked on 1-m intervals in each of the plots.  Soil depth was recorded 

with a tile probe at each 1-m interval to a maximum depth of 100 cm.  A ¾-inch soil 

probe was used to collect soil samples at a random location along each of the three 

transects.  These samples were then air-dried and sieved for laboratory analysis of  
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Figure 2.3. Stratified cluster sample design.  Plots are clustered along transects across the 
landscape to capture variability at multiple scales. 
 
 
 
Table 2.2. Summary of environmental variables collected on the 164 sample plots. 
 
Name Mean Stand. Dev. Minimum Maximum 

Elevation (m) 1018 284 485 1567 
Slope (o) 26 10 0 50 
TAspect 0.0 0.6 -1.0 1.0 
TSI -0.7 3.0 -12.8 14.0 
Soil Depth (cm) 47.9 18.3 10.2 92.7 
pH 4.59 0.25 3.79 5.18 
Acidity (cmol(+)/kg) 1.73 1.45 0.2 8.24 
Ca (cmol(+)/kg) 6.9 6.5 0.5 35.3 
K (cmol(+)/kg) 0.54 0.35 0.14 2.37 
Mg (cmol(+)/kg) 1.56 1.88 0.13 8.54 
P (ug/g) 22.0 24.8 0.6 120.7 
Clay (%) 5.1 3.1 0 18.9 
Sand (%) 56.3 8.9 26.8 76.7 
Silt (%) 38.6 7.3 21.2 55.8 
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exchangeable nutrient cations (Ca, Mg, P, and K), total exchangeable acidity, C, N, pH 

and texture (percent silt, sand, and clay). 

Analysis 

I used a combination of classification, ordination, and regression analyses to 

describe trends in community composition and environmental condition within these data 

(details follow in the sections below). All three of these analyses were based on the same 

Bray-Curtis dissimilarity index.  A clustering analysis was conducted on the species 

abundance data to partition the data into discrete groups. Species that differentiate 

clusters were identified using Indicator Species Analysis (ISA). These clusters were 

mapped into ordination space using nonmetric multidimensional scaling (NMS). The 

environmental data matrix was examined by direct correlation analysis and principal 

components analysis (PCA).  The relationship between species and the environment was 

examined through direct ordination with environmental overlays, Mantel regression, and 

classification and regression tree (CART) analysis.  The multivariate statistical software 

package PC-ORD version 4.09 (McCune & Mefford 1999) was used to conduct all 

clustering and ordination analyses.  S-PLUS 2000 (1999) was used for the CART 

analysis and Mantel tests with the RPART (Therneau and Atkinson 1997) and Mantel 

(Urban et al. 2002) S-PLUS libraries. 
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Bray-Curtis dissimilarity index 

“Ecological distance” is expressed as the dissimilarity (1 - similarity) between 

sample units.  A large number of indices have been developed to quantify dissimilarity 

(see Legendre & Legendre 1998 for a comprehensive discussion of potential dissimilarity 

indices).  When species abundance data are being considered, these indices must account 

for the common finding of shared absence, which ecologically is not equivalent to a 

finding of shared presence. In this analysis, I make use of the Bray-Curtis index (Bray & 

Curtis 1957) as a measure of dissimilarity for all analyses of species abundance patterns. 

The Bray-Curtis distance matrix is a Sorensen index computed on quantitative data such 

as species abundance as: 
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where dij is the ecological distance between samples i and j, yik is the abundance of 

species k on sample i, yjk is the abundance of species k on sample j, and there are s species 

included in the analysis.   

The Bray-Curtis index is commonly preferred over other indices such as Jaccard’s 

for species abundance data because it retains its sensitivity in more heterogeneous data 

sets and gives less weight to outliers (McCune & Grace 2002).  Measured as percent 

dissimilarity, the index provides ecological distance between samples as elements of a 

data matrix. The resulting matrix can be used as input in a variety of multivariate 

statistical analyses that can be applied to interpret forest community patterns.  These 
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include the common community ecology tools of classification and ordination (Whittaker 

1967, Fasham 1977, Gauch et al. 1981).  The matrix also can be used in a Mantel 

regression framework to quantify the ability of different environmental variables to 

explain patterns in species dissimilarity (Leduc et al. 1992).  Within this framework it is 

possible to compare the matrix of ecological distance to a matrix of simple Euclidean 

distance that measures the absolute distance in space between sample pairs.  The resulting 

analysis allows spatial dependencies in the data to be considered explicitly, a practice too 

often ignored in community analyses but central to the field of landscape ecology. 

The dissimilarity index is an integral component of the analytic method described 

below. The clustering analysis uses the Bray-Curtis index to identify compositional 

groups in a data set.  NMS uses the dissimilarity matrix to map samples into ordination 

space, preserving the ecological distance among samples. The Mantel analysis uses the 

matrix to quantify the relative importance of environmental variables to species 

composition in a spatial context. 

Biotic patterns/species associations 

Clustering analyses are used to identify natural breaks or groups in a data set 

(Sneath & Sokal 1973).  Clustering analyses are highly dependent upon the choice of 

distance measure used to assess group similarity and the linkage criteria used to 

determine the distance between groups for joining purposes (Legendre & Legendre 

1998).  Multiple joining criteria were considered for this analysis. Ultimately, unweighted 

pair-group method, arithmetic (UPGMA) was chosen (Sneath & Sokal 1973).  UPGMA 

averages all distances equally for all possible groups.  This approach resulted in the 
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lowest amount of chaining (5.6 percent).  Chaining, the sequential addition of small 

groups to a few large groups, can cause difficulties in defining subgroups (McCune & 

Grace 2002).  

Since groups are defined at multiple levels in hierarchical clustering algorithms, 

choosing the level of clustering is an important decision. Indicator Species Analysis 

(ISA) was used as a test of the appropriate level of clustering (Dufrene & Legendre 

1997). Indicator values combine information on species relative abundance and relative 

frequency in different groups.  Relative abundance is calculated as the average abundance 

of a species in a given group of plots divided by the average abundance of that species in 

all plots.  Relative frequency is calculated as the percentage of plots in a given group 

where a species is present.  Indicator values range from 0 to a maximum of 100 for a 

perfect indicator.  In addition to identifying key species for groups, ISA can be used to 

decide the appropriate number of groups for species data.  Indicator values will be low 

for poorly defined clusters and typically peak at an intermediate level of clustering 

(Dufrene & Legendre 1997). 

Ordination is the ordering of objects (e.g., species or plots) along axes to 

emphasize underlying trends in the data (McCune & Grace 2002).  The objective is to 

orient the objects in such a way that proximity in ordination space resembles proximity in 

ecological space.  Ordination techniques can be direct or indirect.  In direct ordination, 

objects are organized with respect to some ancillary variable, such as elevation. Indirect 

ordination does not require ancillary data to orient objects in ordination space; objects are 

oriented based solely on internal associations within the species data matrix.   
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I rely on nonmetric multidimensional scaling (NMS; Kruskal 1964) as an indirect 

ordination technique to describe relationships among species.  NMS uses a dissimilarity 

measure of ecological distance, here the Bray-Curtis index, to map objects into ordination 

space, preserving the ecological distance among objects. Because objects are oriented 

along all axes simultaneously, the solution is dependent upon the number of axes used. 

The number of axes to include in an analysis can be selected by plotting the stress (a 

“badness of fit” metric associated with reducing the dimensionality of the dissimilarity 

matrix) for model runs of decreasing dimensionality. The final solution should include 

the minimum number of axes that do not result in large jumps in model stress.  

NMS is preferred over other conventional ordination methods because it has no 

underlying assumption regarding the distribution of input variables.  Other techniques 

commonly must assume that input variables are unimodally distributed with similar 

maxima, an assumption frequently violated by environmental data (Legendre & Legendre 

1998).  NMS also is particularly good at finding groups or disjunctions in species data 

when they exist. 

Environmental patterns 

A simple correlation matrix can be used to describe the relationship among 

environmental factors. This measure of association focuses on the pairwise relationships 

among variables.  Although the assumption of linear relationships required of this 

analysis is frequently violated by environmental data (Legendre & Legendre 1998), 

relationships found through alternative techniques can be easily supported or discredited 

by examining this correlation matrix. 
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Principle components analysis (PCA; Goodall 1954) is perhaps the most popular 

technique used to analyze multivariate patterns among environmental variables.  PCA 

reduces the dimensionality of multivariate data by focusing on the correlations among 

variables.  The data are rotated in principal component space to align the first axis with 

the longest possible vector of the data cloud. The second axis is the longest vector 

orthogonal to the first principal component; the third axis is the longest vector orthogonal 

to the first two and so on. Because there is so much correlation in environmental data, 

this rotation can result in a huge compression of information on relatively few principal 

components.  I conducted a PCA on a correlation matrix of the environmental data to 

determine major trends in the environmental data. 

Species-environment interactions 

Direct ordination with suspected environmental determinants of pattern remains 

one of the most effective analytic techniques for deciphering relationships between 

species and the environment.  Since elevation is frequently referenced as a major 

correlate with pattern (Franklin & Dyrness 1988, Ohmann & Spies 1998), I present 

species abundances as a direct ordination of elevation.  Using the sample elevation scores 

as weights, I calculate the average position of each of the species along the elevation axis.  

This weighted average score provides a straightforward and powerful summary of species 

response to elevation, reducing the entire distribution of a species across a gradient to a 

single value (Jongman et al. 1995). 

The correlation of variables is classically tested using parametric tests, such as 

Pearson’s product-moment correlation. These tests require all the usual assumptions of 
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parametric tests, including the independence of data observations. Specifically, this 

assumption of independence is frequently violated by autocorrelated environmental 

variables related to climate, topography and soils (Legendre & Fortin 1989, Fortin & 

Gurevitch 1993).  To isolate specific explanatory variables in a spatial context, Legendre 

& Fortin (1989) proposed the use of simple and partial Mantel tests.  The Mantel test 

(Mantel 1967) is a nonparametric linear regression technique applied to distance (or 

dissimilarity) matrices representing geostatistical data. The test overcomes the lack of 

independence problem by computing significance through permutation of the data.  To 

permute the data, matrices are generated that can be rearranged for successive iterations 

of the calculation of the statistic.  Partial Mantel tests assess the explanatory power of 

variables after controlling for other factors. 

The simple Mantel test is based on a comparison of two distance matrices 

describing the same set of sampling stations  (Legendre & Fortin 1989).  It can be used to 

assess the explanatory power of predictor variables singly. Spatial location is naturally 

represented by a distance matrix.  For ecological data, indices of dissimilarity such as the 

Bray-Curtis index can be used for analysis at the community level (Leduc et al. 1992).  

At the single species level, similarity in abundance can be used to compute ecological 

distance.   

Partial Mantel tests can be used to compute the correlation of two distance 

matrices while controlling for the effect of other predictor variables (Smouse et al. 1986). 

The simple Mantel test estimates how much of the dissimilarity in one variable (e.g., 

species composition) can be explained by dissimilarity in a second variable (e.g., spatial 
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location or environmental variability).  The residuals of such a regression can be analyzed 

further following a multiple regression model, to get partial correlations. This approach is 

particularly useful to account for the spatial structuring of environmental data.  Partial 

correlation analysis can help to isolate the pure partial effect of specific environmental 

variables that may be collinear and autocorrelated (Leduc et al. 1992).  The partial Mantel 

test also can be used to determine how much of the dissimilarity in species data is 

determined purely by spatial context. 

I conducted Mantel tests at two levels of abstraction: (1) a community level 

analysis comparing the influence of spatial relationships to that of environmental 

variability, and (2) an analysis of the influence of specific environmental variables on 

overall community composition and on specific species.  The first series of tests 

addresses the questions:  Are samples that are environmentally similar also similar with 

regards to species composition? and Are samples that are close in space similar in 

species composition?  The second set of tests address the questions: Which environmental 

variables are most associated with overall changes in community compostion? and 

Which environmental variables are most associated with the distributions of individual 

species of interest? 

The species, environmental, and geographic distance data were synthesized into 

three matrices for Mantel analysis.  All environmental variables (Table 2.2) were 

standardized using z-scores and combined into a single environmental matrix.  Relative 

basal areas of the main tree species (Table 2.1) were standardized using a Wisconsin 

double relativization (McCune & Grace 2002) and combined into a single species matrix. 
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With these two synthetic matrices and a matrix of geographic distance for the 164 plots, I 

conducted the community-level analyses. I expected both space and environmental 

variability to influence species composition.  To estimate the pure influence of the 

environment on species composition, I conducted a partial Mantel test on the species and 

environmental data, controlling for space.  I also ran Mantel tests on overall community 

composition and on individual species with the environmental variables separately to 

determine the relative contribution of each to overall community pattern.  By controlling 

for environmental variability and conducting a partial Mantel test on species and 

geographic space, I tested for residuals in the data that could be explained purely by 

spatial context.  Biological processes (e.g., seed dispersal), disturbance, or unquantified 

environmental variability could cause such unexplained pure spatial correlations.   

The information from the Mantel tests was used to construct path diagrams. 

Legendre & Trousselier (1988) show how significant results from partial matrix 

association tests can be interpreted as indicating “causal” relationships. Mantel statistics 

were used to highlight significant causal relationships between species distributions, 

explanatory environmental variables, and space.   

To determine how key environmental variables influence the species clusters, I 

also created a classification tree of the species groups using the environmental data as 

predictor variables.  Classification and regression tree (CART) analysis is a divisive 

analysis that attempts to partition a data set by recursively dividing it into subsets based 

on the strongest predictor variable (Breimann et al. 1984).  The technique offers several 

advantages over the regression approach. It allows the distribution of multiple categories 
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of data to be considered simultaneously. The interpretation of the tree is rather intuitive 

and can be easily converted to a geographic information system context for visualization 

of the results (Moore et al. 1991).  The data structure allows for the incorporation of 

substitution and compensatory relationships. The hierarchical structure of the model 

allows the data to be partitioned at multiple levels of complexity.  Because each branch of 

the tree is defined independent of other branches and the decision rules rely on no 

assumptions regarding the underlying model structure, CART allows a data set to be 

classified with great accuracy.   

Unfortunately, the high degree of accuracy in CART analysis can result in an 

over-fitting of the models to most ecological data sets (Legendre & Legendre 1998).  The 

resulting tree will explain the input data extremely well, but can be too specific to those 

data to be generalized to broader patterns. To account for this tendency to over-fit, I used 

cross-validations of one-tenth of the entire data set to prune the tree. The effect of this 

cross-validation was to penalize trees that over-fit the data. Classification accuracy was 

determined from an average of the 10 cross-validated trees. The final tree was trimmed to 

eliminate branches that caused an increase in the average misclassification rate. I also 

conducted a validation of the final tree with 11 independent samples that were collected 

in 2002.  These samples were targeted to be in areas of the watershed deemed most 

difficult to classify by the models. 
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Results 

Species associations 

ISA found a weak natural break in the groupings derived from the cluster analysis 

(Figure 2.4).  The maximum indicator values (IVs) averaged across all seven species 

peaked at 68 percent for the four-cluster solution.  Further partitioning of the data 

resulted in a lower mean IV.  A. amabilis, P. menziesii, and T. heterophylla were the 

primary indicators for the two-cluster solution. T. heterophylla and P. menziesii were 

associated with one cluster, while A. amabilis was associated with the second (Figure 

2.5).  The four-cluster solution partitioned the A. amabilis cluster into additional groups.  

By eight clusters, all species were associated with separate groups.  Species associations 

for the four-cluster solution (i.e., the solution with the highest average IVs) are provided 

in Table 2.3. 

The species clusters can be interpreted in the context of ordination space (Figure 

2.6).  Because NMS proceeds from the same Bray-Curtis distance matrix as the clustering 

analysis, it provides a compatible analysis in an interpretable space. The step-down NMS 

procedure recommended a three-axis solution as optimal (stress = 12.3).  The final 

solution of the three-axis analysis suggested that one of the axes was considerably 

stronger than the other two.  The cumulative coefficient of determination (R2) for the 

correlation between ordination distance and distance in the original n-dimensional space 

was 0.9 for the three axes combined.  The r2 for axis one was 0.52 while axis three, the 

next strongest axis, had an r2 value of 0.24. 
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Figure 2.4. Maximum indicator values recorded for each of the 7 dominant species by 
successive ISAs.  Grouping the data into four clusters resulted in the highest indicator 
values. Groups were determined by a clustering analysis on species abundance data. 
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throughout most of this study. 
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Table 2.3. Group membership assignment for four-cluster solution based on species 
abundance data.  Species were assigned to the group for which they had the largest 
indicator value. 
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Indicator 

Value 
1 T. heterophylla 

P. menziesii 
T. brevifolia 
T. plicata 

80 
57 
54 
50 

2 A. amabilis 64 
3 A. procera 84 
4 T. mertensiana 89 

Mean  68 
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The species loadings along axis one ranged from a maximum of 0.6 for T. plicata 

to a minimum of –1.5 for T. mertensiana (Table 2.4).  A. amabilis had the strongest 

correlation with axis one (r = 0.79), followed by P. menziesii (r = -0.50). 

Environmental patterns 

The cations were all strongly correlated with each other and with pH (Table 2.5).  

Total P was the least strongly correlated with the other cation variables. Total acidity was 

negatively correlated with pH as expected, but also positively correlated with soil depth. 

C and N were strongly correlated with each other, positively correlated with silt, and 

negatively correlated with the cation concentrations.  Elevation was significantly 

correlated with slope and all the soil variables.  Elevation was not significantly correlated 

with transformed aspect or TSI. 

The PCA corroborated that the environmental variables were correlated among 

themselves.  The correlation of variables allowed for substantial reduction in the 

dimensionality of the data.  Thirty-five percent of the total variance of the environmental 

data matrix could be explained by the first principal component alone. An additional 19 

percent was explained by the second axis.  Hence, over 50 percent of the information 

content of the environmental matrix could be represented in two-dimensional space by 

PCA.  The first axis was strongly correlated with elevation (r = 0.69) and negatively 

correlated with several of the cations (i.e., Ca, Mg and K all with r values < -0.88).  The 

second axis was most strongly correlated with acidity (r = 0.83) and soil depth (r = 0.76). 

Weaker negative correlations were found between axis two and pH, slope, and P (r =       

-0.49, -0.38, and -0.36, respectively).   
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Table 2.4. Species loadings on NMS axes and direct elevation axis. The order on axis 1 
from highest to lowest corresponds closely to a gradient from low to high elevation, as 
shown by a comparison to the weighted average species scores on elevation. 
 

 Axis 1 Axis 2 Axis 3 WA 
T. plicata 0.63 -0.10 0.28 853 
T. brevifolia 0.49 -0.30 0.24 848 
P. menziesii 0.29 -0.22 -0.28 925 
T. heterophylla 0.20 -0.32 0.33 923 
A. procera -0.64 0.94 -0.08 1383 
A. amabilis -1.11 0.20 -0.09 1330 
T. mertensiana -1.51 0.54 0.53 1484 
 
 
 
 
Table 2.5. Correlation matrix for environmental variables.  Bold Pearson product moment 
correlation coefficients are significant at P < 0.0001 level. Correlations not significant at 
the P = 0.05 level are not shown. 
 
 Elev Slope TAsp TSI Depth pH Acid Ca K Mg P C N Clay Sand Silt
Elevation 1.00                
Slope -0.14 1.00               
TAspect   1.00              
TSI    1.00             
Xdepth -0.23 -0.23  0.20 1.00            
pH -0.22 0.25 0.26   1.00           
Acidity -0.21    0.40 -0.50 1.00          
Ca -0.52 0.34 0.16   0.54  1.00         
K -0.59 0.27   0.18 0.40  0.80 1.00        
Mg -0.55 0.28   0.31 0.41 0.23 0.90 0.76 1.00       
P -0.35 0.20   -0.31 0.25 -0.16 0.50 0.45 0.30 1.00      
C 0.66 0.33   -0.32 -0.31  -0.22 -0.28 -0.37  1.00     
N 0.66 0.28   -0.24 -0.24  -0.19 -0.24 -0.31  0.95 1.00    
Clay -0.53 -0.32 -0.21  0.34  0.50 0.25 0.24 0.27  -0.36 -0.32 1.00   
Sand  0.22 0.34  -0.32 0.22 -0.45    0.38 -0.22 -0.30 -0.65 1.00  
Silt 0.26  -0.33  0.24 -0.21 0.33    -0.42 0.42 0.50 0.37 -0.95 1.00
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Species-environment Interactions 

Of the topographic variables measured, elevation showed the clearest associations 

with the species data via simple correlation analyses (Table 2.6). Elevation was highly 

correlated with five of the seven species abundances (absolute r-values > 0.30).  As 

expected, species described by Zobel et al. (1976) as high elevation species were 

positively correlated with elevation; low elevation species were negatively correlated 

with elevation. Weaker correlations between T. plicata, T. brevifolia, and elevation were 

due to nonlinearities in these relationships. Few significant correlations were observed 

between the other topographic variables and species abundances. T. plicata was 

negatively correlated with slope; T. brevifolia was negatively correlated with TSI; A. 

procera was positively correlated with transformed aspect.   

Of the soil variables, carbon and nitrogen trends were the most consistent.   The 

high elevation species were positively correlated with carbon and nitrogen levels, 

negatively correlated with cation concentrations, and positively correlated with silt. The 

low elevation species were negatively correlated with carbon, nitrogen and silt levels. P. 

menziesii abundance was positively associated with cation concentrations, while the rest 

of the low elevation species were not significantly correlated with the cations. 

Overlaying the environmental vectors on the NMS ordination corroborated that 

elevation and the concentration of cations were highly related to patterns of species 

composition (Figure 2.6). Elevation was the environmental variable most associated with 

the first axis (r = 0.75), followed by Ca, K, Mg and P (r < -0.4 for all the cations). 
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Table 2.6. Correlations between species abundance levels (m2/ha) and environmental 
variables. Values are Pearson product moment correlation coefficients (r). Correlations 
that are not significant (P > 0.05) are not shown.  Values are bolded for P < 0.0001. See 
Table 2.1 for species codes. 
 

 THPL TABR PSME TSHE ABPR ABAM TSME 

Elevation -0.30 -0.25 -0.39 -0.31 0.48 0.54 0.35 
        

Slope -0.16       
        

TAspect     0.20   
        

TSI  -0.27      
        

xDepth    0.19    
        

pH   0.26 -0.23  -0.24  
        

Acidity 0.16   0.23    
        

Ca   0.33  -0.24 -0.38 -0.17 
        

K   0.41  -0.22 -0.35 -0.17 
        

Mg   0.23  -0.22 -0.32  
        

C -0.22 -0.26 -0.25 -0.22 0.34 0.36  
        
N -0.23 -0.26 -0.26 -0.25 0.38 0.35  
        
P   0.38  -0.24 -0.29 -0.16 

        
Clay 0.19     -0.23  
        
Sand  0.22 0.19  -0.20 -0.17  
        
Silt  -0.27 -0.26 -0.22 0.30 0.31  
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Environmental correlations with the second strongest axis were much weaker (no 

correlation coefficients had absolute r-values > 0.3). 

Direct ordination with elevation indicated a transition in the composition of 

dominant tree species at elevations from 1150 m to 1350 m (Figure 2.7).  No T. plicata 

were observed above 1100 m in elevation.  The relative basal area of P. menziesii and T. 

heterophylla also declined sharply around this altitude.  A. amabilis increased in 

dominance in this transition zone.  A. procera were not observed below 1100 m and T. 

mertensiana were not observed below 1350 m.  Table 2.4 presents the weighted average 

species scores on elevation. 

At the community level, the three simple Mantel tests (above the diagonal in 

Table 2.7) on community composition, geographic space, and the grouped environmental 

data all provided significant results at the P = 0.05 level (in every case, significance tests 

were based on 1000 permutations).  Both space and environmental variability were 

significantly correlated with species composition, and environmental variability and 

species composition were both significantly autocorrelated according to these tests.  The 

partial Mantel tests (below the diagonal in Table 2.7) provided significant pure partial 

associations between species composition and environmental variability, but not between 

species composition and space.  This finding suggests spatial location is not a significant 

influence on community composition after accounting for the spatial component of 

environmental variability.  Figure 2.8 provides a path diagram of the relationship between 

these three variables derived from the simple and partial Mantel statistics.  Environmental 

variability is significantly associated with community composition by both the simple 
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Table 2.7. Mantel coefficients for aggregated analysis. Values in table are Mantel 
correlation statistics (r) and P-values from a one-tailed test of significance. Results of 
simple Mantel tests are reported above the diagonal. Results of partial Mantel tests are 
below the diagonal. 

Community 
Composition

Environment Space 

Community 
Composition 

---- 0.38                
P = 0.001 

0.18             
P = 0.001 

Environment 0.35             
P = 0.001 

---- 0.14             
P = 0.001 

Geographic 
Space 

n.s. ---- ---- 

 

 

 

 

 

Environment Geographic 
Space 
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Figure 2.8. Mantel path diagram for aggregated variables. Solid lines represent causal 
factors (significant partial Mantel value; P = 0.05).  Dotted line represents spurious 
relationship (significant simple Mantel value but nonsignificant partial Mantel value; P = 
0.05). 
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and partial Mantel tests.  This relationship is considered causal.  Space is significantly 

associated with community composition by the simple Mantel test but not the partial test.  

This relationship is considered spurious, with space related to community composition 

only through environmental variability. 

When considering the environmental variables individually, the Mantel tests 

confirmed that community composition was significantly correlated with elevation 

(Figure 2.9).  The high elevation species (A. amabilis, A. procera, and T. merteniana) 

showed the strongest correlation.  P. menziesii and T. plicata were significantly 

correlated with elevation only after removing the effects of pure spatial influences. None 

of the other environmental variables analyzed had significant correlations with the 

species data.   

Community composition, the distribution of the high elevations species, and the 

distribution of T. heterophylla all were found to be autocorrelated by the simple Mantel 

tests. Only A. amabilis was significantly correlated with space, however, after accounting 

for variation in elevation via partial Mantel tests. Elevation and aspect also were strongly 

autocorrelated. The other variables did not have strong spatial structure. The results are 

summarized in a schematic path diagram in which projected causal relationships between 

variables are shown by solid arrows (Figure 2.9).   

The CART analysis indicated that elevation, transformed aspect, and K 

concentration were the environmental variables that most strongly sort the four species 

clusters (Figure 2.10).  Elevation was the strongest predictor variable, separating the T. 

heterophylla/P. menziesii community from the high elevation species at the first branch 
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Figure 2.9. Mantel path diagram for individual variables. Arrows indicate significant 
correlations at the P = 0.05 level.  T. brevifolia was not significantly autocorrelated or 
correlated with elevation and is not shown. None of the other environmental variables 
analyzed had significant correlations with the species data. 
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Figure 2.10. Classification tree from CART analysis. Groups were determined by a 
clustering analysis on species abundance data and are designated on the tree by the 
species with the highest indicator value in the group. Species codes are provided in Table 
2.1.  Parentheses at terminal nodes provide the misclassification errors as number 
misclassified / total N in node. 
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of the tree. Misclassification rates provide a measure of the ability of the model to 

discriminate among groups.  Total misclassification in the tree was 8.5 percent. The 

highest misclassification rate was between the T. heterophylla and A. procera 

communities at high elevations.   

Four of the 11 validation plots were misclassified by this classification scheme: 

two plots dominated by T. mertensiana, one A. procera plot that was misclassified as T. 

heterophylla, and one T. heterophylla plot that was misclassified as A. procera.  When I 

reran the analysis including these 11 plots with the original 164, a T. mertensiana end-

node was identified at elevations greater than 1450 m.  The most effective variable at 

discriminating between A. procera and T. heterophylla in this revised analysis also 

switched from K concentration to pH. 

Discussion 

Species patterns 

Species do appear to sort into discrete communities within the watershed. The 

four major communities can be described as follows. 

• T. mertensiana group: indicated by T. mertensiana with A. amabilis also present but 

in lower abundance. No other dominants common.  

• A. amabilis group: dominated by A. amabilis with T. mertensiana and A. procera 

often represented.  
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• A. procera group: indicated by A. procera with some A. amabilis and P. menziesii.   

Small abundances of T. heterophylla also commonly observed. 

• T. heterophylla/P. menziesii group: characterized by T. heterophylla and P. menziesii. 

T. plicata and T. brevifolia present about 50 percent of the time.  The latter two 

species are never found in the other three communities.   

The level at which the different species separate into distinct clusters gives some 

indication of their similarity (Figure 2.5).  According to the species clustering analysis, T. 

plicata and T. brevifolia have the most similar affinities.  Both are more similar to P. 

menziesii in distribution than to T. heterophylla.  All of these species have stronger 

community ties than do the three other dominant species in the HJA. The environmental 

data can be examined further to gain an understanding about which factors might be 

associated with the differences in composition. 

Traditional gradient analysis approach  

Both topographic and soil features can affect species distributions (Cole 1990, 

Davis & Goetz 1990). I have collected information on both types of environmental 

variables in hopes of attaining a more complete understanding of the observed species 

patterns in the HJA watershed. 

The NMS analysis indicates that elevation may be the primary correlate with the 

two species communities. The first axis alone explains over 50 percent of the variance in 

the data and elevation is the environmental variable most associated with this axis. The 

species loadings along this first axis are in nearly the same order as the weighted average 
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species scores from the direct ordination with elevation.  These findings are consistent 

with the simple correlation coefficients between the species and environmental variables 

and they conform to the general community trends described for the Pacific Northwest 

(Franklin & Dyrness 1988, Ohmann & Spies 1998). 

Other environmental variables might contribute to the observed species 

distributions. Both the NMS environmental overlays and the PCA analysis suggest that 

cation concentration in the soil might be negatively associated with the primary axis.  

This is supported by the inverse correlation between elevation and the cations observed in 

the simple correlation tests. The higher order axes in the ordinations provide additional 

insight into what might be important in partitioning species within elevation zones.  The 

PCA suggests that pH, acidity, and soil depth might be important environmental variables 

that are orthogonal to elevation. 

The CART analysis provides testable hypotheses regarding what might be 

differentiating these species. It provides corroborating evidence that the main 

communities are separated along the elevation gradient, with the transition occurring 

around 1275 m. Although soil chemistry differences (K or pH) might explain some of the 

observed partitioning at high elevations, topographic effects appear to be the primary 

determinant of the observed pattern.  Additional sampling at contrasting topographic 

locations within the elevation of the transition zone could further refine the model. 
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Extending community ecology to landscapes  

Techniques derived from landscape ecology complement these traditional 

analyses of forest communities.  Specifically, spatial sampling and analysis methods can 

support community analyses to provide the following: 

• Increased understanding of the importance of scale, 

• Synoptic coverages of large extents, 

• Greater resolution of physical variables, and 

• Explicit studies of spatial processes. 

Here, I provide two examples of how spatial relationships (“space”) can be 

considered in landscape studies of community pattern.  First, sampling designs should 

carefully consider the multi-scale variability inherent in ecological data.  Both 

community composition and environmental variables can vary at scales of 10s to 1000s 

of meters (Urban et al. 2000).  It is important for field samples to capture these variances 

in order to relate biotic and abiotic patterns.  Stratified clusters are one example of the 

family of sampling schemes that are specifically designed to measure multi-scale trends 

over large spatial extents (see Nusser 1998 and Urban 2002 for additional examples). 

Second, analytic methods can be employed that account for spatial relationships 

in the ecological data. I present an example of how “space” can have a significant impact 

on the interpretation of species-environment relationships by including spatial separation 

distance explicitly as a variable in Mantel analyses. The effect of including space was to 

reduce the significance of the relationship with elevation for some species (all species 
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combined, A. amabilis and A. procera) and strengthen the observed relationship for other 

species (P. menziesii and T. plicata).  Differences in space also were correlated with the 

overall species patterns and with several of the individual species (A. amabilis, A. 

procera and T. mertensiana) via the simple Mantel tests. Fortin and Jacquez (2000) list 

four potential sources of spatial autocorrelation.  The first two, spurious and interpolation 

autocorrelation, are considered artifacts of sampling and analytic methods. True (arising 

from causal interactions among close samples) and induced autocorrelation (arising from 

a causal relationship with another spatially autocorrelated variable) stem from ecological 

processes of direct scientific interest.  These cannot be removed by improved sampling 

and analytic methods, and suggest potential effects of unmeasured environmental 

variability and/or the presence of spatial biological or physical processes.  The fact that 

several of the species had significant simple Mantel coefficients but not significant partial 

Mantel coefficients suggests that some of the observed autocorrelation might be spurious, 

but enough significant spatial relationships remain to warrant further study of the causes 

of these relationships. 

Conclusion 

This study contributes to the large body of gradient analysis studies by explicitly 

considering spatial location and scale in both the sampling and analysis phases.  Although 

the analyses suggest relationships between species and the environment, no general 

theory has been developed to explain the relationships via causative mechanism.  The 

results, therefore, should be viewed as an initial phase in the investigation of forest 

community pattern in the HJA.  They are unsatisfying in at least two important ways: 
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• Elevation, the strongest environmental correlate even after accounting for 

spatial autocorrelation, is not directly relevant to plants, and 

• The significance of spatial location in the analyses indicates biologic 

processes or environmental factors not represented in the basal area data. 

The remainder of this dissertation addresses these issues by attempting to incorporate 

more plant-relevant explanatory variables and focusing on biologic processes such as 

growth and regeneration rather than sheer abundance. In essence, I replace elevation and 

basal area with more meaningful environmental and biotic data. 

None of the techniques offered here offer an unambiguous description of the pure 

effects of environmental factors on species’ distributions.  In fact, no single technique 

currently available to ecologists can offer this output (Griffith 1992).  In combination, 

however, this blend of multi-scaled field samples and statistical tools provides a clearer 

picture of community patterns in the HJA.  Of equal importance, the results highlight 

specific locations on the landscape for future sampling and ecological hypotheses that 

should be addressed next to bring this picture into sharper focus. 
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SECTION 3: THE PHYSICAL SETTING 
 
 

CHAPTER 3.1 A Simple Method for Estimating Potential 
Relative Radiation (PRR) for Landscape-Scale 

Vegetation Analysis 
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Abstract 

Radiation is one of the primary influences on vegetation composition and 

productivity.  Topographic orientation is often used as a proxy for relative radiation load 

due to its effects on evaporative demand and local temperature. Common methods for 

incorporating this information (i.e., site measures of slope and aspect) fail to include daily 

or annual changes in solar orientation and shading effects from local topography. As a 

result, these static measures do not incorporate the level of spatial and temporal 

heterogeneity required to examine vegetation patterns at the landscape level. We 

developed a widely applicable method for estimating potential relative radiation (PRR) 

using digital elevation data and a common geographic information system (Arc/Info).  

We found significant differences among four increasingly comprehensive radiation 

proxies. Our GIS-based proxy compared well with estimates from a more data-intensive 

and computationally rigorous radiation model. We note that several recent studies have 

not found strong correlations between vegetation pattern and landscape-scale differences 

in radiation. We suggest that these findings may be due to the use of proxies that were not 

accurately capturing variability in radiation, and we recommend PRR for use in future 

vegetation analyses. 

 

Keywords: aspect, DEM, GIS, proxy variables, relative radiation, slope, topography, 

vegetation analysis 
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Introduction 

Plants respond to solar radiation through multiple pathways (Geiger 1965). 

Photosynthetically active radiation (PAR) provides the driving energy for photosynthesis 

(Raven et al. 1992). Radiation influences ambient temperature and, consequently, the 

rates of photosynthesis and respiration (Kozlowski et al. 1991). Radiation affects the 

water supply (e.g., ground surface evaporation; Brady & Weil 1999) as well as the water 

demand (potential evapotranspiration) components of the water balance (Stephenson 

1998), and has been shown to have a significant effect on the distribution of surface water 

through simulation modeling (Vertessy et al. 1990, Band 1991) and empirical sampling 

(Yeakley et al. 1998, Chapter 3.3). These multiple influences can result in complex 

responses to radiation loads.  For example, high radiation leads to the ability to convert 

large amounts of carbon to sugar while simultaneously decreasing soil moisture levels. 

The strong association between radiation and plant processes has been reported to shape 

the landscape-scale distribution of plants in numerous studies (Davis & Goetz 1990, 

Urban et al. 2000), but others, somewhat surprisingly, have not been able to document a 

strong correlation between radiation estimates and plant pattern (Brown 1994, Parker 

1995, Park 2001). 

Direct measurements of radiation are uncommon and these are especially rare in 

topographically rugged terrain (most meteorological stations are on level ground at low 

elevations). Acquiring fine-scale information about climatic factors over large extents is 

logistically problematic. This has led to many attempts to find alternatives to actual 

measurements of solar radiation. There are two common approaches to account for 
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radiation effects over landscape scales. The simpler approach relies on static topographic 

proxies based on slope and aspect, either from field measurements or from digital terrain 

data (e.g., Beers et al. 1966). A more complicated approach involves numerical 

integration of radiation values through simulation modeling using terrain and climate data 

(Running et al. 1987, Daly et al. 1994, Thornton et al. 1997).  

Here we offer a third alternative: a physical proxy that captures some of the solar 

geometry of more complicated radiation models yet can be quickly implemented for any 

landscape with digital terrain data.  This level of detail should correspond with the data 

needs of a growing number of ecologists who are interested in landscape-scale vegetation 

analysis. 

The geometry of radiation 

The amount of radiation impinging on a surface is the sum of three components: 

direct, diffuse and reflected radiation. Direct-sky radiation is the fraction of extra-

atmospheric solar radiation that reaches the earth’s surface without being scattered by 

molecules in the atmosphere (Figure 3.1.1a). Diffuse-beam radiation is the component 

resulting from atmospheric scattering. Reflected radiation bounces off other surfaces 

before impinging on a target (Campbell & Norman 1999).  

Under clear sky conditions, direct radiation is largely a function of the geometry 

between the earth surface and the sun. Topography acts as a filter on radiation loads in 

two important ways: (1) through shading effects and (2) through attenuation of the solar 

flux by altering the apparent solar inclination angle. The position of the sun in relation to  
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igure 3.1.1. (A) Solar azimuth and inclination create a topographic shading effect. (B) 
This shading is continuously shifting as the earth rotates causing changes in solar 

 

 

 

F

inclination and azimuth. The change in the orientation of the earth’s tilt in relation to the
sun creates the basis for our seasons. The lower two panels depict the apparent solar 
zenith for the same location during the summer (C) and winter (D) solstices.  (after 
Bonan 2002) 
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the earth is well understood. The orientation between a slope and the sun’s position 

therefore can be calculated with a high degree of precision given position and time.  

This relationship is not static.  The relative position of the sun changes through 

the course of the day and year. The rotation of the earth causes the daily solar orientation 

to change, affecting irradiance and shading (Figure 3.1.1a-b). The tilt and orbit of the 

earth causes an annual change in the topographic orientation of a site in relation to the 

sun, affecting the solar zenith (Z), the highest daily inclination angle, and solar period 

(Figure 3.1.1c-d). The complexity of topography and the changing orientation of the sun 

create a dynamic but important problem for estimating radiation loads across landscapes. 

Too often this complexity is ignored in simple radiation proxies. 

Diffuse and reflected radiation are more difficult to quantify, and are not 

addressed in this study.  In general, these components tend to minimize spatial 

differences in radiation. Under clear sky conditions, the largest share of radiation is 

direct-beam. This condition provides the maximum contrast in radiation load between 

sites with different topographic orientations. As the partitioning of radiation shifts from 

direct to diffuse with increasing cloud cover, sites are affected similarly and the relative 

differences between sites are reduced. Calculating a measure of potential direct radiation 

thus provides an upper bound on differences in solar insolation.  

Radiation proxies 

Slope and aspect have been used as radiation proxies in hundreds of studies 

because, until recently, they have been the easiest way to estimate relative radiation 

without extensive direct sampling or complex computer programming.  
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Early gradient analysis studies categorized topographic aspects as factors along a 

moisture continuum (e.g., Whittaker 1956). Frank & Lee (1966) standardized these 

discrete relationships between relative radiation and slope and aspect in tables that 

accounted for latitudinal differences. These tables were based on a 16-quadrant measure 

of aspect and are still in use today (Parker 1995, McCay et al. 1997, Donnegan & 

Rebertus 1999). As categorical factors, however, slope and aspect have a limited ability 

to capture the full range of topographic variability. With too few factor levels, there is a 

loss in precision; and with too many levels, between-level contrasts become diluted. The 

16-quadrant model has been used in several studies in similar southeastern forests with 

varying results (Day & Monk 1974, Clinton et al. 1994, McCay et al. 1997, Bolstad et al. 

1998). 

Representing aspect as a continuous rather than discrete variable is complicated 

by the discontinuity at due north where the measure repeats itself going from 360 to 0. 

Transformations can be used to remove the discontinuity by reorienting the variable 

along a specified axis. These require a specific orientation of interest to be defined, such 

as a north-south axis. One common approach is to use “absolute aspect” computed as 

ABS(180-aspect), which solves the circularity problem while aligning the index on a N-S 

axis. Beers et al. (1966) transformed aspect along an axis running from NE to SW to 

reflect the combined influence of bright illumination with warm afternoon temperatures 

maximally affecting SW-facing slopes. Beers transformation indexes radiation explicitly 

as a proxy for heat load or evaporative demand. Depending on the landscape, choosing an 

a priori transformation axis might bias results. 
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The relationship between aspect and radiation is modified by local slope. The 

proper way to incorporate slope is to use the solar angle, which is the difference between 

the normal vector from the slope surface and the vector pointing towards the sun, a value 

that changes throughout the day and year (Dozier & Frew 1990). Sine or cosine 

transformations of the local slope angle often are used as a surrogate measure. 

McCune and Dylan (2002) recently described an approach for incorporating 

topographic effects on radiation (N-S axis) and heat load (NE-SW axis) through fitted 

linear regression equations. Using stepwise linear regression with slope, latitude, and 

folded (i.e., transformed) aspect as explanatory variables, they were able to explain 

potential direct incident radiation differences as tabulated in common lookup tables 

(Buffo et al. 1972) with R2 values > 0.95.  Though convenient in their simplicity, these 

equations might not be adequate for many applications in complex terrain for at least two 

reasons: (1) they do not account for variation through time and (2) they do not account 

for shading by adjacent topography. 

Radiation levels vary through time in several ways that are not captured by simple 

topographic proxies. For instance, east-facing slopes experience higher radiation loads in 

morning hours, while west-facing slopes experience higher radiation in later afternoon 

hours. This effect also changes with the time of year. Solar period shortens in accordance 

with decreasing solar inclination. Therefore, incorporation of daily and annual solar path 

is essential when comparing solar exposure between two sites.  

Even with proper consideration, slope and aspect alone might not be able to 

resolve radiation differences between sites. The proxies by necessity imply that observed 
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slopes are in a landscape devoid of other features (i.e., isolated mountains or hills). But 

obstructions to direct-beam radiation can result from not only “self-shading” by the slope 

itself, but also from shading by nearby ridges. Two sites with identical topographic 

orientation (slope, aspect and elevation) can have widely differing solar exposure based 

on their topographic context. For example, sites could differ by being at the bottom of a 

drainage or the top of a nearby ridge but be characterized similarly by simple measures of 

slope and aspect. Radiation proxies, as well as many radiation models, do not incorporate 

shading effects from adjacent land features.  

Radiation models 

The relative permanence of topography and the deterministic position of the sun 

make assessing direct relative solar exposure a simple matter of calculation, depending 

only on latitude, time, slope orientation, and topographic context.  This geometry serves 

to attenuate direct-beam radiation by decreasing the solar angle from perpendicular to the 

surface to some smaller angle and thereby increasing the cross-sectional area illuminated 

by a quantum of radiant energy. To estimate radiation quantitatively involves the addition 

of the diffuse and reflected components. Thus, direct-beam, diffuse-beam and reflected 

radiation can be estimated as: 

 Rb = Rea *  tm        (eqn. 3.1.1) 

 Rd = 0.3 (1- tm) Rea cos(Z)      (eqn. 3.1.2) 

 Rr = r (Rb + Rd).       (eqn. 3.1.3) 

56 



Direct-beam radiation (Rb) is extra-atmospheric radiation (Rea) attenuated by atmospheric 

transmittance (t) and modified by the optical air mass number (m). Transmittance is 

largely a function of climate and necessitates estimating daily relative humidity and 

cloudiness. The optical air mass number is a function of atmospheric pressure and 

latitude. Latitude is important because it is used to calculate the path length through the 

atmosphere. The longer the path length the more molecules a beam may encounter in 

order to become scattered.  

Diffuse-beam radiation (Rd) is the fraction of radiation scattered by air molecules 

and aerosols and then attenuated by the solar zenith angle (Z): 

 cos(Z) = sin(L) * sin(D) + cos(L) * cos(D) * cos(15 (T-T0))  (eqn. 3.1.4) 

where L is latitude, T is the time of day, and T0 is the longitude corrected base time or 

zero. Solar declination (D), the angle between the Sun and a position directly above the 

earth’s surface, accounts for the tilt of the earth. It depends only on time (Julian day J) 

and can be estimated for each day of the year as: 

 sin(D) = 0.3978 sin[279.0 + 0.9856 J + 1.9165 sin(356.6+0.9856 J)] (eqn. 3.1.5) 

Reflected radiation (Rr) is the sum of the direct and diffuse components multiplied by the 

average local surface reflectivity (r) [see Campbell & Norman 1998 or Bonan 2002 for a 

more detailed accounting of these components]. 

The radiation calculations as described above are for a flat surface perpendicular 

to the direct-beam radiation. Radiation is modified by local topography using tilt factors 

and view angles. First, the Rb is multiplied by the cosine of the solar azimuth (A), the 
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angle between the normal vector to the surface and the vector directed towards the sun’s 

current position.  

 cos(A) = -[(sin(D)-cos(Z)*sin(L)]/[cos(L)*sin(Z)]    (eqn. 3.1.6) 

The Rd is then modified by taking into account the proportion of the sky visible from the 

point of estimation  (i.e., the angular percentage of the hemispherical view). This is a 

small fraction in a deep chasm and close to one on a large flat plain. 

Atmospheric scientists have used these calculations to develop sophisticated 

models for predicting solar radiation in complex terrain (Bonan 1989, Dozier & Frew 

1990, Nikolov & Zeller 1992, Dubayah & Rich 1995, Greenland 1996, Wilson & Gallant 

2000). Running these models requires considerable site data or the acquisition of special 

programs. For instance, SRAD requires up to 16 parameters to calculate a radiation map 

(Wilson & Gallant 2000). Our method uses the common geographic information system 

Arc/Info (ESRI 1994) to produce a spatially explicit representation of variation in 

radiation and is widely applicable with minimal investment in time or resources.  

In summary, most existing proxies are insufficient for use in landscape-scale 

ecological studies because they do not account for changes in solar orientation and/or do 

not account for topographic shading. More sophisticated radiation models do have the 

capability to account for these factors, but at a cost of decreasing simplicity for the user. 

Our goal in calculating a new radiation proxy was to develop a dimensionless index to 

support community vegetation analysis. Decades of gradient studies have found primary 

“elevation” gradients with small-scale topography and soils playing a secondary role in 

structuring plant communities (Whittaker 1960, Dyrness et al. 1974, Kessell 1979). We 
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were interested in the way local topography influences relative radiation load and thus 

evaporative demand. Previous studies suggest that this might be an important mechanism 

controlling vegetation distributions (Callaway et al. 1987, Franklin et al. 2000, Mackey et 

al. 2000).  For these applied uses, we felt a new method of estimating relative radiation 

was needed that incorporated the important components of more complicated models but 

the ease of calculation of simple proxies. We present here what we believe to be such an 

approach. 

Methods 

Study site 

We demonstrate our approach for one of our study sites of complex topography.  

The H.J. Andrews Experimental Forest (HJA) is located on the west slope of the Cascade 

Mountains.  It is comprised of the Lookout Creek watershed, 80 km east of Eugene, 

Oregon. The Long Term Ecological Research (LTER) site covers 6400 ha and ranges in 

elevation from 410 m to 1630 m (McKee 1998). Climate is characteristic of the Pacific 

Northwest, with dry summers and wet winters. Annual precipitation ranges from 2200 

mm at the base station to 3400 mm at upper elevations, with less than 300 mm normally 

falling during the summer growing season (Grier & Logan 1977).  Major vegetation types 

range from Pseudotsuga menziesii (Douglas-fir), Tsuga heterophylla (western hemlock), 

and Thuja plicata (western red cedar) at lower elevations to Abies amabilis (Pacific silver 

fir), Abies procera (noble fir) and Tsuga mertensiana (mountain hemlock) at upper 

elevations (Franklin & Dyrness 1988). The LTER’s research emphasis includes the 
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effects of climate on vegetation pattern and we have been actively involved in this 

research. 

Potential relative radiation (PRR) 

To account for temporal variability in radiation, we developed potential relative 

radiation (PRR) as an integrative index, which sums hourly estimates of radiation over 

the day and then sums daily grids over the summer growing season.  Each point estimate 

accounts for topographic shading by surrounding landscape features.  The method can be 

summarized as follows. 

1. Calculate solar declination and solar azimuth for daylight hours for the day of the 

month representing the average solar period for each month of the growing season 

(equations 3.1.5 and 3.1.6; these data are also available on many websites). 

2. Obtain a digital elevation model (DEM) of the study site (USGS). 

3. Calculate hourly hillshaded radiation grids using DEM, solar azimuth and solar 

declination (Arc/Info HILLSHADE function with MODEL SHADOWS option). 

4. Sum hourly grids to get daily totals, which represent monthly averages. 

5. Sum monthly averages to get seasonal maps of PRR. 

The approach is outlined in greater detail below. 

There are many sources for finding solar azimuth and declination for a specific 

location and time of day. Since solar path changes in a continuous manner throughout the 

year we decided to use a single day from each month to represent that period (Klein 

1977, Bonan 1988). We chose the day of the month that was closest to the average solar 

period for that month. This was not always the 15th of the month, but depended on the 
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trajectory of the solar period for the month (e.g., we choose June 11 to represent the 

average solar period for June).  Solar position can be calculated using equations 3.1.5 and 

3.1.6.  These values also can be obtained by supplying the locations, dates and times 

desired to several commonly available sources of solar calculation such as Image 

Processing Workbench (Frew 1990) and several web sites. These sources all provide the 

same data with slight formatting differences.  

We obtained a digital elevation model (DEM) for our study site from the USGS, 

being careful to incorporate enough surrounding area to properly capture topographic 

shading. We imported the DEM into Arc/Info and used our solar position information 

with the HILLSHADE function, 

 HS = 255 [cos(90-D) sin(s) cos(α-A) + sin(90-D) cos(s)]   (eqn 3.1.7) 

where D is the solar declination, s is the local slope, A is the solar azimuth and α is the 

azimuth of the slope facet (ESRI 1994).1  This function calculates relative reflectance 

based on surface orientation, solar position, and self-shading by calculating the angle 

between the vector normal to the plane of ground and solar position (ESRI 1994). We 

used the MODEL SHADOWS option to set areas shaded by surrounding topographic 

features to zero illumination. We performed this operation for each hour of daylight on 

the representative day of each month from March to September. To calculate monthly 

radiation maps we summed over the hourly grids. To calculate relative seasonal radiation 

maps we summed the monthly grids.  The index, therefore, can be summarized as: 

PRR = ΣΣ (monthly, hourly (HS)).      (eqn. 3.1.8) 

                                                 
1 HILLSHADE uses the solar inclination angle, which is the complement of declination (90-D). 
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Other radiation proxies 

To compare the variation captured by our method to other common indices we 

calculated three other radiation proxies. Two were derived both from field measurements 

and from DEM-based calculations. The first proxy was a simple measure of transformed 

aspect (Urban et al. 2000) similar to Beers et al.’s (1966) measure but varying from –1 

for NE facing slopes to 1 for southwest facing slopes: 

TA = -1 * cos(α – 45)       (eqn. 3.1.9) 

The second proxy incorporated slope information by multiplying TA by the sine 

of the slope angle: 

TASL = -1 * cos(α – 45) * sin(s)     (eqn. 3.1.10) 

We analyzed both DEM and field-based indices for these proxies to determine 

how well the digital data corresponded to on-the-ground measurements. We had 

topographic information from 175 (20x20 m) plots, which we used for the field 

calculations. We compared estimates from the DEM-based proxies for these same 175 

plots. 

The third radiation proxy we considered was a single HILLSHADE map. This 

proxy accounted for the effect of topographic shading without considering solar track. 

HILLSHADE requires the user to supply an azimuth and solar inclination angle (eqn. 

3.1.7). We used a solar azimuth of 225 degrees and solar inclination of 45 degrees to 

mirror our TA calculation. 
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Because we are interested in radiation as a relative variable in community ecology 

studies, not as an absolute variable in an atmospheric model, we did not correct insolation 

for atmospheric transmittance. We also ignore the effect of cloudiness. For landscape-

scale vegetation analyses dealing with small-to-medium sized watersheds in mountainous 

regions, relative radiation estimates should be sufficient.  We attempted to ascertain the 

effect of the simplifying assumptions in our method by comparing the results to those 

from a more complex radiation model. We used a model of radiation recently completed 

for the HJA that synthesizes meteorological data from the LTER using PRISM 

(Parameter-elevation Regressions on Independent Slopes Model: Daly et al. 1994). These 

mean monthly estimates of radiation account for topography, cloudiness and their effects 

on direct and diffuse radiation (Smith 2002).  We summed monthly values over the 

growing season (June through September) and compared the values to those calculated 

from the different proxies.  

In total, we compared our PRR proxy (eqn. 3.1.8) to a more explicit radiation 

model and three less rigorous radiation proxies: transformed aspect (eqn. 3.1.9, field and 

DEM-based), transformed aspect modified by slope (eqn. 3.1.10, field and DEM-based), 

and Arc/Info HILLSHADE (eqn. 3.1.7, A = 225, S = 45). It was our intent that PRR 

achieve a much higher level of realism than the simple proxies with considerably less 

computational effort than the more complicated model. 
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Results 

We have chosen a severe topographic feature from another one of our study sites 

in order to illustrate the differences among the different proxies. Figure 3.1.2 depicts the 

area around Moro Rock, a large granite dome in southern Sequoia National Park. The 

digital elevation map (Figure 3.1.2b) is provided for reference to the four proxies (Figure 

3.1.2c-f).  

This feature demonstrates many of the advantages to be gained by a more 

comprehensive index.  The transformed aspect image (Figure 3.1.2c) illustrates the 

difficulty in not including a measure of local slope in formulating a proxy. The dark 

streak across the center of the figure is the northeast face of Moro Rock. The equally dark 

region in the upper right is a low-relief valley that also has a slight northeast aspect. 

When slope is accounted for (Figure 3.1.2d), the dark streak in the upper right becomes a 

lighter shade of gray, giving a much better representation of the contrast in topographic 

orientation.  

The region depicted in Figure 3.1.2 lies in a region of the Park where the only 

major shading feature is Moro Rock. When topographic shading is considered (Figure 

3.1.2e), the area of low light on the northeast side of Moro Rock is widened. No other 

shading effects are observed. The biggest change in the picture occurs when daily solar 

track is included (Figure 3.1.2f). The darkness in the upper right corner disappears and 

the darkness in the lower center becomes considerably lighter. This change occurs 

because in the morning hours the sun is shining directly on some of these eastern-facing 

features for several hours. Morning sun is not captured by the other simple aspect 
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Figure 3.1.2. (A) Moro Rock is a large narrow granitic outcrop about 1.2 km long. The 
photo is from the west. The following maps are oriented towards the north. (B) DEM of 
the Moro Rock area is used to illustrate the differences between the radiation proxies 
draped over a severe terrain feature (high elevations are lighter). (C) Transformed aspect 
map (high radiation areas are lighter). (D) Transformed aspect modified by slope. (E) 
HILLSHADE with A = 225, S = 45. (F) Potential relative radiation (PRR). 
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 proxies, which are transformed along a NE-SW axis. By integrating across the entire 

day, the PRR index also highlights features that get continuous full sun with distinctive 

radiation signatures. For example, the white diagonal in the center of the picture is the 

ridgeline of Moro Rock. Also, the flat area in the upper middle of the image is readily 

identifiable in Figure 3.1.2f.  

To illustrate the amount of variation captured by the different DEM-based indices 

we compare them to the radiation figures generated by the Smith (2002) model for the 

175 plots scattered across the HJA watershed (Figure 3.1.3; Table 3.1.1). Many of the 

sites with the most negative transformed aspect have relatively high radiation according 

to the Smith model (Figure 3.1.3a). Adding the slope modification actually decreases the 

explanatory power of the model (Figure 3.1.3b). Arc/Info’s HILLSHADE function 

mirrors the assumptions from transformed aspect, adding the effects of shading by 

adjacent topography (Figure 3.1.3c). The HILLSHADE proxy simulates solar conditions 

at one point in time. The PRR proxy captures any potential shading that occurs 

throughout the course of the day and year (Figure 3d).  The index is highly correlated 

with radiation values obtained from the Smith model (Table 3.1.1).  

Correlations between the DEM-derived indices and the Smith model also were 

compared for 1000 points randomly sampled across the landscape (Table 3.1.2). PRR 

again is highly correlated with the modeled radiation. Transformed aspect does as good a 

job as HILLSHADE in predicting this larger dataset of radiation values.   
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Figure 3.1.3. Comparison of the different radiation proxies to the modeled radiation from 
the Smith model. (A) DEM-derived transformed aspect graphed against modeled 
radiation. (B) The effect of slope on relative radiation is added. (C) HILLSHADE adds 
topographic hillshading from a single point in time. (D) Potential relative radiation (PRR) 
accounts for topographic shading and integrates over different solar positions. 
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Table 3.1.1. Correlations between field- and DEM-derived proxies with the modeled 
radiation for 175 sample plots. 
 

    Radiation Model (r2)  P-value 
Transformed field aspect   0.06   0.001 
Transformed field aspect * sine slope  0.05   0.003 
Transformed DEM aspect    0.09   <0.0001 
Transformed DEM aspect* sine DEM slope 0.05   0.0002 
Hillshade     0.31   <0.0001 
PRR      0.54   <0.0001 
 

 

 

Table 3.1.2. Correlations between DEM-derived proxies with the modeled radiation for 
1000 random samples. 
 

    Radiation Model (r2)  P-value 
Transformed DEM aspect    0.20   <0.0001 
Transformed DEM aspect* sine DEM slope 0.14   <0.0001 
Hillshade     0.20   <0.0001 
PRR      0.59   <0.0001 
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 Field-derived measurements of transformed aspect and sloped-modified 

transformed aspect correspond poorly with the modeled radiation and the other radiation 

proxies.  They explain less than seven percent of the variation in the Smith-modeled 

radiation values (Table 3.1.1).  Correspondence between the field-based proxies and PRR 

are equally poor.  These low correlations underscore that field measures of many 

environmental variables, including slope and aspect, are taken at a very different scale 

than measures derived from a 30-m DEM and the two approaches can differ substantially 

in their final estimates.  

Discussion 

The two major methods for incorporating solar radiation information into 

vegetation analyses are radiation proxies and radiation models. Slope and aspect proxies 

require specific transformations and neglect temporal variation and local topographic 

shading. Computationally intensive techniques are easily capable of modeling radiation 

explicitly in complex terrain, but require extensive input data and also frequently neglect 

local topographic shading. Our calculation of potential relative radiation (PRR) accounts 

for both temporal variation and topographic shading by adjacent landforms and requires 

only digital elevation data and access to Arc/Info or similar GIS software. The method 

can be implemented for most study areas with only an afternoon’s time investment on a 

reasonably fast computer. We feel the index provides a good compromise between the 

simplicity of common radiation proxies and the complexity of more sophisticated models. 

It captures the dynamics important to radiation in mountainous terrain, but remains 

accessible to a wide user group. 
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Studies that explicitly model radiation in topographically heterogeneous areas 

regularly find radiation effects to be important correlates with vegetation pattern (Davis 

& Goetz 1990, Franklin 1998). Studies based on crude proxies such as aspect tend to be 

more variable in their conclusions (Parker 1995, Guisan et al. 1998, Donegan & Rebertus 

1999, Park 2001). Proxy variables continue to be used in vegetation analysis, however, 

because they are much easier to derive.  Slope and aspect can be obtained from digital 

terrain data, which is readily available for most study sites. We show that these proxies 

can correspond poorly with modeled radiation for sample sizes realistic of a rigorous 

field effort.  Given enough samples, transformed aspect predicts radiation as well as 

HILLSHADE (Table 3.1.2).  With smaller sample sizes, the differences might be 

considerable, particularly if many of the samples are in topographic shade as was the case 

for the 175 sample plots considered in this study (Table 3.1.1). 

The HILLSHADE and PRR indices, which also can be calculated easily from 

digital terrain data, provide a much better match to the modeled data for the field 

samples. Much of this increased correlation can be explained by the improved ability of 

these indices to account for topographic shading. Shadows from adjacent ridges produce 

areas that are considerably darker during certain hours of the day, and aspatial models 

that do not incorporate local topography can greatly overestimate radiation at these sites.  

Incorporation of these effects is only feasible using a GIS-based method. Because many 

more complicated radiation models are essentially aspatial with regards to topographic 

context, we expect PRR to provide a more accurate description of relative radiation 

differences than many of these models for topographically complex study areas. 

70 



It is important to reiterate that our method provides relative estimates only. We 

modeled the most predictable source of heterogeneity, direct-beam radiation with clear-

sky conditions and no diffuse-beam radiation. While this is not completely realistic, it 

approximates the most common growing season condition in the mountainous western 

US systems in which we work. We present our proxy as an upper bound of potential 

radiation differences. Radiation from diffused sources tends to attenuate the overall 

variability caused by topography, as overcast skies cast a reasonably uniform light across 

the entire landscape (Dubayah & Rich 1995).  

By focusing on relative radiation as derived from a measure of direct radiation 

only, we are able to greatly simplify our calculations and data needs. A major difficulty 

in predicting actual radiation is in accurately partitioning radiation between its direct and 

diffuse components. Radiation is affected from minute to minute by clouds and from day 

to day by weather patterns. Our approach completely ignores climatic fluctuations; 

therefore, we do not require the additional data needed to incorporate these fluctuations 

into a model. Because we consider only direct-beam radiation neither cloudiness nor the 

presence of aerosols as scattering agents are considered. We also ignore reflected 

radiation and the detailed algorithms that would be required to estimate this component in 

complex terrain. 

Finally, because our method is so reliant on DEM data, any inherent errors in the 

DEMs will cascade throughout the results. We did not employ DEM correction 

algorithms as they sometimes introduce as many errors as they remove (Dubayah 1994, 

Dubayah & Rich 1995) and we wanted to keep our method as simple as possible. We 
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advise that all DEMs be examined for apparent systematic errors and stress the 

importance of obtaining the best terrain data possible.  

Radiation is a fundamental influence on many ecological patterns. Current 

approaches to estimate radiation might be sufficient for some sites (e.g., areas of little 

topographic relief where topographic shading is not important), but they produce flawed 

estimates that might downplay the importance of radiation in many other environmental 

settings (Brown 1994). We developed our approach for use in forest community studies 

to respond to the following common data needs. (1) Our study areas encompass large 

landscapes in mountainous terrain, in which empirical measures of radiation are not 

available.  (2) In the complex terrain in which we work, we felt differences associated 

with topographic shading were important to include in our estimates of radiation. We also 

felt that it was important to represent the dynamic nature of radiation loads, which change 

over the course of the day and year.  (3) Because our requirements for vegetation analysis 

are less stringent then for atmospheric scientists, we did not desire to spend the effort to 

account for the comprehensive suite of factors used in solar radiation models such as 

attenuation by atmospheric transmittance or cloudiness. This is partially due to the scale 

of our study, and partially due to the fact that our analyses of vegetation distributions 

require only relative radiation values. We felt it was important that the estimates be 

readily calculable and the approach be accessible to a wide audience.  The resulting PRR 

index should provide a powerful tool for estimating fine-scale variability in radiation 

across large spatial extents. 
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CHAPTER 3.2 Spatial Estimation of Air Temperature 
Differences for Landscape-scale Studies in Montane 

Environments 
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Abstract 

Capturing fine-grain environmental patterns at landscape scales cannot be 

accomplished easily using conventional sampling techniques.  Yet increasingly, the 

landscape is the scale at which ecosystems are managed. Temperature variability is an 

important control of many ecological processes.  Elevation is often used as a proxy for 

temperature in montane ecosystems, partly because few direct measurements are 

available. We propose a low-cost and logistically practical approach to collecting 

spatially explicit temperature data using a network of portable temperature micro-loggers. 

These data can be used to generate simple, site-specific models for estimating 

temperature differences across complex terrain. We demonstrate the approach in a 

predominantly old-growth watershed in the Oregon Western Cascades.  Environmental 

lapse rates are generated for July mean, maximum and minimum temperatures.  

Temperature estimates are improved substantially over these lapse rate estimates by 

including measures of relative radiation and relative slope position as additional 

explanatory variables in the model. The development of temperature estimates that 

explicitly account for topography has important implications for ecological analysis, 

which frequently relies upon the simplifying assumptions associated with lapse rates in 

describing the environmental template. 

 

Keywords: H.J. Andrews Experimental Forest, lapse rate, old-growth forest, temperature 

modeling, terrain analysis 
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Introduction 

Efforts to describe vegetation patterns in montane systems historically have relied 

on elevation as an ecological “proxy” variable to represent complex environmental 

gradients (Whittaker 1978). While elevation is reasonably correlated with distributions of 

species, this indirect correlation is unsatisfying.  It has been understood for some time 

that variability in temperature and soil moisture is a major determinant of plant 

distributions (Whittaker 1967, Stephenson 1990).  Elevation is merely a convenient way 

of representing these environmental factors (Barry 1992).   Since the relationships among 

ecological variables likely will change with any changes in climate, it is important to 

develop more descriptive models of key ecological constraints such as temperature in 

order to model future ecological processes.   

Attaining data to develop these models is hampered by at least two logistical 

issues.  First, better models are needed at the landscape scale, because this is the level at 

which management decisions typically are made (Christensen et al. 1996, 2000).  

Describing complex environmental patterns at this scale can be extremely data intensive. 

Fine-grain studies are able to capture environmental variability explicitly (e.g., Yeakley 

et al. 1998, Chen et al. 1999), and much of this fine-scaled detail averages out at regional 

to global scales (e.g., general circulation models, Henderson-Sellers & McGuffie 1987, 

VEMAP 1995). At landscape scales, however, detailed environmental patterns cannot be 

ignored.  Novel sampling techniques often are required to capture fine-scaled detail over 

large spatial extents (Urban et al. 2002).  
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Second, obtaining sufficient data to calibrate and validate temperature models is 

frequently difficult in montane environments where weather-monitoring stations are 

sparse (Running et al. 1987, Yeakley et al. 1998). Weather stations tend to be at low 

elevations in watersheds and therefore tend to overestimate temperature across steep 

terrain (Phillips et al. 1992, Daly et al. 1994). Working in the southern Appalachian 

Mountains, Bolstad et al. (1998) suggested that spatially extrapolated estimates of 

temperature from a few low-elevation weather stations are consistently biased due to the 

inability to account for local topographic effects.  Extending the network of monitoring 

stations to account for these phenomena has been logistically and economically 

prohibitive (Chen et al. 1999). 

Local topography can modify substantially the relationship between elevation and 

temperature. Primary topoclimatic effects result from differences in hillslope angle and 

aspect (Barry 1992).  These effects are governed largely by the relationship of slope 

orientation to solar radiation.  In the northern hemisphere, north-facing slopes experience 

less radiation than south-facing slopes.  McCutchan and Fox (1986) showed that aspect 

differences can be even more important than elevation in controlling temperature.  

Bolstad et al. (1998) suggested that temperature maxima, in particular, are sensitive to 

topographic exposure. 

Secondary topoclimatic effects can result from the influence of terrain on 

mountain winds and the generation of airflow effects such as cold air drainage (Barry 

1992).  As a result, mountain valleys, midslopes, and ridges can be characterized by very 

different temperature regimes.  Evaporative cooling can further accentuate these 
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differences for riparian areas along valley bottoms.  While temperature maxima might be 

particularly sensitive to radiation differences, temperature minima might be more 

strongly influenced by relative slope position and mountain air currents (Bolstad et al. 

1998). 

In this analysis, we consider a nested series of temperature regression models.  

We begin with a simple elevation model, in which we collect data to develop a site-

specific lapse rate – a quantitative description of the decrease in temperature with 

increase in elevation.  This first model serves as an improvement over the generic 

environmental lapse rate of 6 oC per km elevation gain (Barry 1992).  We then consider 

more complicated models that include measures of relative radiation and relative slope 

position as additional potential explanatory variables.  We test the importance of each 

factor in explaining temperature means, minima, and maxima. 

Ecological predictions that rely upon the loose correlation between vegetation and 

temperature as proxied by elevation may be adequate for national and regional analyses, 

but they will not suffice at the landscape scale. The ultimate objective of our research is 

to isolate the fraction of the ubiquitous elevation gradient (Whittaker 1967, Kessell 1979, 

Stephenson 1998) that can be attributed to temperature. To do this effectively we must 

develop an efficient means of including fine-scale topographic effects in our temperature 

models.  This paper addresses the following specific objectives: 

1) To develop a site-specific lapse rate model of a mountainous study area. 

2) To test this model against increasingly complex models that include fine-scale 

topographic factors as potential explanatory variables. 
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3) To test hypotheses that radiation differences strongly influence temperature 

maxima and relative slope position influences temperature minima. 

4) To develop a simple approach to data collection and statistical analysis that 

could be applied in mountainous study areas to create site-specific 

temperature models with minimal investment in time and money. 

Methods 

Study area  

Located predominantly in old-growth forest of the Oregon Western Cascades 

(Figure 3.2.1), the H.J. Andrews Experimental Forest (HJA) is a Long Term Ecological 

Research (LTER) site covering 6400 ha and ranging in elevation from 410 m to 1630 m 

(McKee 1998). The HJA was established in 1948 within a forested watershed with about 

65 percent of the land in old-growth (i.e., 400-500 years old).  A preliminary vegetation 

survey of the site suggests that elevation is the primary correlate with community pattern. 

Pseudotsuga menziesii (Douglas-fir), Tsuga heterophylla (western hemlock), and Thuja 

plicata (western redcedar) are the dominant species at lower elevations in the forest, 

while Abies amabilis (Pacific silver fir), A. procera (noble fir), and Tsuga mertensiana 

(mountain hemlock) dominate upper elevations. Vegetation sampling in the HJA suggests 

a transition in forest community composition at elevations around 1200 m, consistent 

with trends found elsewhere in the Oregon Western Cascades (Dyrness et al. 1976, 

Franklin & Dyrness 1988). 
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Figure 3.2.1. Locator map for the H.J. Andrews Experimental Forest LTER. The study 
site is located on the west side of the Cascade Mountains approximately 80 km east of 
Eugene, Oregon. 

79 



As an LTER site, the HJA maintains an extensive database of meteorological data 

(Bierlmaier & McKee 1989). Climate is characteristic of the Pacific Northwest, with dry 

summers and wet, mild winters. Only about one-tenth of the annual precipitation falls 

from June to September in the Western Cascades (Daly et al. 1994).  At larger scale, 

Greenland (1994) has placed the climate of the HJA into a regional context based on 

monthly temperature and precipitation data.  Sea and Whitlock (1995) have reconstructed 

the vegetational and climatic history of the region and suggested that vegetation changes 

have been influenced heavily by changes in temperature over the past 14,000 years. 

Data 

Temperature measurements were recorded hourly using a sampling network of 

portable temperature micro-loggers (HOBO: Onset Computer Corporation).  The micro-

loggers were hung from trees at a height of 1.3 m above ground level.  Sensors were kept 

on the northwest side of trees to minimize exposure to direct radiation.  All 

measurements were taken in undisturbed, old-growth forest in an effort to control biotic 

variability, while varying only topographic factors.  Stand variation in stem density and 

total basal area was minimized.  Relative temperature differences, therefore, should be 

applicable across the old-growth components of the landscape.  While absolute 

temperatures may not reflect accurately temperatures experienced in tree canopies or by 

regeneration on the forest floor, relative differences should be scalable to the different 

vertical strata of old-growth forests.  

Data were gathered for the month of July over two successive years in 1999-2000.  

In examining the existing meteorological network at the HJA, Rosentrator (1994) 
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identified the late spring/early summer as the time of greatest temperature spatial and 

temporal variability.  Greene and Klopsch (1985) also choose July as a key month for 

developing their lapse rate models for Mount Rainier National Park in the Washington 

Cascade Range. 

Two year-long datalogger stations (CR10X: Campbell Scientific Incorporated) 

were linked to the temporary networks by placing micro-loggers at each of the permanent 

datalogger stations in both 1999 and 2000 (Figure 3.2.2).  The dataloggers recorded 

measurements from temperature probes (CS107: Campbell Scientific Incorporated), 

which also were located at 1.3 m above ground but protected in louvered radiation shields 

open to the environment.  These continuous records provide the potential of extending the 

July micro-logger trends over a longer time frame.  Measurements taken by the two 

sampling devices were highly correlated at both the high elevation (1292 m) and low 

elevation (642 m) locations (Figure 3.2.3). The micro-logger data were, on average, 0.2 

oC higher for the low elevation site and 0.3 oC higher for the high elevation site. 

Models were developed using data from 45 micro-loggers deployed over the 

summer of 2000. A stratified sampling design was used, whereby sample locations where 

stratified across elevation, aspect and relative slope position for each of seven major 

watersheds of the HJA determined by geographic information systems analysis  (Figure 

3.2.2A). These factors represent the predominant altitudinal and topoclimatic controls on 

temperature (Barry 1992). Aspect is associated with differences in relative radiation load, 

while relative slope position is associated with airflow effects such as cold air drainage. 

Additional data were available from 33 micro-loggers deployed across the watershed  
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A) 2000 

 
B) 1999 

 

Figure 3.2.2. A) Locations of 45 micro-loggers for July 2000. B) Locations of 33 micro-
logger locations for 1999. Larger circles represent locations of permanent CR10X 
stations. 
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Figure 3.2.3. Comparison of 1999 temperature data collected from micro-loggers with 
data collected from two CR10X dataloggers. The high elevation site was located at 1292 
m. The low elevation site was located at 642 m (n = 744 hourly measurements at each 
site).  
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over the summer of 1999 (Figure 3.2.2B). These data were used for validation purposes.  

The locations of the micro-loggers in 1999 overlapped with the 2000 locations only at the 

permanent CR10X datalogger stations and at the HJA’s primary meteorological station at 

the base of the watershed. 

Analysis 

The monthly average, daily minimum, and daily maximum temperatures were 

calculated for each location from the hourly measurements.  The 2000 data were used to 

compare a series of increasingly more complex regression models attempting to describe 

temperature differences across the watershed.  The models were nested so they could be 

compared by simple likelihood ratio tests (Sokal & Rohlf 1995).  Variables were added to 

the models in order of increasing explanatory power until additional variables no longer 

significantly improved the model.   

Each of the variables chosen as a candidate for the models was selected because 

of its potential influence on temperature.  Additionally, all of the variables could be 

derived easily from commonly available geographic information systems data (e.g., 

digital elevation model (DEM), streams coverage).  Besides elevation, we considered 

relative slope position, distance from stream (log transformed because the strength of the 

relationship decreases with distance), and a wide range of radiation proxies ranging from 

simple transformed aspect (Beers et al. 1966) to a potential relative radiation (PRR) 

measure developed from DEM data.  Chapter 3.1 describes the radiation proxies in detail.  

The PRR index, developed specifically for use in community level vegetation analysis, is 

a measure of how topography translates to spatial differences in relative radiation. It both 
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accounts for hillshading and shadowing effects and integrates over time to account for the 

fact that solar position changes over the course of the day and year.  

Once models were calibrated, they were confronted with the 1999 data as a 

validation exercise.  Models therefore were evaluated in terms of their ability to describe 

the 2000 data from which they were generated and their ability to predict temperature 

differences in the 1999 data attained from different sampling locations and a different 

year.  Using data from separate years for calibration and validation purposes was a 

practical decision.  By redeploying the same micro-loggers for a second time in order to 

gather sufficient data for model testing, we were able to reduce greatly the cost of the 

analysis. 

Results 

Model fits 

Mean July temperatures ranged from 12.9 to 17.6 oC at the 45 sites sampled in 

2000.  In order of increasing complexity, the three best models for predicting mean July 

temperature are as follows: 

  ŷ = β0 + β1 Elevation + ε     (eqn. 3.2.1) 

  ŷ = β0 + β1 Elevation + β2 log(dstrm) + ε   (eqn. 3.2.2) 

  ŷ = β0 + β1 Elevation + β2 log(dstrm) + β3 Radiation + ε (eqn. 3.2.3) 

where ŷ is the estimated mean temperature, β’s are constants, dstrm is the distance from 

the nearest stream in meters, Radiation is our DEM derived estimate of potential relative 
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radiation (PRR index), and ε is an error term.  Other variables considered do not improve 

the model fit. 

Elevation, which ranges from 433-1359 m, is the explanatory variable best able to 

explain the differences in mean temperature among the sites.  This case mimics a 

traditional lapse rate model where elevation can be viewed as the primary forcing 

variable in the system. Local effects, as captured by the distance from stream and 

radiation terms, are also important.  Model 2 is a significant improvement over Model 1 

(F-statistic = 39.79, P < 0.001).  Model 3 is able to describe the spatial variability in 

temperature slightly better than Model 2 (F-statistic = 3.80, P = 0.058). 

The spatial residuals from each of the three models are shown in Figure 3.2.4.  

Model 1, the elevation model, does a reasonable job of fitting the data, but with 19 of the 

45 points over- or underestimated by greater than 0.5 oC.  Adding distance to stream to 

the model reduces this number to 10.  In particular, the model fit is improved for many of 

the sites in the higher-elevation, eastern portion of the study area.  Adding radiation to the 

model further reduces to six the number of points over- or underestimated by greater than 

0.5 oC.  This factor seems to be more important to the lower-elevation, western portion of 

the watershed with more deeply incised stream channels. 

For daily maximum temperature, the simple lapse rate model is significantly 

improved upon by including radiation as an additional explanatory variable (Table 3.2.1).  

Relative slope position as measured by distance from stream has little effect.  
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Residuals from 
2000 fit (oC) 

 -1.5 - -1 
 -1 - -0.5 

  -0.5 – 0.5 
 0.5 - 1 

(from eqn. 3.2.3) (from eqn. 3.2.2) 

(from eqn. 3.2.1)

 

 

 
Figure 3.2.4. Maps of spatial residuals for the mean July temperature models.  Squares 
represent locations that were warmer than predicted by the models by at least 0.5 oC.  
Triangles represent locations that were cooler than predicted by the models by at least 0.5 
oC. 
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Table 3.2.1.  Monthly average, daily maximum and daily minimum temperatures were 
modeled for July 2000.  Variables were added to the models in order of increasing 
explanatory power until additional variables no longer significantly improved the model 
fit. 

 

 

 

 

 

 

 

 

 

 

Mean Temperature
R2 F-statistic p-value

 Model 1 = MeanTemp~Elevation 0.82 189.56 <0.001
 Model 2 = MeanTemp~Elevation+Log(dstrm) 0.90 36.79 <0.001
 Model 3 = MeanTemp~Elevation+Log(dstrm)+Radiation 0.91 3.80 0.058

Daily Maximum Temperature
R2 F-statistic p-value

 Model 1 = MaxTemp~Elevation 0.41 30.30 <0.001
 Model 2 = MaxTemp~Elevation+Radiation 0.48 5.74 0.020
 Model 3 = MaxTemp~Elevation+Radiation+Log(dstrm) 0.49 0.13 0.725

Daily Minimum Temperature
R2 F-statistic p-value

 Model 1 = MinTemp~Elevation 0.58 59.98 <0.001
 Model 2 = MinTemp~Elevation+Log(dstrm) 0.67 11.77 0.001
 Model 3 = MinTemp~Elevation+Log(dstrm)+Radiation 0.67 0.002 0.965
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In contrast, distance from stream is more important than any of the radiation 

proxies in explaining variability in daily minimum temperature (Table 3.2.1).  The 

combination of distance from stream and elevation provides the most parsimonious 

model.  Radiation differences have little effect on minimum temperatures. 

Model validations   

The model validations confirm that mean temperature can be better described 

using a combination of elevation and fine-scale environmental variables than it can by 

using elevation alone.  An analysis of the bias and spread of the predictions can be made 

by graphing the predicted against the observed values (Figure 3.2.5).  The one-to-one line 

on this graph represents a perfect fit of the data to the model.  Points above this line were 

warmer than predicted by the model; points below this line were cooler than predicted by 

the model.  The scatter of points around the one-to-one line represents the spread of the 

error.  Although there is not a systematic bias in any of the models, the spread is reduced 

in the more detailed models (Mean Square Error of the predictions (MSE) = 0.66 for 

elevation alone vs. MSE = 0.44 and 0.45 for the other two models). 

Discussion 

It has been argued that temperature is the single most important component of 

mountain climate (e.g., Barry 1992).  Detailed temperature data certainly are required to 

understand plant community dynamics.  Among the long list of ecological processes 

influenced by temperature are photosynthesis, evapotranspiration, respiration, carbon 

fixation and decomposition (Running et al. 1987, Bolstad et al. 1998).  Potential  
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Figure 3.2.5.  Comparison of the ability of the models calibrated with 2000 data to 
explain relative differences in 1999 temperatures.  Predictions that match observations 
exactly would be on the one-to-one line. 
 

 

 

90 



applications of improved temperature estimates covering a variety of spatial scales 

include studies of global climate change, global vegetation dynamics, regional hydrologic 

balances, and local photosynthesis and transpiration capabilities (Running et al. 1987, 

Miller & Urban 1999).  But it is at the landscape scale that our current climate models are 

particularly insufficient (Chen et al. 1999).  With the growing popularity of geographic 

information systems, the demand for regularly distributed meteorological information is 

likely only to increase (Daly et al. 1994). 

Unfortunately, the data typically do not exist to develop detailed temperature 

models in montane study areas.  For most systems, available data are limited to a small 

number of base station measurements. Further, these base stations are typically situated at 

locations that are not representative of the landscape as a whole (Phillips et al. 1992).  

The use of inexpensive, portable micro-loggers allowed us to collect data and model 

temperature over a large spatial coverage given practical economic, time and human 

resource constraints.   

Although more expensive recording devices are available, we found the relatively 

low-end micro-loggers to be sufficient for our purposes.  Agreement between micro-

logger and permanent datalogger measurements were good, although the micro-loggers 

showed a slight tendency to heat up more slowly in the morning and retain heat longer 

into the afternoon and evening. This observed lag was likely due to differences in the 

weatherproofing of the sensors rather than any differences between the recording 

equipment.  The plastic weatherproofing containers holding the micro-loggers may have 

created a slight greenhouse effect around the sensors.  For a small increase in cost, 
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weatherproof micro-loggers could be purchased, thus removing the need for the plastic 

containers.  Protective containers also could be designed that are partially open to the 

atmosphere and would experience less of a greenhouse effect.  Since we observed 

primarily a slight lag in the timing of temperature changes and little difference between 

the mean, daily maximum or daily minimum measurements, we do not feel that the use of 

the weatherproof containers substantially influenced our results. 

Use of the micro-loggers allowed us to generate site-specific lapse rates for July 

temperature means, maxima, and minima across the HJA.  The mean temperature lapse 

rate (4.5 oC/km) and maximum temperature lapse rate (7.0 oC/km) are similar to the 

generic environmental lapse rate of 6 oC/km.  Given that our study area covers little more 

than a km of elevation change, the equations differ in their predictions by no more than 1-

2 oC.  The influence of elevation on temperature minima, however, is less severe (3.8 

oC/km).  The finding of a lower lapse rate for temperature minima than for other 

measures of temperature is in agreement with others who have examined these 

relationships at a much larger spatial scale for the northwestern US (Thornton et al. 

1997). 

The results of our analysis suggest that temperature estimates that consider 

additional fine-scale topographic variability describe temperature more accurately for our 

study area than do estimates derived from simple lapse rate models.  The lapse rate 

approach completely ignores local effects associated with differences in aspect and 

relative slope position.  As shown here, these factors can have measurable effects on 

temperature.  Our results are consistent with others who found daily minima to be 
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influenced heavily by relative slope position and daily maxima to be more affected by 

topographic exposure (Bolstad et al. 1998).  Both types of effects influence mean 

temperatures. 

It is important to emphasize that the results presented in this analysis are 

applicable to only a very narrow range of conditions.  As with any statistical model, these 

models should not be extrapolated beyond the range of conditions specified by the input 

data.  These include the topographic and climatic conditions of the study area, the timing 

of the sampling in mid-summer, and the stand structure of old-growth forest.  Further, the 

absolute temperatures derived from measurements taken at 1.3 m above ground may not 

be the values most directly relevant to tree growth or reproductive success, but the 

relative temperature differences between different locations within the landscape should 

be robust across different vertical strata.  For many ecological applications, it is these 

relative differences that are of primary interest.  For example, we developed these models 

to help explain transitions in community composition for old-growth forests of the HJA.  

These transitions are more strongly correlated with our model predictions of relative July 

temperature differences than any single temperature “proxy” variable (e.g., elevation, 

slope, aspect; Chapter 4). 

Though the results themselves may have limits on their applicability, the approach 

is widely applicable.  The sensors are relatively inexpensive and minimal labor is 

involved in deploying and downloading data.  With some attention paid to sample design 

a priori, statistical analysis and model generation should follow easily.  We have applied 
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the techniques described in this paper to other study sites with success (e.g., Kaweah 

Basin of Sequoia National Park).  

Since temperature is such an important component of mountain climate, we 

suggest that developing a simple geographic model of temperature differences should be 

an important first-step in many landscape-scale ecological studies.  Our approach offers 

an economic means of quickly assessing spatial temperature trends for topographically 

complex environments.   
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Abstract 

Landscape-level spatial estimates of soil water content are critical to 

understanding ecological processes and predicting watershed response to environmental 

change. Moisture patterns are shaped by the balance between water supply and demand.  

Because these influences are highly variable at the landscape scale, most meteorological 

datasets are not detailed enough to capture the variability in the water balance. We 

propose a tactical approach to gather high-resolution field data for use in soil moisture 

models.  Specifically, we (1) describe general soil moisture trends for a watershed in the 

Oregon Western Cascades, (2) use this description to identify environmental variables to 

stratify across in collecting data for a statistical explanatory model of summer soil 

moisture spatial pattern, and (3) examine the spatial scale of variability in soil moisture 

measurements and compare this scale with the characteristic scales at which potential 

moisture influences vary.  Although none of the individual explanatory variables mimic 

exactly the complex scaling pattern of the moisture measurements, by combining factors 

in the regression model we are able to reproduce observed moisture patterns.  The model 

incorporates both macroscale (climate) and mesoscale (topographic drainage and 

radiation) influences on the water balance.  We use the regression model to extrapolate 

estimates of relative soil moisture across the watershed for the beginning of the dry 

growing season. 

 

Keywords: gravimetric and volumetric soil moisture content, H.J. Andrews Experimental 

Forest, landscape-scale, regression, semivariance analysis, spatial variability 
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Introduction 

Improved spatial estimates of soil water content as a basic environmental resource 

are urgently needed to predict vegetation responses to potential climate change (Pastor & 

Post 1988, Stephenson 1990).  Soil moisture levels influence such fundamental 

ecological processes as photosynthesis, respiration, and nutrient uptake (Band et al. 

1993).  Moisture acts as a primary constraint on forest productivity (Vertessy et al. 1996), 

affects species composition (Stephenson 1998), and plays a major role in determining 

forest flammability and fire regime (Clark 1990; Miller & Urban 1999, 2000).  It 

influences erosion (Moore et al. 1988), pedogenesis (Jenny 1980), geomorphology 

(Beven & Kirkby 1993), and controls infiltration-runoff partitioning in response to 

precipitation events (Grayson et al. 1997).  For these reasons, spatial explorations of soil 

water are critical to understanding and predicting ecological processes at the watershed 

level. 

Soil moisture is highly variable in time and space.  A major challenge for 

hydrology and ecology is the estimation of the temporal and spatial distribution of 

moisture at the catchment scale (Crave & Gascuel-Odoux 1997).  In time, seasonal 

climatic patterns influence rates of precipitation, evaporation and soil water uptake by 

vegetation (D’Odorico et al. 2000, Mackay & Band 1997).  Grayson et al. (1997) 

describe two distinct states in soil moisture patterns for seasonal watersheds in Australia: 

one for the wet season when nonlocal controls (terrain) dominate and the other for the dry 

season when local controls (soils, vegetation, radiation) are more important. Yeakley et 

al. (1998) also describe two distinct states in soil moisture, though they credit a different 
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seasonal mix of local and nonlocal controls. They collected soil moisture content 

measurements along a hillslope gradient at the Coweeta Hydrologic Laboratory in the 

southern Appalachian Mountains of western North Carolina. In this watershed, drainage 

(terrain) was particularly important in controlling moisture levels in upper soils, and in 

deeper soils during periods of drought.  Storage properties (soils) seemed to control 

moisture content in lower horizons during watershed recharge.  An important conclusion 

of the Yeakley work that we test in our analysis is that shallow and deep soils can have 

very different hydrologic controls. 

For a given point in time, the spatial distribution of soil water is determined by 

the balance between water supply and demand (Stephenson 1990, 1998).  Demand is 

influenced by relative radiation load (related to slope and aspect) and temperature (related 

to elevation).  In the northern hemisphere, south-facing slopes receive more insolation 

than north-facing slope.  This relationship is modified by latitude, which determines the 

solar angle; local slope, which affects the incident angle; and landscape context, which 

can create topographic shading (Chapter 3.1, Dubayah & Rich 1995).  Cloud cover also 

can reduce solar radiation (Nikolav & Zeller 1992).  Temperature differences are 

traditionally estimated using lapse rates, simple regression equations that describe how 

air cools as it moves uphill (Barry 1992).  The relationship between temperature and 

elevation is similarly confounded by primary (e.g., hillslope angle and aspect) and 

secondary (e.g., cold air drainage and evaporative cooling) topoclimatic effects (Chapter 

3.2, Lookingbill & Urban 2003).  
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Supply is determined by water inputs and storage.  Inputs are influenced by 

precipitation (elevation) and drainage (relative slope position).  Storage is influenced by 

soil water holding capacity (soil depth and texture). As air rises in altitude, density and 

temperature decrease, resulting in a decreased capacity for water storage and increases in 

precipitation (Barry 1992). At higher elevations, this precipitation falls in the form of 

snow during the winter months, and snowmelt can act as an additional input when 

temperatures rise in the summer (Running et al. 1987). Drainage moves water from 

upslope to downslope positions. In terms of inputs, therefore, precipitation generally 

increases with elevation while hillslope drainage results in soil water decreasing with 

local elevation. In terms of storage, volumetric water-holding capacity varies with soil 

texture and depth (Brady & Weil 1999). In general, soils with high clay content have 

higher moisture content than sandy soils in similar environments. For a given soil type, 

the greater the soil depth, the greater the potential for storing water. Several studies have 

found that soil storage properties can be at least as important as topographic variables in 

dictating soil water distributions (Helvey et al. 1972, Boyer et al. 1990).   

These underlying influences to the soil water balance vary at different 

characteristic spatial scales.  For example, temperature and precipitation influence soil 

moisture at regional scales, while topographic drainage and soil water storage are 

important at more local scales (Neilson 1991).  Generally, the environmental factors that 

govern soil moisture act at three different spatial scales (Urban et al. 2000): climate 

(macroscale), topography (mesoscale), and soil depth and texture (microscale). As for the 

common physical surrogates for the water balance, elevation typically varies along large-
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scale hillslope gradients in mountain watersheds.  Drainage indices, such as the 

topographic convergence index (TCI; Beven & Kirkby 1979) and the terrain relative 

moisture index (TRMI; Parker 1982), are designed to capture local topography.  In this 

analysis, we investigate patterns of soil moisture at multiple scales in a montane 

ecosystem and try to discern how these patterns can be reproduced by a composite of 

physical factors.  

Several shortcomings hamper the use of existing climate datasets in modeling 

ecological response to such things as global climate change scenarios (Cramer et al. 

1999). Available data are usually sparsely (and often irregularly) sampled, necessitating 

some form of interpolation to smooth across gaps.  Common smoothing techniques are 

not appropriate when it is important to represent the variability between point 

measurements.  Although techniques do exist for modeling unmeasured variance (e.g., 

Richardson's (1981) weather generator algorithm), the data required to parameterize these 

models are often difficult to collect (Cramer et al. 1999). It is important to capture 

variability at the landscape scale and finer, because these are the scales at which the 

supply and demand components, and consequently the entire water balance, vary. These 

are also the scales that are most relevant to ecosystem management (Christensen et al. 

1996).  

In this study, we examine the summer soil moisture regime of the H.J. Andrews 

Forest, an experimental watershed in the Oregon Western Cascades.  The goal is not to 

exhaustively characterize the complex temporal dynamics of this highly seasonal system, 

but instead to develop an estimate of spatial differences in soil moisture during the peak 
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of the summer growing season. The need for such information grew out of our landscape-

scale vegetation studies of these forests.  We begin with a cursory examination of the 

general spatial and temporal trends in soil moisture during the period of summer draw 

down.  We next develop a statistical model for combining potential explanatory variables.  

We then examine the spatial scale of variability in soil moisture measurements and 

compare this scale with the characteristic scales at which potential moisture influences 

vary in the study area. Finally, we map the spatially implicit model back onto the 

landscape to give a spatial representation of soil moisture that can be tested with future 

samples. 

Methods 

Study area  

The H.J. Andrews Experimental Forest (HJA) is located on the west slope of the 

Cascade Mountains (Figure 3.3.1).  It is comprised of the Lookout Creek watershed, 80 

km east of Eugene, Oregon. The Long Term Ecological Research (LTER) site covers 

6400 ha and ranges in elevation from 410 m to 1630 m (McKee 1998).  At the time of its 

establishment in 1948, the HJA was an intact forest with about 65 percent of the land in 

old-growth (i.e., 400-500 years old).  Since that time, old-growth forest has been reduced 

to roughly 40 percent of the total area due to logging activities.   

As an LTER site, the HJA maintains an extensive database of meteorological 

data. Climate is characteristic of the Pacific Northwest, with dry summers and wet 

winters. Annual precipitation ranges from 2200 mm at the watershed base to 3400 mm at  
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Figure 3.3.1. Locator map for the H.J. Andrews Experimental Forest LTER. The study 
site is located on the west side of the Cascade Mountains approximately 80 km east of 
Eugene, Oregon.  
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upper elevations, with less than 300 mm normally falling during the growing season 

(Grier & Logan 1977). Soils are mostly deep, well-drained Inceptisols.  Rooting occurs 

almost entirely in the upper 200 cm of soil. Textures range from gravelly, silty clay loam 

to very gravelly, clay loam. Lower-elevation soils are older than upper-elevation soils, 

dating back to the Oligocene-lower Miocene.  Upper-elevation soils are comprised of 

younger andesite lava flows and High Cascade rocks. 

Topographic position is an important control on vegetation in this region (Zobel et 

al. 1976). Pseudotsuga menziesii (Douglas fir), Tsuga heterophylla (western hemlock), 

and Thuja plicata (western redcedar) are the dominant species at lower elevations. Abies 

amabilis (Pacific silver fir), Abies procera (noble fir), and Tsuga mertensiana (mountain 

hemlock) dominate upper elevations (Franklin & Dyrness 1988).  Ohmann and Spies 

(1998) suggest that elevation and associated macroclimate are the major correlates with 

regional patterns of forest community composition throughout Oregon. 

Exploratory studies 

In an initial effort to better understand the general dynamics of the watershed, we 

installed a network of three permanent datalogger stations in 1999.  The three stations 

were located at low, mid and high elevation sites within the HJA (Figure 3.3.2; Table 

3.3.1). Two sampling stations were located in the T. heterophylla zone at low elevation.  

The third was located in the A. amabilis zone.  All sites were installed on southwest-

facing slopes.   

Time domain reflectometry (TDR) units were run from each datalogger to three 

locations along a hillslope gradient (Table 3.3.1).  At each location, we took 
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Figure 3.3.2. Map of soil moisture sample locations.  Boxes identify small watersheds 
containing permanent dataloggers  and from which samples for regression analysis were 
collected.  Points represent 60 20x20-m plots used for semivariance analysis.  Underlying 
image is a digital elevation model in which higher elevation areas are lighter in color. 
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Table 3.3.1. Environmental statistics for permanent meteorological stations established in 
1999. A surface soil (0-20 cm) and a deep soil (80-100 cm) sensor were located at each 
location. 

  Site 
Average 

Upper Slope TDR 
Location 

Mid Slope TDR 
Location 

Down Slope TDR 
Location 

Elevation (m)     
 MetHigh 1288 1299 1287 1278 
 MetMid 887 899 887 876 
 MetLow 642 652 643 632 

Aspect (o)     
 MetHigh 227 220 234 228 
 MetMid 236 231 241 235 
 MetLow 225 220 240 214 

Slope (o)      
 MetHigh 28 26 28 29 
 MetMid 34 36 29 36 
 MetLow 29 22 30 35 
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continuous measurements at two depths (0-20 cm and 80-100 cm). TDR determines soil 

moisture content by measuring the travel velocity of electromagnetic waves as they pass 

through the soil (Herkelrath et al. 1991).  The velocity of the waves is strongly correlated 

with the soil water content.  The probes were oriented along hillslope gradients of 

approximately 20 m in relief.  Over the summer 1999, data were collected every 60 

seconds from these units and hourly statistics (average, maximum and minimum) were 

stored in dataloggers (CR10X, Campbell Scientific Incorporated). 

From this exploratory study, we hoped to capture the temporal pattern of soil 

moisture drawdown during the dry summer growing season.  This information would be 

used to guide the timing of future synoptic sampling.  We also hoped to identify primary 

physical constraints on the watershed moisture regime.  Additional sampling would 

stratify across these variables. The data from these stations were meant to represent the 

amount of baseline data typically available for montane study sites.  In fact, these three 

stations probably overestimate the amount of available data for most watersheds.  

To help identify potentially important variables to stratify across in later 

sampling, we collected two small synoptic samples of gravimetric moisture during 

summer 1999.  These samples covered a much larger spatial area than the three TDR 

stations. Soil samples were collected from 30 (1x1 m) plots spread across the entire HJA, 

once on July 22 and once on August 12, six days after the largest rainstorm of the 

summer season. Samples from the top 0-20 cm of soil were weighed wet, oven dried, 

then weighed again to provide gravimetric moisture estimates. 
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Empirical model 

On July 4 2001, we collected one-time synoptic moisture measurements to build a 

simple regression model that would capture important components of the water balance 

in a statistical relationship.  Measurements were taken using handheld reflectometers 

(Hydrosense, Campbell Scientific Incorporated).  These portable sensors allowed us to 

collect measurements of soil moisture rapidly over a large area.  They offer two major 

advantages over the gravimetric method of sampling.  First, measurements are provided 

instantaneously in the field.  Samples need not be brought back to the lab for weighing, 

drying and reweighing.  Consequently it is easier to collect larger sample sizes.  Second, 

soil moisture is provided on a volumetric rather than mass basis.  Although relative 

differences should be similar for similar soil types using the two different measures 

(Figure 3.3.3), variation in soil bulk density will affect greatly gravimetric results. 

The sample design met two objectives: (1) it stratified across variables deemed as 

potentially important to the water balance in the exploratory analyses and (2) it covered a 

range of spatial scales.  At each of the permanent datalogger stations we extended the 

spatial network of data points up and down the hillslopes and to different slope-aspect 

combinations within the local watersheds.  Samples were taken along short transects (no 

more than 110 m) with a separation distance of 5-10 m between samples.  Each sample 

represented the average of three measurements taken within 1 m2.  Measurements 

integrated over the top 0-20 cm of soil. A total of 79 samples were taken: 19 at low 

elevation, 31 at mid elevation and 29 at high elevation.  An additional nine samples were 

added to the analysis from the permanent datalogger stations at the center of each of the  
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Figure 3.3.3.  Comparison of surface soil gravimetric samples to volumetric samples 
taken from the same locations, three each at the low, mid, and high elevation small 
watersheds. 

 

Table 3.3.2. Potential predictor variables for empirical moisture models. 
 

Variable Definition Comment 
Temperature and Precipitation Proxy  
 Elev elevation (m) relationship commonly represented via lapse rates 

(Running et al. 1987, Daly et al. 1994) 
Drainage Proxies 
 Slope hillslope angle (o) steep slopes drain quicker than shallow slopes 
 Dstrm distance to stream (m) water drains towards stream channels 
 RSP relative slope position  high values: ridges; low values: valleys 
 TCI topographic convergence index  

(ln (a/tanβ) 
high values: convergent; low values: well drained 
(Beven & Kirkby 1979; Moore et al. 1991) 

Evaporative Demand Proxies 
 TAsp transformed aspect  

(-1 * cos(α – 45)) 
varies from –1 for NE facing slopes to 1 for SW 
facing slopes (Beers et al. 1966, Urban et al. 2000)

 TASL slope-corrected transformed aspect
(-1 * cos(α – 45) * sin(s)) 

values increased for steep SW facing slopes and 
decreased for steep NE facing slopes 

 HS hillshade 
(255 [cos(S) sin(s) cos(α-A) + 
sin(S) cos(s)] ) 

corrects for local topographic features;  
solar azimuth set to 225 degrees and solar 
inclination set to 45 degrees (ESRI 1994) 

 PRR potential relative radiation  
ΣΣ (monthly, hourly HS) 

integrates solar azimuth and inclination over the 
course of the day and entire summer 
(Chapter 3.1) 
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three sampling areas.  For a small subset of the locations we dug pits 80 cm deep in order 

to sample moisture at 80-100 cm in depth.   The time required to create suitable pits in 

rocky soil constrained our sampling considerably and the interpretation of the deep soil 

model should be tempered by this limited sample size.  From these data, we developed a 

set of regressions to describe deep (n=16) and shallow (n = 88) soil water trends. 

Forward stepwise regression analysis (Sokal & Rohlf 1995) was used to select the 

most important variables to explain the observed trends in moisture. Each of the variables 

chosen as a candidate for the models was selected because of its potential influence on 

soil moisture (Table 3.3.2).  Additionally, we considered only variables that could be 

derived easily from commonly available geographic information systems (GIS) data.  

These restrictions allowed us to map the results back into geographic space.  

Unfortunately, it precluded the use of field measurements such as canopy cover and soil 

properties in the model. Soil spatial information is generally the least known of the land 

surface attributes (Band & Moore 1995), and reliable, landscape-scale soils estimates 

were not available for our study area at the fine-scale resolution needed to capture the 

variability in this attribute. Variables considered for the model include elevation, slope, 

distance from stream, relative slope position, and a topographic convergence index 

calculated according to the formula:  

TCI = ln(a/tanβ)    (eqn. 3.3.1) 

where a is the upslope contributing area and β is the local slope angle (Beven & Kirkby 

1979).   
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We also examined a wide variety of radiation proxies ranging from simple 

transformed aspect (Beers et al. 1966) to a potential relative radiation (PRR) measure 

developed from a digital elevation model (DEM). Chapter 3.1 describes the radiation 

proxies in detail.  The PRR index, developed specifically for use in community level 

vegetation analysis, is a measure of how topography translates to spatial differences in 

relative radiation.  

PRR = ΣΣ (monthly, hourly hillshade (HS))    (eqn. 3.3.2) 

HS = 255 [cos(S) sin(s) cos(α-A) + sin(S) cos(s)]    (eqn. 3.3.3) 

 

where S is the solar inclination, s is the local slope, A is the solar azimuth and α is the 

azimuth of the slope facet. PRR both accounts for hillshading effects and integrates over 

time to account for the fact that solar position changes over the course of the day and 

year.  For this analysis, we integrated PRR over the entire summer growing season. 

Spatial scale of variability 

In July 2002, we collected 540 field measurements of volumetric soil moisture to 

test whether our moisture model was able to reproduce the spatial scaling of the water 

balance (Figure 3.3.2).  The synoptic measurements were spread across the landscape in 

60 20x20 m plots, covering a range of separation distances from 10’s to 1,000’s of m.  

Three 2x2 m quadrats were located randomly within each 20x20 m plot and three 

randomly located measurements were taken within each quadrat.  The variance of the 

nine plot measurements increased slightly with the mean soil moisture content for the 60 
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plots (r2 = 0.15, P = 0.002). We assessed the characteristic scaling of this dataset through 

semivariance analysis (Legendre and Fortin 1989) with 250 m lag distance intervals 

(resulting in 70 to over 200 plot pairs per distance interval) and 5 km set as the largest lag 

distance (i.e., one-half the smallest dimension of the study area).  

Semivariograms are a central tool in geostatistics and are an effective means of 

describing soil moisture spatial scaling (Western et al. 1998). The features of note in a 

variogram are the sill (value at which semivariance asymptotes), range (the lag distance 

at which the sill is reached), and nugget (the Y-intercept, reflecting variation finer-scaled 

than the minimum lag distance).  We normalized the semivariance by simple variance for 

each of the variograms in order to compare trends in variance across variables (Urban et 

al. 2000). 

We compared the characteristic scaling of measured soil moisture with that of 

factors highlighted as potentially important to the water regime in the earlier analyses.  

These included: (1) elevation as an indicator of temperature and precipitation variability; 

(2) TCI, slope, and Dstrm as topographic measures of drainage and relative slope 

position; and (3) PRR, HS, and TAspect as measures of radiation (see Table 3.3.2 for 

definitions of each of the variables). We also examined potentially fine-scale variables 

that were not included in the regression analysis because they were not available as 

digital coverages for the entire watershed.  Specifically, we investigated the characteristic 

scaling of: (1) soil depth as a measure of water storage and (2) canopy cover as a 

modifier of radiation.  Thus we analyzed the scaling of both supply terms (precipitation, 
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drainage and storage) and demand terms (temperature and radiation) of the water balance 

equation.   

Data on these terrain, biotic, and edaphic factors were obtained from the same 60 

(20x20 m) plots spread across the HJA landscape.  We sampled the terrain-based 

variables using a 10-m resolution DEM of the HJA. Canopy measurements were taken in 

the four cardinal directions at each 2x2 m plot.  Soil depth was sampled three times and 

averaged for each 2x2 m plot.  

Results 

Comparison among permanent TDR sites 

Moisture levels were consistently greater for the TDR probes at the high elevation 

site than the two lower-elevation sites (Table 3.3.3; Figure 3.3.4).  The deep soil, in 

particular, was much wetter at the upper-elevation site.   

Precipitation throughfall increased with elevation, reaching its maximum at the 

high elevation site (Table 3.3.3; Figure 3.3.4).  All three of the sites experienced an 

average of less than 3.5mm of throughfall/day over the three-month period of study, 

typical for this dry summer system.  Figure 3.3.4 illustrates the strong recharge effect of 

storm events at the low and mid elevation sites.  Recharge was not as great at the high 

elevation site, which had higher pre-storm moisture levels due, at least in part, to greater 

levels of storage in winter snowpack. 
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Table 3.3.3. Summary of permanent meteorological station data for the July-September 
1999. 
 

  Temperature 
(oC) 

Soil Moisture  
(volumetric % water) 

Throughfall 
(cm/hr) 

  Air  Soil  Upper Slope Mid Slope Down Slope  
    0-20cm 80-100cm 0-20cm 80-100 m 0-20cm 80-100cm  

Mean          
 MetHigh 15.2 11.0 11.2 26.2 26.7 26.7 19.9 42.2 0.015 
 MetMid 15.9 12.7 4.0 8.9 9.5 18.8 8.3 21.0 0.012 
 MetLow 17.6 15.3 12.4 6.4 7.5 9.8 11.0 16.8 0.010 
           

Minimum          
 MetHigh 1.3 8.0 7.0 22.3 22.9 25.9 11.7 34.4 0 
 MetMid 1.2 10.1 2.4 7.7 5.8 14.2 6.2 11.3 0 
 MetLow 1.2 12.7 10.7 6.1 6.1 8.1 9.2 15.2 0 
           

Maximum          
 MetHigh 27.4 14.1 21.2 28.2 33.9 32.0 35.5 49.1 4.1 
 MetMid 29.9 15.5 6.8 12.3 20.6 22.6 12.8 43.7 2.3 
 MetLow 32.7 17.9 13.8 7.0 13.6 11.0 22.2 19.5 2.9 
           

Standard Deviation 
 MetHigh 5.3 1.3 2.8 1.5 1.9 0.5 4.2 2.1 17.0 
 MetMid 5.3 1.1 1.0 0.7 2.4 2.3 1.6 6.3 11.8 
 MetLow 5.9 1.0 0.7 0.2 1.2 0.8 1.8 1.4 10.8 
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igure 3.3.4. Soil moisture levels for the permanent TDR sites for the summer 1999.  
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Sensors were placed along a hillslope gradient (upper slope, mid slope and downslope
each site (high, mid and low elevation). Surface soil measurements are from the top 20 
cm of soil; deep soil measurements are from 80-100 cm. Droplines represent throughfall
during precipitation events. 
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Comparison within permanent TDR sites 

The average moisture level recorded by the deep soil probes increased from 

upslope to downslope position within all three sites.  The three downslope probes had 

moisture levels 160 to 260 percent greater than the upslope probes (Table 3.3.3).  

Differences were less consistent for the surface soil measurements.  For eight of the nine 

locations, the temporal variability at the surface soil sensor was greater than the 

variability at its corresponding deep soil sensor.  Temporal variability also was greater at 

downslope positions than upslope positions (Table 3.3.3).  Because there were a few 

occasions where the rank order of the wettest to driest probes changed as the soils 

became desiccated, we decided to conduct future synoptic sampling as early into the 

summer, dry season as possible (i.e., the beginning of July).  Again, we were interested in 

modeling the spatial distribution of soil moisture primarily for use in vegetation analysis. 

Early summer represented the period of maximum tree growth.  Later in the summer, 

growth declines, as the system becomes moisture limited.  Practical concerns also were 

considered in choosing the time period for future sampling.  Under increasing drought, 

local controls dominate and terrain influences, which can be easily incorporated in 

landscape-scale models, are overwhelmed by fine-scale influences (e.g., soil variability), 

which are less easily incorporated in landscape-scale models. 

The permanent TDR data also emphasized the importance of stratifying across 

elevation and hillslope position.  These associations were examined further through the 

gravimetric sampling. 
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Gravimetric sampling 

A similar increase in moisture with elevation was observed in the gravimetric 

samples (Figure 3.3.5).  Moisture levels were higher in August than July because of the 

August 5-6 rain event.  The importance of elevation as an explanatory variable decreased 

from July (r2 = 0.60, F-statistic = 30.1, P < 0.001) to August (r2 = 0.31, F-statistic = 8.8, 

P = 0.008). After accounting for elevation differences, summer radiation was highlighted 

as a potential explanatory variable.  We, therefore, made certain to stratify across 

elevation, hillslope position (highlighted in the permanent TDR data analysis), and aspect 

(highlighted in the gravimetric moisture analysis) in sampling for our empirical model.  

Empirical model 

According to the regression analyses of the volumetric samples, factors important 

to deep soil and surface soil moisture patterns are similar but have some important 

differences (Table 3.3.4).  Deep soil moisture was correlated with elevation (r2 = 0.19) 

and slope  (r2 = 0.21).  The model for surface soils was slightly more complicated.  Local 

hillslope/drainage factors (distance from stream) and elevation also were important (r2 = 

0.19 and 0.21, respectively), but radiation differences were much more significant than 

they were for deep soils (r2 = 0.08). Sites with a high solar exposure had significantly 

drier surface soils than more shaded sites.  

The residuals from the surface soil model were normally distributed with a slight 

skew towards under-predicting values at the wet end of the spectrum (Figure 3.3.6).  The 
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Figure 3.3.5.  Gravimetric moisture as a function of elevation for August and July 1999 
samples.  The August sampling was preceded by a two-day rain event the previous week. 
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Table 3.3.4. Regression statistics for July 4, 2001 empirical moisture models. 
 

  R2 F-Statistic Pr(F) N 
       Surface Soil Moisture (0-20cm) 
ŷ = β0 -β1Dstrm+β2Elev-β3PRR 0.48 25.46 < 0.0001 88 
       Deep Soil Moisture (80-100cm) 
ŷ = β0 -β1Slope+β2Elev 0.40 4.30 0.04 16 
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Figure 3.3.6. Comparison of surface soil moisture estimates from the regression model 
and field data used to construct the model (N = 88). (A) The model combines the 
influences of elevation, distance from stream, and potential relative radiation into a single 
factor.  The residuals are (B) normally distributed, (C) autocorrelated up to 50 m and (D) 
not significantly related to elevation, although one transect at mid elevation was 
consistently drier than predicted. 
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residuals were not significantly correlated with elevation, although there was a cluster of 

points from one transect between 850 m and 900 m with measured soil moisture values 

more than one standard deviation below the modeled values (Figure 3.3.6).  The residual 

clustering is likely indicative of the autocorrelation in the data rather than a persistent 

elevation trend, as model residuals are autocorrelated up to a distance of approximately 

50 m (Figure 3.3.6).  This distance represents approximately one-half the average transect 

length. Removing the 850-900 m transect from the analysis improved the regression 

model fit (R2 = 0.58, F-statistic = 35.4, P < 0.001), but the resulting model may be less 

representative of the diversity of the landscape. 

Variograms 

The landscape-wide soil moisture samples exhibited variability at multiple scales.  

Fine-scale variability was indicated by the relatively large nugget variance (Figure 3.3.7). 

The average variance within the 2x2 m sample quadrats (5.5) and within the 20x20 m 

sample plots (9.6) also was fairly high relative to the total variance for all 540 samples 

(16.8). The empirical variogram (points in Figure 3.3.7) did not fit a classic variogram 

model of increasing variance to an asymptotic sill, and is presented with a lowess-

smoothed curve in Figure 3.3.7. The variance did reach a peak at 1500-2000 m, but 

decreased for separation distances from 2000-4000 m.  A second increase in variance was 

observed at larger distance lags. This complex pattern of variability confirmed that any 

explanatory model of soil moisture spatial trends would need to account for influences at 

multiple scales.   
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igure 3.3.7.  Spatial scaling of soil moisture and factors important to the water budget as 
depicted by variograms.  Data were obtained from 60 20-m2 plots sampled across the 
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HJA landscape (nine measurements taken per plot).  All semivariance values have been 
relativized by total variance for that variable in order to facilitate comparisons across 
variables. (a) Measured volumetric soil moisture. (b) Terrain-based explanatory variables
elevation, summer PRR, and TCI. Values were derived from a DEM.  These three 
variables are representative of the types of curves calculated for terrain variables. (c) 
Canopy and soil depth.  Lag distance was set to 500-m increments and only bins with at 
least 50 sample pairs were graphed. 
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The environmental variables that we had determined to be important in our earlier 

analyses differed considerably in their characteristic ranges.  Elevation exhibited a 

monotonic increase in variance with lag distance, indicative of a simple gradient (Figure 

3.3.7).  Other DEM-based variables were finer-scaled than elevation. PRR and other 

measures of radiation reached their maximum values at a range of 1000-2000 m.  This 

distance roughly matches the average hillslope length for the major watersheds contained 

within the HJA. Like the moisture measurements, these variables did not conform to a 

classic variogram model, but instead exhibited a decrease in variance at larger lag 

distances. Though this decrease is undoubtedly a sampling effect (e.g., a complete 

sampling of the PRR grid for the HJA resulted in no such decrease), it may be important 

in explaining the similar trend observed for the moisture measurements.  TCI and other 

measures of hillslope position/drainage also were highly related to hillslope length.  They 

reached asymptotic sills at around 1500 m.  That this distance corresponds with the peak 

observed for the soil moisture measurements provides corroborating support that these 

small-watershed scale topographic variables can be used effectively to describe some of 

the spatial patterning in soil moisture.  The monotonic elevation gradient likely acts as an 

underlying forcing variable. 

The fine-scale variability in soil moisture indicated by the large nugget is 

probably not a consequence of topography.  None of the terrain-based variables had 

exceptionally large nugget variances.*  Canopy cover and soil depth, in comparison, had 

large nugget variances indicating variation at lag distances finer than were captured in the 

                                                 
* It is important to note that although the smooth curve fit through the PRR data in Figure 3.3.7 does 
suggest a sizable nugget variance, the variance in the smallest distance class for PRR and the other 
radiation proxies was very small. 
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analysis (Figure 3.3.7). These biotic and edaphic factors were highly variable across all 

spatial scales.  

To pursue the large nugget variance in soil moisture, we examined the variation in 

the soil moisture measurements collected for the empirical modeling, which were 

gathered at a much finer resolution (Figure 3.3.8).  The variation in these measurements 

increased over the first 100 m in lag distance, indicating some consistency in 

measurements taken over 10’s of m.  In other words, measurements taken within 10 m of 

one another were substantially more similar than measurements taken 100 m apart.  We 

concluded that: (1) variability in soil moisture crosses multiple spatial scales; and (2) the 

interaction of multiple physical and biological influences (including biotic and edaphic 

factors on the order of 100 m, slightly larger-scale variability in topography, and an 

elevation forcing) combine to shape the complex water dynamics of the HJA during this 

important period of summer drawdown. 
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Figure 3.3.8.  Variogram of fine-scale trend in moisture content from samples taken in 
three small watersheds as part of regression analysis (N = 88).  Samples were taken along 
short transects (up to 110 m in length) at intervals of 5-10 m. Lag distance was set to    
10-m increments. 
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Discussion 

The surface soil regression model was able to combine multiple physical factors 

with different characteristic spatial scaling into a single coherent equation that explains 

nearly 50 percent of the variance in the field measurements. A major challenge in 

describing ecological patterns is that they are sensitive to the scale of observation (Levin 

1992). Chen et al. (1999) argue that microclimate has distinct spatial scales 

corresponding to distinct components of landscape structure.  These relationships rarely 

have been examined across a continuum of spatial scales, because of difficulties in 

sampling simultaneously across large spatial extents.  Technology developments over 

recent years, however, have greatly increased the feasibility of such studies. For example, 

we showed in previous research how temperature can vary with proximity to stream on a 

local scale and elevation on a landscape scale (Lookingbill & Urban 2003).  Here, we 

show how soil moisture varies negatively with elevation on local scales (i.e., water flows 

downhill) and positively with elevation on landscape scales (i.e., saturated clouds 

precipitate water when forced to rise over mountains and evapotranspiration decreases 

with cooler temperatures at higher elevation).   

The 1500 m range of soil moisture variability indicated by the variogram analysis 

may be a reflection of topographically induced patterns in soil moisture associated with 

shaded north-facing slopes compared to hot, dry south-facing slopes.  This distance 

corresponds with the average hillslope length in the basin. The importance of topographic 

exposure also is reflected by the radiation term in the regression equation.  These findings 

are consistent with others that have shown that topographic variability is an important 
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control of spatial differences in July air temperatures for the HJA (Smith 2002, 

Lookingbill & Urban 2003).  Temperature, in turn, can be a significant control on 

moisture levels. 

Although we were able to capture the influences of both macroscale (climate) and 

mesoscale (topographic drainage and radiation) factors on summer soil moisture in the 

HJA, we did not have the data to add microscale factors (e.g., soil variability) to the 

model.  The high nugget variance in the landscape-level soil moisture variogram 

indicates that much of the variability in soil moisture occurred below the sampling grain 

captured in the 20x20-m plots.  Grayson et al. (1997) also found a high-level of local 

control during the dry season in their seasonal watersheds.  In the HJA, Post and Jones 

(2001) found the greatest exertion of fine-scale influences on the hydrologic regime at the 

end of the summer drought period. 

Quality information on the fine-scale variability of soils is rarely available for 

even the best-studied systems (Band & Moore 1995). Yet, numerous studies have 

illustrated that soil properties can be at least as important as terrain-based variables in 

determining soil moisture content (e.g., Helvey et al. 1972, Boyer et al. 1990, Yeakley et 

al. 1998).  Even if we had the field data to add edaphic variables to the regression model, 

we would not have the necessary coverages to extrapolate this new model to the entire 

HJA landscape.  Because we posit that much of the fine-grained variability in soil 

moisture may be due to soil variability, failure to accurately represent variability in soils 

can compromise substantially the explanatory and predictive capabilities of the model for 

fine-grained applications. 
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Our empirical model results corroborate Yeakley et al.’s (1998) conclusion that 

deep soil water distributions may be very different from surface soil moisture patterns. 

This finding has important implications for the analysis of ecological processes.  For 

example, the surface soil moisture model that includes radiation as an explanatory factor 

may be appropriate for predicting seedling establishment.  It is probably not the best 

model for predicting rates of growth for trees whose roots can integrate over a much 

deeper area than the top 20 cm of soil. A weighted model combining the deep and 

shallow estimates may be more suitable for this application.  Again, we emphasize that 

any interpretation of the deep soil regression must bear in mind the logistical difficulties 

of sampling deeper soil layers and the resultant small sample size.  We offer these results 

as a crude comparison with the shallow soil model only.    

In the past 20 years, digital terrain based indices have become very popular in 

describing soil moisture (Beven & Kirkby 1979, Parker 1982, Iverson et al. 1997).  This 

popularity has been driven in part by an increase in computing technology, but also by a 

lack of field data.  Those field measurements that are available are often in locations that 

are not representative of the landscape as a whole (e.g., watershed base or few prominent 

peaks; Phillips et al. 1992, Daly et al. 1994).  Collecting additional data has been 

logistically and economically prohibitive.  It is important, however, not to forget about 

field data.  Its value is not diminished by the expanse of GIS applications but rather is 

enhanced.  As shown here, field data can be a valuable tool in calibrating relationships 

for GIS derived variables. Conversely, GIS can be a valuable tool in helping to identify 

the best sites to locate field samples.  For example, the regression model can be used in a 
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GIS framework to make a predictive map of soil moisture differences for the study area 

(Figure 3.3.9).  This map identifies geographic locations within the HJA that could be 

targeted in future sampling to test the effectiveness of the model in describing spatial 

patterns in soil moisture (Chapter 3.4). 

It is important to emphasize that the results presented in this analysis are 

applicable to only a very narrow range of conditions.  As with any statistical model, our 

model should not be extrapolated beyond the range of conditions specified by the input 

data.  These include the topographic and climatic conditions of the study area, the timing 

of the sampling in mid-summer, and the stand structure of old-growth forest.  We were 

interested in developing a simple moisture model for exactly these conditions as part of 

an effort to explain landscape-scale patterns in vegetation. We present the approach as an 

example for others who may be interested in developing models of their own for other 

specific applications.  The empirical approach provides an alternative to more commonly 

used moisture proxies that rely solely on geographic abstractions of the landscape (e.g., 

TCI: Beven & Kirkby 1979). If the objective were to develop a more comprehensive 

spatio-temporal description of the HJA’s moisture regime, the data and patterns described 

in this paper would be of great value as a reality check and calibration tool (Chapter 3.4). 

A thorough examination of the major components of the water balance can 

provide a basis for varied studies of ecological processes in montane systems.  We are 

interested particularly in better understanding the relationship between the distribution of 

forest vegetation communities and the physical environment.  Soil moisture is without 

question a dominant factor in shaping these distributions.  We have shown that factors 
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Figure 3.3.9. Statistical model of surface soil moisture mapped back onto the landscape.  
Darker areas are predicted to be wetter than lighter areas. 
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important to the summer water balance (as determined by regression analysis) vary at 

different characteristic spatial scales (as shown through analysis of semivariance); thus, 

we are able to reproduce the spatial scaling inherent in soil moisture measurements 

through regression equations of key environmental variables (Figure 3.3.7a and Figure 

3.3.10).  The regression modeling allows us to extrapolate field measurements of 

volumetric moisture across similar topographic areas, although we caution that great care 

should be taken to apply the models only within the restricted domain for which they 

were built.  This type of improved spatial mapping of soil water variability should be 

beneficial to a wide range of forest community studies and other ecological applications. 
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Figure 3.3.10. Variogram of fitted values from regression analysis of surface soil 
moisture (N = 60).  The model captures many of the same scaling relationships depicted 
for field measurements of soil water content (Figure 3.3.7a) by using elevation 
(increasing trend), radiation (decrease in variance after ~ 2000 m), and distance from 
stream (sill at ~2000 m). Lag distance was set to 500-m increments and only bins with at 
least 50 sample pairs were graphed. 

 

130 



 

CHAPTER 3.4 Estimating Spatial Patterns of Summer 
Soil Moisture: Model Comparison 

 

 

 

 

 

 

 

 

131 



Abstract 

Improved spatial models of primary resource constraints such as soil moisture are 

needed for landscape-level ecological applications.  We have developed five different 

model descriptions of relative, spatial moisture differences for a well-studied watershed 

in the Pacific Northwest USA.  The models are, in order of increasing complexity: (1) a 

soil moisture index based solely on local slope angle and upslope contributing area (TCI); 

(2) a soil moisture index based on both terrain attributes and soil properties (IMI); (3) a 

statistical model using empirical data to derive the relationship between soil moisture and 

terrain variables; (4) a steady-state simulation model with spatial evaporation differences 

(Topog); and (5) a dynamic simulation model that incorporates variable terrain, climate 

and moisture demand (RHESSys).  The use of field studies to test hydrologic models has 

been under-emphasized.  We evaluate the models in terms of their ability to predict two 

different validation datasets collected through field measurements of soil moisture.  

Tradeoffs are associated with increasing model complexity, especially when attempting 

to represent multi-scale spatial processes. Our findings show that spatially implicit 

statistical models can effectively capture soil moisture variability within specific 

temporal and spatial domains.  For extrapolations beyond these boundaries, more 

sophisticated models may be warranted.  Appropriate model selection ultimately depends 

on the ecological issue to be addressed and the temporal and spatial domain of 

application. 

Keywords: soil moisture content, spatial variability, landscape-scale, empirical 

sampling, topographic index, simulation model, H.J. Andrews Experimental Forest 
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Introduction 

Temperature and moisture have long been recognized as primary constraints on 

forest community composition in montane systems (Dyrness et al. 1976).  Unfortunately 

these factors are difficult to quantify at high resolution for large spatial extents (Chen et 

al. 1999).  Spatial data collection networks for these variables are particularly sparse over 

mountainous terrain (Phillips et al. 1992, Daly et al. 1994).  As a result, elevation is 

typically used as a proxy variable to describe the relationship between the environmental 

gradient complex and forest communities (Whittaker 1978).  This elevation correlation 

model greatly oversimplifies the range of variability associated with the physical 

environment.  For example, Stephenson (1990) suggests that both temperature and 

moisture are influenced by physical factors at multiple spatial scales (e.g., macroscale air 

currents, mesoscale topography and microscale soil properties).  More complex models 

are required to adequately represent the major components of the physical environment 

for vegetation analysis and related ecological applications.  

Trade-offs exist between model complexity and other desirable attributes of 

models (Beven 2001, Gardner & Urban in press).  Increasing the comprehensiveness of a 

model often requires sacrifices in model simplicity and tractability.  The inclusion of 

additional interactions and feedbacks requires additional parameters and calibration 

(O’Neill & Gardner 1979). As more information is added, model sins of omission can be 

replaced by sins of commission (Peters et al. in review). Errors are associated with the 

selection of model formulation, measurement of the input data, and the estimation of 

parameters (Peters et al. in review). 
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In this study, we compare the ability of models of increasing complexity to 

describe spatial patterns in soil moisture.  Several studies have demonstrated the 

correlation between soil moisture and plant establishment (Taylor 1995, Woodward 1998, 

Breshears & Barnes 1999).  Spatial patterns of soil moisture help to drive differences in 

forest productivity (Vertessy et al. 1996), species composition/richness (Hutchinson et al. 

1999) and nutrient cycling (Creed & Band 1998).  A model of relative moisture, 

therefore, could be applied to a variety of research and management issues. 

Elevation is only one example of a terrain-based index of soil moisture that can be 

estimated from a Digital Elevation Model (DEM).  Other crude moisture indices include 

measures of slope angle, aspect and slope position.  More practical indices can be derived 

through transformation of these variables (e.g., transformed aspect; Beers et al. 1966).  

Additional DEM analysis has yielded a number of popular soil moisture indicators.  

Among the more common of these proxies is a measure of flow accumulation as 

determined by topographic convergence (Beven & Kirkby 1979). Other DEM-derived 

measures, such as topographic solar radiation (Dubayah & Rich 1995), provide estimates 

of spatial patterns in energy for evaporation. 

Variability in soil properties also can result in differences in soil moisture content.  

Several studies have found that soil properties are at least as important as topographic 

variables in dictating soil water distributions (Helvey et al. 1972, Boyer et al. 1990).  In 

general, soils with high clay content have higher moisture content than sandy soils in 

similar environments.  Similarly, deep soils can hold more water than shallow soils.  
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Iverson et al. (1997) developed an index that recognizes the importance of both 

terrain and soil properties on the water balance.  Their Integrated Moisture Index (IMI) 

was used to characterize the soil moisture gradient for oak woodlands in southern Ohio.  

The IMI combines measures of flow accumulation, slope curvature, radiation shading (all 

derived from a DEM) and soil water holding capacity (derived from soil depth and 

texture properties).  

Field measurements of moisture can be used to identify significant terrain and soil 

variables and parameterize their relationships with soil moisture in a statistical model.  

This approach has been used to evaluate soil moisture predictor variables in small-scale 

studies of hillslopes (Yeakley et al. 1998), agricultural fields (Hawley et al. 1983), and 

treefall gaps (Gray and Spies 1995).  The development of landscape-scale statistical 

moisture models has been less practical due to the difficulty in data collection.  Advances 

in technology, including portable sampling devices, have made it more feasible to collect 

large samples for statistical analysis (Grayson & Western 2001, Noborio 2001).  Time 

Domain Reflectometry (TDR), in particularly, is a rapid, nondestructive sampling tool 

that is growing in popularity for forest research (Gray & Spies 1995).  As with any 

statistical model, issues remain regarding the domain of applicability of these models 

(Levins 1966). 

Mechanistic or process models comprise the most complex model types in this 

continuum. They base predictions on real cause-effect relationships (Guisan & 

Zimmerman 2000).  As opposed to the indicators previously discussed, hydrologic 

simulation models explicitly consider the flow of soil water along topographic gradients 
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(Grayson et al. 1992). Static models assume equilibrium conditions and provide a steady-

state description of the system.  Dynamic models are not limited by this assumption and 

can incorporate dynamic weather events and changes in ecophysiology.  As a result, they 

can generate time-series of predictions but require more data to do so. 

In this investigation, we compare the spatial representation of relative soil 

moisture differences in a forested landscape of western Oregon under a series of 

increasingly complex models.  Models are comprised of a DEM-derived proxy, an index 

combining terrain and soils data, a statistical model derived from empirical soil moisture 

data, a static process model and a dynamic process model.  The models are compared in 

terms of their ability to predict patterns of relative wetness as captured through field 

sampling at multiple spatial scales. 

Site description  

The H.J. Andrews Experimental Forest (HJA) is located on the west slope of the 

Cascade Mountains.  It is comprised of the Lookout Creek watershed, 80 km east of 

Eugene, Oregon. The Long Term Ecological Research (LTER) site covers 6400 ha and 

ranges in elevation from 410 m to 1630 m (McKee 1998).  At the time of its 

establishment in 1948, the HJA was an intact forest with about 65 percent of the land in 

old-growth (i.e., 400-500 years old).  Since that time, old-growth forest has been reduced 

to roughly 40 percent of the total area due to logging activities.   
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As an LTER site, the HJA maintains an extensive database of meteorological 

data. Climate is characteristic of the Pacific Northwest, with dry summers and wet 

winters. Annual precipitation ranges from 2200 mm at the base of the waterhed to 3400 

mm at upper elevations, with less than 300 mm normally falling during the growing 

season (Grier & Logan 1977). Soils are mostly deep, well-drained Inceptisols.  Rooting 

occurs almost entirely in the upper 200 cm of soil. Textures range from gravelly, silty 

clay loam to very gravelly, clay loam (Grier & Logan 1977). Lower-elevation soils are 

older than upper-elevation soils, dating back to the Oligocene-lower Miocene.  Upper-

elevation soils are comprised of younger andesite lava flows and High Cascade rocks. 

Topographic position is an important control on vegetation in this region (Zobel et 

al. 1976). Pseudotsuga menziesii (Douglas fir), Tsuga heterophylla (western hemlock), 

and Thuja plicata (western redcedar) are the dominant species at lower elevations. Abies 

amabilis (Pacific silver fir), Abies procera (noble fir), and Tsuga mertensiana (mountain 

hemlock) populate upper elevations (Franklin & Dyrness 1988).  Ohmann and Spies 

(1998) suggest that elevation and associated macroclimate are the major correlates with 

regional patterns of community composition in Oregon. 

Model Descriptions 

Soil moisture indices 

Two derived moisture indices were considered in this analysis: TCI and IMI 

(Figure 3.4.1).  The first, a simple topographic convergence index (Beven & Kirkby 

1979), was calculated using a 10-m resolution DEM according to the formula:  
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A) 

 
B) 

 

Figure 3.4.1. Soil moisture indices. A) Topographic Convergence Index after Beven and 
Kirkby (1979). B) Integrated Moisture Index after Iverson et al. (1997).  Dark areas are 
estimated to be locations of high moisture. 
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TCI = ln(a/tanβ)     (eqn. 3.4.1) 

where a is the upslope contributing area, and β is the local slope angle.  Sites of high 

convergence should accumulate water and be wetter than sites of low convergence.  This 

index represented an effort to describe spatial patterns in soil moisture based solely on 

placement within the topographic complex. 

The integrated moisture index (Iverson et al. 1997) combined important terrain 

attributes with information on soil properties to estimate moisture patterns. The index 

combined four environmental factors that influence soil moisture levels: flow 

accumulation, slope curvature, radiation and soil water holding capacity.   

The first three factors were derived from a 10-m DEM of the HJA. We developed 

a flow accumulation coverage from the DEM following the principles of topographic 

convergence used in the TCI calculation.  Slope curvature was characterized as concave 

or convex based on the height of the cell and surrounding cells in the DEM.  High values 

represented convex landforms, associated with drier soils; low values represented 

concave landforms, associated with wetter soils.  Solar exposure levels were estimated by 

placing the HJA into the larger context of its surrounding landscape and calculating the 

incident solar exposure after accounting for topographic shading.  We applied a southern 

exposure (180o) at mid-day (45o solar angle) for this calculation.  Low values represented 

exposed, south-facing slopes and high values represented lower radiation slopes. 

Soil water holding capacity was estimated from soil texture and soil depth 

coverages of the HJA (http://www.fsl.orst.edu/lter).  Soil depth was classified into three 
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depth classes: 1 = 1 – <3 ft, 2 = 3 – 10 ft, and 3 = >10 ft.  Soil texture was classified into 

10 classes that represented increasing water-holding capacity with increasing pixel value: 

1 = quarries 

2 = cobbly sandy loam 

3 = gravely loam 

4 = dark poorly drained 

5 = gravely sandy loam 

6 = bedrock talus 

7 = cobbly heavy loam 

8 = gravely clay loam 

9 = light clay loam. 

Texture and depth values were multiplied together to provide an estimate of water 

holding capacity that increased with improving soil type and increasing depth. 

All four coverages were scaled from 1-100 with higher values representing 

potentially wetter conditions.  They were then combined into a single index (IMI) based 

on weights recommended by Iverson et al. (1997) for predicting hillside moisture 

availability (flow accumulation - 30%, curvature - 10%, hillshaded radiation - 40%, and 

water holding capacity - 20%).   

Statistical model 

We developed a statistical model of relative soil moisture based on synoptic time 

domain reflectometry (TDR) sampling within three small watersheds of the HJA 
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(Chapter 3.3). We used handheld probes (Hydrosense, Campbell Scientific Incorporated) 

in order to collect measurements rapidly over a large area.  The three sampling areas were 

located at low (mean elevation of samples = 613 m), mid (989 m) and high (1285 m) 

elevation sites within the HJA. Two sampling stations were located in the T. heterophylla 

vegetation zone; the third was located in the A. amabilis zone.   

A total of 79 moisture samples were taken on July 4, 2001.  Each sample 

represented the average of three measurements taken within 1 m2.  Measurements were 

taken along short transects representing different hillslope aspects and positions within 

each of the sampling areas.  Samples were separated by a minimum of 5 m and integrated 

over the top 0-20 cm of soil. The beginning and endpoint of each transect were recorded 

using a PRO/XRS 12 channel Trimble GPS, which reported 95 percent confidence 

intervals of 1-2 m.  An additional nine measurements were added to the analysis from 

water content reflectometer probes (Campbell Scientific Incorporated) hooked to 

permanent meterological stations at the center of each of the three sampling areas, 

bringing the total number of measurements to 88: 22 at low elevation, 34 at mid elevation 

and 32 at high elevation. From these data, we developed a regression equation to describe 

surface soil moisture trends. 

Forward stepwise regression analysis (Sokal & Rohlf 1995) was used to select the 

most important variables to explain the observed trends in moisture. Each of the variables 

chosen as a candidate for the models was selected because of its potential influence on 

soil moisture.  Additionally, all of the variables could be derived easily from commonly 

available geographic information systems data.  We overlaid the sample locations on a 
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10-m resolution DEM to estimate those variables derived from terrain data.  We 

considered elevation, slope, distance from stream, relative slope position (0 = valleys; 

100 = ridges), TCI, and a wide variety of radiation proxies ranging from simple 

transformed aspect (Beers et al. 1966) to a potential relative radiation (PRR) measure 

developed from DEM data.  Chapter 3.1 describes the radiation proxies in detail.  The 

PRR index, developed specifically for use in community level vegetation analysis, is a 

measure of how topography translates to spatial differences in relative radiation. It both 

accounts for hillshading effects and integrates over time to account for the fact that solar 

position changes over the course of the day and year.  

The following variables were flagged as the strongest explanatory variables and 

combined additively in the regression model: 

ŷ = β0 -β1Dstrm+β2Elev-β3PRR    (eqn. 3.4.2) 

where Dstrm is distance from stream, Elev is elevation, and PRR is cumulative radiation 

over the entire summer. Relative soil moisture values were mapped back across the entire 

HJA using this statistical model (Figure 3.3.9).  Chapter 3.3 describes the model 

development in greater detail. 

Process models 

We examined two different mechanistic process models: TOPOG in its steady-

state formulation and RHESSys as a dynamic simulator (Chapter 3.4.2). Both explicitly 

consider the flux of soil water along topographic flowpaths, though the flowpaths are 

derived slightly differently. 
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A) 

B)  

 
Figure 3.4.2.  Process Models.  A) Topog with evaporation weighted as a function of 
radiation.  B) RHESSys run for July 17, 2002.  Dark areas are estimated to be locations of 
high moisture. 
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TOPOG 

TOPOG is a terrain analysis-based hydrologic modelling package developed by 

CSIRO Land and Water and the Cooperative Research Centre for Catchment Hydrology, 

Australia (O'Loughlin 1986).  We used TOPOG version 9.21 (May 2000) for our 

analysis.  It is a deterministic hydrologic modelling package comprised of over 30 

FORTRAN and C programs.  Common applications include its use to describe the 

topographic attributes of complex three-dimensional terrain, to simulate the transient 

hydrologic behaviour of catchments and how this is affected by changing catchment 

vegetation, and to model the growth of vegetation and how this impacts the water balance 

(Vertessy et. al 1993, Dawes et. al 1994, Wu et. al 1994).  

One of the primary strengths of TOPOG is that it makes use of a sophisticated 

digital terrain analysis model, which accurately describes the topography of complex 

landscapes.  Water is distributed among catchment elements, which can be irregularly 

shaped and therefore are free to more closely match the structure of the terrain than a 

rigidly defined grid.  TOPOG is intended for application to small catchments (up to a 

maximum 10 km2 and generally smaller than 1 km2).  The application of the model to the 

HJA watershed (64 km2), therefore, is stretching the normal bounds of operation. Due to 

this limitation, we restricted the application of TOPOG to its steady-state mode in this 

analysis and did not use it to model dynamic responses to weather and plant processes.  

The foundation for the TOPOG simulation is the three-dimensional representation 

of the landscape.  Since elements are defined by the intersection of elevation contours 
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and perpendicular flow trajectories, the number of elements in a watershed is dependent 

on both of these factors.  We used a combination of 30-m elevation contours and a 

trajectory spacing of 120 m along the contours to define 6700 relatively square elements.  

Elements varied in size depending on their placement in the landscape, but the median 

element size was 84x84 m.  Even this relatively coarse network contained too many 

elements to conduct dynamic simulations for this version of TOPOG. 

Steady-state simulations were run in two modes.  The first computed a drainage 

index following O’Loughlin’s (1986) initial formulation of the model.  The normal 

drainage index (W) was calculated for each element in accordance with the local slope, 

contributing area, evaporation rate, and soil transmissivity. 

  ∫= qdA
mbT

yx 1),(W      (eqn. 3.4.3) 

where: 

  m = slope (m/m), 

  b = length of contour at base of element (m), 

  T = local soil transmissivity (m2/d), 

  A = element area (m2), and 

  q = net subsurface drainage flux; precipitation-evaporation-vertical 

drainage (mm/d). 

Both the net subsurface drainage flux and the transmissivity were assumed to be 

spatially uniform for these simulations. The subsurface drainage flux was set to 1.0 

mm/d, which resulted in an output baseflow value similar to that given in the radiation 
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weighted simulations described below.  Soil transmissivity was varied along a reasonable 

range of values (1 m2/d to 15 m2/d) to explore the influence of this parameter on model 

output. Increasing the soil transmissivity resulted in drier soils, more stream and 

baseflow, and less exfiltration.  A transmissivity value at the upper end of the range (10 

m2/d) was viewed as providing a compromise between having too large a proportion of 

the landscape saturated (33 percent for the T = 1 m2/d simulation), but maintaining 

saturated riparian areas and terrain depressions.  

In the second TOPOG formulation, the net subsurface drainage flux was not 

assumed to be spatially uniform.  In particular, the evaporation rate was varied as a 

function of the potential radiation of each element and the cube-root of soil moisture: 

3/1*
2248.2

),(
),( W

ryxr
yxE hs βα +

=     (eqn. 3.4.4) 

 where: 

α = efficiency of transpiration; fraction of solar energy converted to net 

radiant energy; factor that scales down radiation due to attenuation by 

clouds and atmospheric dust (set to 0.50 for clear sky summer conditions), 

rs(x,y) = total solar radiation for each element; function of slope and 

aspect,  

β = fraction of solar energy converted to radiant energy for a shaded 

horizontal surface (set to 0.02), 

rh = total solar radiation for a horizontal surface, 
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W = drainage index; used as a proxy for soil moisture, and  

2.2248 = conversion factor used to convert radiation units to equivalent 

transpiration units [(MJ/m/d)/(mm/d)]. 

Since q uses W and is used to calculate W, the radiation-weighted drainage index 

(Wr) must be solved by iteration until stable values are obtained (Vertessy et al. 1990).  

Simulations were run for the summer (solar declination of +23.5).  Precipitation input 

was set to 7.7 mm/d (annual average of 2800 mm divided by 365 days) and soil 

transmissivity was set to 10 m2/d as in the steady-state runs.  Although nearly 8 mm of 

rain per day may seem like an unrealistically high estimate for the summer season, recall 

that the simulations portray steady state conditions.  The precipitation input is a 

description of not only summer rainfall but also antecedent precipitation present in the 

system in the form of snowmelt or stored soil water.  Simulations that were run with 

typical summer precipitation rates of 3 mm/d (~300 mm for the summer period) had so 

little water in the system that the entire landscape was uniformly dry. 

RHESSys 

RHESSys (Regional HydroEcological Simulation System) is a hydroecological 

modeling package implemented in C (Band et al. 1991, 1993; Tague 1999).  The object-

oriented approach facilitates the substitution of different process algorithms at different 

scales. For example, climate and canopy processes can be modeled at completely 

different levels within the hierarchical representation of the landscape from patch to zone 

to hillslope to basin.  As a consequence of this scale-dependent stratification of process 
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algorithms, RHESSys can be run for much larger areas than TOPOG (e.g., areas in the 

10-1000s km2). 

An additional strength of RHESSys is that terrain partitioning can occur on 

ecologically meaningful units rather than strictly defined grid cells. Patches, the smallest 

level of aggregation in the model, are defined as areas of similar soil moisture 

characteristics. Partitioning is free to take advantage of patterns of relevant variability 

within the landscape.  For our model, hillslopes were defined using standard watershed 

delineation techniques to produce sub-basins corresponding to an accumulated drainage 

area threshold of 300 (30 m) grid cells. Each sub-basin contained two hillslopes, one on 

either side of the stream.  Each hillslope was partitioned further into patches based on 

elevation and distance to the stream.  Patches were defined such that finer resolution was 

maintained in areas near to the stream in order to capture finer scale variable source areas 

during wetting and drying periods in these areas.  Mean patch size was 9 grid cells or 

90x90 m, approximately the same size as for the TOPOG simulations. 

RHESSys is comprised of three primary submodels: (1) a climate submodel 

(MTN-CLIM; Running et al. 1987); (2) an ecophysiological submodel (BIOME-BGC; 

Running & Coughlan 1988); and (3) a distributed hydrology submodel using either 

implicit (TOPMODEL; Beven & Kirkby 1979) or explicit (a distributed hydrological soil 

and vegetation model - DHSVM; Wigmosta et al. 1994) flow routing.  Each of these 

submodels requires extensive input data including distributed forest, terrain, and soil data 

and nondistributed climate data and forest physiological parameters.   In this case, 

vegetation and soil parameters were based on standard values for P. menziesii forest 
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cover and gravelly clay loam soils as described in Tague and Band (2001).  Climate data 

input included daily minimum and maximum temperature taken from the Upper Lookout 

meteorologic station, which is located at an elevation of 1294 m in the southeast region of 

the basin. To spatially interpolate these inputs, a temperature lapse rate of 5.8 oC/km 

elevation was used.  Spatial interpolation of rainfall was based on annual rainfall isohyets 

estimated by PRISM  (Daly et al. 1994), which incorporates rainfall data from several 

stations within the Lookout Creek basin. Radiation and other meteorologic variables were 

computed internally in the model, based on MTN-CLIM routines.  

Saturated hydraulic conductivity at the surface (Ksat0) and the decay of that 

conductivity with depth are the two calibrated parameters in RHESSys.  The initial 

spatial patterns of these parameters were based on maps of soil texture and soil depth, 

assuming an exponential decay of hydraulic conductivity with depth.  Note that this 

assumption implicitly defines a hydrologic soil depth that may include some flow within 

fractured bedrock layers.  Because calibrated hydraulic conductivity values are typically 

higher than those based on soil texture and reflect preferential flow paths, basin-wide 

scaling of these two parameters was done to optimize correspondence between observed 

and modeled daily streamflow.  Calibration used a Monte-Carlo based approach to 

optimize the Nash-Sutcliffe efficiency metric. Calibration resulted in a mean basin Ksat0 

of 750 m/d and an effective hydrologic soil depth (i.e., depth at which hydraulic 

conductivity was reduced to 90 percent of its surface value) of 10 m.    

Prior to simulation of soil moisture values for comparison, the model was run for 

250 years to spinup soil and vegetation carbon and nitrogen pools (i.e., model run to 
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reach a steady-state, old-growth forest condition).  For the simulation period, the model 

was run on a daily timestep from January 1, 2001 through July 31, 2002 to produce 

spatial patterns of soil moisture over the entire Lookout Creek watershed.  Comparison 

with observed sites, however, was done only for a small fraction of the total area of the 

HJA where there were undisturbed stands without harvest units present in their upslope 

contributing area.  We were careful in selecting such stands in conducting our validation 

sampling.  

Validation Data 

We collected two different test sets with which to compare the different models.  

The first was within the original domain of sampling used in constructing the statistical 

model.  This approximated the maximum amount of area that could be covered on a 

single day of sampling.  The second extended more broadly across the entire HJA 

landscape.  This effort stretched over two weeks of sampling. 

On July 4, 2002 we returned to the three hillslopes we had sampled exactly one-

year previously.  We again laid out short transects representing different hillslope aspects 

and positions, similar in location and methods but not overlapping with the previous 

year’s effort.  A total of 136 new samples were collected: 47 from the high elevation site, 

44 from the mid elevation site and 45 from the low elevation site.  Individual field 

measurements from the sampling varied from four percent to 45 percent volumetric water 

content with an average of 18 percent. 
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From July 10 to July 24, 2002 we collected georeferenced data on soil moisture at 

60 (20x20 m) plots spread throughout the HJA (Figure 3.4.3).  To elucidate similarities 

and differences between the models, separate maps were made for each model identifying 

areas that were greater than 1.5 standard deviation (+ or -), between 1.5 and 0.5 standard 

deviation (+ or -), and within 0.5 standard deviation from the mean estimate of that 

model.  These five categories divided the maps into five discrete areas over which 

samples could be stratified.  Figure 3.4.3 presents the output from the statistical 

regression model as an example.  Similar maps were generated for all the models.  The 

relativized maps were then compared to identify geographic areas for sampling within the 

HJA that covered a range of predicted soil moisture values. Exact locations were selected 

from among 175 (20x20 m) sample plots for which we had extensive data on the biotic 

and physical environment (Chapter 2).  All of the plots were located in old-growth forest 

in order to control for the effects of vegetation age as a factor.  Three 2x2 m quadrats 

were located randomly within each plot.  Three volumetric soil moisture readings were 

taken in each quadrat.  The three quadrats then were averaged to arrive at a plot level 

moisture value (average of nine measurements).   Average plot moisture values varied 

from seven percent to 26 percent with a mean of 13 percent across the plots and an 

average standard deviation of 2.8 percent within each of the 60 plots. 

151 



Figure 3.4.3. Locations of samples collected from July 10-24, 2002.  Watersheds from 
which July 4 samples were collected are boxed.  Sample locations are overlaid on 
predicted deviations from the mean wetness value as determined from the statistical 
model (see text). 
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Model Comparisons 

Three watersheds, single day 

  All models agreed in having wet drainage areas and relatively dry upslope 

conditions.  The models had varying effectiveness in predicting the July 4, 2002 field 

measurements, however, as measured by the error residuals in a regression framework 

(Table 3.4.1). The average squared prediction error (ASPE) is a statistic representing the 

expected total error of the different models in predicting the validation data (Reynolds & 

Chun 1986).  It is calculated as  

ASPE = ∑
=

n

i
iDn 1

21       (eqn. 3.4.5) 

where D = observed – predicted values and n = sample size.  TCI was the poorest 

estimator of differences in moisture among these samples.  IMI was better.  The statistical 

model provided the best estimates of relative differences in the samples.  The process 

models had mixed results in predicting these data.  They performed better than TCI but 

worse than IMI.   

A closer examination of the prediction errors for all the models found significant 

spatial trends in the residuals.  Nine of the 13 most under-predicted values came from a 

single transect, which paralleled and once crossed a small hillslope seep.  In addition, 

eight of the top 13 most over-predicted values came from an extremely rocky, midslope 

transect with shallow soil.  Removing these two transects from the analysis improved 
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Table 3.4.1. Regression tests of model predictions for samples collected from three small 
watersheds (N = 136). ASPE = average squared prediction error.   
 

Model r2 F Value Pr(F) ASPE 
TCI 0.08 12.2 0.001 56.4 
IMI 0.16 25.5 <0.001 50.8 
Statistical Model 0.36 75.4 <0.001 38.9 
Topog (steady-state) 0.09 13.2 <0.001 55.1 
Topog (radiation) 0.10 13.6 <0.001 55.0 
RHESSys (7/4) 0.14 21.9 <0.001 53.4 

 
 
Table 3.4.2. Regression tests of model predictions for samples collected from three small 
watersheds after removing two transects with large prediction error (N = 114). ASPE = 
average squared prediction error.   
 

Model r2 F Value Pr(F) ASPE 
TCI 0.16 21.3 <0.001 35.1 
IMI 0.12 15.1 <0.001 35.9 
Statistical Model 0.33 56.4 <0.001 28.0 
Topog (steady-state) 0.14 17.7 <0.001 35.8 
Topog (radiation) 0.16 19.9 <0.001 35.1 
RHESSys (7/4) 0.23 34.0 <0.001 33.0 

 
 
Table 3.4.3. Regression tests of model predictions for samples collected from entire 
landscape (N = 60). ASPE = average squared prediction error. 
 

Model r2 F Value Pr(F) ASPE† 
TCI 0.032 1.95 0.17 7.8 
IMI 0.001 0.01 0.91 8.0 
Statistical Model 0.001 0.06 0.81 8.0 
Topog (steady-state) 0.003 0.17 0.68 8.0 
Topog (radiation) 0.010 1.10 0.29 7.9 
RHESSys (7/17) 0.007 0.41 0.52 8.0 
RHESSys (7/10-7/24) 0.023 1.38 0.25 7.8 
         † ASPE values are lower than in Tables 1 and 2 because the landscape- 
 wide samples used in this validation test  had considerably lower 
 variability than the validation data used in the previous analyses. 
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the explanatory power of those models (TCI and process models) that relied heavily on 

topographic drainage in generating their predictions (Table 3.4.2). IMI, which 

incorporated differences in soil properties, actually performed worse after removing these 

transects. 

Landscape, multiple days 

None of the models accurately predicted differences among the landscape-wide 

samples (Table 3.4.3).  The simple TCI proxy performed as well as any of the more 

sophisticated models.  The statistical model, which described moisture patterns well 

within the geographic area for which it was originally calibrated, performed poorly when 

attempting to predict moisture from different regions within the study area.  Although 

adding radiation-weighted differences in evapotransporation did improve the predictive 

ability of the Topog model, neither formulation described the observed measurements 

very well (P = 0.68 and 0.29 respectively).  By using the dynamic simulator RHESSys, 

we were able to improve our predictive capability, slightly, chiefly by matching the 

model output with the specific day of sampling (P = 0.25).  Permanent soil moisture 

probes within the HJA did exhibit minor temporal trends within the sample period 

(Figure 3.4.4).  This average decrease of 2.3 percent during the sample period is 

relatively small, however, in comparison to the observed spatial range from seven percent 

to 26 percent. 

 
 
 

155 



 

0

0.05

0.1

0.15

0.2

0.25

0.3

7/
10

7/
11

7/
12

7/
13

7/
14

7/
15

7/
16

7/
17

7/
18

7/
19

7/
20

7/
21

7/
22

7/
23

7/
24

Date (July 10 - July 24)

So
il 

M
oi

st
ur

e 
(%

H
2O

)
Low Site Mid Site High Site

 
 
Figure 3.4.4. Hourly soil moisture measurements from permanent sampling stations 
located in three small sample watersheds of the HJA from July 10-24, 2002.  The gray, 
hatched lines are from three locations within the high-elevation watershed; the dotted 
lines are from the mid-elevation site; and the thick, black lines are from low elevation. 
One small rain event occurred on the evening of July 22 (from 9pm-midnight with a total 
throughfall of less than 1.5 cm at all sites).  Diel patterns driven by hydraulic 
redistribution of soil water (Bond et al. 2001, Brooks et al. 2002) result in volumetric 
changes of less than 1 percent. 
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Discussion 

In total, we developed five different model descriptions of the relative, spatial 

moisture differences of the HJA in mid-summer: (1) a soil moisture index based solely on 

local slope angle and upslope contributing area (TCI); (2) a soil moisture index based on both 

terrain attributes and soil properties (IMI); (3) a statistical model using empirical data to 

derive the relationship between soil moisture and terrain variables; (4) a steady-state 

simulation model with spatial evaporation differences (Topog); and (5) a dynamic simulation 

model that incorporates variable terrain, climate and moisture demand (RHESSys).  These 

models have been described generally in order of increasing complexity.   

In comparing the models using two different validation datasets we conclude the 

following: 

1) Both IMI and TCI capture a substantial amount of the variability in soil 

moisture at fine scales.  In particular, IMI is able to capture fine-scale differences 

in soil properties that may be important when evaluating areas of high local 

variability in soil texture or depth.  Although TCI is able to explain more of the 

variance in the landscape-scale data than any of the other models considered, 

none of the models capture these patterns effectively. 

2) The statistical model provides better predictions than the other models for the 

samples collected within the small watersheds, but performs poorly at the 

landscape scale. The spatial domain of applicability of this model is limited to 

specific areas for which the model was built, a general rule that is too often 

ignored in ecological studies. 
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3) For samples collected beyond the spatial domain of the statistical model: TCI, 

Topog with radiation weighting, and the dynamic RHESSys simulation perform 

better than the statistical model but still show significant error.  The advantage of 

including temporal dynamics in RHESSys is limited to the small temporal 

variation in soil moisture during the July sampling period. 

Moving between models requires trade-offs between precision, generality, realism 

and simplicity (Gardner & Urban in press, Peters et al. in review).  In particular, there is a 

cost to including additional processes, which may increase the physical realism, but 

require additional calibration. Though not mechanistic, statistical models can perform 

quite well within their appropriate ranges of applicability.  Unfortunately, even with 

improved sampling technology, it may be logistically prohibitive to acquire sufficient 

field samples to construct landscape-scale statistical models of soil moisture for many 

areas. In which case, process models like RHESSys provide an opportunity to extrapolate 

across large spatial scales, but require site-specific calibrations of individual driving 

processes (e.g., spatial distributions of rainfall and snowmelt). Simple terrain-based 

proxies provide the best tools for estimating moisture when such resources are not 

available or such an intensive representation is not justified.   

Moisture proxies are tractable and relatively simple to develop, but do not include 

some of the major components of the water balance.  For example, averaging away 

temporal variability in moisture conditions is not appropriate for many applications in the 

Pacific Northwest or other ecological systems of highly variable annual precipitation.  

The dynamic capabilities of RHESSys would be absolutely essential were we interested 
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in simulating highly dynamic states such as during the fall wet-up or a more prolonged 

period of summer draw-down. Only with the most complicated model in which we were 

able to match the specific date of sampling with model output for that day would we be 

able to describe these patterns.  In addition, topographic differences may be understated 

by not including plant growth and transpiration in the simpler models.  All things being 

equal, it could be argued that simple models should be preferred to complex models 

(O’Neill 1979, Hillel 1986, Reynolds & Acock 1985). Because all model outputs are not 

typically equal, model selection is a more subtle art.   

In addition to their varying degrees of complexity, the different models also can 

be contrasted in terms of how they treat spatial relationships within the landscape. Peters 

et al. (in review) describe three classes of models that differ in their treatment of spatial 

processes: nonspatial, spatially implicit and spatially explicit.  Nonspatial models provide 

predictions using independent variables measured without regard to spatial location.  

Spatially implicit models rely upon correlated and spatially structured explanatory 

variables; therefore, spatially structured output are created even if no explicit location is 

referenced in the model.  Spatially explicit models incorporate neighborhood effects 

and/or explicitly simulate the fluxes of materials, organisms, energy, etc.  

Our model selection process can be viewed in terms of these three classes of 

models and the importance of spatial processes to the phenomenon of study.  The lateral 

flux of soil water through a landscape is an inherently spatial process (White and 

Running 1994, Band & Moore 1995), so a nonspatial model would not be appropriate. 

This process may not be captured adequately through spatially implicit statistical 
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relationships for highly variable terrain, in which case a spatially explicit model such as 

RHESSys may be required.  Alternatively, spatially implicit models may be sufficient for 

specific areas given adequate empirical data with which to parameterize the statistical 

relationships.  For example, our statistical model works well within the watersheds for 

which it was derived and for the anniversary date from the date in which the calibration 

data were collected.  The implicit relationships break down when attempting to 

extrapolate the statistical model beyond these bounds.   

An analysis of the landscape-level error residuals highlighted elevation as a 

potential forcing variable not captured by the process models. The moisture levels at high 

elevation were generally under-predicted by the models, while sites at low elevation were 

predicted to be wetter than they actually were.  For the Topog model, these findings are 

not surprising.  Elevation trends in soils and precipitation were not included in the 

calibration.  Topog was developed primarily as a small watershed model rather than a 

landscape model.  As such, it focuses on small-scale processes such as drainage flux 

along hillslope gradients, rather than landscape-level patterns. 

The relatively poor performance of RHESSys at the landscape scale may also be 

partially explained by problems with model calibration.  On the hillslope scale, water 

flows downhill and RHESSys captures this dynamic fairly well (e.g., the model predicted 

the small-watershed data well and the landscape-scale residuals were not correlated with 

TCI).  On the landscape scale, however, locations further down the mountain generally 

were observed to be drier than higher elevation sites, because at the time of sampling 

snowmelt was still a contributing factor to soil recharge at high elevations but not low 
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elevations.  Our current formulation of RHESSys does not effectively replicate this 

elevation gradient in soil moisture at the time of year when we did our sampling.  

Snowfall and melt are highly variable processes that might require better calibration, both 

spatially and temporally, to describe accurately the hydrologic patterns of this catchment. 

As a separate analysis, we can construct a new linear regression model to fit 

rather than predict the landscape samples.  In this model, elevation and TCI are the most 

important explanatory variables and a significant amount of the variation is explained by 

the equation (P = 0.003).  This model should not be compared to the others because it is a 

simple data fit, rather than a test with independent samples.  The fact that different 

explanatory variables are identified by this analysis than by the statistical model built 

from the small-watershed data is informative, however.  It suggests that the watersheds 

sampled for the initial model might not capture the larger-scale trends in moisture 

sufficiently.  A larger, more diverse sampling of the entire HJA would be required to 

build a landscape-scale statistical model.  The data and analyses provided in this study 

could be used to help identify locations that should be sampled to construct this landscape 

model in an iterative approach to model development (Urban et al. 2002).  

Four caveats are worth mentioning regarding how our method of sampling may 

have influenced model performance.  First, the scale of field samples was, in many 

instances, finer than the scale of the models.  This mismatch of scale was most severe for 

the process models.  A common trade-off occurs in model development between 

increasing sophistication of the model and decreasing resolution.  The gap between the 

coarse-scale resolution required to run landscape-scale simulations and the fine-scale 
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resolution desired of the output has been shrinking with increases in computing 

technology and resolution of remotely sensed input data, but it has not yet been 

eliminated.  For example, the interval spacing (and resulting element size) in Topog was 

constrained by computational difficulties associated with generating a high-resolution, 

large-extent flow network. As a result, the grain of both the small-watershed sample 

quadrats (1x1 m) and the landscape sample quadrats (20x20 m) was much finer than that 

of the Topog element network (median element size of 84x84 m).  Because more than 

one field measurement were contained within a single element, the model could not 

represent the fine-scale variability of the field data.  

A similar argument could be made for RHESSys, which also had a mean patch 

size much larger than the size of the sampling quadrats (90x90 m). As perhaps a more 

realistic test of the ability of the RHESSys patches to predict field moisture values, we 

aggregated the landscape scale moisture samples to the RHESSys patch level.  The 

correlation between these patch-level measurements and the RHESSys output was no 

better (r2 = 0.02, P = 0.5, N = 27 for the sample date-corrected comparison), however, 

suggesting that scale differences were not the primary explanation for the observed 

inability of the model to explain a high proportion of the variability in field moisture. 

A second sampling issue that may have influenced model performance was the 

timing of data collection.  Grayson et al. (1997) suggest the existence of two distinct 

states in spatial soil moisture patterns: a dry state, in which the landscape can be 

disconnected and local controls dominate; and a wet state, which is more strongly 

controlled by horizontal fluxes (i.e., topographic drainage).  We only examined a short 
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period of time, mostly for logistical reasons. We chose the beginning of the summer 

because we are interested in soil moisture patterns at the peak of the growing season and 

how these patterns may be correlated with spatial patterns of plant dynamics.  The 

relative performance of these models may have been very different if we had tested them 

during a different time of year.  In fact, it is possible that the short delay between the July 

4, small-watershed sampling and the July 10-24, landscape-level sampling may have 

been long enough for a switch in states to occur.  The statistical model built to describe 

the wet state would have very little predictive power for samples collected during the dry 

state.  More broadly, none of the models, which are all heavily terrain-based, would be 

expected to accurately predict moisture patterns under a dry, disconnected state in which 

local controls dominate. 

The switching between these two states can be sudden, and is described by 

Grayson et al. (1997) as a threshold phenomenon.  Soil moisture draw down can be 

extremely fast over the summer months in this forest and is highly spatially variable.  The 

range in moisture values decreased from 9-45 percent for the July 4 samples to 7-26 

percent for the July 10-24 samples, though the difference in sample locations should not 

be ignored in drawing comparisons between these two datasets.  We did not observe large 

changes in moisture levels at the permanent sampling locations during the July 10-24 

period (Figure 3.4.4).  In a separate analysis, however, we found substantial decreases in 

moisture from repeated measures of locations on June 20, 2002 and again on July 20, 

2002 (Chapter 4).  All of these samples (N = 277) were from an elevation band (1225 –

1350 m) that maintained patches of snow into the summer months.  Values decreased by 
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an average of 7.5 percent between the two sample dates.  Seventeen points decreased by 

over 20 percent, while other locations changed by only one or two percent.  Without a 

perfectly calibrated spatio-temporal model, errors can be quite large during this highly 

dynamic period. 

A third issue to consider is related to the depth of sampling.  Our field samples 

were all from the top 20 cm of soil, while many of the models integrate moisture over the 

entire soil profile (e.g., Topog and RHESSys provide lumped estimates for the entire 

unsaturated zone).  We limited our field effort to the upper profile mainly for logistical 

reasons related to the increased time required to sample deeper soil layers.  The problem 

is that estimates of soil moisture integrated to the water table do not decrease as quickly 

as the top 20 cm of soil as the system dries out.  It is even theoretically possible for 

lumped unsaturated zone estimates to increase as formerly saturated portions of the soil 

profile are converted to wet areas within the unsaturated zone.  As a consequence, the 

elevation trend that was observed in the field samples but not the process models may be 

due to differences in their representation of the soil profile.  While lower elevations may 

have lower upper soil moisture levels in the field, this might not be reflected well by 

estimates of total unsaturated zone moisture content. 

These differences raise an important concern about model selection. Ultimately, 

the appropriateness of a model can be evaluated only relative to the specifics of the 

intended application (Rykiel 1996, Guisan & Zimmermann 2000, Gardner & Urban in 

press).  It is possible that a model may be well-suited to describe certain ecological 

processes but poorly-suited to describe others.  The model evaluation we have presented 
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here is relevant only to the ability of the models to predict relative surface soil moisture.  

These differences may explain patterns of seedling establishment but may be 

inappropriate to describe patterns of growth or mortality where adult trees can access 

much deeper reserves.  For the latter applications, model evaluation would require field 

samples that integrated across a larger portion of the soil profile.  Overall model 

performance may increase for these types of samples, which would more closely match 

many of the model formulations.  Crave and Gascuel-Odoux (1997) provide a more 

detailed discussion of why surface measurements of soil moisture may not always match 

distributions predicted by topographic-based indices. 

A fourth and final sampling issue was that although we tried to maximize the 

variance in the landscape-scale validation dataset by using the models to guide our 

sampling, we were hampered in this effort by difficulties in translating GIS predictions 

into the field and constraints imposed by limiting our choices of locations to the 175 

vegetation plots for which we already had considerable ancillary data.  For the validation 

data gathered from the three small sample areas, we were freer to locate samples at a 

wider range of topographic locations.  As a result, the variance in the landscape-wide 

samples (s2 = 8.1) was much smaller than the variance in the small-watershed samples (s2 

= 57.2).  The ASPE statistic is not sensitive enough to differentiate between models given 

the compression of moisture variability in the landscape samples (Table 3.4.3).  The 

models also may have performed differently had we collected a more variable test data 

set for the landscape-wide analysis. 
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Improved estimates of basic environmental resources such as soil moisture are 

needed to try to explain and predict ecological processes (Parker 1982). Grayson et al. 

(1992) and more recently Beven (2000) argue that hydrologic model development is too 

often carried out in the absence of field programs designed to test the models.   Too little 

discussion has been centered on model shortcomings, giving the impression that model 

complexity is positively correlated with confidence in results.  It is insufficient to offer 

theoretical model validations.  Field tests are needed to establish links between the 

models and reality.  We have developed and compared five models for estimating spatial 

soil moisture differences for a well-studied LTER site in the Pacific Northwest.  The 

models vary in their representation of soil water fluxes from spatially implicit to spatially 

explicit with an associated increase in model complexity.  Appropriate model selection in 

our case study, as in most situations, depends on the ecological issue to be addressed and 

the temporal and spatial domain of application. 
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SECTION 4: A FOCUSED INVESTIGATION 

CHAPTER 4 Factors Controlling Community Transition 
at the Tsuga heterophylla/Abies amabilis Ecotone 
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Abstract 

Major vegetation zones typically are described along elevation gradients. Trees 

are not affected by elevation, however, but rather by variables such as temperature and 

precipitation that covary with elevation.  Because these variables are difficult to measure 

at large spatial scales, I propose a method of tactically sampling the landscape at 

locations that are most meaningful for learning about forest community dynamics.  

Ecotones are landscape linkages between adjacent communities.  As such, they provide 

logical targets for focused study of forest community pattern.  I used landscape-scale 

correlations between forest composition and environmental factors to locate five high-

resolution study plots within the dominant forest ecotone in the Western Cascades of 

central Oregon.  Within these relatively small sample units, I examined explicitly the 

relationship between ecologically important environmental variables (temperature, 

radiation, soil moisture, and snow) and tree demography (establishment, growth and 

mortality).  The effect of temperature on growth rates might be important in limiting the 

downslope migration of Abies amabilis, but the upper elevation boundary of Tsuga 

heterophylla was associated with a more complex interaction of temperature and soil 

moisture on patterns of regeneration. The potential of ecotone studies for the monitoring 

of ecological response to environmental change such as that predicted under climate 

change scenarios is discussed.  

 

Keywords: community ecotone, environmental proxies, old-growth forest, spatial 

analysis
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Introduction 

Ecologists historically have focused on homogeneous environments in their 

attempts to understand ecological processes (e.g., Whittaker 1956, Peet 1981).  Fonda 

and Bliss (1969) summarize this perspective in their study of the vegetation of the 

Olympic Mountains in Washington state: 

“Rather than impose a random net of stands for sampling 
on the mountains, stands were selected based upon the 
recognition of relatively homogenous populations of the 
tentative community types.  Transition areas between the 
tentative community types were too narrow to include in 
the sampling.” 

In the 1980s, Weins et al. (1985) called for more studies of ecological dynamics at 

areas of transition (i.e., ecotones).  Risser (1995) echoed this appeal ten years later. Only 

recently, however, are these calls beginning to be answered with ecotone studies at the 

landscape level (e.g., Stohlgren et al. 2000, Camarero et al. 2000).  The utility of studying 

community transitions is manifold: (1) These are areas of maximum habitat variability 

and often maximum diversity (Neilson 1991).  As such, these biologic hotspots have 

much to offer investigations of biodiversity.  (2) Many current models of ecosystem 

dynamics are at too large a spatial scale to provide insights into the complex interactions 

of ecological systems (Camill & Clark 2000). Ecotone studies provide the opportunity to 

examine these interactions at a fine spatial grain. (3) Because many species are at the 

competitive limits of their ecological tolerances at ecotones, these regions may be 

especially sensitive to environmental change (Milne et al. 1996, Fortin et al. 2000).  For 

example, the analysis and continued monitoring of community ecotones may be the most 

169 



effective means of detecting and predicting ecological response to greenhouse warming 

(di Castri et al. 1988).  

During periods of natural climatic transition, the average rate of climate change 

has been approximately one degree centigrade per 1000 years (Hidinger & Glick 2000). 

The projected rate of climate change in the short-term future is 1.4 to 5.8 degrees 

centigrade over the next 100 years (IPCC 2001).  From these projections have come 

general predictions of a poleward and upslope shift of many species and communities 

(Peters & Darling 1985, Fujiware & Box 1999).  High mountain landscapes are viewed as 

particularly vulnerable (Taylor 1995, Fujiware & Box 1999).  Several recent reviews 

have shown that species range shifts are beginning to be observed (Parmesan & Yohe 

2003, Walther 2002). In general, however, this evidence is for mobile animals and short-

lived species. There has been limited field evidence to support theoretical predictions of 

rapid migrations for long-lived plant species, though the paleoecology literature is rich in 

accounts of tree migrations in response to changes in climate (Flenley 1979, Davis 1981).  

Ecotone studies provide the opportunity not only to monitor shifts in plant 

communities, but also to improve predictions of forest response to future environmental 

conditions by providing more knowledge about the mechanisms of transition. Attempts to 

predict ecological response to global climate change must start with an understanding of 

the local factors influencing current vegetation patterns (Halpin 1997, Woodward 1998).  

Noble (1993) noted that the potential value of an ecotone as a monitoring tool is 

dependent upon the mechanisms of transition at that ecotone. In many of our best-studied 

systems these mechanisms are still poorly understood. Previous studies have examined 
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the potential response to changes in climate at the boundaries between continental 

climatic regimes (Crumley 1993), grassland-woodland transitions (Clark et al. 2001), 

woodland-forest boundaries (Grimm 1983), and treeline ecotones (Noble 1993).  Loehle 

(2000) suggested that ecotones between different forest communities are more likely to 

exhibit measurable and interpretable changes.  

In this study, I attempt to better understand the mechanisms behind the transition 

from the Tsuga heterophylla vegetation zone to the Abies amabilis vegetation zone in the 

Western Cascades. This ecotone is a compelling case study because it is the dominant 

community transition in these old-growth ecosystems. Lessons drawn from a detailed 

examination of the biotic processes and physical constraints dictating this transition can 

be applied to more general models of landscape pattern.   

Ecotone hypotheses  

The transition from the T. heterophylla vegetation zone to the A. amabilis 

vegetation zone has been described in great detail (Fonda & Bliss 1969, Zobel et al. 1976, 

Franklin & Dyrness 1988), but efforts to identify the causes of this transition have been 

minimal and often contradictory. In this study, I look for evidence to support or refute 

competing hypotheses regarding the mechanisms of transition. I focus on the relative 

importance of temperature, moisture, radiation, and snowpack on community patterns.  

The argument has been made that while the upper-elevation (or northern) limits of 

species’ ranges are bound by physiological constraints (e.g., frost), lower-elevation (or 

southern) limits are determined by competition and the trade-offs between physiological 

tolerances and maximum growth (Smith & Huston 1989; Loehle 2000).  In studying a 
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forest-forest ecotone, I must consider both the upper limit of one species (T. 

heterophylla) and the lower limit of another (A. amabilis).  I will address each in turn. I 

summarize below the hypotheses that will be explored and the data that will be used to 

test each hypothesis. 

T. heterophylla upper limit: 

Snow – In perhaps the most detailed investigation of this ecotone to date, 

Thornburgh (1969) suggested that mechanical pressures associated with 

snowpack may be critical to the transition. According to his argument, T. 

heterophylla seedlings do not germinate until up to a month after the first 

snowmelt, while A. amabilis can germinate almost immediately.  The T. 

heterophylla seedlings, therefore, have limited growth over their first growing 

season. This low growth combined with their general drooping nature make T. 

heterophylla seedlings highly susceptible to damage by snowpack and associated 

debris over their first winter. Although the logic of this theory is compelling, 

empirical support is limited. I generate spatial estimates of snow depth and timing 

of spring melt, and test whether these factors are correlated with T. heterophylla 

regeneration at the edge of its range. 

Frost tolerance - A long history of gradient analysis provides a second potential 

explanation.  Implicit in these studies is the assumption that community 

transitions are governed by trade-offs in tolerances and growth rates.  Following 

this general model as described by Smith and Huston (1989), T. heterophylla may 

not be competitive at higher elevations because of their limited cold tolerance. 
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Considerable frost damage has been observed in T. heterophylla stands at high 

elevation in the Rockies (Packee 1990). Further, the germination rate has been 

shown to be extremely sensitive to temperature (Edwards 1976). I test this 

hypothesis by comparing patterns in January mean and minimum temperatures 

with the distribution of T. heterophylla regeneration at the edge of its range. 

A. amabilis lower limit: 

Growth rates – At its lower-elevation limit, A. amabilis may be bound by slower 

growth rates than T. heterophylla. According to the Smith and Huston (1989) 

community model, species that develop high tolerances do so at the cost of 

reduced growth rates.  I measure growth rates throughout the HJA watershed to 

determine if such a trade-off is evident for A. amabilis. 

Drought tolerance – Kotar (1972) suggested that A. amabilis seedlings were less 

drought tolerant than T. heterophylla seedlings, which prevented them from 

successfully competing in drier climates.  Krajina (1969) described a moisture 

gradient from P. menziesii to T. heterophylla to A. amabilis. Thornburgh (1969) 

did not believe that the distributions of these species were governed by soil 

moisture. This hypothesis is complicated by the confounding effects of 

temperature and radiation on moisture.  I test the hypothesis by sampling soil 

moisture directly and by developing spatial estimates of moisture differences at 

seedling locations.  

Heat/evapotranspiration stress – Others have countered that temperature is more 

important than moisture (Fonda & Bliss 1969, Packee 1990).  They argue that 
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higher temperatures produce a number of physiological effects that A. amabilis 

cannot tolerate. This hypothesis is more in line with conventional community 

ecology ordinations that separate major vegetation zones along a temperature axis 

and use moisture to divide community associations within those zones (e.g., 

Whittaker 1967, Dyrness et al. 1976). I measure summer temperature levels to 

evaluate this hypothesis. 

Dispersal limitation – Poor dispersal capabilities also may affect the range of A. 

amabilis (Schmidt 1957).  Its seeds are fire sensitive and very heavy, which 

results in the late invasion of the species into disturbed stands even at high 

elevations.  Additionally, seeds are produced only every other year and a low 

percentage of the seeds are viable due to a variety of factors described by Owens 

and Molder (1977), including long periods of pollen dormancy and a low number 

of archegonia that abort quickly if not fertilized. I draw inferences about the 

dispersal characteristics of these species through point pattern analysis of trees 

and seedlings. 

A. procera lower limit and competition with A. amabilis: 

Growth rates – As with A. amabilis, A. procera may be limited by low growth 

rates relative to downslope species. I compare growth across its range relative to 

T. heterophylla.  I also compare average growth rates of A. procera relative to A. 

amabilis and T. heterophylla within the transition zone. 

Radiation constraints – A. procera is a shade-intolerant co-dominant in the A. 

amabilis vegetation zone. I test the importance of radiation to regeneration 
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patterns by examining seedling distributions relative to fine-scale canopy and 

hillslope radiation influences.   

Dispersal limitation – A. procera is another heavy-seeded disperser with a high 

percentage of unviable seeds. I use point pattern analysis at the lower boundary of 

its distribution to evaluate dispersal processes as a potential constraint. 

The competing hypotheses have different implications under greenhouse warming 

scenarios.  Nobody has attempted to reconcile these competing hypotheses with a focused 

study of areas of transition, and with the possible exception of Thornburgh (1969), 

nobody has attempted to test the hypotheses with explicit measurements of plant-relevant 

environmental variables such as temperature, soil moisture, and snowpack and melt. In 

this paper, I provide a detailed examination of the patterns of transition from T. 

heterophylla to A. amabilis and A. procera dominated forest.  I begin with a brief 

description of the biology of these species. I describe the collection of field data at 

ecotone focus plots and the processing of these data to estimate spatial patterns in 

demography (regeneration, growth, and mortality) and the environment (radiation, soil 

moisture, snow, and temperature).   I present an overview of the biotic and environmental 

conditions observed on the plots.  I then compare trends in demography with trends in 

environmental condition.  First, I take a more traditional gradient analysis approach and 

examine changes in mortality and growth with elevation.  To address these trends, I use 

data collected from a sampling of forest stands broadly distributed across the landscape.  

I also examine the relationships between the landscape data and the estimates of 

temperature, radiation, and soil moisture described in Chapter 3.  I then focus on the area 
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of transition between these two community types, and test whether demographic patterns 

are correlated with environmental microcondition.  Finally, I test the dispersal limitation 

hypothesis through point pattern analysis of plot stem maps. 

Study area 

The H.J. Andrews Experimental Forest (HJA) is located on the west slope of the 

Cascade Mountains.  It is comprised of the Lookout Creek watershed, 80 km east of 

Eugene, Oregon. The Long Term Ecological Research (LTER) site covers 6400 ha and 

ranges in elevation from 410 m to 1630 m (McKee 1998). The watershed lies within the 

Blue River Adaptive Management Area, one of 10 such areas devoted to the development 

and evaluation of progressive management strategies for northwestern forests (Cissel et 

al. 1999).  At the time of its establishment in 1948, the HJA was an intact forest with 

about 65 percent of the land in old-growth (i.e., 400-500 years old).  Since that time, old-

growth forest has been reduced to 40 percent of the total area due to logging activities.   

Climate is characteristic of the Pacific Northwest, with dry summers and wet 

winters. Annual precipitation ranges from 2200 mm at the base of the watershed to 3400 

mm at upper elevations, with less than 300 mm normally falling during the summer 

growing season (Grier & Logan 1977). Soils are mostly deep, well-drained Inceptisols 

with most roots concentrated in the upper 200 cm of soil.  Zobel et al. (1976) argued that 

topography is more important than soil differences in controlling vegetation in this 

region.  Pseudotsuga menziesii (Douglas-fir), Tsuga heterophylla (western hemlock), and 

Thuja plicata (western red cedar) are the dominant species at lower elevations, while 

Abies amabilis (Pacific silver fir), Abies procera (noble fir), and Tsuga mertensiana 
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(mountain hemlock) dominate upper elevations (Franklin & Dyrness 1988).  On a 

regional basis, Ohmann and Spies (1998) suggested that elevation and associated 

macroclimate are the major correlates with community composition throughout Oregon. 

Tsuga heterophylla [Raf.] Sarg. (western hemlock) 

T. heterophylla comprises the most common potential climax species in the most 

extensive vegetation zone in western Oregon and Washington.  The T. heterophylla zone 

extends broadly throughout both states, from the Klamath Mountains in southern Oregon 

to British Columbia.  The vegetation zone’s elevation range in the Cascade Mountains 

extends from near sea level to upwards of 1,000 m (Franklin & Dyrness 1988). In a 

separate analysis (Chapter 2), I showed that the zone extends above 1,200 m within the 

HJA. T. heterophylla itself has been observed at elevations as high as 2,130 m and is 

often found in mixed stands within the A. amabilis vegetation zone (Packee 1990).  

Within the T. heterophylla vegetation zone, T. heterophylla is successional from P. 

menziesii except on the driest stands.  Despite its shade tolerance, however, T. 

heterophylla decreases in importance at higher elevations and more northerly latitudes.  

Relatively little research has been conducted regarding the mechanisms of this decrease, 

though some evidence suggests the important influences of winter snow (Thornburgh 

1969) and/or cold temperatures (Edwards 1976, Packee 1990).  

Abies amabilis [Dougl.] Forbes (Pacific silver fir) 

Abies amabilis is the major climax species in the A. amabilis vegetation zone.  

This zone is typically found upslope from the T. heterophylla zone at elevations ranging 
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from 1,000 to 1,500 m in the Oregon Cascades (Franklin & Dyrness 1988). Franklin 

(1979) distinguished the zones climatically by the 1-3 m snowpacks common to the A. 

amabilis zone, but absent from the T. heterophylla zone. Late-successional forest 

composition in the A. amabilis zone is characterized by mixed stands of A. amabilis, T. 

heterophylla, P. menziesii, and A. procera, with poles and regeneration dominated by A. 

amabilis.  Although A. amabilis is capable of growing at lower elevations, it does not 

compete well there with T. heterophylla (Franklin & Dyrness 1988). Factors that may 

contribute to its competitive inferiority include slower growth rates, lower drought 

tolerance (Kotar 1972) and susceptibility to heat stress (Fonda & Bliss 1969).  A. 

amabilis also are notoriously poor dispersers (Schmidt 1957). 

Abies procera Rehd. (noble fir) 

Abies procera is a common codominant in the A. amabilis vegetation zone. 

Relative to A. amabilis, it is early successional, as evidenced by a comparison of the size 

class distribution of the two species on mixed stands on the study plots (Figure 4.1). It is 

one of the most important timber species in the Pacific Northwest.  It has the strongest 

wood of any of the true fir species and is a productive subalpine species, whose long-term 

productivity exceeds even that of P. menziesii (Franklin 1964).  A. procera also is the 

western true fir with the most limited distribution. Rarely does it occur in pure stands, but 

instead is found most commonly mixed with A. amabilis.  Geographically, my study area 

in the McKenzie River Basin represents the southernmost extent of the range of 

genetically pure trees.  A. procera is most common between 1,070 m and 1,500 m in the 

central Oregon Cascades, and has been observed with most frequency on warmer, south-  
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igure 4.1. Histograms of average size distributions for four major species across five 
ecotone study plots. Open bars are live trees; closed bars are dead.  A. procera and P. 
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facing aspects (Thornburgh 1969, Dyrness et al. 1974).  Because it can be very 

productive at lower elevations, it is thought to be restricted to higher elevations because 

of competitive disadvantages rather than any physiological tolerances (Packee 1990).  

Like A. amabilis, it has a low percentage of viable seed, and seeds are not widely 

dispersed (Thornburgh 1969). There is some evidence that it prefers soils with high 

nutrient levels, high moisture levels, and good drainage capabilities (Franklin 1964, 

Franklin & Dyrness 1988). A. procera is considered shade intolerant.  Though slightly 

more tolerant than P. menziesii, it typically requires disturbance such as fire to establish 

successfully.   

I include A. procera in this analysis because it is a major component of the A. 

amabilis zone.  Unlike P. menziesii, the primary shade-intolerant species of the T. 

heterophylla zone, A. procera seedlings were commonly observed in my study plots.  

When referring to A. amabilis and A. procera collectively, I will use the terminology A. 

spp.  Otherwise, conventional genus-species nomenclature is followed. 

Methods 

Ecotones were sampled explicitly through a set of microsite focus plots.  The 

focus plots were aimed at capturing fine-scale demographic and environmental 

constraints along active community transitions.  This approach differs from traditional 

intensive sampling (e.g., reference stands), which typically is done on homogeneous sites 

representative of single vegetation zones (e.g., Acker et al. 1998 in the HJA).  
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Plot selection 

I relied upon earlier analyses of forest community pattern across the HJA 

(Chapter 2) to guide this sampling.  The results of a statistical model of 164 (20x20 m) 

vegetation samples stratified across the landscape were used in a geographic information 

systems (GIS) framework to highlight specific geographic locations on which to sample.  

These earlier analyses suggested terrain “proxy” variables most important in 

discriminating among community types (e.g., elevation).  The ecotone plots were 

designed to refine my description of this transition by explicitly considering more plant-

relevant explanatory variables at sites where their variation would have noticeable effects 

on vegetation.  The guiding principle was to hold elevation relatively constant and focus 

on the effects of variability in moisture, radiation, temperature, and snow.  The approach 

is analogous to a regression analysis that focuses on the variance in the residuals.  To 

maximize this variance, the plots covered a range of slope/aspect/watershed positions. 

Specifically, I chose sites to meet the following criteria through a process of 

successive filtering: 

(1) sites within the area identified as “transition zone” in the landscape-level 

community analysis (Figure 4.4); 

(2) locations that fit criterion 1 and covered all major geomorphic features of the 

HJA: 

a. Carpenter Mountain 

b. Frissell Ridge 

c. Lookout Mountain; 
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(3) areas that fit criteria 1 and 2 that could include within a 100-200 m transect two 

20x20 m plots that differed in community composition (i.e., one dominated by T. 

heterophylla and one dominated by A. spp); and 

(4) orientations that fit criteria 1-3 and created a portfolio of case studies that 

incorporated a range of topographic contrasts (i.e., changes in elevation, slope and 

aspect). 

Field methods 

Ecotone transects were 20 m in width and 100-180 m in length. Within each of 

the ecotone transects, all dead and live trees were measured at breast height, cored for age 

and growth rate, and mapped using a laser surveying system (Impulse Laser, Laser 

Technologies Incorporated; Figure 4.2).  In addition, potential seed trees outside the 

transect were identified according to a plotless sampling design. Using a 2.5-factor basal 

area prism, any tree sighted as a potential seed source for seedlings along the centerline 

was measured and cored.  For example, this would include a 1-m diameter tree at a 

distance of 40 m from the centerline.  Nested within each transect were 3 (1x1 m) 

quadrats per 20 m in which all seedlings were tallied by size class (young of the year, 0-

10 cm in height, 10-50 cm in height, 50-137 cm in height).  The large number of empty 

quadrats and the resulting small seedling sample sizes made the analysis of these data 

problematic.  As a result, I also mapped all seedlings within 1 m and all saplings (greater 

than 137 cm in height, but less than 2.5 cm in diameter at breast height) within 5 m of the 

transect centerline. These individually mapped seedlings were the focus of the analysis. A  
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 topographic position: tree sampling and stem mapping:

igure 2. Transect-based sampling layout for micr aphy (left side drawn) and vegetation (right side) on 
 
e 

F
ecotone focus plots. Main transect (bold line) is paralleled by 5-m bands used for seedling (1x1 m) and sapling (5x5
m) quadrats randomly located on either side of transect; number of quadrats is defined by stem densities. All trees ar
tallied within 10-m bands on either side of the main transect. In addition, trees sighted as “in” with a basal area prism 
are also tallied (filled symbols on right side). Topographic points are surveyed with sufficient density to generate a 
TIN, focusing on topographic break points (VIP’s, drawn as x’s). Soil depth soil moisture, and canopy closure are 
recorded in each seedling quadrat and at selected surveyed topographic points (VIP’s). 

 
Figure 4.2. Transect based sampling layout for microtopograpy (drawn on left side) and 
vegetation (right side) on ecotone focus plots.  Transects were 20 m wide by 100-180 m in 
length. Centerline was paralleled by 5-m bands used for randomly locating seedling (1x1 
m) and sapling (5x5 m) quadrats. All seedlings within 1 m of the centerline were mapped. 
All trees within the transect were mapped. In addition, trees sighted as “in” with a basal 
area prism were mapped (filled symbols on right).  Topographic points were surveyed 
with sufficient density to generate a high-resolution DEM (VIPs, drawn as x’s). Direct 
measures of temperature, soil moisture, snow and radiation also were taken. 

otopogr20 m
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subset of saplings and seedlings were harvested for growth rate analysis.  From these 

data, rates of critical demographic processes (e.g., growth, seedling establishment, 

mortality) were derived in a spatial context. 

The physical template also was sampled intensively within these transects. 

Critical topographic points (VIPs) were mapped using the laser surveying system.  

Sufficient VIPs were recorded to interpolate a high-resolution digital elevation model 

(DEM) of the site. An average of nearly forty measurements were taken for every 20 m 

of transect. Surface soil moisture (0-20 cm in depth) was recorded synoptically at a 

subset of the VIP locations and all seedling quadrats using a handheld volumetric 

moisture sampling device (Hydrosense, Campbell Scientific, Incorporated). 

Measurements were taken twice in the summer of 2002 (June 20 and July 20). Three soil 

depth measurements also were taken at each of the moisture locations using a 1-m tile 

probe.  Canopy closure was estimated at the seedling quadrats using a concave spherical 

densiometer. Temperature sensors (HOBOs, Onset Corporation) were located at several 

key locations along each transect. These sensors recorded temperature at breast height 

(1.37 m) at half-hourly increments.  Several complementary approaches were used to 

quantify snow levels and melt on the plots.  On May 10-12, 2002, I measured snow depth 

(up to a maximum depth of 100 cm) at 1-m intervals along the centerline of three of the 

transects.  Average height at which lichens began growing on tree boles was recorded for 

each 20-m segment.  According to Winkler and Schultz (2000), lichen height acts as a 

reasonable proxy for the average maximum snow depth.  Finally, I distributed 

temperature sensors (additional HOBOs; hereafter referred to as SNOBOs) at ground 
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level across the plots.  These sampling devices allowed me to monitor remotely the 

beginning and end of winter snowcover for specific locations on the plots.  When covered 

with snow, these sensors would consistently record a temperature of 0 oC.  When 

snowfree, the half-hourly measurements were much more variable. 

GIS methods - development of spatial data layers 

For each ecotone plot, I developed multiple geospatial estimates of the biotic 

characteristics, light/radiation, soil moisture, snow coverage, and temperature (Table 4.1). 

 Biotic – Biotic layers consisted of point coverages of all live and dead trees, all 

seedlings within 1 m of the centerline, and all saplings within 5 m of the centerline.  All 

of these data were gathered directly in the field and did not require subsequent post-

processing. Tree cores were analyzed to evaluate spatial patterns in growth rates. For 

each live tree, I recorded the mean annual growth increment from 1990-1995 using a 

VELMEX data encoder (Velmex Incorporated) and MEASUREJ2X software (VoorTech 

Consulting).  Cores were read using a microscope to a precision of 0.001 mm. 

Light – Potential radiation was modeled on several different spatial scales. These 

estimates considered differences in canopy cover and hillslope radiation. 

(1)  Corresponding to those seedlings that I did find in the initial sampling of 

90 (1x1 m) seedling quadrats, I recorded densiometer measurements in 

each of the four cardinal directions. These measurements were averaged 

to give an average percent canopy cover for the 1x1 m quadrat.  Because 

canopy cover is such a fine-scaled, highly variable attribute and I had 
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only three measurements per 20 m, I did not attempt to interpolate these 

data to estimate canopy in areas where I did not take measurements.  The 

original seedling quadrat data, therefore, were the only information 

available to evaluate the importance of canopy cover. The importance of 

canopy cover was the only environmental relationship for which I used 

the 90 seedling quadrats rather than the more intensively sampled 

seedling transects along the plot centerlines. 

(2)  On a larger spatial scale, radiation is influenced by hillslope orientation.  I 

used the elevation values from the VIPs to create a surface from which 

hillslope orientation could be estimated for specific points in the plots. 

Several techniques are available for interpolating point measurements to a 

continuous surface.  I explored inverse-distance weighting (IDW) and 

kriging. IDW is one of the simplest interpolation techniques, as it relies 

solely on the linear distance to known measurements to estimate values 

for new locations. Kriging modifies the weighting of measurements 

through semi-variogram analysis of spatial autocorrelation. In this 

analysis, kriging performed better than inverse distance weighting in both 

a cross-validation check of the data used to construct the DEM and a true 

validation test with independent elevation data (Figure 4.3).  The kriged 

1-m resolution DEMs were used to derive fine-scale estimates of aspect.  

These estimates were transformed along a northeast-southwest axis using 

the following transformation: -cos(45-aspect) (after Beers et al. 1966).  
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 4.1. Summary of geospatial data layers built for analysis. 

 Variable Comment 
Biotic Trees Location, dbh, species, growth rate of all trees 
 Mortality Location, dbh, and species of all identifiable snags 
 Seedling/sapling transect Location, size class, species of all seedling and saplings along centerline 
 Seedling quadrats Location and tally of all seedlings by size class in 1x1m plots 
Light Canopy cover Densiometer readings in four cardinal directions at each seedling quadrat 
 Transformed Aspect Aspect derived from 1-m and 10-m DEMs and transformed to a NE-SW axis 
Soil Moisture Focal concavity grid Focal mean elevation for 3 cell radius - local elevation using 1-m DEM 
 TCI ln(a/tanβ) where upslope area (a) is based on the surrounding watershed 
 Surface soil moisture  Surfaces built from regression and kriging of June moisture measurements  
Snow Snow depth transect Spline of 1m measurements along centerline 
 Lichen height Average value for each 20m segment 
 SNOBOs Kriged surface using SNOBO point values 
Temperature HOBOs Kriged surface for June and January mean, minimums and maximums 
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Figure 4.3. Comparison of kriging vs. IDW as interpolation techniques to create a high-
resolution DEM from VIP points.  Top panels present a cross-validation analysis of 340 
points used to construct DEM for Plot 2. Kriging root mean square error (RMSE) = 0.83 
m. IDW RMSE = 1.06 m. Bottom panels present a validation analysis with 70 
independent measurements of elevation. Kriging RMSE = 3.60 m. IDW RMSE = 3.71 m. 
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(3)  Coarser estimates of radiation also were derived by calculating 

transformed aspect from a 10-m USGS DEM of the HJA. 

Moisture – Because radiation influences evaporative demand it is highly related to 

moisture.  Soil moisture variability was estimated directly using a number of different 

methods. I developed two DEM-based indices of soil moisture: a focal concavity index 

(FCI) and a topographic convergence index (TCI). I also interpolated field measurements 

of June surface soil moisture.   

(1)  FCI accounted for topographic context as: 

FCI = Focal Mean Elevation (3 cell radius) – Local Elevation  (eqn. 4.1) 

where focal mean elevation is the average elevation value for a circle 

centered on the cell of interest with a radius of three neighboring cells. 

Local elevation is the elevation value at the cell of interest. The index was 

calculated using the 1-m DEM.  Following the example of McNab’s 

(1989) terrain shape index, positive FCI values are returned for sites that 

are low relative to their neighbors and, therefore, collect water.  Convex 

sites have negative values and more quickly disperse water.   

(2)  TCI was calculated as in Beven and Kirkby (1979): 

   TCI = ln (a/tanβ)        (eqn. 4.2) 

where a is the upslope contributing area and β is the local slope angle.  

Because the focus plots were not physically separated from their 

surroundings, estimates of topographic drainage must consider the larger 
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spatial context. I used the 1-m focus plot DEMs to estimate the local slope 

angle (β), but used a 30-m DEM of the entire HJA to calculate the upslope 

contributing area (a) beyond the extent of the focus plots. 

(3)  The soil moisture measurements were interpolated across the plots using 

two approaches. The June 2002 data were used for these analyses because 

they captured the largest variability in wetness.  Soil depth was estimated 

by kriging soil probe measurements across the plots.  These estimates 

along with plot-level terrain data (elevation, slope, aspect, tci) were used 

in regression equations for all plots combined and for each plot 

individually.  As a complementary approach, surfaces were constructed 

by kriging the moisture measurements. 

Snow – Snow cover was included in the analysis as a potential influence on 

seedling establishment; therefore, I needed to develop estimates for this variable along 

the seedling transect down the plot centerlines.  I tried three approaches to capture the 

large spatial and temporal variability in snow. Each had its limitations. 

(1)  Measurements of snow depth at 1-m intervals along the centerlines were 

splined to create a continuous estimate.  These measurements represent 

conditions for a single day and were taken at only three of the five plots. 

(2)  The average lichen height on six to eight trees in each 20-m segment was 

assigned to each seedling within that 20-m segment.  Relative differences 

in lichen height should correspond to relative differences in winter snow 

depth for this coarse resolution estimator.  
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(3)  The dates at which each SNOBO became snow free were kriged to create 

a continuous surface. I did not have enough of these loggers to get a 

systematic coverage (also ~1 every 20 m) and I mainly was 

experimenting with them as a proof of concept.     

Temperature - Coverages were created for June and January averages, minimums 

and maximums by kriging the HOBO point data. Loggers were installed at each 20-m 

marker along the transect centerlines. 

Statistical methods 

I compared patterns in radiation, temperature, soil moisture and snow cover to the 

demographic patterns for the different species using a combination of t-tests, logistic 

regression, and classification tree analysis.  To examine potential dispersal limitations, I 

considered spatial patterns of trees and seedlings within the plots using bivariate Ripley’s 

K analysis.  

Logistic regression is a regression technique used for characterizing binary 

responses such as presence-absence (Jongman et al. 1995). It uses maximum likelihood to 

fit a model to describe the log transformation of the probability (p) of some condition 

being met.  Maximum likelihood is used rather than least-squares regression because the 

regression errors are not normally distributed, a necessary condition of least-squares 

regression.  Instead, errors are binomially distributed based on whether or not 

presence/absence observations are correctly predicted. The logit transformation is used to 
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stretch the p-interval of 0 to 1 to -∞ to +∞, which allows for linear regression (Yee & 

Mitchell 1991, Jongman et al. 1995): 

 µ

µ

e
ep
+

=
1

()           (eqn. 4.3) 

where µ is the linear predictor equation. In this analysis, I used logistic regression to 

model the presence or absence of (1) a seedling of any type, (2) T. heterophylla, (3) A. 

amabilis, or (4) A. procera seedlings in the 1x1-m seedling sample quadrats based on 

canopy measurements from the quadrats.  I also used it to examine the importance of the 

different predictor variables in explaining the distribution of T. heterophylla seedlings 

relative to the distribution of the A. spp seedlings. 

Classification and regression tree (CART) analysis is a divisive analysis that 

attempts to partition a data set by recursively dividing it into subsets based on the 

strongest predictor variable (Breimann et al. 1984).  The technique offers several 

advantages over the regression approach. It allows the distribution of multiple categories 

of data to be considered simultaneously. The interpretation of the tree is rather intuitive 

and can be easily converted to a geographic information system for visualization of 

results (Moore et al. 1991).  The data structure allows for the incorporation of substitution 

and compensatory relationships. The hierarchical structure of the model allows the data 

to be partitioned at multiple levels of complexity.  Finally, because each branch of the 

tree is defined independently of other branches and the decision rules rely on no 

assumptions regarding the underlying model structure, CART allows a data set to be 

classified with great accuracy.  Unfortunately the high degree of accuracy may result in 
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an over-fitting of many ecological data sets.  To account for this tendency to over-fit, I 

used cross-validations of one-tenth of the entire data set to prune less important branches 

from the trees. Classification accuracy was determined from an average of these 10 cross-

validated trees. The effect of this cross-validation was to penalize trees that over-fit the 

data. The final trees were trimmed to eliminate branches that caused an increase in the 

misclassification rate of the entire data set. In this analysis, I used CART to complement 

the logistic regression analysis in identifying important variables for differentiating 

between species type for seedlings observed in the seedling transects along the plot 

centerlines.   

Point pattern analysis can be a valuable tool for interpreting the spatial 

functioning of ecosystems (Moeur 1993).  Ripley’s K analysis (Ripley 1976) is a point-

pattern analysis that considers the cumulative distribution of observed points relative to 

the distribution of points generated by a random process.  The Ripley’s K function differs 

from conventional nearest neighbor analyses in that it considers distances between all 

observed points and not just the first or second nearest neighbor.  An advantage of 

preserving all spatial relationships in the data is that Ripley’s K tests can assess pattern at 

multiple scales, and thus it can be used to evaluate spatial scales of clustering, in a 

univariate sense, or attraction/repulsion, in a bivariate sense. To test the dispersal 

limitation hypotheses, I conducted a bivariate label permutation test of seedlings and 

trees in each of the plots.  All trees and seedling locations were held constant, while I 

randomly reassigned the species labels of the seedlings.  The distances from seedlings to 

conspecific adults for 99 of these randomized trials were then compared to the distances 
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for the actual data to assess significance (P < 0.01). Observations higher than the 

randomized data were considered to be positively associated. Observations lower than the 

randomized data were considered to be negatively associated. The scale of any positive 

association should be reflective of that species’ dispersal distance.  

Results 

Plot descriptions 

In total, four plots were installed in 2001 and a fifth was installed in 2002 (Table 

4.2; Figure 4.4).  Plots varied in length from 100 to 180 m and in elevation from 1225 to 

1397 m.  Two of the plots were aligned along the dominant elevation gradient (Plots 5 

and 6).  A third hillslope gradient plot crossed a small shoulder at the upper end (Plot 3).  

One of the plots captured contrasting aspects separated by a discrete ridgeline (Plot 4).  

Finally, Plot 2 was oriented to capture multiple hillslope aspects in undulating terrain.   

Biotic patterns 

A. amabilis was slightly more abundant than T. heterophylla, though both species 

were well-represented on the plots (Figure 4.1).  A. procera and P. menziesii also were 

present, with size-class distributions typical of early successional species.  Mortality of A. 

spp was considerably greater than for the two other species.  Only one dead T. 

heterophylla was found on all of the plots.  Percent mortality for A. spp ranged from 

highs of 25 percent (Plot 4) and 46 percent (Plot 2) to lows of 11 percent (Plot 6), 13  
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Table 4.2. Summary of five ecotone plots. 

Figure 4.4. Ecotone plot locations.  White area represents transition zone as identified by 
the community model in Chapter 2. 

Plot Location UTME UTMN Elevation Aspect Slope 
Transect 
Length Orientation Notes 

2 Carpenter Mtn 567042-150 4902642-800 1304-1340 SE-SW 0-20 180 
Across undulating 
ridges 

Area of high fir 
mortality 

3 Frissell Ridge 568129-240 4901209-254 1278-1312 NW-W 15-24 110 
Over a small 
shoulder 

Clearing near top 
with few live trees

4 Lookout Mtn 570142-234 4894840-928 1377-1397 SW-N 0-32 100 
Opposite sides of 
ridgetop 

Abrupt transition 
at ridgetop 

5 Lookout Mtn 565107-208 4895900-930 1225-1256 NW 5-22 100 
Hillslope gradient; 
flattens upslope 

Very gradual 
transition 

6 Frissell Ridge 569160-279 4899935-990 1274-1352 W 34 120 Hillslope gradient Gradual transition
 

 

Plot 2

Plot 5

Plot 4 

Plot 3 

Plot 6 
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percent (Plot 3) and 14 percent (Plot 5). P. menziesii mortality was more evenly 

distributed: Plot 4 had 27 percent mortality and all other plots had between 15 percent 

and 20 percent.  Total basal area was approximately three times greater on Plot 6 (260 

m2/ha) and Plot 5 (305 m2/ha) than on Plot 4 (92 m2/ha).  The basal area of A. spp was 

evenly distributed among the plots (25 m2/ha to 50 m2/ha) except for on Plot 5 (122 

m2/ha). 

A. spp seedlings were slightly more abundant than T. heterophylla seedlings 

(Figure 4.5). Thirty-seven out of the 90 seedling quadrats had seedlings in them. Of the 

198 seedlings observed in these quadrats, 93 were T. heterophylla. Nearly all the 

remaining seedlings were A. spp, with only three P. menziesii seedlings found in the 

quadrats.  Of the 1488 seedlings recorded along the line transects, 835 were A. spp and 

653 were T. heterophylla. The size class distribution of T. heterophylla was skewed much 

more heavily towards young-of-the-year than the A. spp for both the quadrat and transect 

samples.  More than 50 percent of seedlings in their first growing season were T. 

heterophylla.  In the next smallest size class recorded (second growing season through 10 

cm in height), that percentage had dropped to 27 percent. Plot 6 had the fewest total 

number of seedlings (75 along the transect and only one quadrat with any seedlings). 

Plots 5 and 6 had approximately four times as many T. heterophylla seedlings as A. spp 

seedlings.  Plot 2 had just over twice as many A. spp seedlings as T. heterophylla 

seedlings, and Plot 4 had 353 A. spp seedlings but only 1 T. heterophylla seedlings. Plot 3 
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had nearly equal amounts of the two seedling types. 
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Figure 4.5. Seedling histograms. (A) Seedlings from three (1x1 m) seedling quadrats 
placed randomly every 20 m. (B) Seedlings measured along continuous 2-m wide 
transect down the middle of the plot. Young of year (yoy) are first year germinants
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Environmental patterns 

Light/radiation – Canopy cover was generally high throughout, ranging from plot 

eans of 90-95 percent, but differences between plots were significant (Table 4.3, 

NOVA: F = 8.6, P = 0.004).  In addition to having the highest average canopy opening, 

lot 6 also had one of the most southwesterly hillslope orientations. Plot 2 was southwest 

cing, while Plot 3 and 5 received less direct radiation (Table 4.3). Plot 4 crossed a 

istinct ridgeline and encompassed two extremely contrasting aspects.  At 1-m resolution, 

rrain was highly variable and mean aspect differences among plots were not significant 

OVA: F = 1.0, P = 0.31). When aspect was derived from the 10-m resolution USGS 

EM data, within-plot variability was reduced and among-plot differences were 

gnificant (ANOVA: F = 10.9, P = 0.001). 

Soil moisture – Plots were sampled twice in 2002: once in June at the beginning 

f the summer dry down, and a second time approximately a month later when soils had 

ried out substantially.  Soil moisture ranged from 10-48 percent in June and from 6-25 

ercent in July. Values decreased an average of 7.5 percent per sample location between 

e two sample dates (σ = 5.9).  The plots in the southern part of the watershed lost much 

o 

plots were significantly wetter at the beginning of the sample period (Table 4.4).  By the 

July sampling, all the plots had dried down to a similar level.  

Differences in soil moisture were significantly associated with radiation 

differences. For the 283 June samples collected at all plots combined, geographic location  
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more moisture than those in the northern part. Seventeen points decreased by over 20 

percent.  Of these, 12 were on Plot 5 and the remaining five were on Plot 4.  These tw
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Table 4.3. Percent canopy opening and Transformed Aspect (NE = -1; SW =1) for 90 
seedlin
Tranformed aspect values are provided from both the 1-m and 10-m DEMs. 

Plot (%)   

3 5.2 (4.5) 0.14 (0.42) 0.38 (0.16) 

5 6.9 (5.0) -0.21 (0.54) -0.6 (0.03) 

 

Table 4.4. Summary of soil moisture measurements. Moisture was sampled in the top 0-

   June 2002     July 2002   
N Mean Range St.Dev. N 

2 19.0 (12-26) 2.8 92 12.7 (7-18) 2.2 95 

4 27.7 (21-41) 5.0 18 9.1 (6-14) 2.1 17 

6 17.4 (10-34) 3.6 76 12.6 (6-23) 2.9 77 

 

g quadrats. Average plot values are shown along with standard deviations. 

 

Canopy Opening TAspect 1-m TAspect 10-m 

2 4.8 (2.6) 0.75 (0.23) 0.96 (0.05) 

4 4.9 (5.7) 0.03 (0.82) 0.42 (0.74) 

6 9.3 (6.3) 0.84 (0.09) 0.83 (0.04) 

 

 

20 cm of soil. 

Plot Mean Range St.Dev.

3 16.4 (11-24) 2.8 54 12.4 (7-18) 2.1 57 

5 30.2 (13-48) 7.7 43 14.0 (6-25) 4.8 50 
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was the strongest explanatory factor in a regression model of surface soil moisture (r2 = 

M 

t 

explanatory variable of moisture (r2 = 0.12, P < 0.001). Aspect was particularly important 

in explaining soil m re diffe s on the two plots that crossed ridges (Plot 3 and 

Plot 4). Elevation also was an t expl able ression 

models built for several of the individual plo  va ificantly 

described observed differences in moisture on Plot 6.  The average root mean square 

error (RMSE) of the residuals from the regression model fits was 3.3 percent. I also used 

surfaces across the plots using kriging (Figure 4.6).  This approach had similar success in 

fitting the data ( d or Plot 6 for 

which no regression equation could be developed. The kriged and regression-based 

estimates were hig y a  0 P 0

Snow – The snow depth measurements corresponded well with both the average 

lichen height on trees in the plots (r = 0.70, P  < 0.001) and with the snowmelt data from 

the SNOBOs (r = 0.44, P < 0.001).  The snow depth transects provided the finest 

resolution measure (Figure 4.7).  I was able to reach three very different plots for this 

sampling: (1) Plot 2, which stretched across an undulating ridge; (2) Plot 3, which was a 

more classic hillslope gradient; and (3) Plot 4, which included opposing sides of a 

ridgeline. Snow depths at the time of sampling ranged from 0 cm to much greater than 

100 cm.  None of the plots were completely snow free and none of the plots were  

0.35 and 0.15, respectively for Northing and Easting UTM coordinates). When the UT

coordinates were not included in the analysis, transformed aspect was the stronges

oistu rence

importan anatory vari  for the moisture reg

ts. No terrain riables sign

the spatial autocorrelation in the moisture measurements to interpolate continuous 

average RSME = 4.1 percent), and it generate  estimates f

hl correl ted (r = .92, <0. 01). 
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Figure 4.6. Example kriged soil moisture coverage with sample points overlaid (Plot 2). 
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Figure 4.7. Example snowdepth transect. Depth measurements were taken each 1 m along 
the centerline and splined to create a continuous surface (Plot 2). 
 

 

 
Figure 4.8. SNOBO melt data for a location on Plot 2. Snow cover is indicated by the 
straight line at 0 oC from 11/22/01 to 5/03/02. 
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completely covered in snow.  The pattern of snowmelt, however, differed considerably 

among the three plots.  Snow depth on Plot 2 was highly variable at fine spatial scales 

with a noticeable trend of middle of the plot.  

Depth on the classic gradient plot (Plot 3) generally increased with increasing elevation.  

Snow on Plot 4 was absent from the south-facing aspect and deeper than the 100 cm tile 

probe on the entire north-facing aspect. The finding of the deepest snow of any of the 

sam  s  on this north-facing aspect on Lookout Mountain is consistent with other 

studies that suggest this area is the coldest and wettest region of the HJA (Smith 2002).  

This plot also had the highest elevations included in the study. 

The SNOBO sensors were effectiv snow dynamics over the winter 

2001-2002. A few isolated snow events were recorded in the early fall, but temperature 

mperatures recorded by the SNOBOs remained within 1o of 0 oC until spring snowmelt 

(Figure 4.8).  Very few snowfree days were observed before the final spring melt.  

Snowoff, measured as the date at which temperature rose above 1oC and variation 

increased, was obvious for all the sensors.  The average snowoff date was May 17.  

Although the network of sensors was sparse (~1 sensor every 20 m), both within and 

among site trends were observed in the SNOBO data.  The average standard deviation 

ithin a plot was 8 days, with the undulating terrain plot (Plot 2) having the largest range 

 snowoff for its sensors (35 days).  Plot 2 also was the last to have all of its sensors 

ne 4. For comparison, 6 SNOBOs were 

distributed in the T. heterophylla zone from 1140 m to 1180 m in elevation, directly 

lower depth at the ridge located in the 

ple ites

e in capturing 

was still highly variable at all sites until November 22.  After this major snowstorm, 

te

w

in

become snowfree, which did not occur until Ju
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downslope from Plot 2.  Snowoff occurred from April 20 to 28 at these sensors, up to a 

full month earlier than in the transition zone 160 m upslope in elevation. 

Temperature – By controlling for elevation, I also severely limited the range 

temperature values observed on the plots (Table 4.5).  Weather related damage and 

vandalism resulted in the recovery of only three to six portable temperature sensors per 

plot.  The within-plot ranges of the mean June values for the different sensors were les

than 0.5 oC, and the within-plot variations in January means were even smaller.  Amon

plot variation also was small and less in January than June. The more southern plots 

(Plots 4 and 5) were slightly cooler than the plots in the norther

of 

s 

g-

n portion of the 

watersh

a 

ith 

  

 

 

ed.  Plot 5, which was located on a northwest-facing local slope along the 

generally north-facing Lookout Ridge, was consistently coolest despite the fact that it 

was at the lowest elevation of any of the plots.   

The temperature data were associated with the small differences in elevation 

within the plots, though the associations were not consistent across the plots. Examining 

the relationship across the entire dataset, January temperatures were significantly 

negatively correlated with elevation, but June maximum temperatures were not.  On 

plot-by-plot basis, however, June maximums were consistently negatively correlated w

elevation (r-coefficients from –0.43 to –0.89). The different measures of temperature 

(June mean, June maximum, January mean, and January minimum) were significantly 

positively correlated with each other except for January means with June maximums. 
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number of sensors per plot. Mean is the overall mean temperature recorded from all 

for the plot. Abs. Range is the absolute lowest and absolute highest values recorded on 

   June   January 

2 6 11.6 0.17 -0.19 - 30.33 1.2 0.12 -7.56 - 10

4 3 11.0 0.11 -1.14 - 25.73 1.1 0.06 -8.35 - 9.67 

 

 

Table 4.5. Summary of temperature data gathered from portable microloggers. N is the 

sensors combined. St.Dev. is the standard deviation of the individual mean sensor values 

the plot. 

 

Plot N Mean St.Dev. Abs. Range Mean St.Dev. Abs. Range
.38

3 4 11.9 0.14 -0.47 - 29.95 1.2 0.18 -7.99 - 11.02

5 4 11.5 0.21 0.23 - 27.27 1.2 0.11 -6.53 - 9.94 
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Environmental controls on demography 

discuss below how demographics relate to environmental patterns in 

temperature, radiation, snow and moisture.  First, I briefly describe the associations for 

the entire watershed.  Then, I address the associations at the ecotone level. 

JA (Chapter 2) indicated a relatively sharp transition in species type at approximately 

1300 m in elevation (Figure 4.9).  While A. amabilis seed elatively 

high be  thi resh hy en egan cli re 

reaching this threshol  hete lla as l hroug its  A. 

amabilis and A. procera mortality rates were high at or below their lower-elevation 

threshold.  These trends suggest that the regeneration phase may be limiting the upslope 

migration of T. heterophylla, whereas the range of the A. spp may be limited by high 

mortality at low elevations.  I examined the growth rates of these species in more detail to 

determine if changes in relative competitive advantage coincided with the high A. spp 

mortality.  

Environmental correlations with growth rates may be sufficient to explain the 

inability of A. spp to compete successfully at lower elevations, but T. heterophylla growth 

was not strongly associated with environmental factors.  I examined the mean annual 

increment (rw) from 1990-1995 of 1723 trees cored throughout the entire HJA watershed 

from 1997-1999 (943 T. heterophylla, 547 A. amabilis, and 234 A. procera). Trees 

I 

Landscape-level associations 

Abundance data from an earlier analysis of forest community pattern across the 

H

ling density was still r

low s th old, T. heterop lla seedling d sity b  to de ne well befo

d.  T. rophy  mortality w ow t hout  range, while
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Figure 4.9. Elevation trends observed from 175 (20x20 m) sample plots spread across the 

the plots. The bottom panels present the seedling density and mortality for the different 
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species. Lines are 20-point running averages. 
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ranging in size from 5-190 cm diameter at breast height (DBH) were included in the 

nalysis, resulting in a space-filling graph of the mean growth increment plotted against 

levation (Figure 4.10A).  The first step in the analysis of tree growth rates was to 

evelop equations for the diameter-corrected mean annual increment for each of the 

ecies. A series of increasingly more complicated models considering elevation, basal 

rea (BA), and the environmental factors modeled in Chapter 3 (summer radiation, 

mperature and soil moisture) were compared to these simple equations. The models 

ere nested so the significance of new terms could be evaluated by likelihood ratio tests 

okal & Rohlf 1995). The following, most parsimonious models resulted: 

  T. heterophylla: ln(rw)=-1.0 + 0.5ln(DBH)–0.001BA           (eqn. 4.4) 

  A. amabilis: ln(rw)=0.3+2.0ln(DBH)–0.3(ln(DBH))2-0.18TEMP–0.008BA    (eqn. 4.5) 

  A. procera: ln(rw)=-2.8+2.4ln(DBH)–0.3(ln(DBH))2-0.12TEMP         (eqn. 4.6) 

I log transformed the growth rate and diameter data to: (1) improve the normality 

f these datasets and (2) improve the linearity of the relationships with these variables. 

he negative quadratic terms in the A. spp equations indicate that growth rates in these 

ecies began to decline after a certain size.  After accounting for diameter effects, the 

rowth rates of both the A. spp were negatively associated with temperature. Growth 

tes for T. heterophylla were fairly consistent across temperatures.  Growth declined 

ith increasing basal area for the two shade-tolerants. A. procera growth rates were not 

t 

story of heavily stocked stands.  A plot of 

the predicted growth rates of average sized trees (27.5 cm dbh) in a stand of average 

basal area (83 m2/ha) suggests that T. heterophylla should be competitively  
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significantly associated with basal area, most likely because trees of this shade-intoleran

species would not even be present in the under
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width against elevation for trees found on the 175 landscape-wide plots.  (B) Fitted mean 
wth 

for the A. spp.  Regression equations account for any significant relationships with tree 
 greater than 

the blue lines. 

Figure 4.10. Landscape trends in relative growth rates. (A) Five-year mean annual ring 

annual ring width against temperature, the strongest environmental correlate with gro

size and stand basal area. Competition favors T. heterophylla at temperatures
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superior to A. spp above the temperature at which the lines cross (Figure 4.10B).  The 

absolute values in temperature in Figure 4.10B should not be interpreted strictly, as the 

temperature model predicts relative temperatures only (see Chapter 3.2). The crossing of 

the growth curves does correspond with the elevation of the ecotone (~1200 m). 

I also compared the ability of temperature, soil moisture and radiation to explain 

patterns in regeneration at the landscape level.  In particular, since the direct ordination of 

T. heterophylla seedling density against elevation suggested that regeneration of this 

species may be influenced by environmental gradients, I conducted a regression tree 

analysis on these seedlings with the more plant-relevant variables.  Temperature was the 

first splitting variable in the tree.  Soil moisture was important in limiting the fine-scale 

distribution of seedlings within the upper temperature zone (Figure 4.11).  The highest 

density of seedlings were found at sites of high temperature and high moisture. 

Ecotone level associations 

Growth and mortality trends were not significant for any of the species on the 

ecotone plots.  I found only one dead T. heterophylla tree on the ecotone plots. Mortality 

of A. spp in the ecotone plots was highly variable, but consistently greater than T. 

heterophylla mortality.  Growth rates were not significantly associated with elevation, 

temperature or any of the other environmental variables (Figure 4.12).  The remainder of 

this section focuses on significant influences on regeneration 

Only thirty-seven of the 90 (1x1 m) seedling quadrats had seedlings present.  A. 

spp seedlings were present in 26, T. heterophylla were present in 13, and P. menziesii  
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Figure 4.11. Regression tree model of T. heterophylla seedling density on 175 landscape-
wide plots. Circles provide mean number of seedlings for the plots described by that end
node.  Length of branch corresponds to the amount of variance explained by that variable
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Figure 4.12. Ecotone trends in relative growth rates.  Growth was not significantly 
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were present in 3.  Only 3 plots had both A. spp and T. heterophylla seedlings.  Logistic 

regression equations using canopy measurements taken at these quadrats significantly 

predicted T. heterophylla presence/absence (positive association with canopy cover, r2 = 

0.06, P = 0.007), but were not significant in describing the distribution of either of the A. 

spp. 

By examining the individual seedlings along the centerline transects, I was able to 

increase the sample sizes considerably (N = 653 T. heterophylla seedlings, 603 A. 

amabilis seedlings, and 232 A. procera seedlings). I used the derived environmental 

coverages of light, snow, temperature and moisture to group seedling observations by 

information on each of the variables for all of the plots (Table 4.2 provides a description 

of each of the variables), I examined each plot separately in addition to aggregating 

across all plots

The distributions of seedlings on plots dominated by T. heterophylla seedlings 

were less easily explained by the classification tree analyses than were the distributions 

of seedlings on plots that contained a more even mix of seedling types (Table 4.6).  Plot 4 

was dominated by A. spp seedlings to the point that T. heterophylla seedlings were not 

even present.  Plots 2 and 3 provide the best opportunities to examine the limitations on 

T. heterophylla regeneration. The combination of moisture and temperature was best able 

to explain the seedling distributions on these plots. The difference in explanatory 

variables between the plots suggests that multiple mechanisms may be important. On Plot 

terophylla were found on  

species in classification tree and logistic regression analyses.  Because I did not have 

. 

2, T. heterophylla were observed on drier sites.  On Plot 3, T. he
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classification tree. Variables are provided in the order in which they were added to the 

seedl

Table 4.6. Summary of most important plant-relevant variables identified by 

classification tree.  Significance was tested by two sample t-tests.  The number of 
ings of each species is provided at the bottom of the table. Average snowdepth 

measurement was deeper for A. spp seedlings than T. heterophylla seedlings on Plot 3, 
though
seedlin

 Plot 2 Plot 3 Plot 4 Plot 5 Plot 6 
e 

 the difference was not statistically significant (P = 0.08).  Too few T. heterophylla 
gs were available for tests on Plot 4. Snowdepth measurements were not available 

for Plot 5, and snowdepth, SNOBO, and temperature was not available for Plot 6. 

 Summer Temperature Moisture --- Moisture Non

 Winter Temperature Winter Temperature    

T. heterophylla 124 70 1 397 61 
A. amabilis 119 53 334 84 13 
A. procera 176 27 17 11 1 

 

 Moisture Radiation  Radiation  

  Snow (n.s.)    
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wetter sites as the shade-intolerant A. procera dominated drier, southwest-facing aspects. 

nowdepths were not significantly different for the different species on either plot. 

Depths were slightly deeper for A. spp seedlings on Plot 3, but were less deep on Plot 2. 

ot 

 

factors s in the emperature difference re d a

stronge  predic  ence across all plots (Figure 

hips we  consistent, however.  Summer tempera ifferen

w t in classif T. heterophylla seedlings on Plot 2 only.  January 

tem eratures but not June temperatures were significantly different on Plot 3.  Soil 

moisture was again the strongest predictor variable for Plot 3. 

One difference between the logistic regression and classification tree results was 

in the relative importance of radiation.  When considered independently in the logistic 

regression analysis, radiation was consistently the least important of the potential 

explanatory variables. When considered after accounting for moisture effects in the 

classification tree analyses for Plots 3 and 5, radiation was the second most important 

explanatory variable. 

The point pattern analysis confirmed that the heavier seeded A. spp may be more 

prone to dispersal limitations than T. heterophylla, but none of the species were 

constrained by dispersal within the extents of the ecotone plots. 

S

Results of the logistic regression analyses corroborated the importance of 

temperature and moisture as explanatory variables, but reemphasized the high plot-to-pl

variability.  For this group of analyses, the total amount of variance explained by each 

variable independently as examined rather than the combined influence of multiple

a  classification trees.  T s we  highlighte s the 

st tor of T. heterophylla seedling presence/abs

4.13).  Relations re not ture d ces 

ere importan ying 

p
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Figure 4.13. Summary of amount of variation in T. heterophylla distribution explained by 

heterophylla seedlings were available for tests on Plot 4. Snowdepth measurements were 
le for 

Plot 6. 
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Discussion 

In this study, I explored potential mechanisms of transition in a Pacific Northwest 

old-growth ecotone. I was interested specifically in comparing the relative importance of 

temperature, soil moisture, light, and snow to differences in growth and establishment.  

The results support a combination of factors that influence species sorting at the T. 

heterophylla/A. amabilis ecotone.  On landscape scales, temperature associations with 

growth appear to be limiting the downward expansion of A. spp.  Higher growth rates of 

A. spp at cooler temperatures could be limiting the upslope migration of T. heterophylla. 

Temperature and moisture associations with regeneration also are highly associated with 

the distribution of T. heterophylla seedlings.   

These same factors are most associated with the distribution of T. heterophylla 

seedlings in the fine-scale ecotone plots, though effects are variable from plot to plot.  

adiation effects are highlighted at the ecotone level.  Growth rates are not significantly 

lated to changes in the environmental setting at this fine scale.   

mental variables, and, therefore, concluded that growth was probably not 

controlling the upper-elevation boundary of this species.  It is possible that higher growth 

rates of A. spp at high elevation give these species a competitive advantage over T. 

heterophylla, but no strong  elevation trend was observed in T. heterophylla mortality and 

extremely low mortality was observed in the ecotone plots.  These findings are consistent 

R

re

T. heterophylla  

I found no relationship between T. heterophylla growth rates with any of the 

environ
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with those of Acker et al. (1996) who found low T. heterophylla mortality relative to A. 

spp mortality in a 27-year study of a forest stand at 1290 m in the HJA.  If differences in 

growth rates were leading to A. spp excluding T. heterophylla at high elevations, higher 

mortality of T. heterophylla trees should have been observed at upper elevations. 

The results suggest that regeneration is likely to be limiting the range of T. 

heterophylla either through snow, temperature, or moisture limitation.  Support for 

Thornburgh’s (1969) snow hypothesis was equivocal. I did not find a consistent 

relationship between T. heterophylla regeneration and any of the estimates of snow depth 

and melt. The snow theory does have an intuitive appeal, as snow is an integrator of 

precipitation, temperature and radiation.  It is possible that my measures of snow were 

not adequate to identify associations.  Though the three approaches to recording snow 

were highly correlated with each other, at least two of the metrics (SNOBOs and lichen 

height) may have been at too coarse a grain to capture the fine-scale snowmelt dynamics 

that may be critical to regeneration.  I had 1-m resolution measurements of snow depth 

for only two of the plots that had T. heterophylla seedlings. On one of the plots (Plot 3), 

gs were found in areas of only slightly lower snow depth than 

were the A. spp seedlings.  On the other plot (Plot 2), A. spp seedlings were found in 

areas of lower snow depth.  This result contradicts Thornburgh’s (1969) snow hypothesis, 

but supports Brooke (1964), who suggested that A. amabilis seedlings rather than T. 

heterophylla seedlings should be found in areas of early snow melt at higher elevations.  

He proposed that because of their early germination, A. amabilis seedlings have few 

available safe sites for establishment in areas that maintain snowcover into the summer 

T. heterophylla seedlin
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months.  Those seedlings that try to establish on snow dry out and die, and only those 

seeds that find free locations are successful. 

I also did not find T. heterophylla seedlings preferentially on south-facing slopes 

or canopy openings.  The finding that T. heterophylla seedlings were more common 

under d irect 

of these 

e 

 

. 

ense canopies than canopy gaps is contrary to one of Thornburgh’s (1969) d

predictions, but it may indirectly support his overall snow accumulation theory.  T. 

heterophylla seedlings may be found around large trees because of the influence 

trees on patterns of snow accumulation and melt.  Snowfall interception by branches and 

needles can substantially decrease the amount of accumulation under tree crowns.  Th

rate of snowmelt also is modified considerably in the vicinity of large stems that can re-

radiate longwave radiation. The combination of these two influences results in the 

commonly observed melt cone around tree trunks (Anderson 1963). It is possible that T. 

heterophylla establishment in the transition zone, and by extension T. heterophylla 

migration upslope, is aided by these melt cones.  

Given the weak support for the snow hypothesis, I cannot discount other potential

mechanisms. Temperature differences were highlighted as the strongest predictor of T

heterophylla seedling presence/absence across the aggregated ecotone plot data. The 

mechanism by which temperature would limit the upward expansion of T. heterophylla in 

this system is not clear.  Temperatures do not get below the USDA prescribed T. 

heterophylla frost tolerance of –23.2 oC in these forests (Table 4.5).  Seedlings also 

would be buffered by winter snowpack.  One possible mechanism is that cool 

temperatures delay the start of germination.  The germination rate of T. heterophylla is 
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more sensitive than that of A. spp, as the number of days required for germination is 

nearly doubled for every 5 oC below the optimum temperature of 20 oC (Packee 1990). 

 that 

 et al. 

 

 

A. amabilis 

Thornburgh (1969) found this species everywhere at high elevations, even south-

facing slopes.  He describes a threshold elevation, below which it was not observed and 

did not even speculate an explanation for this threshold. I also found A. amabilis widely 

distributed across all aspects at high elevation. I conclude that competition most likely 

controls the lower-elevation boundary of A. amabilis’s range. Lower growth rates at 

lower elevations (associated with higher temperatures) result in increased mortality and 

competitive exclusion by T. heterophylla.  Teskey et al. (1984) reported a decreased net 

photosynthesis of A. amabilis at temperatures above 15 oC. Without providing additional 

One potential mechanism not examined is the importance of nurse logs to T. 

heterophylla regeneration. T. heterophylla are unusual in their regeneration pattern in

nearly 100 percent of seedlings are found on decaying logs (Christy & Mack 1984). It is 

possible that successful establishment requires a certain type of rotting log. Harmon

(1986) reported a decay half-life of 166 years for P. menziesii, which also has a rough- 

textured bark.  This extremely slow decay rate and bark consistency are two attributes 

that may make P. menziesii a more suitable substrate for regeneration than A. spp 

(Thornburgh 1969).  Recently fallen logs can be low in available nutrients and too high 

off the ground for successful establishment and growth (Harmon & Franklin 1989).

Because there are fewer old, decaying P. menziesii logs at high elevation, T. heterophylla

regeneration may be substrate limited in the A. amabilis zone. 
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detail, Fonda and Bliss (1969) also suggested that A. amabilis were less competitive a

higher temperatures due to their sensitivity to heat stress.  

t 

, but 

riven by increased 

anspiration. There is some evidence of drought intolerance for A. 

amabilis.  Soil moisture was nearly as strong a factor in explaining A. amabilis growth 

rate trends at the landscape scale as was temperatue.  With a better model of soil 

moisture, this factor might have been more significant.  At the ecotone level, mean soil 

moisture values were significantly higher at A. amabilis seedling locations (27.1 percent) 

than T. heterophylla locations (24.4 percent; t = 7.6, P < 0.001).  The gradient from wet 

A. amabilis sites to drier T. heterophylla sites is consistent with the moisture gradient 

described by Krajina (1969).  It is likely that drought intolerance of A. amabilis is 

It is important to emphasize that the projected shift in competitive advantage 

associated with the landscape-level tree cores is not driven by an increase in T. 

heterophylla growth rate, but rather by a decrease in A. amabilis growth rate with 

increasing temperature.  This finding supports a functional response curve where species 

exhibit reduced growth at the lower-elevation boundary of their range. It contradicts 

Loehle’s (1998) asymptotic response function, which hypothesizes that trees growing 

above their elevation range limit (or northern limit) should show decreased growth

below their elevation range limit (or southern range limit) should not show a decline in 

growth.   

From this study it is not possible to separate cleanly a pure temperature effect 

from a temperature-associated drought effect at low elevation d

potential evapotr
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dictating this difference in seedling distributions, because it is unclear how wetter soils 

could limit the establishment of T. heterophylla. 

A. pro

This species is frequently associated with south-facing aspects at high elevations 

(Franklin & Dyrness 1988) but an explanation for either the elevation or the aspect 

preference is lacking (Thornburgh 1969).  Growth of A. procera in my study was 

negatively associated with temperature.  The rate of decline with increasing temperature 

was slightly lower than for A. amabilis, resulting in a lower-elevation threshold to its 

distribution.  As to the issue of A. procera’s preference for south-facing slopes, I found 

that this pattern could not be explained simply by growth differences.  I did not find any 

significant differences in growth for either A. procera or A. amabilis on different aspects.  

Across at 

ater 

h 

Establishment is constrained to areas of very high light for this shade intolerant.  

The seedling distribution was significantly associated with southwest-facing aspects 

(Figure 4.14).  Because potential dispersers were present on northeast-facing slopes, light 

rather than dispersal is more likely to be limiting their range. 

cera 

 much of its range, the growth rate of A. procera is considerably greater than th

of A. amabilis (Figure 4.10B).  For 350 A. spp trees cored in the ecotone plots, the 

diameter corrected mean growth increment of A. procera was nearly 25 percent gre

than that of A. amabilis.  Once established, therefore, A. procera is not limited by growt

at upper limitations, which suggests an establishment constraint.  
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Figure 4.14.  Distribution of different species with respect to aspect.  Dark circles 
represent mean values. 
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Conclusions 

These plots have already provided valuable information in the effort to understand 

the mechanisms of change at one of the major forest ecotones in the Pacific Northwest. 

Gradient analyses in the past have focused on patterns of abundance only and have not 

addressed adequately the demographic mechanisms behind community transitions.  Here, 

I examined directly regeneration, growth and mortality as potential mechanism of 

community patterns.  I also addressed species responses with respect to more plant-

relevant environmental variables than are typically considered in a gradient analysis. 

These analyses benefited greatly from focused sampling in areas of highest competition. 

The plots have further potential as monitoring tools for future environmental 

change. The study provides a baseline analysis of an ecotone that can be revisited to 

monitor possible effects of climate change.  Though ecotones have been advocated as 

valuable sites for the detection of climate change (di Castri et al. 1988, Hansen & di 

tably, 

t the slow response and highly variable ecotone front make these 

areas problematic for monitoring of climate change.  Demographic processes such as 

growth and regeneration are less susceptible to the time lags that are expected to 

complicate monitoring of forest response to changes in climate. The large amount of 

variation between the different ecotone plots, however, suggests that replicated studies 

are critical to any potential monitoring program 

Castri 1992), some have argued that they are not suitable for this purpose.  Most no

Noble (1993) argued tha
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CHAPTER 5 Summary and Conclusions 

ty 

Summary 

ree 

dy 

 

  

ore 

g 

luding geographic information systems 

data and portable electronic monitoring equipment), landscape-scale models were 

constructed to estimate spatial patterns in radiation, temperature, and soil 

In this chapter, I present a summary of the overall findings and approach, I 

present an example of how the study could be relevant to management under potential 

climate change scenarios, and I discuss how the methods can be transferred to other 

montane systems. In short, I address how demographic processes and physiologically 

important physical variables provide more valuable descriptions of forest communi

transitions than simple trends in tree composition and elevation. 

I have described an approach to identify ecologically important environment-t

associations that can be applied widely to montane watersheds. I have presented a stu

in old-growth forest of the Pacific Northwest as an example application. A summary of

the major findings of the study is presented below. 

(1) The initial landscape-level analysis (Chapter 2) found that elevation was highly 

correlated with the transition in basal area from T. heterophylla to A. amabilis.  In 

many studies this result may be viewed as the end-product of the investigation.

Here, I used it as a point of departure (working model) to try to identify m

physiologically meaningful variables and demographic mechanisms underlyin

the elevation gradient. 

(2) Using the tools of landscape ecology (inc
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moist  watershed 

in the Oregon Cascades, but are probably more universally applicable. 

a. Radiation: hillshading by adjacent topography and temporal variability in 

sun angle had significant effects on radiation estimates (Chapter 3.1). 

 minimums and means) 

into the models (Chapter 3.2). 

c. Soil moisture: surface soil moisture was modeled statistically using 

 

h the models were built, but they 

 on 

elevation on local scales (i.e., water flows downslope) and 

ure.  The following observations were made for the H.J. Andrews

b. Temperature: the representativeness of simple lapse rate models were 

improved by incorporating radiation (for temperature maximums and 

means) and distance from stream (for temperature

elevation, radiation, and relative slope position.  Deeper soil moisture was 

less affected by radiation differences (Chapter 3.3).  Statistical models can

perform as well or better as more sophisticated process models under 

conditions similar to those from whic

might not be effective at extrapolating to new environmental settings 

(Chapter 3.4).  

d. For all three of these factors, variability was a function of the scale of 

observation.  For example, temperature varied with proximity to stream

a local scale and elevation on a landscape scale.  Soil moisture varied 

negatively with 

positively with elevation on landscape scales (i.e., precipitation increases 

upslope).  It is important to account for these multiple influences in 
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constructing broadly applicable models of environmental variability 

(Chapter 3). 

(3) Wh

temper  

tree

(4) The eff

downsl

heterop re complex interaction of temperature and 

soi

(5) Focus p

change

environ

Beyond Elevation 

The lon hed history of gradient analysis (Merriam 1899, Whittaker 

1956, Kessell 1979) leaves the impression that species sort along elevation gradients.  My 

initial investigation of the dynamics of this system support the observations of Zobel et 

al. (1976), Franklin and Dyrness (1988), Ohmann and Spies (1998), and others, that 

dominant forest communities are highly associated with specific elevation bands (Chapter 

2).  Yet, as discussed in Chapter 1, elevation is not directly relevant to plants.  The 

ubiquitous elevation gradient is comprised of a complex combination of environmental 

variables.  I developed a series of simple models to provide improved spatial estimates of 

en confronting the landscape-scale working model with these new data, 

ature and soil moisture were better explanatory variables for patterns of

 composition than elevation (Chapter 4). 

ect of temperature on growth rates might be important in limiting the 

ope migration of A. amabilis, but the upper elevation boundary of T. 

hylla was associated with a mo

l moisture on patterns of regeneration (Chapter 4). 

lots can be useful tools for continued monitoring of biotic and abiotic 

 that may accompany global climate change or other shifts in 

mental condition (Chapter 4). 

g and distinguis
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relative differe ts 

(Chapter 3).  Acquiring a better understanding of these physiologically more important 

env

for resp  

climate

De

Few studies of landscape pattern have focused on demographic states other than 

mature trees (see Clark et al. 1999, Diaz-Delgado et al. 2002 for exceptions), but to 

understand the mechanisms behind community pattern requires an investigation of the 

gro   I 

investi mographic 

states a  

 are at the competitive limits of their ecological tolerances 

at ecotones, these regions are well-suited to a detailed study of the response of forest 

demographics to environmental variability (Fortin et al. 2000).  By focusing on these 

relatively small geographic regions, I was able to gather data to test specific hypotheses 

regarding the importance of temperature, moisture, radiation and snowpack on 

establishment, growth and mortality (Chapter 4).  From these data, I concluded that the 

effect of temperature on growth rates may be important in limiting the downslope 

migration of the Abies species.  Additional evidence supported drought limitations for A. 

amabilis regeneration and light limitations for A. procera regeneration.  The upslope 

migration of T. heterophylla appears to be limited by a complex interaction of 

nces in radiation, temperature, and soil moisture over landscape exten

ironmental variables will yield better predictive power and management information 

onding to shifts in environmental condition such as those expected under global

 change scenarios. 

mographics are Important, too 

wth, mortality and reproduction patterns that underlie trends in forest composition.

gated the relationship between the physical template and alternative de

t both the landscape and ecotone level.

Because many species
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temperature and soil moisture on regeneration, with the importance of snow and nurse 

logs yet unresolved. 

It is important to emphasize that the projected shift in competitive advantage 

associated with the growth data is not driven by an increase in the growth rate of T. 

heterophylla (the lower-elevation dominant species), but rather by a decrease in the 

ant species) with increasing 

temperature.  This result is consistent with the argument that vegetation sorting along 

environmental gradients results from trade-offs between resource tolerances and growth 

rates (Smith & Huston 1989).  The details, however, are not consistent with the typical 

application of this theory, in which species are believed to be limited by low levels of a 

resource at the upper-elevation limit of their range and by competition at the lower end.  

Instead, A. amabilis growth appears to be negatively influenced by high-temperature 

levels at its lower-elevation limit.   

From this study it is not possible to separate cleanly a pure temperature effect 

from a temperature-related drought effect at low elevations due to increased potential 

evapotranspiration. It is possible that with better spatial representations of soil moisture 

and/or snow variability, one of these factors could prove to be a better correlate with 

community pattern (e.g., the landscape-scale growth rates were nearly as highly 

correlated with the statistical model of soil moisture as they were with the temperature 

model). Nonetheless, the current model, which emphasizes temperature-growth rate 

associations, has important implications for how these forests may respond to any future 

changes in climate. 

growth rate of A. amabilis (the upper-elevation domin
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Implications for Global Climate Change 

In response to rising atmospheric CO2 levels, temperature is projected to increase 

by 1.4-5.8 oC over the next 100 years (IPCC 2001).  Previous studies have focused on the 

buffering abilities of primary forests to this environmental change because of the long life 

spans of trees (Sprugel 1991, Noss 2001).  Because trees can survive for decades to 

centuries and take years to establish, they may not immediately show obvious impacts of 

climate change.  For example, Pacific Northwest forests take over 200 years to show the 

old-growth characteristics associated with the plots sampled in this study (Christensen et 

al. 2000).  Even so, slow shifts in composition are expected along environmental 

gradients in these forests (Franklin et al. 1991).  Given the associations between A. 

amabilis growth rates and temperature, I can predict regions of the HJA where the A. 

amabilis should have a competitive growth advantage and areas where T. heterophylla 

should have a competitive advantage (Figure 5.1).  These predictions map on the current 

distribu

I also can make predictions as to how competitive advantages may shift with an 

increase in temperature (Figure 5.1).  Though compositional shifts may be lagged due to 

the longevity of trees (Urban et al. 1993), disturbance can interact with climate change to 

affect more immediate responses (Dale et al. 2001).  Management actions in these 

potentially sensitive areas should consider how these interactions might complicate forest 

recovery to activities such as logging or fire. 

 

tion of forest types fairly well (e.g., see Figure 4.4). 
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Figure 5.1. Areas sensitive to change given a 1 C change in climate.  The major 

heterophylla (western hemlock) and A. amabilis (silver fir) at different summer 
ntage 

under current climate, but hemlocks would have a competitive advantage given an 
o

o

vegetation zones are mapped in green and blue based on growth differences of T. 

temperatures.  Areas in red are locations where firs should have a competitive adva

increase in temperature of 1 C. 
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Applicability of Approach to Other Montane Systems 

Finally, though specific findings may not be applicable beyond the Pacific 

Northwest old-growth forest system in which this study was conducted, the general 

approach is applicable to many montane systems as an extension to traditional gradient 

analysis. For example, as part of a cross-site comparative study, we (Lookingbill et al. 

2001) are interested in comparing landscape-level vegetation-environment relationships 

at four forested, montane sites with contrasting climates, terrain and geologic history: 

H.J. Andrews Experimental Forest (Cascades, Oregon), Sequoia National Park (Sierra 

Nevada, California), Hubbard Brook Experimental Forest (White Mountains, New 

Hampshire), and Coweeta Hydrologic Laboratory (Southern Appalachians, North 

Carolina). We are just beginning to apply the sampling and statistical methods described 

in this dissertation to these sites.  In the western systems, environmental gradients are 

steep and the approach outlined here has been successful in replacing proxy factors such 

as elevation with more biologically meaningful explanatory variables.  In the eastern 

systems, where elevation gradients are less steep and fine-scale factors are more 

important, the methods are the same, but the focus must shift to developing better 

presentations of soil variability.   

udy.  It 

ls, 

iminished by the increasing use of models, nor can 

complex ecological phenomenon be described at large spatial extents without some form 

re

The general approach, therefore, is more generic than this specific case st

provides a framework for an iterative ecology; field studies are used to build mode

which guide future sampling to answer new hypotheses and build better models.  The 

importance of field data is not d
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of simplifying model.  One supports the other in a synthetic approach to conducting 

community ecology at the landscape scale.  
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