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Abstract

Light detection and ranging (lidar) data provide accurate measurements of forest canopy structure in the vertical plane; however, current

lidar sensors have limited coverage in the horizontal plane. Landsat data provide extensive coverage of generalized forest structural classes in

the horizontal plane but are relatively insensitive to variation in forest canopy height. It would, therefore, be desirable to integrate lidar and

Landsat data to improve the measurement, mapping, and monitoring of forest structural attributes. We tested five aspatial and spatial methods

for predicting canopy height, using an airborne lidar system (Aeroscan) and Landsat Enhanced Thematic Mapper (ETM+) data: regression,

kriging, cokriging, and kriging and cokriging of regression residuals. Our 200-km2 study area in western Oregon encompassed Oregon State

University’s McDonald–Dunn Research Forest, which is broadly representative of the age and structural classes common in the region. We

sampled a spatially continuous lidar coverage in eight systematic patterns to determine which lidar sampling strategy would optimize lidar–

Landsat integration in western Oregon forests: transects sampled at 2000, 1000, 500, and 250 m frequencies, and points sampled at these

same spatial frequencies. The aspatial regression model results, regardless of sampling strategy, preserved actual vegetation pattern, but

underestimated taller canopies and overestimated shorter canopies. The spatial models, kriging and cokriging, produced less biased results

than regression but poorly reproduced vegetation pattern, especially at the sparser (2000 and 1000 m) sampling frequencies. The spatial

model predictions were more accurate than the regression model predictions at locations < 200 m from sample locations. Cokriging, using the

ETM+ panchromatic band as the secondary variable, proved slightly more accurate than kriging. The integrated models that kriged or

cokriged regression residuals were preferable to either the aspatial or spatial models alone because they preserved the vegetation pattern like

regression yet improved estimation accuracies above those predicted from the regression models alone. The 250-m point sampling strategy

proved most optimal because it oversampled the landscape relative to the geostatistical range of actual spatial variation, as indicated by the

sample semivariograms, while making the sample data volume more manageable. We concluded that an integrated modeling strategy is most

suitable for estimating and mapping canopy height at locations unsampled by lidar, and that a 250-m discrete point sampling strategy most

efficiently samples an intensively managed forested landscape in western Oregon.

D 2002 Published by Elsevier Science Inc.

1. Introduction

Currently, light detection and ranging (lidar) data provide

detailed information on forest canopy structure in the

vertical plane, but over a limited spatial extent (Lefsky,

Cohen, Parker, & Harding, 2002). Landsat data provide

useful structural information in the horizontal plane (Cohen

& Spies, 1992) but are relatively insensitive to canopy

height. Lidar –Landsat Enhanced Thematic Mapper

(ETM+) integration is, therefore, a logical goal to pursue.

No remote sensing instrument is suited for all applications,

and there have been several calls for improving the applic-

ability of remotely sensed data through multisensor integra-

tion. Most multisensor integration studies have involved

Landsat imagery (e.g., Asner, Wessman, & Privette, 1997;

Oleson et al., 1995) but none has integrated Landsat

imagery with lidar data.

Lidar–Landsat ETM+ integration has immediate rele-

vance due to the anticipated launches of the Ice, Cloud, and

Land Elevation Satellite (ICESat) and Vegetation Canopy
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Lidar (VCL) satellite missions. Global sampling of the

Earth’s forests, as VCL should provide, will be a huge

boon for forest resource assessments. For example, the VCL

mission has potential to greatly narrow the uncertainty

surrounding estimates of global carbon pools (Drake et

al., 2002). Discontinuous lidar data will need to be inte-

grated with continuous optical imagery to produce compre-

hensive maps that have practical value to forest ecologists

and forest resource managers (Lefsky, Cohen, Hudak,

Acker, & Ohmann, 1999). Given the continued demand

for Landsat imagery and the growing supply of ETM+ data,

Landsat 7 is a logical choice for integration with lidar sample

data.

In this study, our first objective was to estimate canopy

height at locations unsampled by lidar, based on the stat-

istical and geostatistical relationships between the lidar and

Landsat ETM+ data at the lidar sample locations. We used

basic data from lidar (maximum canopy height) and Landsat

ETM+ (raw band values) and tested widely used, straight-

forward empirical estimation methods: ordinary least

squares (OLS) regression, ordinary kriging (OK), and ordi-

nary cokriging (OCK).

Prior research has shown that landscape pattern varies

principally as a function of the areal size of individual

stands in the heavily managed forests of western Oregon,

or at a typical scale of 250–500 m (Milne & Cohen, 1999).

Our second objective was to determine which spatial sam-

pling pattern (contiguous transect or discrete point) and

frequency (2000, 1000, 500, or 250 m) would optimize

the integration of lidar and Landsat ETM+ data for accu-

rately estimating and mapping canopy height in intensively

managed, coniferous forest landscapes.

2. Background

2.1. Lidar

Lidar is an active remote sensing technology like radar

but operating in the visible or near-infrared region of the

electromagnetic spectrum. Lidar, at its most basic level, is a

laser altimeter that determines the distance from the instru-

ment to the physical surface by measuring the time elapsed

between a laser pulse emission and its reflected return

signal. This time interval multiplied by the speed of light

measures twice the distance to the target; dividing this

measurement by two can thus provide a measure of target

elevation (Bachman, 1979). Processing of the return signal

may identify multiple pulses and returns. As a result, trees,

buildings, and other objects are apparent in the lidar signal,

permitting accurate calculation of their heights (Nelson,

Krabill, & Maclean, 1984). Studies using coincident field

data have indicated that lidar data can provide nonasymp-

totic estimates of structural attributes such as basal area,

biomass, stand volume (Lefsky, Cohen, Acker, et al., 1999;

Lefsky, Harding, Cohen, Parker, & Shugart, 1999; Nelson,

Oderwald, & Gregoire, 1997; Nilsson, 1996; Means et al.,

1999, 2000), and leaf area index (LAI) (Lefsky, Cohen,

Acker, et al., 1999), even in high-biomass forests. Lidar

allows extraordinary structural differentiation between pri-

mary and secondary forest that is currently unrivaled by any

other remote sensing technology (Drake et al., 2002; Lefsky,

Cohen, Acker, et al., 1999; Weishampel, Blair, Knox,

Dubayah, & Clark, 2000).

Lidar instruments can be divided into two general

categories: discrete return and waveform sampling (Lefsky

et al., 2002). They are distinguished in part by the size of

the laser illumination area, or footprint, which typically is

smaller with discrete return systems (0.25–1 m) than with

waveform sampling systems (10–100 m). Waveform sam-

pling systems compensate for their coarser horizontal res-

olution with finer vertical resolution, providing submeter

vertical profiles, while discrete return systems record only

one to five returns per laser footprint. Discrete return

systems are more suited for supplying the demand for

accurate, high-resolution topographic maps and digital

terrain models, and are therefore becoming widely available

in the commercial sector (Lefsky et al., 2002). Waveform

sampling systems have been useful in forest canopy

research applications, such as biomass assessments in

temperate (Lefsky, Cohen, Acker, et al., 1999; Lefsky,

Harding, et al., 1999) and tropical forests (Drake et al.,

2002).

VCL is a spaceborne, waveform sampling lidar system

that will inventory forests globally between F68j latitude

for an estimated 2 years. VCL footprints will be approx-

imately 25 m in diameter and arrayed in each of three

parallel transects separated by 4-km intervals. The 8-km

ground swath will be randomly placed on the Earth’s sur-

face, with the ascending and descending orbital paths

intersecting at 65j angles. The goals of the VCL mission

are to characterize the three-dimensional structure of the

Earth and its land cover, improve climate modeling and

prediction, and to provide a global reference data set of

topographic spot heights and transects (Dubayah et al.,

1997; http://essp.gsfc.nasa.gov/vcl).

ICESat is a spaceborne, waveform sampling lidar system

that will measure and monitor ice sheet and land topography

as well as cloud, atmospheric, and vegetation properties.

Like VCL, it will acquire data in the near-infrared region at

1064 nm, but also in the visible green region at 532 nm.

ICESat will have 70-m spot footprints spaced at 175-m

intervals (http://icesat.gsfc.nasa.gov/intro.html).

2.2. Landsat ETM+

Landsat imagery is the most common satellite data

source used in terrestrial ecology. This is, in large part,

due to its widespread availability and unrivaled length of

record (since 1972), but also because the grain, extent, and

multispectral features make Landsat suitable for a variety of

environmental applications at landscape to regional scales.
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Landsat spectral data are typically related to biophysical

attributes via spectral vegetation indices (SVIs). Ecologi-

cally relevant structural attributes such as LAI have been

estimated from SVIs of croplands (e.g., Asrar, Fuchs,

Kanemasu, & Hatfield, 1984; Wiegand, Richardson, &

Kanemasu, 1979), grasslands (e.g., Friedl, Michaelsen,

Davis, Walker, & Schimel, 1994), shrublands (e.g., Law &

Waring, 1994), and forests (e.g., Chen & Cihlar, 1996;

Cohen, Spies, & Fiorella, 1995; Fassnacht, Gower, MacK-

enzie, Nordheim, & Lillesand, 1997; Turner, Cohen, Ken-

nedy, Fassnacht, & Briggs, 1999). Sensitivity of SVIs to

variation in LAI or biomass generally declines, however, as

foliar densities increase within and among ecosystems (e.g.,

Turner et al., 1999). The greater structural complexity of

forests requires, not surprisingly, more complex image

processing techniques. For instance, Cohen and Spies

(1992) used all six Landsat reflectance bands, rather than

just the red and near-infrared bands as with most SVIs.

Other notable, yet more complicated, approaches to enhanc-

ing the extraction of canopy structure information from

Landsat imagery include using multitemporal TM data to

capture variable illumination conditions (Lefsky, Cohen, &

Spies, 2001) and spectral mixture analysis to quantify

canopy shadows (e.g., Adams et al., 1995; Peddle, Hall,

& LeDrew, 1999). The new ETM+ instrument on board

Landsat 7 features enhanced radiometric resolution over its

TM predecessor, which should aid all of the empirical

methods just described. Yet there are fundamental limita-

tions to the utility of passive optical sensors for character-

izing vertical forest canopy structure, which will probably

make them perpetually inferior to lidar for this task (Lefsky

et al., 2001).

2.3. Estimation methods

All of the estimation methods we employed are empirical

and were chosen for their broad use and general applic-

ability: OLS regression, OK, and OCK. The literature

documents many variations on these aspatial (e.g., Cohen,

Maierpserger, Gower, & Turner, in press; Curran & Hay,

1986) and spatial (e.g., Cohen, Spies, & Bradshaw, 1990;

Journel & Rossi, 1989; Knotters, Brus, & Voshaar, 1995;

Pan, Gaard, Moss, & Heiner, 1993; Stein & Corsten, 1991)

estimation methods. We deemed it less useful to conduct an

exhaustive study of these than to concentrate on the three

methods just named because they broadly represent basic

empirical estimation techniques.

2.3.1. Ordinary Least Squares (OLS) regression

Regression is an aspatial method because it assumes

spatial independence in the data. Users of regression

models for mapping vegetation attributes must be mindful

of this aspect, since geographic data are often autocorre-

lated. The OLS method determines the best fit for a straight

line that minimizes the sum of squared deviations of the

observed data values (dependent variable only) away from

that line. The OLS multiple regression model takes the

general form:

Z ¼ a þ biðXiÞ þ e ð1Þ

where, in this study, Z is the dependent variable (height), Xi

is the i explanatory variable (Landsat Bands 1–7 and

UTMX and UTMY locations), bi is the linear slope

coefficient corresponding to Xi, a is the intercept, and e is

the residual error. A thorough discussion of OLS and other

multivariate regression methods is available in Kleinbaum,

Kupper, Muller, and Nizam (1998).

2.3.2. Ordinary Kriging (OK)

Spatial models are appropriate if there is spatial depend-

ence in the data, as in this study. Kriging interpolates the

sample data to estimate values at unsampled locations,

based solely on a linear model of regionalization. The linear

model of regionalization essentially is a weighting function

required to krig and can be graphically represented by a

semivariogram. The semivariogram plots semivariance c as

a function of the distance between samples, known as the

lag distance h, according to:

cðhÞ ¼ 1

2NðhÞ
XNðhÞ

a¼1

½zðuaÞ � zðua þ hÞ�2 ð2Þ

where c(h) is semivariance as a function of lag distance h,

N(h) is the number of pairs of data locations separated by h,

and z is the data value at locations ua and (ua + h) (Goo-

vaerts, 1997). Semivariance typically increases with spatial

resolution, which reflects decreasing spatial autocorrelation

with increasing lag distance. Semivariograms have three

main parameters. The nugget is the semivariance at a lag

distance of zero; it represents spatial variability independent

of the sampling frequency. The sill is the semivariance at

lags where there is no spatial autocorrelation. The range is

the lag distance at which the sill is reached.

The sample semivariogram describes the spatial autocor-

relation unique to that sample dataset. Model semivario-

grams are formulated by fitting a mathematical function to

simulate the nugget, sill, range, and thus the shape of the

sample semivariogram. The functions used in a model

semivariogram can be linear, but are almost always non-

linear: spherical, exponential, Gaussian, and power func-

tions are most common. In this study, the sample

semivariograms were simulated best by exponential models,

which take the form:

cðhÞ ¼ c 1� exp
�3h

a

� �� �
ð3Þ

where a is the practical range of the semivariogram, defined

as the lag distance at which the model value is at 95% of the

sill c, as the exponential model approaches the sill asymp-

totically (Deutsch & Journel, 1998). Several of these func-

tions may be nested to assemble a model semivariogram that

fits the sample semivariogram well. The theory behind the
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linear model of regionalization and practical issues associ-

ated with fitting model semivariograms have been thor-

oughly presented elsewhere (e.g., Goovaerts, 1997; Isaaks

& Srivastava, 1989).

Kriging can be considered a weighted averaging proce-

dure that minimizes errors about the mean, with weights

assigned as a function of distance to neighboring samples.

The OK model estimates a value Z* at each location u and

takes the general form:

Z*ðuÞ ¼
XnðuÞ
a¼1

kaðuÞZðuaÞ ð4Þ

where Z is the primary variable and ka and ua are the weights

and locations, respectively, of n neighboring samples (Goo-

vaerts, 1997). The user typically controls the size of n by

specifying a search neighborhood. The OK estimator mini-

mizes the error variance and is nonbiased in that the error

mean equals zero. The OK estimator allows for a locally

varying mean by forcing the kriging weights to sum to one:

XnðuÞ
a¼1

kaðuÞ ¼ 1: ð5Þ

2.3.3. OCK

Cokriging is a multivariate extension of kriging and

relies on a linear model of coregionalization that exploits

not only the autocorrelation in the primary variable, but also

the cross-correlation between the primary variable and a

secondary variable, which can be graphically represented by

the cross-semivariogram, defined as:

ci jðhÞ ¼
1

2NðhÞ
XNðhÞ

a¼1

½ziðuaÞ � ziðua þ hÞ�

�½zjðuaÞ � zjðua þ hÞ� ð6Þ

where cij(h) is the cross-semivariance between variables i

and j, N(h) is the number of pairs of data locations separated

by lag distance h, zi is the data value of variable i at

locations ua and (ua + h), and zj is the data value of variable

j at the same locations (Goovaerts, 1997).

With the primary variable Z and a single secondary

variable Y, the OCK estimator of Z* at location u takes

the form:

Z*ðuÞ ¼
Xn1ðuÞ
a1¼1

ka1ðuÞZðua1Þ þ
Xn2ðuÞ
a2¼1

ka2ðuÞY ðua2Þ ð7Þ

where ka1
and ua1

are the weights and locations, respec-

tively, of the n1 primary data, and ka2
and ua2

are the weights

and locations, respectively, of the n2 secondary data (Goo-

vaerts, 1997). As with kriging, the user can control the size

of n1 and n2 by specifying search neighborhoods for each

variable.

A useful feature of cokriging is that the locations of the

primary and secondary variables need not correspond. Inclu-

sion of auxiliary information in cokriging often results in

more accurate estimates than from kriging, but at a cost of

greater model complexity and higher computational de-

mands. An important condition for a valid cokriging model

is satisfying the positive definiteness constraint on the linear

model of coregionalization, which ensures that the coeffi-

cient matrix for the system of kriging equations is invertible;

details are available in Isaaks and Srivastava (1989).

In this study, we used the traditional OCK estimator,

which operates under two nonbias constraints:

Xn1ðuÞ
a1¼1

ka1ðuÞ ¼ 1;
Xn2ðuÞ
a2¼1

ka2ðuÞ ¼ 0: ð8Þ

We used traditional OCK rather than standardized OCK,

which operates under a single nonbias constraint: both the

primary and secondary data weights must sum to one. Our

rationale was based on the recommendation of Deutsch and

Journel (1998); traditional OCK is more appropriate when

the primary data (25 m lidar data, in this study) are under-

sampled with respect to the secondary data (15 m ETM+

panchromatic data, in this study). Details about standardized

OCK, and other kriging or cokriging algorithms, may be

found in Goovaerts (1997) or Isaaks and Srivastava (1989).

3. Methods

3.1. Study area

The 200-km2 study area features Oregon State Universi-

ty’s McDonald–Dunn Research Forest (Fig. 1) in the east-

ern foothills of the Coast Range in western Oregon. The

area has elevations ranging from 58 to 650 m. Most of the

area is coniferous forest dominated by Pseudotsuga men-

ziesii (Douglas-fir) and codominated by Tsuga heterophylla

(western hemlock), but hardwood stands featuring Acer

macrophyllum (bigleaf maple) and Quercus garryana (Ore-

gon white oak) also are common. Stands span the full range

of successional stages: young, intermediate, mature, and old

growth, and three management regimes: even-aged, two-

storied, and uneven-aged (http://www.cof.orst.edu/resfor/

mcdonald/purpose.sht).

3.2. Image processing

Small footprint lidar data were acquired from an airborne

platform (Aeroscan, Spencer B. Gross, Portland, OR) in

January 2000. The Aeroscan instrument records five vertical

returns within small footprints having an average diameter

of 60 cm and geolocated in real time using an on-board,

differential global positioning system to an accuracy of 75

(horizontal) and 30 cm (vertical). North–south paths were

flown to provide continuous lidar coverage (i.e., a pseudo-

image) of the entire area. Maximum canopy height was

calculated for each footprint as the difference between the
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first (canopy top) and last (ground) returns. Maximum

height values in each footprint were then spatially aggre-

gated into 25-m bins to produce a maximum canopy height

image of 25 m spatial resolution (Fig. 1). Every 25-m pixel

was assigned a maximum canopy height value from a

population of 10–764 lidar footprints, with a median of

26 footprints per pixel.

A Landsat ETM+ image (Path/Row= 46/29) acquired on

September 7, 1999 was coregistered to a 1988 base image

using 90 tie points selected through an automated spatial

covariance procedure (Kennedy & Cohen, in press). Geore-

gistration was performed in Imagine (ERDAS, Atlanta, GA)

using a first-order polynomial function with nearest neigh-

bor resampling (root mean square error = 14.3 m).

3.3. Sampling strategies

The lidar height image allowed us to sample a variety of

spatial patterns and frequencies. Using ERDAS Imagine, we

sampled the study area, in both transect and point patterns,

at spatial frequencies of 2000, 1000, 500, and 250 m, for a

total of eight sample height datasets (Fig. 2).

3.4. Estimation methods

The histogram of the maximum canopy height data

exhibited a strong positive skew. We therefore normalized

each of the eight height datasets with a square root trans-

formation (SQRTHT) prior to applying any of the estima-

tion methods; afterwards, all estimated SQRTHT values

were backtransformed (squared) before comparing to meas-

ured height values.

3.4.1. Aspatial

The SQRTHT sample data were regressed on the raw

ETM+ Bands 1–7, as well as the Universal Transverse

Mercator (UTM) X and Y locations, using stepwise multiple

linear regression in Interactive Data Language (IDL;

Research Systems, Boulder, CO). Variables were assigned

only if they added significantly to the model (a = 0.05).

3.4.2. Spatial

The SQRTHT sample data were normal score trans-

formed prior to modeling. This nonlinear, ranked trans-

formation normalizes the data to produce a standard

Gaussian cumulative distribution function with mean equal

to zero and variance equal to one (Deutsch & Journel,

1998). After modeling, the estimates were backtransformed

to the original SQRTHT data distribution; the estimates at

the sample locations proved to be an exact reproduction of

the original SQRTHT sample data.

OK and OCK operations were performed using algo-

rithms in GSLIB (Statios, San Francisco, CA). We modeled

the sample semivariograms by nesting nugget estimates with

two exponential models. Only a model semivariogram for

the primary variable was needed for OK. For cokriging, a

model semivariogram was also required for the secondary

variable, along with a cross-semivariogram. The ETM+

panchromatic band was the logical choice to serve as a

secondary variable for cokriging, since this band has the

highest resolution (15 m) among the ETM+ bands and,

therefore, the highest spatial information content. The sec-

ondary data were also normal score transformed before

modeling. We were careful to observe the positive definite-

ness constraint on the linear model of coregionalization

Fig. 1. Study area location and maximum canopy height image measured by lidar.
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while developing the three semivariogram models required

for each cokriging operation (Goovaerts, 1997; Isaaks &

Srivastava, 1989).

3.4.3. Integrated

Residuals from the OLS regression models were

exported from IDL as ASCII files and imported into GSLIB

for kriging/cokriging. The same rules and procedures were

followed for modeling the residuals as for modeling the

SQRTHT data.

3.5. Validation

The image of lidar-measured height values allowed

exhaustive validation of the five estimation methods and

eight sampling strategies tested. To ensure comparability,

the same validation points were used to evaluate all estima-

tion methods and sampling strategies. Two sets of validation

points were systematically selected to compare measured

and estimated height values using Pearson’s correlation

statistic. One set of validation points was designed to assess

the height estimates for the study area as a whole, with no

regard to distance from sample locations; the other set was

designed to assess the height estimates as a function of

distance from sample locations (Fig. 3).

Histograms, scatterplots, and graphs of measured vs.

estimated height values were plotted, and correlation coef-

ficients were calculated, in IDL. Estimated height and

estimation error images were mapped in Arc/Info GRID

(ESRI, Redlands, CA). Moran’s coefficient (I) calculations

for spatial autocorrelation in the model residuals were

performed using S-PLUS (Insightful, Seattle, WA) functions

developed by Dr. Robin Reich (http://www.cnr.colostate.

edu/~robin/). The significance test to evaluate each I statistic

assumed normality in 700 residual values sampled (Fig. 3)

from the population of errors. The theory underlying Mor-

an’s I statistic can be pursued more thoroughly in Cliff and

Ord (1981) and Moran (1948).

4. Results

4.1. Empirical models

Separate stepwise multiple regression models were

developed for the eight sampling strategies tested. In

Fig. 2. (a) Transect and (b) Point sampling strategies tested and data volume of each sample dataset. The McDonald–Dunn Research Forest is shown in the

background (see Fig. 1) for a spatial frame of reference.
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every case, ETM+ Band 7 was the first variable selected

(Table 1). All nine independent variables contributed

significantly, and were therefore included, in the four

transect cases. The number of variables included in the

point models decreased as sample data volume decreased,

with only one variable selected in the lower extreme case

(2000 m point strategy).

For the spatial and integrated models, unique semivario-

gram models of the height and height residual datasets were

generated for all eight of the sampling strategies tested. The

range and sill parameters, and the shape of the semivario-

grams, were very similar among the eight height datasets,

and among the eight height residual datasets (Fig. 4). Nugget

variance increased in the cases of the relatively sparse 1000-

and 2000-m point samples. For cokriging, each of the eight

sampling strategies also required unique model semivario-

grams of the secondary data semivariograms and the respec-

tive cross-semivariograms. As with the primary datasets, the

range and sill parameters and semivariogram shapes were

consistent amongst all eight sample datasets, and nugget

variance was again greater in the 1000- and 2000-m point

samples. There was less spatial autocorrelation to exploit in

the residual data than in the SQRTHT data. Similarly, the

spatial cross-correlation between the primary and secondary

data was considerable with regard to the SQRTHT datasets,

but relatively low with regard to the residual datasets. Very

Table 1

Multiple regression models for the (A) transect and (B) point sample datasets; explanatory variables are listed in the order of forward stepwise selection

(A) Transects

2000 m SQRTHT=144.18�0.0132546(B7)�0.0768883(B6)�0.0000242784(UTMY)�0.0119655(B5)+0.00631775(B4)+0.0633678(B1)�0.0195735(B3)�
0.000023421(UTMX)�0.0343936(B2)

1000 m SQRTHT=169.426�0.0144084(B7)�0.0733225(B6)�0.0000299485(UTMY)�0.0126307(B5)+0.00528321(B4)+0.065575(B1)�0.0528681(B2)�
0.0000165147(UTMX)�0.00862129(B3)

500 m SQRTHT=177.901�0.0149903(B7)�0.0734557(B6)�0.000031937(UTMY)�0.0132014(B5)+0.0051818(B4)�0.00837438(B3)+0.0600543(B1)�
0.0506589(B2)�0.0000129396(UTMX)

250 m SQRTHT=162.93�0.0148533(B7)�0.0700705(B6)�0.0000286052(UTMY)�0.0136385(B5)�0.00704695(B3)+0.0608232(B1)�0.0550868(B2)+

0.00571048(B4)�0.000016865(UTMX)

(B) Points

2000 m SQRTHT=6.64595�0.0621982(B7)

1000 m SQRTHT=12.8103�0.0445905(B7)�0.0517594(B6)

500 m SQRTHT=155.678�0.0213743(B7)�0.0813073(B6)�0.0000281888(UTMY)�0.0136584(B5)+0.0048719(B4)

250 m SQRTHT=154.923�0.0206861(B7)�0.0682174(B6)�0.0000263197(UTMY)�0.0168956(B5)+0.00383822(B4)�0.000020857(UTMX)

SQRTHT=height (square root transformed); B1–B7=Landsat ETM+ Bands 1–7; UTMX, UTMY=X and Y UTM locations.

Fig. 3. Validation point locations. A grid of points representing the whole study area, but excluding any samples used for modeling, was systematically sampled

to produce scatterplots of measured vs. estimated height (4). Separate validation points were systematically sampled to evaluate the height estimates as a

function of distance from sample locations (*). Sample points for the 2000-m transect sampling strategy are shown in the background (see Fig. 2) for a spatial

frame of reference (n).
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Fig. 4. Sample and model semivariograms of the primary and secondary datasets, from transect and point sampling intervals of: (a) 2000, (b) 1000, (c) 500, and (d) 250 m. The lines plotted over the sample

semivariograms are the fitted model semivariograms. The cross-semivariograms are negative because the primary variables (height or height residuals) are negatively correlated to the secondary variable (ETM+

panchromatic band).
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tight model fits were achieved for all primary, secondary, and

cross-semivariograms (Fig. 4) by nesting a nugget value and

two exponential models (Table 2).

4.2. Estimation accuracy

4.2.1. Global

Histograms of the full populations of estimated height

values were used to evaluate global accuracy (Fig. 5).

Deviations in the estimated height histograms away from

the measured height histogram were a good indicator of

estimation biases at various heights. These biases were most

pronounced in all of the regression results, and in the

kriging/cokriging results based on sparse point samples

(1000 or 2000 m). Biases in the estimates from the inte-

grated methods were relatively minor, and decreased as

sampling frequency increased. Correlations between meas-

ured and estimated heights were always better using the

integrated models than using either the regression or spatial

models alone. Cokriging produced slightly higher correla-

tions than kriging. Correlations also were higher with the

transect samples than with the point samples at each spatial

sampling frequency.

Scatterplots of measured vs. estimated height values were

also generated to compare the five models and eight

sampling strategies tested (Fig. 6). Deviations in the slope

of the fitted trendlines away from the 1:1 line helped show

that the regression models suffered the most from under-

estimating the taller heights while overestimating the shorter

heights. These deviations corresponded closely with the

Table 2

Model semivariograms for the (A) transect and (B) point sample datasets

(A) Transects

2000 m SQRTHT c(h) = 0.10 + 0.28*exp(600 m) + 0.75*exp(10,000 m)

Residuals c(h) = 0.20 + 0.69*exp(600 m) + 0.17*exp(10,000 m)

Panchromatic c(h) = 0.05 + 0.65*exp(600 m) + 0.35*exp(10,000 m)

SQRTHT� Panchromatic c(h) = 0.04� 0.11*exp(600 m)� 0.45*exp(10,000 m)

Residuals� Panchromatic c(h) = 0.08� 0.05*exp(600 m)� 0.09*exp(10,000 m)

1000 m SQRTHT c(h) = 0.10 + 0.35*exp(600 m) + 0.67*exp(10,000 m)

Residuals c(h) = 0.20 + 0.73*exp(600 m) + 0.09*exp(10,000 m)

Panchromatic c(h) = 0.05 + 0.66*exp(600 m) + 0.34*exp(10,000 m)

SQRTHT� Panchromatic c(h) = 0.04� 0.11*exp(600 m)� 0.45*exp(10,000 m)

Residuals� Panchromatic c(h) = 0.08� 0.05*exp(600 m)� 0.09*exp(10,000 m)

500 m SQRTHT c(h) = 0.08 + 0.37*exp(600 m) + 0.67*exp(10,000 m)

Residuals c(h) = 0.20 + 0.73*exp(600 m) + 0.09*exp(10,000 m)

Panchromatic c(h) = 0.05 + 0.65*exp(600 m) + 0.35*exp(10,000 m)

SQRTHT� Panchromatic c(h) = 0.04� 0.11*exp(600 m)� 0.45*exp(10,000 m)

Residuals� Panchromatic c(h) = 0.10� 0.07*exp(600 m)� 0.09*exp(10,000 m)

250 m SQRTHT c(h) = 0.08 + 0.37*exp(600 m) + 0.67*exp(10,000 m)

Residuals c(h) = 0.20 + 0.72*exp(600 m) + 0.11*exp(10,000 m)

Panchromatic c(h) = 0.05 + 0.68*exp(600 m) + 0.33*exp(10,000 m)

SQRTHT� Panchromatic c(h) = 0.04� 0.11*exp(600 m)� 0.45*exp(10,000 m)

Residuals� Panchromatic c(h) = 0.10� 0.07*exp(600 m)� 0.09*exp(10,000 m)

(B) Points

2000 m SQRTHT c(h) = 0.15 + 0.01*exp(3000 m) + 0.99*exp(10,000 m)

Residuals c(h) = 0.90 + 0.11*exp(3000 m) + 0.01*exp(10,000 m)

Panchromatic c(h) = 0.35 + 0.10*exp(3000 m) + 0.65*exp(10,000 m)

SQRTHT� Panchromatic c(h) = 0.00� 0.01*exp(3000 m)� 0.64*exp(10,000 m)

Residuals� Panchromatic c(h) = 0.00� 0.10*exp(3000 m)� 0.01*exp(10,000 m)

1000 m SQRTHT c(h) = 0.37 + 0.08*exp(3000 m) + 0.65*exp(10,000 m)

Residuals c(h) = 0.94 + 0.07*exp(3000 m) + 0.01*exp(10,000 m)

Panchromatic c(h) = 0.53 + 0.23*exp(3000 m) + 0.30*exp(10,000 m)

SQRTHT� Panchromatic c(h) = 0.00� 0.13*exp(3000 m)� 0.44*exp(10,000 m)

Residuals� Panchromatic c(h) = 0.07� 0.12*exp(3000 m)� 0.03*exp(10,000 m)

500 m SQRTHT c(h) = 0.34 + 0.08*exp(1000 m) + 0.70*exp(10,000 m)

Residuals c(h) = 0.70 + 0.25*exp(1000 m) + 0.05*exp(10,000 m)

Panchromatic c(h) = 0.50 + 0.27*exp(1000 m) + 0.27*exp(10,000 m)

SQRTHT� Panchromatic c(h) = 0.00� 0.10*exp(1000 m)� 0.41*exp(10,000 m)

Residuals� Panchromatic c(h) = 0.08� 0.06*exp(1000 m)� 0.10*exp(10,000 m)

250 m SQRTHT c(h) = 0.18 + 0.25*exp(600 m) + 0.69*exp(10,000 m)

Residuals c(h) = 0.30 + 0.62*exp(600 m) + 0.12*exp(10,000 m)

Panchromatic c(h) = 0.30 + 0.45*exp(600 m) + 0.29*exp(10,000 m)

SQRTHT� Panchromatic c(h) = 0.09� 0.19*exp(600 m)� 0.38*exp(10,000 m)

Residuals� Panchromatic c(h) = 0.12� 0.10*exp(600 m)� 0.07*exp(10,000 m)
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deviations in the estimated height histograms from the

measured height histogram (Fig. 5). Furthermore, correla-

tions between measured and estimated height values in the

scatterplots agreed well with the correlations calculated

from the global height estimates (Fig. 5). It is thus safe to

conclude that the 700 points in these scatterplots were

highly representative of the full population of height esti-

mates, and their errors.

Fig. 5. Histograms of the entire population of estimated height values (shaded in gray, N= 337,464) from the five models tested, for the eight sampling

strategies tested: (a) 2000-m transect, (b) 1000-m transect, (c) 500-m transect, (d) 250-m transect, (e) 2000-m point, (f) 1000-m point, (g) 500-m point, and (h)

250-m point. The outline of the measured height value histogram is plotted over each estimated height value histogram for comparison.
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Fig. 6. Scatterplots of measured vs. estimated height values from the five models tested, for the eight sampling strategies tested: (a) 2000-m transect, (b) 1000-

m transect, (c) 500-m transect, (d) 250-m transect, (e) 2000-m point, (f) 1000-m point, (g) 500-m point, and (h) 250-m point. Locations of the plotted values

(N = 700) are shown in Fig. 3.
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4.2.2. Local

Local estimation accuracy also was assessed according to

Pearson’s correlation statistic. Accuracy decreased as the

distance from sample locations increased (Fig. 7). The

spatial models were more accurate than the regression

models below distances of approximately 200 m from the

sample locations. The integrated models preserved the

accuracy of the regression estimates beyond this distance

to the nearest sample. A sampling interval of 250 m ensured

that all estimates were < 180 m from the nearest sample (i.e.,

Fig. 7. Distance vs. Pearson’s correlation coefficient for the eight sampling strategies tested: (a) 2000-m transect, (b) 1000-m transect, (c) 500-m transect, (d)

250-m transect, (e) 2000-m point, (f) 1000-m point, (g) 500-m point, and (h) 250-m point. The validation points are farther from the nearest point sample

location than from the nearest transect sample location by a factor of M2. The graphed value at each distance is based on n= 180 points, except n= 60 at 0 m,

and n= 45 at 1000 (plots a–d) or 1414 m (plots e–h). Perfect correlations result in the spatial and integrated models where the validation and sample data

locations intersect. Locations of the plotted values (N = 3525) are shown in Fig. 3.
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below the range of the semivariograms; see Fig. 4), which

improved estimation accuracies of the spatial and integrated

models above those of regression, at all locations.

4.3. Mapping

Regression-based maps (Fig. 8) were virtually indistin-

guishable regardless of the sampling strategy (Fig. 2) or

number of variables included (Table 1). In dramatic contrast,

the sampling strategy caused obvious artifacts in the kriging

or cokriging maps that were most pronounced at the sparser

sampling frequencies. These artifacts were, however, greatly

attenuated in the maps produced from the integrated models.

The kriging and cokriging maps were virtually indistinguish-

able when the same primary data were modeled.

Maps of estimation errors (Fig. 9) were produced by

subtracting the actual height map (Fig. 1) from the estimated

height maps (Fig. 8). Overall, every model underestimated

canopy height, although the estimation bias was an order of

magnitude greater for the regression models than for any of

the spatial or integrated models (Table 3). The standard

deviation of the estimation errors for the spatial and inte-

Fig. 8. (a) Estimated height maps from the five models tested, for the four transect sampling strategies: (1) 2000, (2) 1000, (3) 500, (4) 250 m, and (b) for the

four point sampling strategies: (1) 2000, (2) 1000, (3) 500, and (4) 250 m. Brightness values are scaled to height values as in Fig. 1.
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grated models decreased as the spatial sampling frequency

increased.

Spatial patterns in the error maps for the spatial and

integrated models became less apparent as sampling density

increased, while sampling density had no effect on error

patterns for the aspatial regression models (Fig. 9). Moran’s

I statistic was useful for quantifying the significance of the

spatial autocorrelation remaining in the height estimation

errors for all models. All regression models, and all models

derived from the two sparser point sample datasets (2000

and 1000 m), failed to remove the spatial dependence from

the residuals (Table 3). The spatial models applied to the

2000-m transect sample dataset also left significant spatial

autocorrelation in the residual variance, although the inte-

grated models did not. All other models successfully

accounted for spatial autocorrelation in the sample data.

5. Discussion

5.1. Aspatial Models

The high similarity among all regression estimates of

height (Figs. 5–8) indicates the insensitivity of the regres-

Fig. 8 (continued).
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sion models to sample size, sampling pattern, sampling

frequency, or number of ETM+ bands selected (Fig. 2,

Table 1). Regression suffered the worst from a consistent

estimation bias (Table 3), overestimating shorter stands

while underestimating taller stands (Figs. 5, 6, and 9). This

effect is discussed in detail (as variance ratio) by Cohen et

al. (in press). On the other hand, regression did preserve the

spatial pattern of stands across the study landscape (Figs. 1

and 8).

We included the UTMX and UTMY location variables in

the regression models as an easy way to account for a

potential geographic trend across our study area, following

the approach of Metzger (1997). Yet most of the height data

variance explainable with regression were explained by

ETM+ Band 7 alone (Table 1, Figs. 5 and 6). The location

variables (particularly UTMY) were selected by some of the

stepwise regression models but only for those sampling

strategies with a high data volume (Fig. 2). In these cases,

Fig. 9. (a) Estimated height error maps from the five models tested, for the four transect sampling strategies: (1) 2000, (2) 1000, (3) 500, and (4) 250 m, and (b)

for the four point sampling strategies: (1) 2000, (2) 1000, (3) 500, and (4) 250 m. Bright areas are overestimates while dark areas are underestimates; see Table

3 for error magnitudes.
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the addition of the location variables and other ETM+ bands

as explanatory variables carried statistical significance but

probably lacked biological significance over the small

spatial extent studied.

5.2. Spatial Models

In stark contrast to regression, height estimates from the

spatial methods were only slightly biased (Figs. 5 and 6,

Table 3), but were highly sensitive to sampling pattern and

frequency (Fig. 2), which produced spatial discontinuities in

the resulting maps (Fig. 8). These discontinuities were

visually distracting when the modeled variable (canopy

height in this case) was undersampled relative to the spatial

frequency at which it actually varies; the semivariograms

indicate that the range of spatial autocorrelation in canopy

height is no more than 500 m in this landscape (Fig. 4).

Beyond 500 m from the nearest sample, the semivariograms

carried little or no weight in the estimation; this produced

the smoothing effect visible especially in the 2000- and

1000-m kriged/cokriged maps (Fig. 8). At sampling inter-

vals of 500 or 250 m, all estimates were at, or below, the

Fig. 9 (continued).
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range of spatial autocorrelation for this landscape (Figs. 4

and 7), so little smoothing occurred.

Stein and Corsten (1991) found that kriging and cokrig-

ing estimates differ only slightly from each other, and that

the advantage of cokriging is greater when a highly corre-

lated secondary variable is sampled intensively. We also

found cokriging only slightly more advantageous than

kriging at all sampling frequencies, perhaps because canopy

height and the ETM+ panchromatic band were only weakly

correlated (r=� 0.43).

5.3. Integrated method

Most of the biases in the regression estimates were

eliminated in the integrated models, where the regression

residuals were subsequently kriged and added back to the

regression surface (Figs. 5 and 6, Table 3). We found the

advantage of cokriging over kriging to be greater with the

height residuals than with the height values (Figs. 5–7,

Table 3). Perhaps because the regression models explain

such a large proportion of the total variation in canopy

height (r2 = 0.58), the height residuals may correspond more

closely than the height values to the fine scale structural

features in the panchromatic image.

The integrated methods proved superior because they

preserved the spatial pattern in canopy height, like the

regression models (Fig. 8), while also improving global

and local estimation accuracy, like the spatial models (Figs.

5–7). They have no apparent disadvantage relative to

aspatial or spatial methods alone (Table 3).

The estimation methods applied to lidar canopy height

data in this analysis are applicable to field data, as has

already been demonstrated by Atkinson, Webster, and

Curran (1992, 1994). The samples need not be situated

along a systematic grid; the methods are as applicable to

random or subjective sampling strategies, as long as the

samples represent the population in both statistical and

geographical space, and, for spatial methods, are dense

enough to capture the range of the semivariograms.

5.4. Alternative modeling techniques

As an aspatial estimation method, inverse regression

models (Curran & Hay, 1986) should be considered when

the explanatory variables are dependent on the variable of

interest. Surface radiance is influenced by canopy height,

however, Landsat imagery is much more sensitive to the

spectral properties of the surface materials than to their

height. Another criticism of regression models is that they

account for errors in only one set of variables (e.g., Landsat

bands) and assume a lack of measurement error in the

variable of interest (e.g., lidar height). All remotely sensed

Table 3

(A) Mean and (B) S.D. of the residuals (meters) at the gridded validation points (N= 700), and (C) P value of Moran’s I test for spatial dependence; P values in

bold indicate that significant (a= 0.05) spatial autocorrelation remains in the residual variance

Regression Kriging Cokriging Regression+Kriging Regression+Cokriging

(A) Mean

2000-m transect � 1.7757 � 0.3143 � 0.2257 � 0.5286 � 0.2900

1000-m transect � 1.7686 � 0.3043 � 0.2143 � 0.7371 � 0.4400

500-m transect � 1.5271 � 0.1386 � 0.0257 � 0.4386 � 0.1043

250-m transect � 1.4386 � 0.2157 � 0.1457 � 0.4443 � 0.1500

2000-m point � 1.8014 � 1.4257 � 1.4286 � 1.5486 � 1.5414

1000-m point � 2.1271 � 1.2929 � 1.2986 � 1.6843 � 1.6900

500-m point � 1.6271 � 0.6029 � 0.6229 � 0.6229 � 0.6200

250-m point � 1.6386 � 0.5900 � 0.5657 � 0.7014 � 0.6286

(B) S.D.

2000-m transect 10.3101 12.5512 12.2680 10.4557 9.5455

1000-m transect 10.2471 10.8950 10.5106 8.9759 8.0058

500-m transect 10.2468 9.1390 8.7843 7.6854 6.4406

250-m transect 10.2561 7.1690 6.5299 7.0124 5.2700

2000-m point 10.4529 13.8177 13.8534 10.9392 10.9550

1000-m point 10.2999 12.3177 12.3704 10.3862 10.1577

500-m point 10.2957 11.2657 11.3053 9.5506 9.3366

250-m point 10.3173 9.3750 8.8693 8.3667 7.7890

(C) P value of Moran’s I

2000-m transect 0.0000 0.0047 0.0040 0.0618 0.1168

1000-m transect 0.0000 0.1303 0.1140 0.9353 0.7139

500-m transect 0.0000 0.3477 0.4307 0.2702 0.2752

250-m transect 0.0000 0.6157 0.6081 0.4824 0.2438

2000-m point 0.0000 0.0000 0.0000 0.0000 0.0000

1000-m point 0.0000 0.0000 0.0000 0.0000 0.0000

500-m point 0.0000 0.1519 0.1794 0.1474 0.1571

250-m point 0.0000 0.7851 0.7926 0.6611 0.8508
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data including lidar are subject to several sources of error:

irradiance variation, sensor calibration, sensor radiometric

resolution, sensor drift, signal digitization, atmospheric

attenuation, and atmospheric path radiance. An alternative

approach that accounts for errors in both the independent

and dependent variables is reduced major axis (RMA)

regression (Cohen et al., in press; Curran & Hay, 1986).

Regardless of the regression method selected, we argue

against using regression models alone to estimate canopy

height. Our regression equations were useful for explaining

a large proportion of the total variance in canopy height due

to high covariance with measured radiance, but not due to

any functional relationship. As stated in our objectives, we

considered it most useful to present the most commonly

used techniques for this paper, and OLS regression is clearly

the standard empirical modeling tool.

With regard to spatial estimation methods, OK or OCK is

advisable only in interpolation situations such as in this

study; in extrapolation situations, it may be better to use

universal kriging (Journel & Rossi, 1989; Stein & Corsten,

1991) or OK with an external drift (Berterretche, 2001). In

cases where anisotropy exists in the landscape, anisotropic

kriging models having a directional component can be

employed. Goovaerts (1997) thoroughly presents the many

kriging/cokriging procedures available.

For mapping, conditional simulation can be a good

alternative to the estimation methods presented here (Dun-

gan, 1998, 1999). Conditional simulation ‘‘conditions’’

stochastic predictions of the modeled variable within the

spatial range of the sample data, as defined by the same

semivariogram model used for kriging. Although locally

inaccurate, conditional simulation preserves the global accu-

racy and spatial pattern of the data modeled. These qualities

can be important for some applications, such as modeling

variables as input for ecological process models. We ran

conditional stochastic simulations of canopy height, and

height residuals, from our eight sample datasets. In every

case, local accuracy was markedly lower than for any of the

estimation methods we tested. Since local accuracy was

important for our objectives, while multiple realizations

were not, we pursued simulation methods no further for

this paper. The decision of which estimation or simulation

methods to use for modeling height or any other structural

variable ultimately depends on user objectives.

5.5. Sampling strategy

Traditionally, most remote sensors have afforded analysts

with a certain luxury by sampling the entire population

within the extent of coverage. This has precluded any need

to apply spatial interpolation strategies such as kriging, yet

imagery is full of underexploited spatial information. A

number of studies have demonstrated the value of geo-

statistical analysis tools such as semivariograms (e.g.,

Cohen et al., 1990; Curran, 1988; Glass, Carr, Yang, &

Myers, 1988; Hudak & Wessman, 1998; Woodcock, Strah-

ler, & Jupp, 1988). As remote sensing technology has

advanced towards increasing spectral, spatial, and temporal

resolution, data processing and storage technologies have

kept pace, enabling the continued availability of compre-

hensive data even as those data volumes have exponentially

increased. While these trends may very well continue, it is

instructive and useful to consider the applicability of future

remote sampling instruments for estimating and mapping

forest attributes.

We found that sampling frequency is critical for

mapping of managed, high-biomass coniferous forests of

the Pacific Northwest, where forest structure predomi-

nantly varies at the scale of individual stands with spatial

frequencies of < 500 m (Milne & Cohen, 1999). Transect

sampling consistently produced more accurate results than

point sampling but at the cost of data volumes that were

orders of magnitude higher. The 250-m point sampling

strategy was the most efficient of those tested in our

study area, but we caution that the optimal sampling

frequency probably varies tremendously for different

forests around the globe.

The objectives of the VCL and ICESat missions, as

described in the Introduction, are necessarily much broader

than those of this study. We sought not to simulate the VCL

or ICESat sampling designs but to more generally explore

the effects of sampling pattern (transect vs. point) and

frequency (2000, 1000, 500, and 250 m) on estimating

and mapping a basic forest structural attribute (height).

Our analyses suggest that in dense, managed forests, the

wide spacing of VCL transects would likely be problematic

for mapping structural attributes using geostatistical integra-

tion models at landscape scales. However, at regional–

global scales, the contiguous nature of the VCL transects

should provide a valuable, unbiased inventory of the scale

of variation in forest canopy structure. We also anticipate

some disadvantages and advantages of ICESat data for

vegetation mapping. One difficulty of ICESat data may be

the 70-m footprint diameter, which is likely too large for

accurately measuring forest canopy height in areas with

steep slopes. On the other hand, the 175-m spacing of the

samples may be advantageous for applying geostatistical

integration models for mapping forest canopy height in flat,

forested regions as in Canada, Siberia, and the Amazon and

Congo Basins.

6. Conclusion

Integration of lidar and Landsat ETM+ data using

straightforward empirical modeling procedures can be used

to improve the utility of both datasets for forestry applica-

tions. In this study, an integrated technique of ordinary

cokriging of the height residuals from an OLS regression

model proved the best method for estimating and mapping

forest canopy height, and an equitable distribution of lidar

sampling points proved critical for efficient lidar–Landsat
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ETM+ integration. We encourage testing of integration

models in a variety of ecosystems once lidar sample data

become readily available.
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