
Fractal analysis of foliage distribution in loblolly
pine crowns
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Abstract: A new method for estimating fractal characteristics (fractal dimension and foliage density) of a single crown or its
portions is developed. The proposed method operates with volume and mass of natural units of the crown, such as shoots and
branches, rather than with numbers of regular cubes. Fractal dimension alone is not sufficient to describe foliage distribution
in the crown because it says nothing about the density of foliage at a given point. The density is defined as the ratio of foliage
mass to fractal volume it occupies. Fortunately, the intercept of the regression, which contains fractal dimension as the slope,
provides a measure of foliage density. Thus the method makes it possible to separate purely spatial factors represented by
fractal dimension from ecophysiological effects characterized by foliage density. Application of the method showed that
neither fractal dimension nor foliage density of the studied loblolly pines (Pines taeda L.) correlates with current diameter
increment. At the same time, there is a pronounced negative correlation between fractal dimension and crown size. These
results suggest that as crowns become larger. the amount of foliage located at the crown periphery increases in proportion to
the foliage amount inside the crown. As a spin-off of this analysis, a method for estimating relative foliage density (defined as
the ratio of actual to maximal foliage mass for a given branch) is developed.

Résumé : L'auteur a developpe une nouvelle methode pour evaluer les caracteristiques fractales (densite du feuillage et
dimension fractale) d'une seule cime ou de ses portions. La methode qui est proposee fonctionne avec l'ampleur du volume et
de la masse des unites naturelles de la cime, telles que les pousses et les branches, plutOt qu'avec les nombres de cubes
reguliers. La dimension fractale seule n'est pas suffisante pour decrire la distribution du feuillage dans la cime parce qu'elle
ne dit rien de Ia densite du feuillage en un point donne. La densite est definie comme le ratio de la masse foliaire sur le volume
fractal qu'elle occupe. Heureusement, le point d'intersection de Ia courbe de regression, dont la pente est la dimension
fractale, fournit une mesure de Ia densite du feuillage. Par consequent, la methode permet de separer les facteurs purement
spatiaux, representes par la dimension fractale, des effets ecophysiologiques caracterises par la densite du feuillage.
L'application de la methode montre que ni Ia dimension fractale, ni la densite du feuillage du pin a encens (Pious taeda L.)
qui a ete etudie, ne sont correlees a l'accroissement courant en diametre. En meme temps, it y a une forte correlation negative
entre la dimension fractale et Ia taille de Ia cime. Ces resultats suggerent qu'a mesure que Ia cime grossit, la quantite de
feuillage a Ia peripherie de la cime augmente proportionnellement a Ia quantite de feuillage a l'interieur de Ia cime. Une
retombee de cette analyse est le developpement dune methode pour evaluer Ia densite relative du feuillage qui est definie
comme le ratio de la masse actuelle sur Ia masse maximale de feuillage pour une branche donnee.
[Traduit par Ia Redaction]
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Fractal geometry and tree crowns
Length, area, and volume of many natural objects cannot be
measured as easily as those of cubes, circles, and cylinders.
The diameter of a solid, such as a tree stem, makes sense, but
the width of a porous crown is much less so. There is some-
thing intrinsically vague about the width of a maze of protrud-
ing branches and the voids in between. Similarly, we cannot
talk about crown volume, which encompasses mostly empty
space, in the same sense as we talk about solid stem volume.
These peculiarities of tree crowns call for a new approach for
their measurement.

Calculation and modeling of tree productivity and many
other ecophysiological variables require, first of all, the precise
measurement of crown surface. This surface intercepts sun-
light and produces the larger part of all organic matter on the
earth. However, it is hard to be precise when one does not
know what to measure. Should we measure the surface of a

Received March 5, 1997. Accepted November 10, 1997.

B. Zeide. School of Forest Resources, University of Arkansas at
Monticello, Monticello, AR 71656-3468, U.S.A. e-mail:
zeide@uamont.edu

convex hull that would envelope the crown, or should we take
into account cavities, cuts, and gaps in the crown? If so, what
is the smallest cavity that should be considered? Should the
foliage area be used as the crown surface? Should we pay
attention to the "ups and downs" of foliage surface? Or should
we, perhaps, go deeper and measure the surface of cells or
pigment molecules?

The solution to these problems lies outside biology. Clas-
sical geometry with its rigid contrast between lines, surfaces,
and volumes is not suitable for defining and measuring tree
crowns and many other natural objects. Tree crown is neither
a three-dimensional solid nor a two-dimensional photosyn-
thetic surface. It can be viewed as a collection of holes that
serves to conduct sunlight and gases or as a multilevel hierar-
chy of clustered dots (pigment molecules and chloroplasts).
The crown is a hybrid of surface and volume. Fractal geometry
(Mandelbrot 1983) provides concepts and tools needed to de-
scribe such objects common in nature. Mandelbrot's (1983)
book is entitled The Fractal Geometry of Nature and contains
many references to trees. Fractal geometry allows one to con-
dense information on crown structure into a few meaningful
numbers such as fractal dimension, which is a generalization
of the integer spatial dimension of classical geometry.
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Menger's sponge
The best way to understand the concept of fractal dimension is
to construct a classical three-dimensional fractal, Menger's
sponge (Mandelbrot 1983). The process of construction can be
presented in a series of repetitive steps. At the first step, we
divide a cube with a side length equal to I into 27 smaller
cubes with side lengths equal to 1/3. The faces (sides) of nine
of these smaller cubes appear on each side of the original cube.
If they are numbered in rows or columns, the middle face will
be No. 5. Suppose we can push through and remove this mid-
dle cube and the two others behind it. Repeating the same
procedure from the adjoining side and again from the top will
remove an additional two cubes each because the central one
is already removed. As a result, a total of seven cubes will be
removed and 20 (out of 27) cubes will remain. The second and
all subsequent steps are repetitions of the first on a smaller
scale: we divide each of the 20 cubes into 27 smaller cubes
with sides equal to (1/3) 2 . Again, we remove the middle rows
of cubes and proceed to the next step of division and removal.
With each step, mass is disappearing while the overall volume
of the resulting sponge remains the same.

This result, a volume with little mass, is similar to the
crown: the filled cubes of the sponge can be associated with
spaces that contain foliage, while empty spans left by the re-
moved cubes may represent gaps between branches. Along
with	 this conceptual similarity, the crown differs from
Menger's sponge in the way the solid content is "removed"
and the form of the resulting voids. The method to be devel-
oped should be able to account for all of these differences and
similarities.

Fractal dimension
Any spatial dimension, D, be it Euclidean integer dimension or
fractal dimension, is represented by the power of the relation-
ship between the number of units, N (such as smaller cubes),
and the linear size of the unit, r, which is the length of its side
(Mandelbrot 1983):

N =YC

When the original cube is split on N= 27 smaller cubes (each
with r = 1/3) and none of them is removed, we are dealing with
a regular Euclidean object. Its dimension is

ln(N)	 In(27) 
D —	 — 3

In(r)	 In(1/3)

In this case the dimension coincides with the number of
coordinates. The power, however, need not be restricted to this
number. Even when the power is not an integer, it does repre-
sent a spatial dimension. The power is a more general repre-
sentation of spatial dimension than that of Euclidean geometry.
When, as in the case of Menger's sponge, the number of re-
maining cubes is 20 and the process of subdivision goes on,
the spatial dimension is no longer an integer. It is fractional or,
using another Mandelbrot (1983) neologism, fractal. Fractal
dimension is individual for each object. For Menger's sponge,
it is equal to

[3]	 D = — 
In(20) 
1n(1/3) — 2.727...

Mathematically, fractal dimension is defined (Pfeifer and
Avnir 1983) as the limit

. 1n (N(r)) 
[4]	 D =

,_o ln(r)
Mass of the object disappears in the process; it tends to zero.
Physical objects are less perfect fractals than mathematical
constructs. Self-similarity breaks at certain finite unit sizes,
called inner and outer cutoffs (Mandelbrot 1983). For tree
crowns, the inner cutoff may be the side length of the volume
occupied by foliage of a single shoot (Zeide 1993).

Existing approaches to measuring fractal
dimension

Many studies report fractal dimensions of two-dimensional
projections of crowns (Morse et al. 1985; Strand 1990; Gun-
narsson 1992; Mizoue and Masutani 1993). These dimensions,
aptly named by Mandelbrot (1983) "sieve dimensions", are
different from fractal dimensions of actual crowns occupying
three-dimensional space (called "sponge dimension"). While
sponge dimensions are always greater than 2, sieve dimen-
sions never exceed this value. The chief attraction of sieve
dimensions is that, unlike sponge dimension, they can be easily
calculated using photographs or videotapes. Sieve dimension,
however, tells us little about real three-dimensional crowns.
The same sieve dimension can correspond to objects with dif-
ferent sponge dimensions and vice versa. Sponge and sieve
dimensions are related only by an inequality: their difference
is less than 1 (Pfeifer and Avnir 1983).

At present, a method for determining fractal dimension of
a single three-dimensional crown does not exist. The two-surface
method provides such a dimension for a group of trees (Zeide
and Pfeifer 1991; Corona 1991; Osawa 1995). The standard
method for determining fractal dimension, the box-counting
method, is not practical. It would require slicing the crown into
many layers without distortion of its structure, subdividing
them into cubic boxes, and counting the number of nonempty
boxes. This procedure is repeated many times using various
box sizes. The fractal dimension of the studied object is one
of the parameters of the relationship between the number of
boxes and their size.

Technical difficulties make this procedure all but impossi-
ble. While it can be easily applied to obtain a sieve dimension
of a photographed image, dissecting the crown into regular
boxes would destroy the structure we are trying to capture.
Besides technical problems, the box-counting method instills
two mental blocks that hamper analysis of three-dimensional
crown geometry. The method makes us think about crown
measurements in terms of (i) regular cubes and (ii) consecu-
tive sequences of their sizes and counting.

Method of natural units

Division of the crown into regular cubes and complete enu-
meration of them is not the only way to obtain fractal dimen-
sion. As its name indicates, the proposed method uses natural
units of the crown such as shoots and branches of various
orders. Besides technical convenience, these irregular bodies
are closer to the spirit of fractal geometry than unnatural cubes
and straight lines.
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Table 1. Development of a mass fractal (Menger's sponge) with
decreasing unit size.

Step (s)

Unit Number of units

Mass of a unit
(m,= p(nkvk)Ins)

Length
(is = r')

Volume
(vs = r3s)

Total

(N = r-3s)
Filled

(ns = r-Ds)

0 1 1 1 1 p(n kv k)1 1
1 1/3 (1/3)3 3 3 = 27 3D=20 p(nkvk)/3°
2 (1/3)2 (1/3)6 272 32D p(nkvk)13 2D

3 (1/3)3 (1/3)9 273 33D p(nkvk)1331
4 (1/3)4 (1/3) 1 ' 274 34D p(nkvk)/34D
.
k (1/3)6

.
(1'3)36

.
27k

.
3kD p nk	 )/3 kD

Fractal dimension from mass and volume of branches
Unlike the boxes which can be filled or empty, branches are
filled with foliage by definition. They are "nonempty boxes".
Therefore, mere counting of branches is not sufficient to pro-
duce fractal dimension. The proposed method obtains fractal
dimension from the relationship between foliage mass of a
branch and volume occupied by its foliage. The imperfectness
of physical objects, expressed in finite cutoffs, saves their mass
from the disappearance exhibited by mathematical fractals. As
a result, we can relate mass and volume of branches. Mass is
proportional to the compressed volume of all leaves (or nee-
dles) of a branch or a crown. In other words, when the unit
length is equal to the inner cutoff, mass is proportional to the
product of the size and number of the units. The coefficient of
proportionality is specific gravity of foliage in a shoot, which
is the smallest crown unit.

To derive a relationship between mass and volume, con-
sider their values at consecutive steps. In the context of crown
structure, steps may be visualized as size of a branch. At the
first step, we deal with the entire crown, at the second with
large branches of first order, and then with smaller and smaller
branches. At the last step k, we have a shoot, which was iden-
tified as the inner cutoff (smallest unit) of the crown. Mass of
the units (branches) at each step is calculated assuming that at
this last step the total mass of the crown is proportional to the
filled volume. This filled volume is equal to the product of unit
volume at this step, vk, and the number of these filled units, nk.
At each step, s, the total mass is divided by the number of
current units to produce the mass of the unit (Table 1).

For Menger's sponge and other mass fractals (like tree
crowns), the volume of a unit, such as a branch, can be ex-
pressed in terms of r, that is, the length of the smallest unit
reached at the k-step (Table 1):

[ 5 ]	 V -= r 3S

The mass of the same unit can be expressed as the ratio of the
total mass of the object, r3kIlk , and the number of units, /I:

131" 36176

[7]
Therefore, the mass is

m, pr3k—kD+sD

Both expressions for volume (eq. 5) and mass (eq. 8) con-
tain parameter s. In addition to helping the explanation, steps
are valuable algebraically: by excluding parameter s, we can
at last relate mass and volume of a branch. From the equation
for volume, it follows that

In(vs) 
s –

3 ln(r)

In terms of mass, this parameter is

ln(in .) – (3 – D)k ln(r) – ln(p) 
[10]	 s –

D In(r)

Because in both cases s is the same, we can equate

In(vs )	 MOO – (3 – D)k ln(r) – ln(p) 

3 1n(r)	 D ln(r)

Hence, on the log–log scale the mass contained in a unit of
Menger's sponge is a linear function of unit's volume:

In(ms ) = a + b In(v)

where

a = (3 –	 ln(r) + ln(p) and h

Parameters of the mass–volume relationship
When eq. 12 is fitted to mass and volume of branches, parame-
ter b provides information on fractal dimension of the crown
or its parts. Fractal dimension is equal to the slope of this linear
regression multiplied by 3 (eq. 13). In addition to D, parameter
a depends on the inner cutoff, r, and the number of steps, k,
required to reach it (eq. 13).

Parameter a can be viewed as a measure of foliage density.
All filled cubes of fractal objects are assumed to be filled
evenly. But the volume occupied by branches is filled to a
varying degree. The density of foliage in branches exposed to
sunlight at the crown top is much higher than that of shaded
branches inside the crown. Besides location, density is affected
by qualitative differences in foliage reflected in the terms "sun
leaves" and "shade leaves." The resulting difference in foliage
density is the major problem in applying fractal geometry to
trees.

The proposed method addresses this problem by introduc-
ing the concept of foliage density and identifying it with pa-
rameter a. Mass of uniform nonfractal objects is proportional
to volume, and density is defined as the ratio of these variables.
Due to this proportionality, density is independent of volume.
In fractals, mass is proportional to volume raised to the power
of D/3. As a result, the ratio of mass to volume (that is, density)
changes with volume. This irrelevant, for our purposes, link
between density and volume can be eliminated, if density is
defined as the ratio of foliage mass, M, to volume it occupies,
V, raised to the power of D/3.

Since the mass–volume relationship is described in terms
of logarithms, it is convenient to define foliage density, FD, in
the log-transformed form

[14]	 FD = a = In(M) – —D in( V)

[61	 m,=

where p is the specific gravity of foliage in the smallest crown
unit (shoot).

In terms of r, the numbers of units are

nk =	 and n =

[II]
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Fig. 1. Measurement of the area of foliage space. B, needle closest to the tree stem; T, tip of the needle farthest from the stem. The broken line
depicts the horizontal axis.

This definition of foliage density differs in two respects from
the ordinary concept of density exemplified by density of
wood or water. First, to make density independent of volume,
the volume has to be raised to the power of D/3. Density of
Euclidean objects with D = 3 is a particular case of this defini-
tion of density because the power becomes 1. The second dif-
ference is in using the logarithmically transformed ratio of
mass and volume. When compared with eq. 12, it becomes
evident that foliage density is identical to parameter a. De-
pending on the degree of exposure to sunlight, foliage density
and, accordingly, parameter a vary within the crown. This vari-
ation allows the crown fractal dimension to remain invariant.
The same fractal dimension can characterize exposed and
shaded branches, as well as the entire crown.

Volume occupied by foliage
Volume occupied by natural objects such as branches with
shoots haphazardly sticking out cannot be estimated as easily
as volume of cones or spheres. It is tempting to follow individ-
ual shoots and present volume of a branch with various dents
and bulges. The danger is that for fractal objects, there is no
objective way to stop the process of indenting. As soon as we
start excising empty parts from the branch volume, one can go
after smaller and smaller voids between secondary branches,
shoots, fascicles, needles, cells, molecules, and so on. After all,
even objects that look solid, such as metals, are mostly holes
among tiny electrons and nuclei.

A solution is to define branch volume as the smallest con-
vex hull that envelops all of the space with foliage growing on
a given branch. Convex hull refers to a solid without any in-
dentations. In more exact terms, convex hull is a solid in which
a segment, joining any two points in its interior, lies wholly
within the hull. This definition leads to including the space that
is not occupied by foliage.

In this study the volume occupied by foliage of a given
branch was estimated as the product of the area of the convex
polygon that circumscribes the foliage and the foliage depth in

the direction perpendicular to the polygon. To obtain the area,
imagine a line BT (Fig. 1) connecting the leaf or needle closest
to the tree stem with the tip of the needle farthest from the
stem. Assuming that this line is the x-axis with the origin at
the closest leaf, record the x,y- coordinates for the points lo-
cated at the outer limits of the foliage area (Fig. 1). These
points are the corners of the convex polygon that circumscribes
the projection of the foliage space. Convex polygon refers to
a closed plane figure bounded by straight lines without any
indentations.

The second factor of the volume is foliage depth. Measure-
ments of depth should be done with the branch attached to the
tree stem. If this is too difficult, measure the angle between the
branch and the stem, cut the branch, and hold it at that angle.
Take several (5-10) measurements of the distance between the
tips of extreme needles in the direction perpendicular to the
polygon. These measurements should be distributed evenly
throughout the space occupied by foliage.

Summary of the proposed method
The method of natural units estimates fractal dimension and
foliage density using the relationship (eq. 12) between foliage
mass of branches and the volume they occupy. The method can
be applied to a group of branches and provide the parameters
for several trees, a single crown, or any crown portion such as
top or bottom.

There are three differences between the proposed method
and the box-counting method. First, the natural units method
is selective as opposed to the box-counting method, which
requires visiting each unit of a studied object. Using the pro-
posed method, we may sample a filled volume here and there
in the crown. There is no ambiguity in selecting these volumes.
Each of them is a separate branch. It is not necessary to meas-
ure all branches or count them in a certain order. The method
of natural units relies on sampling rather than complete enu-
meration. A related feature is that we are entitled to disregard
voids between filled spaces (branches).
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Second, the natural units method requires more information
about each unit than that involved in the qualitative
filled—empty dichotomy. We have to estimate two quantities:
volume of the unit and mass represented in our case by foliage.
Third, the intercept of eq. 12 provides information about foli-
age density, which complements fractal dimension.

Although the method of natural units was derived using
Menger's sponge as an example, the resulting relationship be-
tween mass and volume is general and holds true for any mass
fractal.

Data analysis: applying the natural units
method to trees

The method of natural units was derived for an abstract mathe-
matical object. This object is symmetrical from top to bottom,
while the crown is not. In addition to purely spatial considera-
tions, various ecophysiological processes influence foliage
distribution. The analogy between the crown and mass fractals
such as Menger's sponge cannot explain shading of branches,
vigorous growth of needles in the exposed parts of the crown
and their disappearance in areas where light intensity drops
below the compensation point, and differences in structure,
chemistry, and productivity between sun and shade leaves.
Parameter a (eq. 12) accounts for these ecophysiological proc-
esses. As a result, fractal analysis allows one to separate geo-
metrical and ecophysiological factors determining crown
structure. This separation may facilitate the investigation of
each of the involved factors and unraveling patterns of foliage
distribution.

To apply the natural units method, accurate measurements
of such uncommon variables as volume of space occupied by
foliage are needed. For this purpose, 34 loblolly pine trees
(Pants taeda L.) from the plantations east of the Appalachian
mountains were thoroughly measured. These measurements
were collected with the cooperation of Harold Burkhart and
Ralph Amateis of the Virginia Polytechnic Institute and State
University, Blacksburg, Va. The trees, mostly dominant and
codominant, were measured when they were in "full leaf'
(July and August). Tree ages ranged from 9 to 30 years.

After measuring total height, diameter at breast height,
crown class, and height to the crown base on standing trees,
they were felled and diameters of all branches of the first order
were measured above the base swell. Six of these branches
(two from the top, middle, and bottom portions) from each
crown were selected for detailed measurements. Their length,
diameter, angle, and distance from the ground were recorded.
Mass of first- and second-year needles was determined. The
coordinates of the convex polygon that circumscribed the fo-
liage and the foliage depth in the direction perpendicular to the
polygon were measured using the procedure described above.
In a similar manner, branches of higher orders were measured.
The total number of measured branches was 536.

Mass and volume of branches varied a great deal. (The term
"branch" mass or volume indicates the mass of foliage sup-
ported by a given branch or the volume occupied by this foli-
age.) The range of branch mass covered six orders of
magnitude: from 0.01 to 882 g with a mean of 65 g. Volume
changed from 0.00002 to 1.96 m 3 with a mean of 0.14 m3.
Mass of the entire crowns, estimated from regressions of foli-
age mass on branch diameter, reached 20 752 g (mean
5640 g). Maximum crown volume was 174 rri 3 (mean 57 m3).

The central relationship of this study between mass and
volume occupied by foliage of branches is described by a
power function. known in biology as an allometric relation-
ship. Although mass is not a linear function of volume, this
relationship can be easily linearized by taking logarithms of
both variables. The slope of the linearized allometric equations
does not require any correction. However, to assure that the
sum of the calculated masses is equal to the sum of actual
masses, the scale factor (the exponent of intercept) should be
corrected using the untransformed mass.

Results
Relationship between foliage mass and volume
If the crown is a fractal, then the regression of the logarithm of
foliage mass of branches on the logarithm of volume occupied
by foliage should be linear in the simplest meaning of this
word: being plotted, it appears as a straight line. One way to
test this prediction is to include in the regression a variable
reflecting curvature. Since the studied relationship is mono-
tonic and not inflected, the squared logarithm of volume would
do the job. If the regression parameter of this term differs
significantly from zero, then the relationship is not linear. In
this case the relationship is almost perfectly linear: the parame-
ters of the quadratic terms do not differ from zero (Table 2,
regressions 2 and 4).

Slope of the mass—volume regression and fractal
dimension

As was shown above, the slope of the regression of the loga-
rithm of foliage mass on the logarithm of volume is equal to
D/3 where D is fractal dimension. It is expected that D is
confined between 2 and 3 for any branch order as well as for
the entire crowns. The slopes computed using the ordinary
least squares regression (OLS) do not support this prediction:
every one of them is less than 2/3 (Table 2, regressions 5-9).
The problem here is with the statistical technique rather than
with the proposed method. OLS produces unbiased estimates
of the dependent variable when the predictor contains no er-
rors. This study is concerned with the value of the parameters,
rather than with predicting the dependent variable (foliage
mass). Another difference is that as a result of natural variabil-
ity and measurement inaccuracies the predictor (volume) does
contain errors.

There are other methods to relate variables subject to errors
(Bartlett 1949; Sprent and Dolby 1980; Ricker 1984; Leduc
1987). One of the most popular is the reduced major axis
method (RMA). While OLS minimizes the sum of the vertical
deviations along the y-axis, RMA estimates regression pa-
rameters by minimizing the sum of the products of the hori-
zontal (along the x-axis) and vertical deviations. The RMA
slope is the geometric mean of the slope obtained by regressing
y on x and the slope obtained by regressing x on y. An equiva-
lent method to calculate the RMA slope is to divide the OLS
slope by the correlation coefficient (square root of R 2 ). Using
this method and statistics given on regression 3 (Table 2), the
RMA slope for all 536 branches, br, is

[15] b.— 
0

' 6653  
— 0.771

' 0.744912

Unlike OLS, RMA is designed to estimate parameters when
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Table 2. Analysis of spatial and linear variables of branches.

Branch	 RMA
Regression	 order	 Equation	 slope	 N	 R2	 SEE

Regressions including branches and the entire crowns

	

1	 lm = 5.74 + 0.68(±0.0 1)1v 	570	 0.83	 0.95

	

2	 /m = 5.73 + 0.69(±0.02)/v 	 570	 0.83	 0.95
+ 0.003(±0.003)/v2

Regressions including only branches
	3 	 hn = 5.68 + 0.67(±0.02)/v	 536	 0.74	 0.98

	

4	 /m = 5.68 + 0.66(±0.06)/v 	 536	 0.74	 0.98
- 0.0005(±0.006)/v2

Regressions by branch order
	5 	 0	 /m = 5.99 + 0.64(±0.09)/v 	 0.81(±0.09)	 34	 0.63	 0.34

	

6	 1	 lm = 5.58 + 0.43(±0.02)/v	 0.56(±0.02)	 204	 0.59	 0.71

	

7	 2	 Im = 3.94 + 0.37(±0.04)/v	 0.69(±0.04)	 168	 0.29	 0.87

	

8	 3	 hn = 4.09 + 0.47(±0.06)/v 	 0.83(±0.06)	 129	 0.32	 0.92

	

9	 4	 Im = 3.86 + 0.51(±0.10)/v	 0.77(±0.10)	 35	 0.44	 0.85

Regressions on branch diameter and length

	

10	 Im = 3.16 + 0.33(±0.09)//	 536	 0.81	 0.83
+ 1.72(±0.14)/d

	

11	 Iv = -3.66 + 0.74(±0.11)// 	 536	 0.81	 1.09
+ 1.73(±0.19)/d

Mass-volume regressions for branches with different foliage density
Branches with the highest foliage density

	

12	 Im = 6.44 + 0.64(±0.04)/v	 0.69(±0.04)	 200	 0.86	 0.55

	

13	 Im = 6.82 + 0.64(±0.03)/v	 0.70(±0.03)	 100	 0.83	 0.51

	

14	 Im = 7.36 + 0.68(±0.05)/v	 0.76(±0.05)	 50	 0.80	 0.52

	

15	 Im = 7.88 + 0.70(±0.08)/v	 0.80(±0.08)	 25	 0.77	 0.52
Branches with the lowest foliage density

	

16	 hn = 5.09 + 0.75(±0.02)/v	 0.79(±0.02)	 200	 0.89	 0.68

	

17	 ho = 4.51 + 0.73(±0.02)/v 	 0.77(±0.02)	 100	 0.90	 0.64

	

18	 /m = 3.95 + 0.70(±0.03)/v 	 0.74(±0.03)	 50	 0.90	 0.60

	

19	 Im = 3.50 + 0.69(±0.04)/v	 0.72(±0.04)	 25	 0.91	 0.61

Regressions of mass on branch length and diameter, separately
	20	 Im = 3.86 + 1.33(±0.03)/1	 536	 0.76	 0.95

	

21	 Im = 2.93 + 2.22(±0.05)/d	 536	 0.81	 0.83

Regressions of mass on length and diameter of branches of extreme foliage density
Branches with the highest foliage density

	

22	 /m = 4.01 + 0.87(±0.09)1/	 200	 0.90	 0.47
+ 0.85(±0.14)/d

	

23	 Im = 4.17 + 1.03(±0.14)/1 	 100	 0.80	 0.56
+ 0.51(±0.25)/d

	

24	 /m = 4.44 + 1.34(±0.19)//	 50	 0.76	 0.57
- 0.08(±0.33)/d

	

25	 Im = 4.54 + 1.34(±0.51)/1 	 25	 0.59	 0.71
+ 0.01(±0.68)/d

Branches with the lowest foliage density

	

26	 /m = 2.47 + 0.16(±0.14)/I	 200	 0.80	 0.94
+ 1.88(±0.23)/d

	

27	 Im = 1.94 + 0.02(±0.20)11	 100	 0.90	 1.00
+ 1.94(±0.33)/d

	

28	 /m = 1.74 + 0.09(±0.29)11	 50	 0.90	 1.13
+ 1.62(±0.52)/d

	

29	 hn = 1.36 + 0.08(±0.44)11	 25	 0.56	 1.40
+ 1.73(±0.84)/d

Regression of mass on length of 25 branches with the highest foliage density
	30	 Im = 4.54 + 1.35(±0.24)//	 25	 0.59	 0.69

Note: /m, lv, II. and Id are the natural logarithms of foliage mass, volume, length, and diameter, respectively, N is the
number of observations, R2 is the coefficient of determination (proportion of explained variance), and SEE is the
standard error of the estimate. Standard errors of slopes are given in parentheses.
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predictors contain errors. For this reason and also because this
study is concerned with the value of the parameters, rather than
with predicting the dependent variable, RMA  is more suitable
for this investigation than OLS. The RMA slopes (Table 2,
regressions 5-9) also make more sense because most of them
are greater than 2/3.

RMA is the maximum-likelihood or least biased estimator
of the functional relationship when theoretical errors of the
variables are unknown. Without this knowledge, "there must
be uncertainty about the slope of any line reasonably compat-
ible with the data" (Sprent and Dolby 1980, p. 548). These
authors indicated that the minimum additional information
about the error variances needed to remove this uncertainty is
a knowledge of their ratio. To be sure about our estimates, the
RMA slope for all branches (0.771) was compared with that
produced by Sprent and Dolby's (1980) estimator.

The difficulty in applying Sprent and Dolby's (1980) esti-
mator is that instead of required variance, only its estimates
are known. These estimates contain their own errors and as far
as the Sprent and Dolby's (1980) estimator is concerned can-
not substitute for the variance. In this study, Sprent and
Dolby's (1980) estimator was applied using the conditional
variances calculated from regressing each of these variables
on length, //, and diameter, Id, of the corresponding branches
(Table 2, regressions 10 and 11). By regressing mass and vol-
ume on easily measured length and diameter, some of the ran-
dom errors present in the sample variance are expected to be
filtered out. The ratio of the conditional variances,	 was es-
timated as the squared ratio of the standard errors of estimates
of the equations (Table 2, regressions I 0 and 11):

2
[16] 2— 01.09 — 0.58

Using this value, one can apply Sprent and Dolby's (1980)
formula for the slope, hy:

where	 and sr, are the sums of corrected squares of the vari-
ables and s r,, is the sum of cross products. The result is h,=
0.772, which is not too far from the RMA slope of 0.771.

Another check of the value of fractal dimension was done
using Bartlett's (1949) three-group method. As the title of Bar-
tlett's (1949) paper "Fitting a straight line when both variables
are subject to error" indicates, this method was introduced
precisely for the purpose that concerns us now. Bartlett (1949)
proposed that the data be divided into three even groups. The
slope should then be estimated using the line connecting the
means of the two extreme groups. The inner group is not used
in the slope calculation. Bartlett (1949) proved that using two
out of three groups (and thus disregarding one third of the
information) results in a more accurate estimate. Regression
of foliage mass of 536 branches on the logarithm of their vol-
ume produced the slope of 0.674. When the variables were
reversed, the slope was 0.905. The geometric mean of these
two values is 0.781.

Since the differences between the calculated slopes, 0.771
(RMA), 0.772 (Sprent and Dolby), and 0.781 (Bartlett), are
smaller than their standard errors (0.016-0.020), all three
methods produced statistically indistinguishable results. These

values indicate that fractal dimension of the studied loblolly
pines is about 2.3-2.4. The described experience supports the
conclusion at which Leduc (1987, p. 654) arrived after com-
paring methods most commonly used to relate two variables,
both of which are subject to error: "It is found that reduced
major axis is often the most applicable because of its desirable
properties and ease of estimation."

Fractal dimension and foliage density
The main advantage of introducing a volume-invariant meas-
ure of foliage density (eq. 14) is the separation of purely geo-
metric factors of foliage distribution from ecophysiological
factors. As a result, fractal dimension should not vary with the
degree of exposure to light. To test this inference that exposed
and shaded branches have the same fractal dimension, all
branches were sorted by foliage density and fractal dimensions
were calculated for 25, 50, 100, and 200 branches with the
highest values of foliage density and for equal numbers of
branches with the lowest values of foliage density.

These results (Table 2, regressions 12-19) show that there
is no difference between fractal dimensions of branches dif-
fering with respect to density. The range of fractal dimension
of exposed branches with the highest foliage density
(2.07-2.40) includes the range of shaded branches
(2.16-2.37). The fractal dimension of all branches and crowns
(3(0.68/(0.83) 1/2 ) = 2.24) is in the middle of either range.

Unlike one-dimensional (linear) length and diameter, mass
and volume exist in space with dimension greater than 2 and
can be referred to as spatial variables. In general, the linear
variables are well correlated with both mass and volume of
branches. Thus, the linear variables explain 81% of the vari-
ation in both mass and volume of all 536 branches (Table 2,
regressions 10 and 11). Branch diameter, which alone ac-
counts for 81% of the variation in mass, appears to be a slightly
better predictor than length, which explains 76% of the vari-
ation (Table 2, regressions 20 and 21).

These results are expected. It is known that spatial vari-
ables, for example, stem volume, are functions of their linear
dimensions, such as height and diameter. Something unex-
pected has been found for the branches of extreme foliage
density. Length alone was sufficient to predict mass of
branches with the highest foliage density (Table 2, regres-
sions 24 and 25). The contribution of diameter was not signifi-
cant. The opposite was true for branches with the lowest
foliage density. Only branch diameter was a relevant predictor
of mass (Table 2, regressions 28 and 29).

Calculation of the maximum foliage mass
To assess the effect of competition, it is interesting to know the
foliage mass of a given branch if it was fully exposed to the
sunlight. Usually the amount of foliage increases with the de-
gree of exposure. The preceding results allow one to estimate
the maximum foliage mass possible on a given branch. Calcu-
lation of the maximum foliage mass requires an assumption
about the proportion of branches deemed to be fully exposed
to the sunlight. Lacking any objective criteria, it was assumed
that for dominant and codominant loblolly pine trees, this pro-
portion is 5% of all branches, mostly on the basis of the custom
in biology to regard the extreme 5% as exceptional.

Since branch diameter does not help much to predict mass
of branches with the highest foliage density, mass of
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Table 3. Correlation between fractal dimensions
of the crowns of 34 trees and other variables.

Variable
Correlation
coefficient P > 0

Crown class 0.449 0.008
Age -0.103 0.562
Tree height -0.208 0.237
Crown length -0.358 0.038
Crown radius -0.190 0.281
Crown mass -0.333 0.055
Crown volume -0.373 0.030
W5B -0.046 0.795
W5C 0.092 0.604

Note: P > 0 indicates the probabilities of the
coefficients to be greater than zero. W5B and W5C are
widths of the last five rings at stem base and crown base.

25 branches was regressed on length alone (Table 2, regres-
sion 30). Using parameters of this regression and the logarithm
of branch length, 11, one can compute for each of 536 branches
the logarithm of "full" mass, /m/,' as follows:

/riff= 4.54 + 1.3511

A method for estimation of relative foliage
density

This ability to calculate maximum foliage mass suggests a
method to estimate relative foliage density without measure-
ments of foliage mass and volume. Linear measurements of
length and diameter of a branch are sufficient. Relative foliage
density is defined as the ratio of actual to maximal foliage mass
for a given branch. The problem is to express both masses in
terms of branch length and diameter.

As was shown, maximal foliage mass depends only on
branch length (eq. 18). The expression for the actual foliage
mass was determined earlier (Table 2, regression 10). Using
this regression and eq. 18, relative foliage density (the ratio of
actual to maximal foliage mass), RFD, can be estimated as
follows:

RFD = 
exp(3.16 + 0.33// + 1.72/d) -

	 I .02d1 .72-
exp(4.54 + 1.35//)	

0.251

where 1 is branch length in metres and d is diameter in centi-
metres. This estimate of relative foliage density is based on the
assumption that 5% (=25/536) of all branches are exposed
fully to sunlight and, consequently, have the highest relative
foliage density (equal to 1). This relationship indicates that the
shorter a branch and the larger its diameter, the greater its
foliage density. The frequency distribution of relative foliage
density for all 536 branches was fairly symmetrical with a
mean of 0.53 and a minimum of 0.14. This mean indicates that,
on the average, branches are "half-full" (or "half-empty") as
compared with the densest branches.

Fractal dimension and foliage density in
relation to other tree variables

The data at hand can be used to relate fractal dimension to
crown class, crown size, and tree growth. To do this, fractal
dimension was calculated for each of 34 trees. D/3 ranged

Table 4. Fractal dimension by crown class.

Crown class	 N	 Minimum	 Maximum	 Mean	 SD
Dominant	 12	 1.94	 2.48	 2.16	 0.17
Codominant	 19	 1.96	 2.80	 2.36	 0.23
Intermediate	 3	 2.10	 2.72	 2.46	 0.33
All	 34	 1.94	 2.80	 2.30	 0.24

Note: N is number of trees.

from 0.65 to 0.93 with a mean of 0.77 and a standard deviation
of 0.08. Pearson correlation coefficients were computed be-
tween fractal dimension and crown class, tree age, tree size
(height, crown length, crown radius, logarithms of mass and
volume of the entire crown), and tree growth (widths of the last
five rings at stem base and crown base) (Table 3).

These coefficients show that the correlation of fractal di-
mension with crown class is statistically significant. Although
the differences in fractal dimensions among crown classes are
not significant, they are consistent: fractal dimensions increase
from dominant to intermediate trees (Table 4).

There is a consistent tendency of fractal dimension to de-
crease with increasing tree size. The negative correlation with
age is probably a reflection of this tendency. Because crown
mass and volume summarize and accentuate linear changes of
size, the correlation with these spatial variables is stronger than
that with linear variables (Table 3). The lack of correlation
with widths of the last five rings at stem base and crown base
indicates that fractal dimension is not related to rate of tree
growth (Table 3).

Foliage density is related to fractal dimension (eq. 14),
which explains a strong correlation between these variables
(0.65). As is fractal dimension, foliage density is correlated
negatively with tree size and dominance. There is no correla-
tion with diameter increments.

Discussion
Tree crowns differ from solid objects of classical geometry.
Their understanding requires new ideas about spatial relation-
ships. Fractal geometry offers such ideas, concepts, and meth-
ods. The central concept of this geometry is fractal dimension.
This study proposes a method to estimate fractal dimension of
a single tree crown or its portions.

Branches of trees vary greatly in foliage density. Exposed
branches at the treetop have denser foliage than branches in-
side the crown. To characterize spatial distribution of foliage,
in addition to fractal dimension, we need a measure of foliage
density. The intercept of the same regression that produces
fractal dimension appears to be a suitable measure of foliage
density. Foliage density complements fractal dimension both
algebraically (because it is a part of the same equation) and
ecologically (because foliage density expresses another aspect
of the same phenomenon, foliage distribution). The relation-
ship that connects mass and volume of branches (eq. 12) sepa-
rates purely spatial factors from ecophysiological effects.
Fractal dimension and foliage density quantify these facets of
foliage distribution. The concept of foliage density was instru-
mental in selecting exposed branches and calculating relative
foliage density.

Neither fractal dimension nor foliage density correlates
with current diameter increment. Low correlation was found
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between fractal dimension and variables indirectly related to
the crown, age, and tree height (Table 3). At the same time,
there is a more pronounced negative correlation between frac-
tal dimension and crown size. Fractal dimension also decreases
from intermediate to larger, dominant trees (Table 4). These
results suggest that as crowns become larger, the amount of
foliage located at the crown periphery increases in proportion
to the foliage amount inside the crown. The peripheral
branches do not spread to provide light to the crown interior.
Foliage tends to occupy the outer space while creating a
leafless core inside. It seems that not only individual trees but
branches of the same tree compete with each other.
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