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ABSTRACT:Recent work has found that a one-parameter Weibull
model of wet day precipitation amount based on the Weibull distri-
bution provides a better fit to historical daily precipitation data for
eastern u.S. sites than other one-parameter models. The general
two-parameter Weibull distribution was compared in this study to
other widely used distributions for describing the distribution of
daily precipitation event sizes at 99 sites from the u.S. Pacific
Northwest. Surprisingly little performance was sacrificed by reduc-
ing the two-parameter Weibull to a single-parameter distribution.
Advantages of the single-parameter model included requiring only
the mean wet day precipitation amount for calibration, invertibility
for simulation purposes, and ease of analytical manipulation. The
fit of the single-parameter Weibull to the 99 stations included in
this study was significantly better than other single-parameter
models tested, and performed as well as the widely endorsed, more
cumbersome, two-parameter gamma model. Both the one- and two-
parameter Weibull distributions are shown to have L-moments that
are consistent with historical precipitation data, while the ratio of
L-skew and L-variance in the gamma model is inconsistent with
the historical record by this measure. In addition, it was found that
the two-parameter gamma distribution was better fit using the
method of moments estimators than maximum likelihood esti-
mates. These rmdings suggested that the distribution in precipita-
tion among sites in the Pacific Northwest with dramatically
different settings are nearly identical if expressed in proportion to
the mean site event size.
(KEY TERMS: meteorology/climatology;precipitation model; proba-
bility density functions; Pacific Northwest; surface water hydrolo-
gy; simulation.)

INTRODUCTION

A variety of models can be found in the literature
that describe daily precipitation (Smith and
Schreiber, 1974; Todorovic and Woolhiser, 1974; Chin,
1977; Buishand, 1978; Roldan and Woolhiser, 1982;

Richardson and Wright, 1984). Due to the complex
nature of precipitation processes, these models have
been selected by goodness-of-fit criteria rather than
being derived from knowledge of the underlying phys-
ical processes. Although the ability to reproduce the
historical distribution of precipitation amounts is
paramount (Richardson, 1982), additional salient
model characteristics include the ability to use in a
simulation mode (e.g., invertibility), the ease of esti-
mating parameter values, and computational flexibili-
ty (e.g., existence of closed form expressions for
moments, ability to integrate and differentiate).

The most common approach for describing the dis-
tribution of precipitation amounts on days with pre-
cipitation or wet days (here we consider a day with
total rainfall of 0.0254 centimeters (0.01 inch) or more
as a wet day) is to assume the precipitation amounts
are serially independent and to fit an analytical dis-
tribution to the precipitation depths (Woolhiser et al.,
1973; Smith and Schreiber, 1974; Todorovic and
Woolhiser, 1974, 1975; Richardson, 1982). Various
probability density functions requiring from one to
three parameters have been proposed to describe the
distribution of precipitation depths (Smith and
Schreiber, 1974; Todorovic and Woolhiser, 1974, 1975;
Richardson, 1982; Woolhiser and Roldan, 1982;
Pickering et al., 1988; Selker and Haith, 1990). Wool-
hiser and Roldan (1982) compared the chain-depen-
dent (Le., precipitation amounts are independent
given the state of the previous day), exponential,
gamma, and three-parameter mixed exponential dis-
tributions. They found that the three-parameter
mixed exponential was the best for five U.S. stations.
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Multi-parameter distributions such as the two-
parameter gamma, the three-parameter gamma, the
three-parameter mixed exponential, and others also
have been used in precipitation simulation (e.g.,
Mielke and Johnson, 1974). These multiparameter
models are generally assumed to fit the distribution of
precipitation amounts more closely than do one-
parameter distributions. On the other hand, single-
parameter models are more appealing for their
simplicity and ease of parameterization, but at this
time there is no consensus on which family of models
is inherently more reasonable or suitable. For a given
application, the choice of models is often driven by the
feasibility of obtaining the required parameters.
Richardson (1982) suggests that unless the three-
parameter mixed-exponential distribution has a clear
advantage over the two-parameter gamma distribu-
tion, the gamma distribution should be the appropri-
ate choice of model for most applications.

The Weibull family of distributions has several
very desirable features, including invertibility, inte-
grability, and closed form expressions for all
moments. The Weibull model was used by Selker and
Haith (1990) as a one-parameter model for daily pre-
cipitation amounts for the Eastern United States. A
recent study using a slightly different calibration of
the Weibull distribution also provided superior precip-
itation generation (in the sense of better chi-square fit
to historical data) for the H. J. Andrews Experimental
Forest in Oregon in comparison to other one-parame-
ter distributions (Duan et ai., 1995). The study by
Selker and Haith (1990) was limited to Eastern U.S.
sites, and the calibration procedure employed only
summary statistics for extreme precipitation events.
In the study presented here, 99 full precipitation
records selected from sites west of the Cascade Range
in Washington and Oregon and the Klamath Moun-
tains in northern California are examined to check
the performance of the calibrated Weibull distribution
in comparison to other widely used models. The study
area included a wide variety of precipitation regimes,
including coastal rain forest and moderate inter-mon-
tane and arid sites. The possibility of more precise
calibration of the Weibull models based on geographic
region, elevation, and annual precipitation amount
also were explored. To accomplish this, five probabili-
ty distributions for the precipitation amount (the
exponential, calibrated Weibull, calibrated beta-P, and
two-parameter gamma distribution with two different
estimators) were compared.

JAWRA

THE MODELS

In this study, seasonal variations in daily precipita-
tion processes were assumed to be constant within a
month but to differ among months. Twelve sets of
parameters were used for each station. Although
more complex techniques (e.g., finite Fourier series)
have been proposed to model seasonal variations
(Roldan and Woolhiser, 1982), the technique used
here is adequate for most applications (Richardson,
1981).

Calibration of the Weibull Distribution

A member of the Weibull family of distributions
was given by Rodriguez (1977) as:

[

kx

]

C

F(x) = 1-e T (1)

with the density function in the form of

(2)

(3)

where x is the daily precipitation depth, F(x) is the
probability of events less than x, f(x) is the density
function, A=E(X) is the expected value of daily pre-
cipitation, c is a constant, and r is the gamma func-
tion.

The constant c affects the general shape of the dis-
tribution (Figure 1). In the special case of c = 1 the
Weibull distribution reduces to the single-parameter
exponential distribution. In comparison to the expo-
nential model, values of c > 1 have higher probability
of precipitation amounts around the daily expected
value and lower probabilities for either tail. The oppo-
site is true for values of c < 1, which have higher prob-
abilities for both low and high precipitation extremes
(Figure 1).

Selker and Haith (1990) obtained a Weibull-based
model through a regional calibration of a three-
parameter beta-P distribution. Selker and Haith
(1990) optimized the distribution to fit extreme high
precipitation probabilities by using summary statis-
tics from 31 Eastern U.S. locations. They derived the
optimal one-parameter probability distribution for
wet day precipitation with c =0.75 so that
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Figure 1. Weibull Density Functions for Various c Values;
Precipitation Amounts Are Normalized by the Mean.

F(x) = 1-e -( 1.191if75 (4)

In this study, we calibrated the family of distribu-
tions described in Equations (1) to (3) with records
from each of 99 stations to obtain optimized values of
the parameters based on minimizing chi-squared
statistics. In this way, each site was assumed to have
one value of c for the entire period of record without
distinguishing among months; the result was a model
requiring one site parameter (c) and one parameter
for each month (A).Model distributions were obtained
for a range of c between 0.5 and 1.5, incremented by
0.01. The chi-square values were computed as:

x2 =t (observe~ - simulate~)2
i=1 observe~

(5)

where simulated and observed are the number of pre-
cipitation events in a combined bin i and n is the total
number of bins constructed. The bins were construct-
ed to assure that at least five occurrences were
observed in each bin category. The value of c that gave
the least chi-square was selected as the optimal
value. Figure 2 shows a typical relation between the
chi-square statistic and c. Root mean squared errors
(RMSE) were not used to evaluate models because
Selker and Haith (1990) found very little difference in
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results when they compared RMSE to chi-square
techniques.
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Figure 2. The Chi-Square Values and c-Parameters for the
Corvallis, Oregon, Meteorological Station

(minimum chi-square is at c =0.84).

Models Compared

The Weibull models discussed above were
compared with other single-parameter and multipa-
rameter models by using the chi-square statistic
for each model as calculated from Equation (5). The
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probabilities of the observed data and the simulated
data belonging to the same distribution were calculat-
ed from the following equation, which is the standard
chi-square probability function:

r(~ £.1
)Prob=~

r(;)
(8)

where n.) is the complete gamma function, and n.,.)
is the incomplete gamma function. A model that bet-
ter reproduces the historical probability distribution
should give lower chi-square values and higher proba-
bility values.

The single-parameter exponential distribution is
probably the most widely used single-parameter
model of daily precipitation amounts, owing to its
simplicity and relatively good fit to historical data for
many sites (Todorovic and Woolhiser, 1974; Richard-
son, 1981; Pickering et al., 1988). The cumulative dis-
tribution function of the exponential model is given
by:

:t

F(x) =1-e A. (7)

Probability distributions also have been derived by
calibrating multiparameter distributions (Pickering
et al., 1988; Selker and Haith, 1990). Pickering et al.
(1988) derived a single-parameter model by calibrat-
ing a special case of the beta-P distribution model. In
its most general form, beta-P is a three-parameter
model. The cumulative distribution function of the
calibrated beta-p model of Pickering et al. (1988) is
given by:

( )
-10

F(x) = 1- 1+it (8)

The two-parameter gamma distribution used here
is the probability density function given by:

(9)

where a and ~are the shape and scale parameters,
respectively, of the gamma distribution. The parame-
ters of the gamma distribution have commonly been
fitted through two approaches: the method of
moments and the maximum likelihood method. We
employed both methods in this study. The moment
estimators are given by:

JAWRA

E(X) =a~

V(x)=aJ32

(10)

(11)

where E(.) denotes the expectation or average of the
variable, and V(.) is the variance (Devore, 1987).

A number of numerical schemes will determine the
maximum likelihood estimators for the two-parame-
ter gamma (Thom, 1958; Greenwood and Durand,
1960; Choi and Wette, 1969; Mielke and Johnson,
1974). The numerical solution suggested by Choi and
Wette (1969) was used in this study, which approxi-
mated the solution by Newton-Raphson iteration
using the equations:

(12)

'I'(a) =-y _..!:.+a f ('(i ~ aJa i=1 l

(13)

00 1

'1" (a) =L (i + a)i=O

(14)

where y is Euler's Constant with value of 0.57722157;
'I' is the Digamma function and '1" is the derivatives
of the Digamma function; and i is the numerical step
in the above scheme. Y is an intermediate value cal-
culated as:

Y =In{E(X»)- E{ln(X») (15)

~is then calculated by using Equation (10).
The above infinite summations are approximated

by an arbitrary 10-7 criterion. If the difference
between the calculated parameter value at iteration i
and iteration i-1 is less than the criterion, then the
value obtained on the i-th iteration was used. Because
this numerical solution is always convergent with any
initial value such that 0 < <XQ< 00 (Choi and Wette,
1969), the starting value employed is immaterial.

GAUGE STATIONS AND DATA

The complete meteorological records from 99 gauge
stations in the Pacific Northwest west of the Cascade
Range were used (Figure 3, Table 1). They cover sev-
eral physiographic provinces and subprovinces,
including the Olympic rain forest, Coast Ranges, the
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Figure 3. Station Sites and Best Fits of the Five Distributions.
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TABLE 1.Precipitation Gauges and Data History.

Latitude Loncitude Elevation Data Length
Station (W) (N) (m) (yr)

California

Big Bar Ranger Station 40:45 123:15 384 44
Callahan 41:19 122:48 971 44
Crescent City 41:46 124:12 12 44
Eureka WSO 40:48 124:10 13 44
Fort Jones Ranger Station 41:36 122:51 831 44
Gasquet Ranger Station 41:52 123:58 117 44
Greenview 41:33 122:54 859 44
Happy Camp Ranger Station 41:48 123:22 351 62
Klamath 41:31 124:02 8 44
Orick Prairie Creek Park 41:22 124:01 49 44
Orleans 41:18 123:32 123 44
Sawyers Bar Ranger Station 41:18 123:08 661 37
Weaverville Ranger Station 40:44 122:56 625 44

Oregon

Ashland 1 N 42:13 122:43 543 44
Astoria WSO 46:09 123:53 2 40
Bandon IE-Bates Bog 43:07 124:23 24 44
Bonneville Dam 45:38 121:57 18 44
Brookings 42:03 124:17 24 62
Buncom 2 SE 42:09 122:58 587 44
Cape Blanco 42:50 124:34 64 26
Cascadia State Park 44:24 122:29 259 61
Cherry Grove 2 S 45:25 123:15 238 34
Clatskanie 3 W 46:06 123:17 28 44
Cloverdale 1 NW 45:13 123:54 6 43
Corvallis St. College 44:38 123:12 69 103
Corvallis Water Bureau 44:31 123:27 180 44
Cottage Grove 1 S 43:47 123:04 198 44
Cottage Grove Dam 43:43 123:03 253 49
Dallas 44:56 123:19 99 57
Dilley 1 S 45:29 123:07 50 44
Dorena Dam 43:47 122:58 250 44
Drain 43:40 123:19 89 44
Elkton 3 SW 43:36 123:35 35 44
Estacada 2 SE 45:16 122:19 125 45
Eugene WSO 44:07 123:13 109 54
Fern Ridge Dam 44:07 123:18 118 49
Forest Grove 45:32 123:06 55 65
Gold Beach Ranger Station 42:24 124:25 15 44
Grants Pass 42:26 123:19 282 65
Haskins Dam 45:19 123:21 256 44
Headworks Portland Water 45:27 122:09 228 62
Holley 44:21 122:47 165 44
Klamath Falls 2 SSW 42:12 121:47 1249 43
Langlois 2 42:56 124:27 27 36
Leaburg 1 SW 44:06 122:41 206 44
MC Minnville 45:14 123:11 45 54
Medford WSO 42:22 122:52 400 65
Newport 44:38 124:03 47 59
North Bend FAAAP 43:25 124:15 2 62
Oregon City 45:21 122:36 51 44
Otis 2 NE 45:02 123:56 48 44
Portland WSO 45:36 122:36 6 44
Powers 42:53 124:04 70 44
Reedsport 43:42 124:07 18 32
Rex 1 S 45:18 122:55 149 40
Riddle 2 NNE 42:58 123:21 202 44
Roseburg KQEN 43:12 123:21 142 27
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Cascade Range, Willamette Valley, Klamath Moun-
tains, and others. Most of the stations began observa-
tion in either 1948 (61 of 99 stations) or 1931 (15 of
99), and generated an observed history of about 44
and 62 years, respectively. Observed daily precipita-
tion datum quality is good with relatively few missing
data. The first years of observed data were often omit-
ted because of irregular observations in this period.

RESULTS AND DISCUSSION

The calibration of Weibull distributions for the 99
stations showed that the optimal value of c ranged
between 0.6 and 1.06. One of the motivations in carry-
ing out this study was to develop a method of estimat-
ing the value of c from data other than the full daily
weather record. Toward this end, multiple regression
analysis was carried out on the value of the cs and
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TABLE 1. Precipitation Gauges and Data History (cont'd.)

Latitude Loncitude Elevation Data Length
Station (W) (N) (m) (yr)

Oregon (cont'd.)

Salem WSO 44:55 123:01 60 65
Seaside 45:59 123:55 3 63
Silver Creek Falls 44:52 122:39 411 44
Stayton 44:48 122:46 142 41
Summit 44:38 123:35 227 44
Three 19nx 45:07 122:04 341 62
Tidewater 44:25 123:54 15 44
Tillamook 1W 45:27 123:52 3 45

Washington

Aberdeen 20 NNE 47:16 123:42 133 62
Battle Ground 45:47 122:32 90 44
Bremerton 47:34 122:40 49 44
Cedar Lake 47:25 121:44 475 62
Centralia 46:43 122:57 56 62
Chimacum 4 S 47:57 122:46 76 45
Doty 3 E 46:38 123:12 79 15
Electron Headworks 46:54 122:02 527 31
Elma 47:00 123:24 21 14
Elwha Ranger Station 48:02 123:35 110 44
Glenoma 1 W 46:31 122:10 265 25
Grapeview 3 SW 47:18 122:52 9 44
Kent 47:23 122:16 10 37
Kid Valley 46:22 122:37 210 31
Landsburg 47:23 121:58 163 62
Longview 46:10 122:55 4 62
Mineral 46:43 122:11 451 31
Oakville 46:50 123:13 26 44
Olympia WSO 46:58 122:54 59 44
Port Angeles 48:07 123:26 30 44
Quilcene 2 SW 47:49 122:55 37 44
Rainier Ohanapecosh 46:44 121:34 594 44
Rainier Paradise RS 46:47 121:44 1654 38
Randle 1 E 46:32 121:56 274 44
Sappho 8 E 48:04 124:07 232 40
Seattle EMSU WSO 47:39 122:18 6 20
Seattle-Tacoma WSO 47:27 122:18 122 44
Seattle U ofW 47:39 122:17 29 34
Sequim 48:05 123:06 55 41
Shelton 47:12 123:06 7 44
Snoqualmie Falls 47:33 121:51 134 62
Tacoma City Hall 47:15 122:26 81 33
Vancouver 4 NNE 45:41 122:39 64 93
Wauna 3 W 47:22 122.42 5 44
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log(c) against elevation, mean annual precipitation,
latitude, and longitude. The models obtained general-
ly had R2s ofless than 0.10, thereby indicating no sig-
nificant relation between these variables and the
value of c. The possibility of regionalizing the
c-parameter by using the values from the 99 sites was
then considered, because complex spatial patterns
would not be amenable to analysis under a simple
regression approach. The variogram shown in Fig-
ure 4 was obtained from the EPA geostatistical soft-
ware GEO-EAS. Remarkably, there is essentially no
spatial correlation in values of c.
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Figure 4. Spatial Variogram for c-Values for the 99 Stations.

Given the nearly complete lack of explanatory vari-
ables, the unavoidable conclusion is that the value of
c is spatially random. A typical plot of the chi-square
statistic as a function of c demonstrated that most
sites had very little variation in goodness of fit over
the range of 0.7 < c < 0.9 (Figure 2), suggesting that
use of a fixed value for c in this range might not sig-
nificantly reduce the quality of fit of the model.
For simplicity, the value of c that gave the average
best fit for the 99 sites was selected to form a one-

parameter model that could be included in the overall
comparison of candidate models. The optimum overall
value obtained from our calibration was 0.78 (Table 2
and Table 3). This value differed only slightly from
the value of 0.75 obtained by Selker and Haith (1990).
This correspondence is somewhat surprising in that
the method of obtaining the values employed by Selk-
er and Haith (1990), was quite different from that
employed here. First, Selker and Haith (1990) cali-
brated the Weibull distribution by using only the
probability distribution of extreme events (> 12 mm)
from the Weather Bureau Report 57 (Miller and
Fredrick, 1966), reflecting the fact that they desired a
model that was most precise in the simulation of
extreme events, as well as their lack of full weather
records for a significant number of sites. Secondly,
Selker and Haith (1990) made use of sites only in the
Eastern U.S. for their calibration. In addition to these
differences in methodology, it is clear both here and in
Selker and Haith (1990) that the quality of fit of the
data is relatively insensitive to values of c between
0.7 < c < 0.9. Taken together, these results suggest
that c will be in the vicinity of 0.75 for sites with a
wide range of physiographic conditions. This result
suggests that all sites studied have the same distribu-
tion of precipitation if scaled by the mean wet day
precipitation and furthermore, that these distribu-
tions are monthly invariant. This result buttresses
that of Selker and Haith (1990) and implies that a
very simple analysis may be used to predict the prob-
ability of extreme events. In the matter of quality con-
trol checks on precipitation data, a simple check on
number of recorded vs. predicted events can be car-
ried out by using only the mean site precipitation, a
method that appears to be very promising based on
initial tests (George Taylor, State of Oregon Climate
Service, Personal Communication),

Of the six models tested (the exponential, the cali-
brated beta-P, the method of moments fit two-parame-
ter gamma, the maximum likelihood two-parameter
gamma, the two-parameter Weibull, and the calibrat-
ed one-parameter Weibull), the Weibull and Gamma
fit by method of moments gave the best results (Table
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TABLE 2. Number of Stations That Best Fit for Data Using Different Models.

Monthly Fb:ed Weibull Parameter For All Stations
Model Best Fit 0.76 0.78 0.80 0.82 0.84 0.86

Exponential 0 0 0 0 1 1 1

Weibull 53 35 36 31 27 22 18

Beta 3 4 3 3 3 2 1

Gamma Moments 42 59 60 65 68 74 79

Gamma ML 1 1 0 0 0 0 0
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2, and Table 3). A box plot of the distribution of model
p-values, which represent the the closeness of the
theoretical distributions match the observed data,
(Figure 5) shows that the two-parameter Weibull dis-
tribution has a median p-value of 0.184, and the one-
parameter version has a median p-value of 0.163.
Clearly, very little was lost in the reduction to a sin-
gle-parameter model. The two-parameter Gamma dis-
tribution fit using the moment estimators provided a
median p-value of 0.184. It is surprising that the per-
formance of this widely used two-parameter model
provides performance that is only as good as a far
simpler one-parameter alternative. The spatial char-
acteristics of these results may be visualized by plot-
ting the number of sites where each of the models
provided the best fit to the data (Figure 3). Neither
the 53 of stations where the two-parameter Weibull
gave best fits nor the 36 stations where the single
parameter Weibull gave best fit show any particular
spatial pattern. Given the variability of regional pat-
terns of precipitation in the study area, it seems that
the relative quality of fit is not a strong function of
precipitation regime.

TABLE 3. Average Probabilities of Model and Observed Data.

Model

Average Probability of Model
and Observed Data Belong

to the Same Population

Exponential

Beta

Gamma Moments

Gamma ML

Weibull: Monthly Best Fit

Weibull: Fixed 0.75

Weibull: Fixed 0.78

Weibull: Fixed 0.80

Weibull: Fixed 0.84

Weibull: Fixed 0.85

0.031

0.055

0.184

0.095

0.184

0.161

0.163

0.158

0.137

0.130

Why is it that the very flexible two-parameter
Gamma distribution does not provide a significantly
better fit than the more constrained single-parameter
Weibull model? L-moments diagrams provide a useful
alternative approach to differentiate the goodness-

Exponenti~ Bem-P
Weibull

fit

Gamm~
Gamm~ maximum
moments likelihood

Weibull
c=O.78

Figure 5. Box Plot ofp-Values for Chi-Square Evaluation of Models.
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of-fit (Hosking, 1986, 1990; Stedinger, 1993). By com-
paring the relative magnitude of L-skew and L-vari-
ance presented by the historical data and the models,
we can see whether the general shape of the model's
probability distributions are in keeping with the data
(Figure 6). In the skew-variance plane, two-parameter
models define a line, and single parameter models
define a single point. The L-diagram clearly shows
that the Gamma model does not provide the proper
ratio of skew to variance, with the line falling below
all but one of the site data points on the skew-vari-
ance plane (Figure 6). In contrast, the two-parameter
Weibull model is very much in keeping with the site
data, falling on a line providing nearly a best straight
line fit to the data. In the single-parameter models,
the c = 0.78 Weibull model occupies a position close to
the visual center of the data distribution, and the
exponential and beta-P distributions are significantly
to the lower side of the data. The beta-P would seem
to be superior to the exponential model by this mea-
sure, which is in agreement with the other measures
of quality of fit.

The L-moment diagram also helps make sense of
the surprisingly strong performance of the method of

moments fit of the Gamma relative to the maximum
likelihood method. Generally speaking, maximum
likelihood estimations are sufficient and less biased
than moment-based estimators, yet we find that the
method of moments provides a strikingly superior fit
to the data in the case of precipitation. The theoreti-
cal superiority in the maximum likelihood method is
based on the assumption that the data were generat-
ed from the distribution to which they were being fit.
In this case, the L-moment diagram demonstrated
that the gamma model is systematically inconsistent
with the underlying data. With this observation, the
basis for the theoretical advantage of the maximum
likelihood method is void, which is demonstrated by
the poor fit of the gamma models with parameters
estimated in this manner. Hydrologists who sub-
scribe to a particular parameter-estimation method
based on theory that rests on stringent assumption
might want to reconsider given the general lack of
knowledge about the true underlying distribution.

o
o
o

.

o Data

o Exponential
Beta-P

[J Weibull-0.78

Weibull

Gamma

0.6 0.7

L-CV

0.8 10.9

Figure 6. L-Moments Diagram Showing Observed L-Moment Ratios and
L-Moment Ratio From Theoretical Distributions.
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Evaluation of Probability Density Functions in Precipitation Models for the Pacific Northwest

CONCLUSIONS

The ability of an analytical function to fit the
empirical probability distribution for wet-day precipi-
tation amounts depends on the flexibility of the distri-
bution and the intrinsic nature of the distribution's
shape. It was shown that the underlying shape of the
single-parameter Weibull distribution allowed it to
reproduce the historical distribution of precipitation
events as well as the otherwise more flexible two-
parameter gamma model. This result is fortunate, in
that the single-parameter model is far more amenable
to precipitation modeling and other applications. The
only parameter required to fit the Weibull model to a
site is the mean wet day precipitation, which is pub-
lished for thousands of sites; the two-parameter dis-
tributions require calculation of parameter values
from records of daily precipitation. Further, the
Weibull model is invertible, has closed-form moments,
and is easily integrable and differentiable, all fea-
tures of significant utility in precipitation modeling.
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