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CHAPTER 6

Comparison of Methods for Detecting
Conifer Forest Change with
Thematic Mapper Imagery

Warren B. Cohen and Maria Fiorella

1.0 INTRODUCTION

Numerous methods have been applied to the problem of detecting forest cover changes with
the aid of digital imagery. In their review of change detection methods, Coppin and Bauer
(1996) recognize 11 distinct methods groups. Among these, some of the more commonly ap-
plied methods include image differencing, multitemporallinear data transformation, and com-
posite analysis. In this chapter, these three methods are compared for detecting change in a
conifer forest environment using Landsat Thematic Mapper imagery.

Image differencing involves simple image subtraction (Vogelmann, 1988; Price et al., 1992).
For one image spectral band acquired at two separate dates over the same ground scene, image
differencing explicitly captures the univariate magnitude of radiometric change. Similarly, the
direction of change is captured as the sign (+ or -) of radiometric change. For multiple input
spectral bands, difference images have a multivariate structure, with a calculated magnitude
and direction for each temporal-pair of input bands. Malila (1980) describes a procedure whereby
magnitude and direction are directly calculated in multivariate space. This procedure, known as
change vector analysis (CVA), is an example of a multitemporallinear data transformation.
Other examples are given by Fung and LeDrew (1987) and Collins and Woodcock (1994). In
CVA, magnitude is computed as Euclidean distance and direction is computed as angle of
change, with the former representing amount of land cover change, and the latter representing
type. Composite analysis is little more than a classification procedure (e.g., unsupervised) ap-
plied to a layered, multitemporal image data set (Schowengerdt, 1983; Muchoney and Haack,
1994). Transformation of the original data into vegetation indices is common prior to compos-
ite analysis, but this is done for data reduction or to highlight certain vegetation cover features
within the individual dates of imagery, not to highlight changes between the dates.

A perusal of the change detection literature supports Singh's (1989) claim that image
differencing is likely the most widely used method, and in studies where image differencing
has been compared with other methods, results generally indicate that image differencing ex-
hibits superior performance (e.g., Singh, 1986;Muchoney and Haack, 1994;Coppin and Bauer,
1996). The ease with which images are subtracted from one another (or "differenced") and the
inherent meaning such radiometric differences have in terms of cover change, both strongly
contribute to the method's appeal and successful performance. Although CVA was introduced
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Figure 6.1. Two different types of land cover change with exactly the same amounts and directions
of spectral change.

nearly two decades ago and has received little attention in the literature, it is likely to become
the algorithm of choice for the land cover change product being developed for the MODIS
sensOl'(Lambin and Strahler, 1994a). Because of this, CVA may be poised to become one of
the most popular change detection algorithms over the next several years. Unlike image
differencing and CVA, composite analysis might be considered undesirable because there is no
distillation of original input bands into bands that explicitly characterize cover change.

One consideration in digital change detection that may be of major importance, but that has
not received much attention, is the concept of a "reference image;" that is, a reference against
which derived change information can be compared. This could be in the form of a land cover
map at T1or T2in a two-date analysis, or a T1or T2spectral image that contains Batural varia-
tions in reflectance of land cover categories. Composite analysis inherently involves reference
imagery. In contrast, image differencing and CVA do not; that is, although they result in im-
ages that contain change information, all reference.to original data are lost. This is a potential
problem because two very different types of land cover change can have similar amounts and
directions of spectral change, as illustrated in Figure 6.1. As such, there is likely under certain
circumstances to be excessive confusion among cover change categories.

Recognizing the need for a reference image, Virag and Colwell (1987) used a land cover
classification derived from the T2 image as a reference for calculated change vectors. Collins
and Woodcock (1996) extend the tasseled-cap transformation by defining a multitemporal tas-
seled-cap transformation (MKT) that has one stable, or reference output dimension, and one
change output dimension for each input dimension. They then compared the MKT against
Granun-Schmidt orthogonalization in a study of forest mortality, and found that the MKT trans-
formation gave superior results. Franklin et al. (1995) used discriminant function analysis to
evaluate changes in forest cover due to insect defoliation. Discriminant function models based
on a multidate, layered image data set (i.e., composite analysis) were 21 percent more accurate
in predicting among three defoliatioo classes than were models based on image differencing. In
the dense conifer forest condition of the region where this study was done, tasseled-cap wet-
ness is very highly correlated with forest structure (Cohen and Spies, 1992; Cohen et al., 1995).
For the fIrst discriminant function of models based on composite mJalysis, 1988 wetness had a
weighting of -1.50, with 1993 wetness having a relatively low weighting of -0.25. Tasseled-
cap brightness and greenness were important contributors to this function only as temporal
contrasts (-0.79 and 0.96 for 1988 and 1993 brightness, respectively; 0.46 and -0.44 for 1988
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and 1993 greenness, respectively). This result suggests rather strongly that differences in
multidate brightness and greenness were of great importance in distinguishing among defolia-
tion classes, but only after natural variations in initial forest structure (prior to defoliation) were
accounted for by a 1988 wetness reference image.

The purpose of this chapter is to initiate an exploration of the relative values of composite
analysis, image differencing, and CV A for detecting changes in the dense forest environment
of the Pacific Northwest region of the United States. This analysis involves a simple test of the
three methods and includes some comparisons with and without a reference image, to deter-
mine its value in change detection. Descriptions of CV A in the literature do not appear ad-
equate for fully understanding this potentially valuable change detection algorithm. Thus, prior
to describing the test of methods, some theoretical considerations for change detection, with
specific emphasis on CV A, are given. The description here is still inadequate, but we hope that
it provides seed for additional insights by others.

2.0 THEORETICAL CONSIDERATIONS FOR CVA

Change vector analysis was developed for use with Landsat MSS data, in particular, for the
two spectral dimensions of MSS data known as brightness and greenness (Kauth and Thomas,
1976). As described by Malila (1980), CV A is conceptually very simple (Figure 6.2). For a
given image pixel, magnitude is calculated as the Euclidean distance between its location in
brightness-greenness space on T, and its location on T2:

d =~(X2- X1)2 + (Y2- Y1P

where d=Euclidean distance, x2 and Y2 are pixel brightness and greenness values for T2' respec-
tively, and x, and y, are pixel brightness and greenness values for T ,. The angle calculation
requires establishment of a "baseline." Malila arbitrarily defined the baseline as parallel to the
brightness axis (x), with its origin at the T, pixel vector and its tenninus at the brightness value
of T2. The angle of spectral change is then measured relative to this baseline using standard
trigonometric functions (e.g., sin, cos, or tan). In the resulting two-dimensional image, change
is observed if the magnitude dimension exceeds a defined threshold.

The geometric concepts of CV A are applicable to any number of spectral bands, whether
original scaled radiance, calibrated radiance, or transformed variables (e.g., reflectance, veg-
etation indices). Virag and Colwell (1987) present an analysis using three spectral dimensions,
and they conceptually extend the procedure into n-dimensional space. For more than two spec-
tral dimensions, they calculate magnitude of change as n-dimensional Euclidean distance:

p 2
d =j I.( DN 2; -DN Ji)

;=1

where i=spectral band number from 1.0 to p, DN2i=Pixelvalue at T2 in band i, and DNli=pixel
value at T, in band i. Rather than explicitly calculate the angular component of the change
vector, however, Virag and Colwell approximate it using a multispectral positive and negative
sector code accounting system. With this accounting system, 2° sectors (directions) are pos-
sible: positive or negative spectral change in each of the n dimensions. This same sector coding
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Figure 6.2. The concept of Change Vector Analysis in two spectral dimensions (adapted from
MaHta, 1980).

logic is used by Michalek et al. (1993) in their analysis of a coastal marine environment. Lambin
and Strahler (l994b) use CVA with monthly composited AVHRR data. In their unique appli-
cation of CVA, the 12 monthly NDVI observations of a given pixel for a given year constitute
a 12-dimensional temporal vector for that pixel. Mathematically, the Lambin and Strahler
(1994b) approach is exactly the same as that of Malila (1980) and Virag and Colwell (1987)
for calculating change magnitude. l!sing two temporal NDVI vectors, one for T) and the other
for T2' magnitude of change between the dates is calculated as the Euclidean distance between
the two 12-dimensional NDVI vectors.. Lambin and Strahler (l994b) calculated neither the
angle of change in any of the 12 dimensions, nor sector codes.. Instead they chose to infer
angularity from a principal components analysis on the 12 difference images derived from
two-date NDVI data.

The approximations of directionality by Virag and Colwell (1987) and of Lambin and Strahler
(1994b) are useful, but within the context of CVA there are other possibilities for more pre-
cisely describing the relative locations of two pixel vectors in n-dimensional space. One is to
calculate more than a single angle. In the two-dimensional MSS tasseled-cap example of Malila
(1980), magnitude and only one angle are required to precisely locate a T2pixel vector relative
to a T, vector. This angle is measured in what Crist and Cicone (1984) refer to as the Plane of
Vegetation (defined by the brightness and greenness axes). For the three primary dimensions of
the Landsat TM tasseled-cap transformation, one also can measure an angle in the Plane of
Soils (defmed by the brightness and wetness axes), and in the Transition Zone (defmed by the
greenness and wetness axes). As each of these "views" of TM tasseled-cap data space contain
different information about a ground scene, change vector angles measured within them should
likewise contain different types of change information.

Another possibility is to explicitly defme an angle of change relative to a new axis, or baseline
k, as shown in Figure 6.3. This enables one to precisely define a T2 pixel vector vis-a-vis aT)
vector with two angles, l/Jand 8, and Euclidean distance magnitude d. The selection of x as the
primary baseline is arbitrary, as use of y or Zin combination with k would also precisely define
the relative relationships of the two vectors. Furthermore, using l/Jand 8, d could be replaced by
a distance measured along x, y, Z, or k with no consequence.

Definition of a new baseline through original data space can be accomplished in more than
one way. Figure 6.3 illustrates that one can define this baseline k within one of the existing
planes, such as the Plane of Vegetation (x, y). An additional possibility is to define a baseline
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Figure 6.3. An example showing precise characterization of a change vector in three spectral
dimensions. Required are establishment of a secondary baseline, k, in addition to the original
baseline, x, and calculation of two angles, rpand 9, and distance d.

directly between a set of pixels that have changed, which (in Figure 6.3) is the same as defining
the baseline along the distance d. A variant of this method is to use the Gramm-Schmidt or-
thogonalization procedure, as done by Collins and Woodcock (1994). In theory, a separate axis
could be defined for each type of cover change of interest using this procedure. In such a case,
one is less concerned about angles, as they are implicit in the baselines. Thus, the distances
along these new baselines become the main source of change information.

3.0 PRELIMINARYTEST OF METHODS

To assist us in further understanding the relative values of composite analysis, image
differencing, and CVA for detecting change in the dense conifer forest environment of the
Pacific Northwest region of the United States, a simple test was conducted. This test had two
specific objectives, the intent of which was to provide preliminary results that could be used to
help design a more thorough and statistically rigorous study:

· Explore the relative values of composite analysis, image differencing, and CVA for detecting
different degrees and types of forest disturbance and succession. These are compared in the
context of both including and excluding a TI reference image.· Determine the value of tasseled-cap wetness for forest cover change detection. Wetness has been
valuable for forest cover mapping in the Pacific Northwest region (Cohen and Spies, 1992;Cohen
et al., 1995), and recently, Collins and Woodcock (1996) found it to be the single most valuable
indicator of forest change among several indicators tested in a different forest environment.

For this test, a 625 km2 area in western Oregon near the R.J. Andrews Experimental Forest
was selected. Many of the major conifer forest types of the central and northern Cascade Range
are represented, including the western hemlockIDouglas-fir, Pacific silver fir, and mountain
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hemlock forest zones (Franklin and Dymess, 1988). Historically, forests of this area have been
largely managed for wood production using a forest clear-cutting harvest strategy, but some
forest reserves are present. In general, closed canopy conifer forests present in the region have
a high leaf area index which causes them to absorb much of the incident solar radiation (Cohen
et al., 1995). When disturbed, leaf area indices are diminished, resulting in higher albedo. After
a severe dismrbance such as clear-cutting, a forest stand commonly goes through several inter-
mediate seral stages (e.g., grass/forblherbaceous, and hardwood and conifer brush) on its return
to a closed conifer canopy state. In riparian zones, hardwood forest are common.

Two Landsat TM images (Path 46/Row 29) of the selected area were used: one acquired on
August 30, 1988 and the other on August 29, 1993. The 1988 image was georeferenced and
terrain corrected prior to our receiving it. For this study, the 1993 image was coregistered to the
1988 image using 30 ground control points, a second order polynomial, and nearest neighbor
resampling (RMSE =0.768). The subset area of 625 km2 in the central Oregon Cascades Range
was extracted from both image data sets, and these were transformed into tasseled-cap bright-
ness (B), greenness (G), and wetness (W) images. From these two-date B, G, and W images (1-
6) several new images were created, including B, G, and W differences (7-9).. change vector
magnitude in BG (10) and in BGW (11) data space, and change vector angles in 00, BW, and
GW data space (12-14). To satisfy the two stated objectives, 10 combinations of the complete
14-image set were selected (Table 6.1). These were: (a) B and G differences and (b) B, G, and
W differences; (c) BG change vector magnitude and angle; BGW magnitude with BG and BW
angles (d), with BG and GW angles (e), with BW and GW angles (t), and with BG, BW, and
GW angles (g); (h) d with 1988 reference B, G, and W images, (i) 1988 and 1993 B, G, and W
images, and (j) 1988 aDd1993 B and G images. The 1988 reference B, G, and W images were
not combined with the B, G, and W difference images because mathematically, these comprise
exactly the same data as the six original B, G, and W images (i), and would thus yield the exact
same result as composite analysis.

The 10 selected band combinations were used to develop maps of forest cover change and
then the results among the maps compared. For this comparison, two maps of forest cover
developed from the two original TM images were used. The 1988 map was previously pub-
lished (Cohen et al., 1995), and included three early-successional, mixed cover classes (open,
semiclosed, and closed) and three closed-canopy conifer cover classes (young, mature, and
old-growth). Subsequent to development of this map, a similar map was created from the 1993
data. The two maps were each formally assessed for errors and found to have accuracies in
excess of 80 percent for the six forest cover classes. As an alternative to these two forest cover
maps, tbe possibility of obtaining independent ground and airphoto reference data was consid-
ered, but given the preliminary nature of this study, the cost of obtaining forest change data for
the specific time interval of interest was considered too costly.

To develop the forest cover change map for each band combination, a delta classification
(Coppin and Bauer, 1996) developed from the 1988 and 1993 forest cover maps was used. This
classification had 36 classes (the product of the number of classes in the two original maps), as
shown in Table 6.2. Using the delta classification as a training set, each band combination to be
tested was processed by a maximum likelihood supervised classification algorithm to develop
a cover change map with 36 change classes. Then, the label of each cell of the delta classifica-
tion was referenced to the label for each cell of the change map, resulting in a standard classi-
fication error matrix for each of the 10 change maps. We recognize that this had the effect of
facilitating a positive accuracy bias, in that each map was nothing more than a simple reclassi-
fication of the training data. For this reason, these error matrices are referred to as "agreement"
matrices. A potential source of "disagreement" in our test arises from the use of image data that
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Table 6.1. Overall Percent Agreement for Different Numbers of Land Cover Change Classes
and 10 Combinations (a-j) of Image Bands, Including Original (Reference) 1988 and 1993
Tasseled-Cap Brightness (B), Greenness (G), and Wetness (W) Images, and Those Derived
from Change Vector Analysis (CVA)and Image Differencing. (Combinations below the dashed
line Include a reference Image.)

Band Combination 3 Classes 7 Classes 36 Classes

Difference images
(a) B,G 76.0 40.2 14.7
(b) B,G,W 76.4 48.7 19.1

Change vector analysis (CVA)
(c) 2-dimensional (B,G)

magnitude and angle BG 73.1 38.9 12.8
3-dimensional (B,G,W) magnitude and
(d) angles BG and BW 71.6 45.8 15.2
(e) angles BG and GW 74.9 41.5 13.9
(f) angles BW and GW 72.9 45.6 14.2

~~nglesBG~W,an~~ ~3.1 ~.7 ~~_
(h) d with 1988 reference B, G, and W 85.7 66.2 57.5

Composite Analysis
(i) 1988 & 1993 B, G, and W 89.4 75.7 71.2
(j) 1988 & 1993 Band G 87.2 58.5 45.4

were not radiometrically normalized. But we do not consider this a great problem, as the ground
scene was imaged through a clear atmosphere on both dates and the solar illumination angles
were virtually identical between the two dates.

There was no formal characterization of errors in the delta classification, but it was assumed
to be at least 60 percent accurate for the 36 classes, as each independent six-class map was at
least 80 percent accurate and errors are expected to be multiplicative (Howarth and Wickware,
1981). Concerned that a delta classification with 36 classes was only minimally acceptable as a
reference data source, the classification and agreement matrix process for each of the 10 band
combinations was repeated with aggregated delta classification classes. The process was re-
peated once with a seven-class delta classification and once with a three-class delta classifica-
tion (Table 6.2). Classes used for the seven-class strategy were: one no-change class (NC),
three forest succession classes (i-Hi), and three forest disturbance classes (iv-vi). For the three-
class strategy, the classes were: no-change (NC), a single forest succession class (5), and a
single forest disturbance class (D).

4.0 RESULTS AND DISCUSSION

The 10 band combinations used in this study can be compared using a summary of the
agreement matrices for the 10 sets of change images created (Table 6.1). Not surprisingly, high
levels of agreement were observed when only three classes of cover change were sought (no-
change, succession, and disturbance), regardless of the band combination used (72-89 per-
cent). However, those combinations excluding the 1988 reference brightness, greenness, and
wetness image exhibited the poorest (72-76 percent), with all that included the 1988 reference
image exhibiting the highest (86-89 percent), levels of agreement. All CVA combinations for
which a reference image was excluded agreed slightly less with the delta classification than the
combinations based solely on difference images (72-75 versus 76 percent). For all combina-
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1988 Vegetation 1993VegetationCover Class
Cover Class Open Semi-Closed Closed-Mix Young Conifer MatureConifer Old Conifer

Open 1-NC-NC 2-S-i 3-S-i 4-S-ii 5-S-ii 6-S-ii
Semi-Closed 7-D-iv 8-NC-NC 9-S-i 1o-s-ii 11-5-ii 12-S-ii
Closed.Mix 13-D-iv 14-D-iv 15-Nc-NC 16-5-11 17-S-ii 18-S-ii
YoungConifer 19-D-v 2o-D-v 21-D-v 22-NC-NC 23-S-iii 24-S-iii
Mature Conifer 25-D-v 26-D-v 27-D-v 28-D-vi 29-NC-NC 3o-s-iii
OldConifer 31-D-v 32-D-v 33-D-v 34-D-vi 35-D-vi 36-Nc-NC
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tions. when three change classes were sought, the use of wetness in addition to brightness and
greenness did not significantly increase agreement.

For seven change classes. overall agreements were below 50 percent for all combinations
which excluded the use of a 1988 reference image. Of these seven combinations. those based
only on brightness and greenness agreed least (39 and 40 percent). For the remaining five of
these seven combinations in which wetness was included. image differencing agreed most
(49 percent). with CVA combination agreeing between 42 and 46 percent. Use of the 1988
reference image to characterize seven forest change classes had a large impact on the level of
agreement for CVA. The three-dimensional CVA based on the brightness-greenness and bright-
ness-wetness angles resulted in 20 percent higher agreement when the 1988 reference image
was used than when it was not (66 versus 46 percent). Using the six original bands (compos-
ite analysis). equivalent to using the difference images in combination with the 1988 refer-
ence image. resulted in a 27 percent higher agreement (49 versus 76 percent) relative to the
three-dimensional image differencing combination. Unlike three change classes. when seven
classes were sought. the composite analysis combination excluding wetness resulted in a
significant decrease in agreement compared to the combination that included wetness (76 to
59 percent).

The greatest contrast among the 10 combinations occurred when evaluating the full suite of
36 change classes. For this number of cover change classes. both the relative and complemen-
tary values of a reference image. difference images over CVA images. and of wetness in addi-
tion to brightness and greenness is most apparent. All combinations that excluded the use of a
reference image. exhibited less than 20 percent agreement. Use of the reference image in-
creased agreement of CVA from 15 to 58 percent. For composite analysis. equivalent to image
differencing with the use of a 1988 reference image. agreement increased from 19 to 71 per-
cent. For the composite analysis combination excluding wetness. agreement was only 45 per-
cent, compared to 71 percent when wetness was included. When no reference image was used.
CVA had a slightly lower level of agreement than did image differencing.

Given that the use of a reference image in combination with CVA (h) resulted in a signifi-
cantly greater level of agreement than did CVA without a reference image (d-g). it now be-
comes important to more closely compare the combination of CVA and a reference image (h)
with composite analysis (i). As part of this further comparison it is important to better evaluate
the value of wetness in composite analysis (i versus j) for change detection in a forest system.
As such. these three band combinations are summarized in Table 6.3 by change class. for the
seven-class example. In this comparison. CVA had higher agreement for all three succession
classes than for the no-change and disturbance classes. with the highest agreement for Class ii
(the progression from early-successional nonconifer forest to conifer forest). For this class.
CVA had a slightly higher agreement (89 percent) than did composite analysis (86 percent).
For composite analysis, the highest agreement. 89 percent. was for Class v (conifer forest
changed to early-successional forest; Le.. forest clear-cut). This is in contrast to the relatively
poor agreement of CVA for clear-cut mapping (68 percent). For all disturbance classes (iv-vi).
composite analysis had about 20 percent greater agreement than did CVA. whereas for suc-
cession classes the differences in levels of agreement were significantly less pronounced and
inconsistent. For the no-change class. composite analysis had about 10 percent higher agree-
ment than CVA when a reference image was included. but for both. it was one of the more
difficult classes.

The value of wetness was highly variable among cover change classes (Table 6.3). Although
there was some value to the use of wetness for detecting changes associated with the nonconifer
forests classes (i. ii. iv. and v). the primary importance of wetness was for detecting changes
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Table 6.3. Percent Agreement for Each of Seven Vegetation Cover Change Classes for Tluee
of Ute Band Combination Evaluated (hi, Table 6.1). [Class i=succession within the nonconiler
forest; Class ii=successlon from nonconifer to conifer; Class iii=succession within the conifer
forest; Class iv=disturbance within the nonconifer forest; Class v=dlsturbance from conifer to
nonconifer forest; and Class vi=dlsturbance within the conifer forest (see Table 6.2)].

CVA (3-Dimensional
Magnitude, BG & BW

Angles) with 1988
Reference Images (B,G,W)Class Label

Composite
Analysis
(B,G,W)

Composite
Analysis

(B,G)

within the closed canopy conifer forest (Classes iii and vi). For composite analysis, there was a
36 percent difference in levels of agreement for succession within the conifer class (iii), de-
pending on whether wetness was included or excluded. For disturbance within the conifer class
(vi), the difference in agreement was 44 percent. This observation is consistent with Collins
and Woodcock (1996), who found that in their study, wetness was the single most important
indicator of conifer forest change.

5.0 CONCLUSIONS

Numerous methods exist for change detection using digital image data. In this study, three
methods for detecting changes in a conifer forest environment with Landsat TM data were
evaluated: image differencing, change vector analysis (CVA), and composite analysis. As com-
monly used, all three methods have several procedures in common. Needed are decisions con-
cerning which original input bands to use (e.g., DN, radiance reflectance, vegetation indices),
what type of classification algorithm to apply (e.g., supervised, neural-net), and a strategy for
error assessment. Where they differ is in how the input bands are used prior to classification.
Image differencing and CVA involve transformation of input bands into temporal change vec-
tors, with the former being a band-by-band temporal subtraction, and the latter requiring deri-
vation of spectral change magnitude and angle. Composite analysis uses the input bands directly
in classification.

Although difference images and CVA magnitude and angle images represent direct charac-
terizations of spectral change over time, they contain no reference to location within the origi-
nal input data space. In contrast, because composite analysis uses input bands directly, they do
contain this reference information. As such, natural variability in original and final (i.e., T1and
T2, respectively) land cover classes is directly incorporated into the change classification pro-
cedure. In this study, a T1 reference image was combined with CVA magnitude and angle
images, for comparison with CVA magnitude and angle images used alone in a classification of
conifer forestchange.Becauseimagedifferencingusedin combinationwith inputT1 imagesis

Succession
i 74.6 79.5 79.5
ii 88.9 86.1 82.1
iii 78.6 85.7 49.8

No-Change 60.5 69.9 54.5
Disturbance

iv 42.3 63.1 52.5
v 68.4 89.3 80.6
vi 60.1 79.5 35.5
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mathematically equivalent to composite analysis, there was no reason to combine these images
for further analysis.

The most important finding of this study was that use of a reference image was extremely
important for accurate characterization of forest change. When no reference image was used,
image differencing performed better than CVA, but only minimally so. Even in combination
with a reference image, CVA did not compare well to composite analysis, with the disparity
between them increasing as the number of cover change classes increased. The importance of
using a reference image is illustrated in Figure 6.4. If only a brightness difference image is used
in change detection, forest clear-cuts (Class v) are readily separable from all other change
classes; however, all other classes are nearly impossible to separate accurately along a bright-
ness difference axis alone. Including a 1988 reference brightness image with the brightness
difference image enables accurate separation of the change class associated with early-succes-
sional forest progressing to conifer forest (Class ii), and to a somewhat lesser extent, the classes
associated with succession within nonconifer forest (Class i). Other classes remain confused
with brightness and brightness difference data alone, but become more separable with the addi-
tion of greenness and greenness difference, and wetness and wetness difference. Recall that the
use of a reference image in conjunction with difference images provides precisely the same
result as composite analysis when used in a change classification algorithm.

The tasseled-cap wetness feature has been important for separating different classes of coni-
fer forest in the Pacific Northwest region of the United States, and has been shown to be impor-
tant for conifer forest change detection in conifer forests elsewhere. In this study, wetness
significantly improved the results of change detection analyses, especially for changes occur-
ring within a closed conifer forest condition.

The existing literature on CVA falls short of discussing the complex nature of angle mea-
surements in three or more spectral dimensions. As CVA magnitude is measured in terms of
spectral Euclidean distance, its calculation is straightforward. Faced with calculating CVA
angle, however, one has several choices. For just three spectral dimensions, x, y, and z, one can
define an angle in x-y, x-z, and y-z space. Also, an angle can be calculated relative to one of the
planes formed by these three axis pairs. For each additional spectral band, additional angle
calculations are possible. In theory, only two angles in combination with magnitude are re-
quired to precisely locate a Tzpixel vector vis-a-vis a Tl vector in three dimensions; but as each
angle provides a somewhat different view of the change data space, each angle likely contains
different types of change information.

6.0 SUMMARY

Image differencing, change vector analysis (CVA), and composite analysis were compared
for detecting changes in conifer forest cover using Landsat TM data. The concept of using a T1
reference image in a two-date analysis was discussed, and results from use of a reference
image were compared to results without the use of such an image. The importance of the
tasseled-cap wetness feature in conifer forest change detection is evaluated. In a test of meth-
ods, composite analysis performed significantly better overall than either of the other two
methods, with image differencing yielding slightly better results than CVA. Including a TI
reference image with a two-date image difference data set is mathematically equivalent to
composite analysis. Inclusion of a reference image with CVA, however, greatly improved the
performance of CVA. Tasseled-cap wetness improved overall results when included with tas-
seled-cap brightness and greenness images, with the most marked improvement evident for
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Figure 6.4. Mean temporal spectral differences for 36 forest cover change dasses, as a function of
original (1988 reference) mean spectral values for the Tasseled-Cap vegetation indices brightness
(top, left), greenness (top, right). and wetness (bottom. left). The 36 cover change dasses are
grouped ecologically into seven dasses: no-change. 3 succession dasses, and 3 disturbance
dasses, as given in Table 6.2.

changes within the closed canopy conifer condition. CVA is an important change detection
method that is inadequately described in the literature; in particular, the angular component of
CVA appears not to be thoroughly appreciated. A discussion of CVA angle characterization
with the intent of inspiring a closer evaluation of this potentially important change detection
algorithm was presented.
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