1978 General Technical Report PNW-73 190

Documentation of **Meteorological Data** from the Coniferous **Forest Biome Primary Station** in Oregon

> R. H. Waring H. R. Holbo R. P. Bueb R. L. Fredriksen

Pacific Northwest Forest and Range Experiment Station U.S. Department of Agriculture Forest Service Portland, Oregon

Abstract

As part of the International Biological Program, a primary meteorological station was installed in the west-central Cascade Range of Oregon. Short-wave solar radiation, air temperature, dewpoint temperature, windspeed, and precipitation are recorded continuously. Climatic data are summarized in a daily record available from May 11, 1972, to date. This report details the measurements, processing, and analyses of these variables at the H. J. Andrews Experimental Forest.

KEYWORDS: Climatography, meteorology, Oregon (H. J. Andrews Experimental Forest).

Authors

R. H. WARING, H. R. HOLBO, and R. P. BUEB are with the School of Forestry, Oregon State University, Corvallis. R. L. FREDRIKSEN is with the Pacific Northwest Forest and Range Experiment Station, USDA Forest Service.

Acknowledgments

We gratefully acknowledge the help of Arthur McKee, William Forester, Michael James, and Ross Mersereau in servicing the climatic station.

This publication was partly supported by the National Science Foundation Grant No. GB-20963 to the Coniferous Forest Biome, U.S. Analysis of Ecosystems. This is contribution No. 230 from the Coniferous Forest Biome, and Paper 1083, School of Forestry, Oregon State University, Corvallis.

Introduction

As part of the International Biological Program, the National Science Foundation supported research on the structure and function of coniferous forest. In 1969, the H. J. Andrews Experimental Forest was selected for intensive study by the Coniferous Forest Biome because the 6 075-hectare forest represents diverse forest communities and stream systems characteristic of the central Cascade Range in Oregon. Through the program, both Forest Service and university scientists study processes controlling water, carbon, and mineral distribution in forest and aquatic ecosystems. The participating scientists selected five primary climatic variables affecting the rates at which materials accumulate or move through ecosystems: (1) solar radiation, (2) air temperature, (3) dewpoint temperature, (4) windspeed, and (5) precipitation. This report details the measurement, processing, and analyses of these variables at the H. J. Andrews Experimental Forest. Previously the Pacific Northwest Forest and Range Experiment Station of the U.S. Forest Service collected valuable streamflow data and records of precipitation, air temperature, and relative humidity in the Andrews Experimental Forest. This information is now supplemented by data collected at the primary meteorological station maintained at the forest.

Site Description

Located in the central part of the Oregon Cascades (fig. 1), the H. J. Andrews is about 64 km east of Eugene (lat. $44^{o}15$ 'N., long. $122^{o}10$ 'W.). The forest occupies a rugged mountain basin. Elevation ranges from 420 to 1 630 m, and

Figure 1.--Map of the H. J. Andrews Experimental Forest, the western Cascade Range of Oregon, and the major rivers draining westward into the Willamette Valley.

mountain slopes are generally steep with gradients between 20 and 60 percent. Stream drainages are dendritic and deeply incised.

Vegetation typifies the westcentral Cascades with extensive Douglas-fir (*Pseudotsuga menziesii* (Mirb.) Franco) and hemlock (*Tsuga heterophylla* (Raf.) Sarg.) communities at lower elevations and subalpine forests, characterized by abundant silver fir (*Abies amabilis* (Dougl.) Forbes), at elevations above 1 000 m. Table 1 summarizes the distribution of broad age classes within the major vegetation zones.

thickets (3 percent), mountain meadows of flood plain zones; Narrow riparian or various types (2 percent), and rock outcrops rock outcrops Alnus sinuata Nonforested communities <1 percent) <1 percent 5 percent 5 percent Tsuga heterophylla, menziesii, Tsuga heterophylla, and and Psuedotsuga T. mertensiana, Abies procera, A. amabilis, Thuja plicata 01d-growth forest<u>3</u>/ Forest and notes on dominant species Dominated by Pseudotsuga 1/clearcuts and shelterwood cuttings are from 1 to 25 years in age. 35 percent Mixtures of 15 percent 50 percent menziesii 2/Mature forest stands are mostly 100 to 150 years in age. Forest condition classes (Pseudotsuga menziesii, Abies Tsuga mertensiana of other species of other species dominant, but greater mixture amabilis, Pinus monticola, and minor amounts Abies procera Pseudotsuga Dominated by Mature forest2/ 10 percent menziesii; 15 percent 25 percent stands of herbs, stands of herbs, tree seedlings tree seedlings shrubs, and shrubs, and Cutover stands<u>1</u>/ Successional Success ional 15 percent 20 percent percent S Temperate forest or Isuga heterophylla Subalpine forest or Andrews in each condition class Percent of H. J. Abies amabilis Zone 60 percent 40 percent Zone Zone

 $\overline{3}/$ 01d-growth stands are stands dominated by trees more than 250 years old.

Table 1--Vegetation zones and broad age classes (by percentage) of the H. J. Andrews Experimental

2

The vegetation has been detailed by Dyrness et al. (1974).

Soils, poorly developed morphologically, may rest on deep deposits of weathered and unconsolidated parent material. Generally very porous, the soils prevent overland flow of water. Originally described as belonging to the Regosol, Lithosol, Reddish-Brown, and Acid Brown forest soils groups1/ (Rothacher et al. 1967), most of the soils now are classified as Incepticols with a few Alfisols (Soil Conservation Service 1975). For more information, see Brown and Parsons who used the latter classification.2/

Wet, relatively mild winters and dry, cool summers characterize the climate of the experimental forest (figs. 2 and 3), according to U.S. Forest Service records since 1952 from elevations between 400 and 1 000 m. At the meteorological station, temperatures range from -15°C during unusually cold winters to more than 40°C for brief periods almost every summer. Annual temperatures average 9.5°C; the January mean is 2°C and July, 22°C.

<u>l</u>/U.S. Department of Agriculture, Forest Service. 1964. Soil survey report of the H. J. Andrews Experimental Forest, Willamette National Forest. 52 p. USDA For. Serv., Portland, Oreg.

2/Brown, R. B., and R. B. Parsons. 1973. Soils of the reference stands--Oregon IBP. Coniferous For. Biome Intern. Rep. 128, 76 p. Univ. Wash., Seattle.

- Figure 2.--Typical monthly temperatures at an elevation of 600 m in the H. J. Andrews Experimental Forest.
- Figure 3.--Characteristic pattern of precipitation and potential evapotranspiration on the H. J. Andrews Experimental Forest.

Annual precipitation averages 240 cm; more than 70 percent occurs from November through March; only 7 percent falls during the growing season (fig. 3). Most precipitation in this area results from warm, moist airmasses that move in from the Pacific Ocean. As the airmasses rise over the Cascade crest, prolonged periods of rain may occur. The longest single storm on record (December 18-20, 1957) produced 31.8 cm of rain in 3 days, with a maximum of 15.9 cm in one 24-hour period. A total of almost 70 cm fell during two consecutive major storms in December 1957. In contrast, the months of July, August, and September may be entirely rain free; periods of 60 days without rain are common.

The pattern of maximum temperatures and minimum precipitation during summer months creates a water deficiency. Computed from Thornthwaite's table (Thornthwaite 1948, Thornthwaite and Mather 1957), the difference between potential and actual evapotranspiration ranges from 59 to 11 cm per year. Estimated average evapotranspiration is 54 cm.

Relative humidity, generally high throughout the winter, typically approaches 100 percent each night throughout the rest of the year except when dry air moves west from the high desert east of the Cascade Range. Then minimum relative humidity, generally ranging from 40 to 50 percent during the summer, drops to 10 percent or less. In the winter, extremely low temperatures associated with dry air flowing in from the east considerably reduce the air's capacity to hold water vapor.

Elevation markedly affects precipitation, especially winter snowpack. In the subalpine zone, precipitation shows the same seasonal pattern of wet winters and dry summers. Total precipitation, however, increases with elevation and totals 30 to 40 percent more at 1 500 m than at 600 m and approaches 400 cm annually in some places (U.S. Army Corps of Engineers 1956). Furthermore, much of that precipitation -equivalent to 100 to 180 cm of water -accumulates in snowpacks as deep as 5 m in the subalpine forest. In general, temperatures also decrease with elevation so a permanent winter snowpack occurs above 1000 to 1 200 m; below those elevations, snow cover is sporadic, developing during cold periods and disappearing during warmer winter weather.

Elevational changes in temperature are complex, varying with season and the particular temperature characteristic; e.g., mean day or night temperature, diurnal range, maximums, and minimums. $\frac{3}{}$ Subalpine stands above 1 200 m have daily means near -2° to -4° C in midwinter and 13° to 16°C in July. A midelevation thermal belt results in warmer winter minimums at higher elevations and cooler minimums at lower elevations. In fact, as elevation increases to 1 100 m, average daily minimum temperatures in July also increase because of cold air drainage (see footnote 3).

³/_{Zobel}, D. B., W. A. McKee, G. M. Hawk, and C. T. Dyrness. 1973. Variation in air and soil temperatures in forest communities on the H. J. Andrews Experimental Forest, 1970-1972. Coniferous For. Biome Intern. Rep. 127, 43 p. Univ. Wash., Seattle.

At a depth of 20 cm, soil temperatures range from summer maximums of 15° to 20°C, depending on elevations and site; they drop to winter minimums of 0°C at all sites. Largest differences between sites exist in spring when the temperatures at sites retaining a snowpack lag behind those where snowmelt is complete. Soil rarely freezes, mainly because of the insulating snowpack.

The Meteorological Station and Its Operation

The primary meteorological station, generally accessible year round is located on an alluvial terrace at an elevation of 430 m. The immediate area 100 m or more in all directions from the station has been cleared of trees. Solar radiation and wind are measured on a 2-m boom located 5 m above ground on the south side of a tower. Air temperature and dewpoint temperature sensors are located inside a standard meteorological shelter 1 m above ground. A standard precipitation collector located 18 m up the tower funnels precipitation into a large, covered storage tank buried in the ground. These measurements have been compared with the sum of daily measurements taken by the U.S. Forest Service at an adjacent site 0.2 km away.

Originally the battery-powered station was serviced monthly. Because of equipment malfunctions (table 2), more frequent servicing has recently been instigated, but data still are occasionally lost. Furthermore, the sensors differ in their dependability. Table 2, indicating equipment failures since

Year and day	Solar radiation <u>2</u> /	Air temperature <u>3</u> /	Dewpoint 4/
1972:		1	
269-270			Х
287-306			Х
322-340			X
341-344	Х	х	X
345-359	X		X
360-366	~		x
1973:			
3-12	Х		Х
13-86			Х
121-129			Х
130	Х		Х
131-133	X	Х	X
144			X
163			x
167-168			x
176	Y	Y	Ŷ
195-200	~	X	Ŷ
220-224	X	X	x
225-306	A	A	Ŷ
307-319	Y		Ŷ
320-349	Ŷ	v	Ŷ
340-365	Ŷ	^	Ŷ
349-305	~		^
1974: 1-11	х	х	х
12-73	X		X
96-101			X
105-106			X
136-140			Ŷ
161			x
308		х	x
1975:			
79-100			Х
131-139			Х

Table 2--Days with missing data for three meteorological variables measured from 1972 through 19751/

 $\frac{1}{X}$ represents days when equipment failed and data are missing.

 $\frac{2/}{\rm Missing}$ solar radiation data were estimated from correlations with diurnal fluctuations in temperature during a given month.

 $\frac{3}{M}$ Missing temperature data were supplied from a

nearby secondary station. $\frac{4}{M}$ Missing dewpoint temperature data were estimated from correlations with average night temperature.

the station was established in 1972, shows that temperature sensors are most reliable and that radiometers and dewpoint sensors require careful attention. The extensive data missing in 1973 reflect instrument failure and an administrative shift in the responsibility for maintenance of equipment.

Procedures such as checking to make sure that no water is inside the radiometer and that desiccant is fresh greatly extend the operation

5

and accuracy of the instruments. Periodic calibration and servicing of equipment are also essential. Better maintenance (especially of the batteries), the installation of a backup station, and more frequent inspection of the records by knowledgeable personnel substantially reduced the amount of data missing in 1975. A number of temporary stations are operated to permit extrapolation of data from the primary station.

Measured Meteorological Variables

So that data records can be accurately synchronized, at exact 1-hour intervals, a central clock simultaneously interrupts the trace on the recorders for four of the five measured variables--solar radiation, air temperature, dewpoint temperature, and wind. Only precipitation is recorded without interruption.

SOLAR RADIATION

Incoming short-wave solar radiation is measured with a Lintronic dome solarimeter. $\frac{4}{}$ Use of a desic-cant and periodic calibration generally keep the instrument's accuracy

within 10 percent. Photosynthetically active radiation (wavelength of 400 to 700 nanometers) important for primary production can be estimated by assuming that approximately 47 percent of the incoming short-wave solar radiation is in this spectrum.

An empirically determined heating coefficient (Gay 1971) can be used to estimate net radiation if the long-wave reflectivity or reradiation of the surface--whether forest canopy, soil, or snow--is known. For Douglas-fir, net radiation is about 65 percent of the measured daily total solar radiation. This means that, on a day recording 650 cal cm^{-2} , the net radiation on a horiztonal surface having the reflectivity of a coniferous forest is 422 cal cm⁻². Of this, about half normally is dissipated by evaporating water. Because about 580 cal are required to evaporate a cubic centimeter of water, evapotranspiration rarely exceeds 0.5 cm of water without additional energy supplied by advection (drier or hotter air from another area).

On different slopes and aspects, solar radiation can be estimated with trigonometric calculations (Buffo et al. 1972, Buelow 1967). By this technique, total daily potential solar radiation at any location can be estimated and shading effects by topography corrected.

The solarimeter signal is recorded continually on a 30-day RUSTRAK strip chart scaled from 0 to 2.0 cal cm⁻² min⁻¹ and with a resolution of 0.1 cal cm⁻² min⁻¹. The signal was damped to maintain chart readability during unsettled conditions.

^{4/}Mention of products by name is for the convenience of the reader and does not constitute an endorsement or approval by the U.S. Department of Agriculture or Oregon State University to the exclusion of other products which may be suitable.

AIR TEMPERATURE

Temperature, measured by a thermistor, is continuously recorded on a separate 30-day RUSTRAK strip chart scaled from -10° to 40° C and with an accuracy and resolution of 1° C.

DEWPOINT TEMPERATURE

Water vapor concentration in the air is directly measured with a heated lithium-chloride dewpoint sensor. The sensor temperature, measured with a thermistor, is recorded continually on a separate 30-day RUSTRAK strip chart scaled from -5° to 20°C and with an accuracy and a resolution of 1°C.

WINDSPEED

A cup-type anemometer provides a contact closure for every 0.322 km of air movement. This signal is recorded by an event marker along the border of the same RUSTRAK strip chart used to record dewpoint temperatures. All the RUSTRAK strip charts are housed as an integral unit within the shelter at the primary meteorological station.

PRECIPITATION

Precipitation is recorded continuously by a universal weighingtype rain gage located 0.2 km from the meteorological station. This is the location of the U.S. Forest Service meteorological station still maintained by that agency.

The gages are serviced weekly and more frequently during storm periods. Periodic calibrations are made by weighing the precipitation caught in the 60-cm capacity storage gage. Oil is added to prevent evaporation during the warm seasons and ethylene glycol to prevent freezing during the winter. Daily precipitation recorded on the gage is keypunched onto data summary sheets.

Data Processing and Summarizing

The strip charts are collected at 30-day intervals and forwarded to Biome headquarters at Oregon State University for processing and summarizing. Hourly averages estimated from the strip charts are recorded for keypunching (fig. 4). The keypunched data are printed and checked by the senior author to assure that dewpoint temperatures never exceed air temperatures and that radiation and temperature follow normal patterns throughout the day. Extremes are checked and, if at all unusual, compared with data from secondary stations.

The decks of punched cards record hourly data except the precipitation data provided by the Forest Service, which are summarized for 24-hour periods starting at midnight. All cards are stored in the Biome data bank at the Forestry Sciences Laboratory of the U.S. Forest Service in Corvallis.

The input data for a day are contained on six sequential cards--4 hours of data per card. Each day's deck of hourly radiation, temperature, and dewpoint is analyzed by computer to yield daily averaged data. The computer program is listed in the appendix, and a flow chart is presented in figure 5.

		Н. Ј	CLIMA . Andrews Ex Rainfa	TIC DATA perimental For 11 <u>0.00</u>	est	
Year	Day	Hour	Radiation	Air temperature	Dewpoint	Windspeed
74	219	1	0	6	2	2
		2	0	5	2	3
		3	0	4	1	1
		4	0	4	/	2
		5	0	4	/	2
		6	1	\$	2	0
		7	4	11	7	0
		8	7	14	10	.3
		9	9	20	10	7
		10	10	23	10	7
		11	10	25	10	7
		12	10	26	11	8
		13	10	27	11	7
		14	9	27	8	5
		15	?	27	6	4
		16	1	25	6	5
		17	0	20	7	0
		18	0	16	7	/
		19	O	14	6	4
		20	0	13	4	3
		21	0	11	5	4
		22	0	Ģ	5	3
		23	0	8	5	3
		24	0	5	5	2

Figure 4.--Example of digitized, hourly climatic data prepared for keypunching.

Figure 5. -- Flow chart for reducing hourly data to daily summary.

9

Sunrise, sunset, and day length are calculated from sinusoidal functions listed in the program.

The computer program next separates the hourly data into diurnal and nocturnal segments, beginning with sunrise on the first Julian day and ending with sunrise the next day (table 3). During the two periods, the values for air temperature, dewpoint, and wind movement are summed for each hour in the respective period. The computer program keeps track of the maximum air and dewpoint temperatures during the day and of the minimum values during the night.

Air and dewpoint temperatures for each daytime or nighttime period are averaged by dividing the summed values by the number of hours in the period. Wind movement is summed for the period but not averaged. Solar radiation is also summed for the daylight hours.

The computer program compiles a file for a card-punched output and a

Day of month	Jan. 1	Feb. 1	Mar. 3	Apr. 4	May 5	June 6	July 7	Aug. 8	Sept. 9	0ct. 10	Nov. 11	Dec. 12
1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 13 14 15 6 7 8 9 10 11 2 13 14 15 6 7 8 9 20 21 22 32 4 25 6 27 8 9 20 21 22 24 25 26 27 8 9 20 21 22 24 25 26 27 8 9 20 21 22 22 24 25 26 27 8 9 20 11 22 24 25 26 27 8 9 20 11 22 22 22 22 22 22 22 22 22 22 22 22	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 89 55 55 56 55 56 57 89 60	60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 90	91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	$121 \\ 122 \\ 123 \\ 124 \\ 125 \\ 126 \\ 127 \\ 128 \\ 129 \\ 130 \\ 131 \\ 132 \\ 133 \\ 134 \\ 135 \\ 136 \\ 137 \\ 138 \\ 139 \\ 140 \\ 141 \\ 142 \\ 143 \\ 144 \\ 145 \\ 146 \\ 147 \\ 148 \\ 149 \\ 150 \\ 151 \\ 151 \\ 151 \\ 122 \\ 123 \\ 124 \\ 125 \\ 126 \\ 127 \\ 128 \\ 126 \\ 127 \\ 128 \\ 126 \\ 127 \\ 128 \\ 126 \\ 127 \\ 128 \\ 126 \\ 127 \\ 128 \\ 126 \\ 127 \\ 128 \\ 126 \\ 127 \\ 128 \\ 126 \\ 127 \\ 128 \\ 126 \\ 127 \\ 128 \\ 126 \\ 127 \\ 128 \\ 126 \\ 127 \\ 128 \\ 126 \\ 127 \\ 128 \\ 126 \\ 127 \\ 128 \\ 126 \\ 127 \\ 128 \\ 126 \\ 127 \\ 128 \\ 126 \\ 127 \\ 128 \\ 126 \\ 127 \\ 128 \\ 126 \\ 127 \\ 128 \\ 128 $	$152 \\ 153 \\ 154 \\ 155 \\ 156 \\ 157 \\ 158 \\ 159 \\ 160 \\ 161 \\ 162 \\ 163 \\ 164 \\ 165 \\ 166 \\ 167 \\ 168 \\ 169 \\ 170 \\ 171 \\ 172 \\ 173 \\ 174 \\ 175 \\ 176 \\ 177 \\ 178 \\ 179 \\ 180 \\ 181 $	182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212	213 214 215 216 217 218 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243	244 245 246 247 248 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273	274 275 276 277 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304	305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334	335 336 337 338 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 355 356 357 358 359 360 361 362 363 365

Table 3--Calendar and Julian dates as used in data analysis $\frac{1}{2}$

 $\underline{1}^{/}$ For leap year, add 1 day to totals for days Mar. through Dec.

line printer file, then obtains more hourly data. The program will continue to process data until an end of file statement appears on the input file.

Daily Tabulation of Data

After hourly data are processed as daily summaries, the daily precipitation values are keypunched on cards, and the output is listed (table 4).

1/2/

Table 4Example of	of daily	climatic	data	summary 1/2/
-------------------	----------	----------	------	--------------

			AVG	MAX	AVG	MIN	AVG	MAX	AVG	MIN		WIND		
ID	YR JD	RAD	TEMP	TEMP	TEMP	TEMP	DP	OP	DP	DF	CAY	NGT	HRS	PRECIP
M07D	75306	131.9	10.7	12.0	11.4	10.0	3.7	6.0	3.6	3.0	1.6	2.3	10	1.30
M070	75307	77.9	14.9	18.0	6.1	3.0	8.0	10.0	5.3	3.0	2.9	5.8	10	0.00
M07D	75308	209.9	12.9	19.0	6.6	4.0	9.1	13.0	1.9	0.0	3.5	4.8	10	0.00
M070	75309	180.0	7.7	9.0	3.5	3.0	5.4	9.0	2.1	1.0	8.4	4.5	10	.56
M07D	75310	65.9	4.0	5.0	3.9	1.0	4.0	5.0	4.0	1.0	5.2	5.8	10	4.09
M07D	75311	30.0	4.9	6.0	1.9	1.0	4.9	6.0	1.9	1.0	2.9	3.2	10	1.72
4070	75312	65.9	2.3	3.0	1.0	1.0	2.3	3.0	1.0	1.0	6.4	1.6	10	• 96
M07D	75313	77.9	2.8	4.0	1.1	0.0	2.8	4.0	1.1	0.0	2.3	10.9	10	.56
M07D	7531+	83.9	1.8	4.0	.9	0.0	1.8	4.0	• 9	0.0	6.4	1.6	10	2.87
M070	75315	71.9	3.3	5.0	6	-3.0	-1.5	0.0	-3.0	-3.0	3.9	7.1	10	.36
M07D	75310	173.9	2.4	7.0	9	-3.ú	• 8	3.0	-3.4	-6.0	4.5	6.8	10	
407D	75317	155.9	3.6	10.0	2.1	0.0	6	4.0	-4.0	-5.0	3.5	6.8	10	
M07D	75318	119.9	6.5	8.0	7.2	6.0	6.5	8.0	7.2	6.[2.9	8.1	10	2.82
M070	75319	59.9	5.6	6.0	2.5	2.0	5.6	6.0	2.5	2.0	5.2	2.9	9	3.48
M07D	75320	47.9	2.9	4.0	. 3	0.0	2.9	4.0	.3	0.0	10.3	8.7	9	1.32
M 0 7 D	75321	60.0	1.6	3.0	-1.9	-3.0	1.6	3.0	-1.9	-3.6	1.9	5.5	9	.74
M070	75322	89.9	2.1	6.0	-3.7	-5.0	-1.7	-1.0	-5.2	-6.0	4.5	7.4	9	0.00
4070	75323	131.9	•6	6.0	5	-1.0	-2.0	1.0	-1.2	-2.0	4.5	6.1	9	0.00
M07D	75324	65.9	2.7	5.0	.2	-2.0	-1.9	0.0	-3.6	-4.0	1.3	5.2	9	.33
M07D	75325	53.9	3.0	9.0	8	-3.0	-1.0	0.0	-3.6	-5.0	4.2	6.4	9	.05
M07D	75326	107.9	2.6	5.0	2.6	2.Û	2.6	4.0	2.6	2.0	2.3	3.5	9	1.40
4070	75327	59.9	6.3	10.0	1.4	-1.0	-1.0	1.0	7	-1.0	1.9	5.2	9	.03
M07D	75328	77,9	3.9	6.0	5.0	5.0	2.6	6.0	-2.2	-4.0	2.6	2.3	9	.20
M07D	75329	36.0	6.0	7.0	5.4	5.0	1.1	2.0	3.5	1.0	99.0	99.0	9	.10
M07D	75330	83.9	5.4	6.0	3.3	2.0	5.4	6.0	2.2	2.0	99.0	99.0	9	4.62
M07D	75331	47.9	3.4	4.C	0.0	-1.0	2.6	4.0	3	-1.0	9 . 0	99.0	9	.86

 $\frac{1}{ID}$ is the data set identification code; YR JD are the last two digits of the year followed by the Julian day number; solar radiation is in units of calories per square centimeter per day; temperatures are in degree Celsius; DP is dewpoint; wind movement is in kilometers; DAY HRS is day length in hours; precipitation is in centimeters; 99.0 indicates missing data as listed on the last 4 days under wind movement.

 $\underline{2/}$ Complete data sets are available from Richard H. Waring, School of Forestry, Oregon State University, Corvallis, Oregon 97331, for \$1.50 per year, upon request.

Editing of Data

Averages and totals for each day are essential when daily water, energy, and mineral transfer through forest ecosystems are estimated. To meet these requirements, the senior author edited the original daily summaries and flagged missing or suspicious data. In the editing procedures, radiation on apparently clear days without recorded precipitation was compared with previously compiled observed values (fig. 6). Radiation values more than 10 percent above or below the predicted values led to closer inspection of the preceding 30 to 50 days of data. Sometimes the radiometer output progressively decreased, probably the result of water shorting out the sensor. In such cases, a systematic

reduction below the expected value (fig. 6) resulted in a correction applied to compensate for the decrease. Usually such corrections were less than 10 percent of the observed radiation in any given month.

In 1975 a more rugged radiometer with a lower output signal was installed, and a constant 75 langleys per day had to be added on clear days to correct for radiation below recordable levels at dawn and dusk periods. At other times when the radiometer became inoperative, correlations with temperature and precipitation patterns in the same month in previous years were used to estimate the missing values. Such periods are identified in .table 2.

Figure 6.--Yearly variation in potential short-wave radiation reaching the earth's atmosphere (dotted line) and the maximum radiation reaching the earth's surface at 45°N. latitude (solid line).

Dewpoint was most difficult to measure accurately and continuously; as shown by the large amount of missing data (table 2). The importance of dewpoint data increases as evaporation and radiation increase, and fortunately, this corresponds with the dry season when instrument operation normally is satisfactory.

Only rarely did the air temperature recorder fail to operate. In these instances, a nearby thermograph provided data that agreed within 1°C. Periods when missing data were supplied from this source are also identified in table 2.

On the hourly summaries prepared before keypunching, the senior author assured that dewpoint temperatures never exceeded air temperatures. Because chart readings may err by 1°C, rainy days occasionally had dewpoint values listed a degree or so above air temperature. When that happened, they were made to equal air temperature.

Fortunately, failure of the dewpoint sensor generally occurs during cold wet weather when the air is nearly saturated with water vapor and the dewpoint and air temperatures are nearly equal anyway. The importance of this fact can be illustrated by comparing the evaporative demand in winter with evaporative demand in summer. To facilitate comparison, figure 7 illustrates the relationship between temperature and the water-holding capacity of air. To calculate the average evaporative demand, first determine the average day temperature and then read from the graph the corresponding vapor pressure: 760 mmHg = 1 013 mbar. The difference in vapor pressure at air temperature and at dewpoint indicates the evaporative demand.

Figure 7.--Saturated vapor pressure (mbar) of water in relation to air temperature where vapor pressure = 6.1078 exp $\left(\frac{17.269T}{237 + T}\right)$.

On an unusual winter day (March 75073), the air temperature averaged 12° C and the dewpoint -1.5° C. Figure 7 shows that, if saturated, the water vapor concentration of air at 12° C would be 12.3 mbar. The amount actually in the air is equivalent to the saturation value at the dewpoint temperature, or only 5.5 mbar. The evaporative demand under these rather rare winter conditions is 6.8 mbar. Usually the demand in winter averages less than 2 mbar.

To fill in missing dewpoint temperature data during the dry season, we tried to define correlations between the night temperatures, which cooled the air and presumably condensed water vapor, and daytime dewpoint temperatures which might reflect the extent of cooling the previous night. Selecting days from April through September that were not preceded by rainfall for at least 5 days, we found general agreement between the average night temperature and the average-day dewpoint temperature (fig. 8). This relationship did not hold during extremely hot days in August when the night temperature did not approach dewpoint. Fortunately, the instrument did not fail in these periods. Most of the missing dewpoint data were estimated by assuming that average night temperature corresponds to averageday dewpoint temperature, unless precipitation occurs. Under the latter condition, more than 0.5 cm of precipitation was assumed to correspond to a saturated atmosphere, and dewpoint temperature was assumed to correspond with air temperature. With less precipitation, dewpoint temperature was estimated at an intermediate value above the average night temperature and below the average-day temperature.

Figure 8.--Relationship between average night temperature and average daily dewpoint temperature. Data were selected for days that followed a 5-day period without precipitation.

English Equivalents

1 hectare = 2.47 acres 1 meter = 3.27 feet 1 kilometer = 0.625 mile

Literature Cited

Buelow, F. H. 1967. Solar energy received by inclined surfaces. Q. Bull. 49:294-327.

Buffo, John, Leo J. Fritschen, and James L. Murphy.

1972. Direct solar radiation on various slopes from 0 to 60 degrees north latitude. USDA For. Serv. Res. Pap. PNW-142, 74 p. Pac. Northwest For. and Range Exp. Stn., Portland, Oreg.

Dyrness, C. T., J. F. Franklin, and W. H. Moir.

- 1974. A preliminary classification of forest communities in the central portion of the western Cascades in Oregon. Coniferous For. Biome Bull. 4, 123 p. Univ. Wash., Seattle.
- Gay, L. W.

1971. The regression of net radiation upon solar radiation. Arch. Meteorol. Geophys. Bioklimatol. 19:1-14.

Rothacher, Jack, C. T. Dyrness, and Richard L. Fredriksen.

1967. Hydrologic and related characteristics of three small watersheds in the Oregon Cascades. USDA For. Serv. Pac. Northwest For. and Range Exp. Stn., 54 p. Portland, Oreg.

Soil Conservation Service. 1975. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. U.S. Dep. Agric. Agric. Handb. 436, 754 p. Washington, D.C.

Thornthwaite, C. W. 1948. An approach toward a rational classification of climate. Geogr. Rev. 38:55-94.

Thornthwaite, C. W., and J. R. Mather. 1957. Instructions and tables for computing potential evapotranspiration and water balance. Drexel Inst. Tech. Publ. Climatol. 10:183-311.

U.S. Army Corps of Engineers. 1956. Snow hydrology: Summary report of the snow investigations. 437 p. Portland, Oreg.

15

Appendix

PR	OGRAM MOT	OPRG (TAPE.	S.TAPE4, TAP	E6.OUTPUT.TA	PE 61=OUTPUT)	
C						
C*******	*******	*********	*******	*********	***************	****
C+++++++	********	PROGRAM	FR - RAY P	NUFR *******	*************	*****
C++++++	*******	** DATE 5/	5/75 COC	CYBER KROND	S 2.1 FORTRAN EXT.	4.3
*******	********	A DENTSED	8/1/75 ##4	**********	*****	*****
			0/1//5			*****
6						
C+++++++	********	*********	*********	**********	•••••	*****
C++++++	*******	** DESCRIP	TION ******	**********	*****	*****
C*******		********	* * * * * * * * * * *	*********	*****************	****
С						
C	PROGRAM T	TO CONVERT	BCD CARD	MAGE MOTHING	URLY) DATA TO BCD CA	RD IMAGE
C	MO7D (DAIL	Y) DATA.	READ 6 CAR	OS WITH 4 HR	S. DATA ON EACH CARD	
C	YOUR HOUR	RIY TNPUT	DATA MUST	CONTATN STX (ARDS FOR FACH JULIAN	DAY.
C	FACH CAPE	CONTATNS	SOLAP PAD	TATTON. ATP 1	EMPERATURE, DEW POIN	т
c	TEMPERATI	UPE AND W	TNO MOVEMEN	T. EOD EACH	HOUR IN THE FOLLOWIN	ċ
0	TEMPERATO	URE ANU A		TI FOR EACH	HOOK IN THE FOLLOWIN	0
0	FURMAIT					
0						
G G	ARU HO	OURS				
C						
C 1	L 1	1-4				
C 2	2 5	5-8				
C 3	3	9-12				
C I	+ 13	3-16				
C 5	5 17	7-20				
C (5 21	1-24				
C .						
C COLUM		ABIE				FORMAT
00000						· Orther
6	TOP		OATACCT			A /.
6 1- 4	IUER	NTIFIER OF	UATASET			A 4 T 2
6 5- 6	SEQU	UENCE NUMB	ER PERIAIN.	ING TU GARD P	USITION (1-6)	12
C 7-9	YEAF	R OF DATA	COLLECTION			13
C 10-13	JULI	IAN DAY				14
C 14-16	SOLA	AR RADIATI	ON + HOI	JRS		F3.1
C 17-20	AIR	TEMPERATU	RE * 1,	5,9,13,17,21		F4.0
C 21-24	DEW	PT TEMPER	ATURE *			F4.0
C 25-29	WIND	D MOVEMENT				F5.0
C 30-32	5014	AR RADIATI	ON	* HOURS		F3.1
6 33-36	ATR	TEMPERATI	RF	* 2.6.10.1	4.18.22	F4.0
C 37-40	DEW	PT TEMPER	ATURE	*		F4.0
0 01-40	LITNI	D MOVEMENT	AIONE			F5.0
0 41-49	E TIN	AD DAD TATT	~		100	57 1
6 40-48	SUL	AR RAUIATI	UN	+ HU		F 5 . 1
6 49-52	AIR	TEMPERATU	KE	• 3•	(,11,15,19,25	-4.0
C 53-56	DEW	PT TEMPER	ATURE	•		F4.U
C 57-61	WIND	D MOVEMENT		+		F5.0
C 62-64	SOL	AR RADIATI	ON		* HOURS	F3.1
C 65-68	AIR	TEMPERATU	RE		* 4,8,12,16,20,24	F4.0
C 69-72	DEW	PT TEMPER	ATURE		*	F4.0
C 73-77	WIND	D MOVEMENT			•	F5.0
C						
C						
C*******	********	********	*********	**********	* * * * * * * * * * * * * * * * * * * *	***
C*******	*******	** INPUT.	OUTPUT UNT	********	*** *** *** *** * * * * * * * * * * * *	
C*******	********	*********	*********	***********	*******************	
č						
č	TADE - M		HAVE & CAD	NS END EVEDY	HILTAN DAY (FERDARS H	IT I
0	TAPES- M	OFTECTED O	V DOOCDAHL	TE VOU LAN	E A COMPLETE VEADE DI	TA
0	l	ULIEUIEU B	THE ETOET	AN OF THE M	E A COMPLETE TEAKS DA	T
G	,	MUSI HAVE	THE FIRST	UAT UP THE N	EAT TEAK AFTER THE LA	131
C	(ORDER TO G	ET DAILY A	VERAGES FOR	THE LAST DAY.	
С	TAPE4= L	INE PRINTE	R OUTPUT O	F DAILY AVER	AGES	
C	TAPE6= C	APD IMAGE	MOTO DATA	(DAILY AVERA	GES) TO BE PUNCHED	
С	TAPE61=	ERROR MESS	AGES			

C C C IDENTIFIER FOR DATA SET MO7D (DAILY AVERAGES OF MO7H) A C AT AIR TEMPERATURE FROM TAPES C DAY ARRAY CONTAINING SUNRISE (OF CURRENT JD), DAYLENGTH (OF CU C CURRENT JD), SUNSET (OF CURRENT JD), AND SUNRISE (OF NEXT JD) C DP DEW POINT FROM TAPE3 C ICOUNT NUMBER OF LINES OF PRINT PER PAGE С COUNTER FOR NUMBER OF RECORDINGS OF SOLAR RADIATION XID INTEGER COUNTERPART OF VARIABLE DAY C TDAY C IERRC COUNTER OF ERRORS FOR TAPES IF NOT 6 CARDS PER DAY C ILCOP TOTAL DAY LENGTH FOR DAILY AVERAGED DAY C IY DAILY AVERAGED SOLAR RADIATION С IQ, IE COUNTERS USED TO READ IN HOURLY DATA C ISEO SEQUENCE CHECK FOR 6 CARDS PER DAY C IYEAR YEAR С JULCK DAY SEQUENCING CHECK VARIABLE C JULDAY1 JULIAN DAY INDICATORS USED TO CHECK FOR MORE OR LESS THAN C JUL DAY2 6 CARDS READ IN ON INPUT FILE TAPE3 С 10 JULIAN DAY FROM INPUT FILE TAPE3 С COUNTER USED TO REORDER INPUT DATA INTO DAY AND NIGHT NA C NLGTH NIGHT LENGTH FOR DAILY AVERAGED DAY C SOLAR ERROR CHARACTER (/) FOR SOLAR RADIATION < 50 AND > 990 C SOLAR RADIATION FROM TAPE3 SR C SSR SUM OF SOLAR RADIATION С SUM OF WIND MOVEMENT DURING THE DAY SWSD C SUM OF WIND MOVEMENT DURING THE NIGHT SWSN C SNAT SUM OF NIGHTIME AIR TEMP + AVG. NGT TEMP SUM OF NIGHTIME DEW POINT TEMP + AVG. NGT DEW TEMP SNDP C SDAT SUM OF DAYTIME AIR TEMP + AVG. DAY TEMP С SODP SUM OF DAYTIME DEW POINT TEMP + AVG. DAY DEW TEMP C WIND MOVEMENT FROM TAPE3 WS С XDAT MAX DAYTIME AIR TEMP С XDDP MAX DAYTIME DEW POINT TEMP С MIN NIGHTIME AIR TEMP XNAT MIN NIGHTIME DEW POINT TEMP C XNDP С XAT STORAGE ARRAY FOR AIR TEMPERATURE DIVIDED INTO NIGHT AND DAY C STORAGE ARRAY FOR DEW POINT TEMP DIVIDED INTO NIGHT AND DAY XDP C XSR STORAGE ARRAY FOR SOLAR RADIATION DIVIDED INTO NIGHT AND DAY С STORAGE ARRAY FOR WIND MOVEMENT DIVIDED INTO NIGHT AND DAY XWS C REAL FORMAT OF IY 7 C DIMENSION SR (2, 24), AT (2, 24), DP(2, 24), WS (2, 24), JD (2), DAY (4), IDAY (4) 1 ,XSR(30),XAT(30),XWS(30),XDP(30) DATA (SOLAR=10H 1) CHECK FOR 6 CARDS PER DAY IN ASCENDING SEQUENCING ORDER 1-6 С С AND THAT DAYS ARE CONSECUTIVE. CHECK FOR EACH HOUR, AIR TEMP > C DEW TEMP. READ(3,201) ISEQ, IYEAR, JULCK BACKSPACE 3 JULCK=JULCK-1 IERRC=0 205 DO 200 J=1,6 IF(J.NE.1) GO TO 202 READ(3,201) ISEQ, IYEAR, JULDAY1, (XAT (N), XDP(N), N=1,4) 201 FORMAT(4X, 12, 13, 1X, 13, 4(3X, 2F4.0, 5X)) IF(EOF(3)) 250,209 202 READ(3.201) ISEQ, IYEAR, JULDAY2, (XAT(N), XDP(N), N=1,4)

```
IF(EOF(3)) 240,203
 240 WRITE (61, 241)
 241 FORMAT( # CAN NOT HAVE LESS THAN 6 CARDS ON LAST DAY#)
     STOP #PROBLEM WITH INPUT#
 203 CALL ERRCK(XAT, XDP, IERRC, IYEAR, JULDAY2, ISEQ)
    IF(ISEQ.NE.J) WRITE(61,210) IYEAR, JULDAY1
    IF(ISEO.NE.J) IEFRC=IERRC+1
     IF(JULDAY1.EQ.JULDAY2) GO TO 200
    WRITE(61,204) IYEAR, JULDAY1, JULDAY2
 204 FORMAT(≠ PROBLEM ON INPUT FILE TAPE3 BETWEEN YEAR≠,I3,≠ JULIAN
    *DAYS #, I4, # AND #, I4)
    GO TO 206
 209 CALL ERRCK(XAT, XDP, IERRC, IYEAR, JULDAY1, ISEO)
    IF(JULDAY1.EQ.366) GO TO 211
     IF(JULCK.GE.365) JULCK=0
 211 IF((JULCK+1).EQ.JULDAY1) GO TO 213
    WRITE (61,212) IYEAR, JULCK, JULDAY1
 212 FORMAT( # DAY MISSING BETWEEN YEAR #, 13, # JULIAN DAYS #, 14, # AND #, 14)
    IERRC=IERRC+1
 213 IF(ISEQ.EQ.J) GO TO 200
    WRITE(61,210) IYEAR, JULDAY1
 210 FORMAT( # CARDS OUT OF SEQUENCE YEAR#, I3, # JULIAN DAY #, I3)
    IERRC=IERRC+1
 200 CONTINUE
    JULCK=JULDAY1
    GO TO 205
 206 IERRC=IERRC+1
    BACKSPACE 3
    JULCK=JULDAY1
    GO TO 205
 250 IF(IERRC.NE.0) STOP #PROBLEM WITH INPUT#
    REWIND 3
SET INITIAL INDICATORS + ARRAYS
C
TCOUNT=28
    A=4HM07D
   1 XID=0.
    ERRORS=10H
    XDAT=XDDP=XNAT=XNDP=SWSD=SSR=SNAT=SNDP=SDAT=SDDP=SWSN=0
READ IN CURRENT DAY AND FOLLCWING DAY
DO 155 IOI=1,2
    IQ=1
    IE=4
    DO 15 M=1.6
    READ (3,10)
              IYEAR, JD(IOI), (SR(IOI, I), AT(IOI, I), DP(IOI, I), WS(IOI, I
    1 ), I=IQ, IE)
  10 FORMAT (6X, I3, X, I3, 4(F3.1, 2F4.0, F5.0))
    IF (EOF(3)) 30,31
  31 IQ=IQ+4
  15 IE=IE+4
 155 CONTINUE
    DO 989 J=1.6
 989 BACKSPACE 3
CALCULATE SUNRISE, DAYLENGTH, AND SUNSET OF CURRENT JD AN
C
         SUNRISE OF THE NEXT JD
C
K = JO(1) - 86
    IF (K .LT. 0) K = K + 365
    DAY(1) = 6.06666 - 1.675*SIN(K*.017214)
```

```
K = K + JD(2) - JD(1)
     DAY(4) = 6.06656 - 1.675*SIN(K*.017214)
     K = JD(1) - 81
     IF (K .LT. 0) K = K + 365
     DAY(2) = 12.23333 + 3.35*SIN(K*.017214)
     DO \ 6 \ K = 1,4
     IF(K.EQ.3) GO TO 6
     IDAY(K) = IFIX(DAY(K))
     X = (DAY(K) - FLOAT(IDAY(K))) + 60.
     IF (X .GE. 30.) IDAY(K) = IDAY(K) + 1
     IF (K.NE.2) IDAY(K) = IDAY(K) +1
   6 CONTINUE
C**** ONE DAY IS ADDED TO SUNRISE CALCULATIONS BECAUSE OF
C**** METHOD OF DATA COLLECTION.
     IDAY(3) = IDAY(1) + IDAY(2)
     NLGTH=24-IDAY(3)+IDAY(4)
     ILOOP=NLGTH+IDAY(2)
     NA=IDAY(1)
PUT INPUT DATA INTO DAY AND NIGHT OF CURRENT JULIAN DAY
C
DO 818 J=1,30
 818 XAT(J)=XDP(J)=XWS(J)=XSR(J)=0
     DO 919 J=1,1000
     XAT(J)=AT(1,NA)
     XOP(J)=DP(1,NA)
     XSR(J)=SR(1,NA)
     XWS(J) = WS(1, NA)
     IF (NA.EQ.24) GO TO 918
 919 NA=NA+1
 918 K=IDAY(4)-1
     00 917 NA=1.K
     J=J+1
     XAT(J) = AT(2, NA)
     XSR(J)=SR(2,NA)
     XWS(J) = WS(2, NA)
 917 XDP(J)=DP(2,NA)
C
       PROCESS 24 HOURS OF XSR, XAT, XDP, XWS TO GET DAILY AVERAGES
00 3 J=1, ILOOP
     IF(J.LE.IDAY(2)) GO TO 4
С
C
           NIGHTIME
C
     SWSN=SWSN+XWS(J)
     SNAT=SNAT+XAT(J)
     SNDP=SNDP+XDP(J)
     IF (J. GT. IDAY (2) +1) GO TO 5
     XNAT=XAT(J)
     XNDP=XDP(J)
     GO TO 3
   5 IF (XAT(J) .GE. XNAT) GO TO 8
     XNAT=XAT(J)
   8 IF (XDP(J) .GE. XNDP) GO TO 3
     XNDP=XDP(J)
     GO TO 3
C
C
           DAYTIME
C
   4 SWSD=SWSD+XWS(J)
     IF(XSR(J).LE.D) GO TO 60
     XID=XID+1.
```

```
SSR=SSR+XSR(J)
  60 SDAT=SDAT+XAT(J)
     SDDP=SDDP+XDP(J)
     IF(J.GT.1) GO TO 11
     XDAT=XAT(J)
     XDDP=XDP(J)
     GO TO 3
  11 IF (XAT(J) .LE. XDAT) GO TO 13
     XDAT=XAT(J)
  13 IF (XDP(J) .LE. XDDP) GO TO 3
     XDDP=XDP(J)
   3 CONTINUE
MAKE NEW DATA FILE MO7D
IF(XID.GT.0.) GO TO 75
     IY=0
     SSR=0.
     GO TO 76
  75 SSR=(SSR/XID)*(XID*60.)
     IY=IFIX(SSR*10.+.05)
  76 IF(SSR.LE.990.) GO TO 77
     SSR=990.
     IY=9900
  77 SWSD=.322*SWSD
     SWSN=.322*SWSN
     IF(SWSD.GE.99.) SWSD=99.
     IF(SWSN.GE.99.) SWSN=99.
     SDAT=SDAT/IDAY(2)
     SDDP=SDDP/IDAY(2)
     SNAT=SNAT/NLGTH
     SNDP=SNDP/NLGTH
С
           CHECK ERRORS FOR RADIATION
     IF(SSR.GE.800..OR.SSR.LE.50.) ERRCRS=ERRORS.AND.SOLAR
     WRITE(6,70) A, IYEAR, JD(1), IY, SDAT, XDAT, SNAT, XNAT, SDDP, XDDP, SNDP, XN
     *DP, SWSD, SWSN, IDAY (2)
  70 FORMAT(A4,213,15,10F5.1,13)
C
        IS HEADING NECESSARY
     IF (ICOUNT.LE.27) GO TO 80
     WRITE (4,20)
   20 FORMAT(#1#,//,17X,2(2X,#AVG MAX AVG MIN#),6X,#WIND#,/,14X,
     *#SOL #,2(2X, #DAY DAY NGT NGT #), # MOVEMENT DAY #,/,
    * 1
                   RAD#,4(# TEMP#),4(#
                                       DP#), # DAY NGT HRS#)
         ID YR JD
     ICOUNT=0
   80 WRITE (4,16) A, IYEAR, JD(1), SSP, SDAT, XDAT, SNAT, XNAT, SDDP, XDDP, SNDP,
    1XNDP, SWSD, SWSN, IDAY(2), ERRORS
   16 FORMAT(#0#, A4,213, F6.1,10F5.1,13, A10)
     ICOUNT=ICOUNT+1
     GO TO 1
   30 STOP #END OF RUN#
     END
     SUBROUTINE ERECK(XAT, XDP, IERRC, IYEAR, JULDAY, ISEQ)
C
  CHECK TO SEE IF AIR TEMP, (XAT) IS > DEW TEMP (XDP) FOR
С
  HOURS PASSED.
С
C
     DIMENSION XAT(30), XDP(30)
     DO 1 J=1.4
     IF(XAT(J).GE.XDP(J)) GO TO 1
     IERRC=IERRC+1
     IHOUR=(ISEQ-1)*4+J
     WRITE(61,2) IYEAR, JULDAY, IHOUR
```

SSR=SSR+XSR(J)

2 FORMAT(# FOR YEAF#,I3,# JULIAN DAY#,I4,# HOUR#,I3,# AIR TEMP#, 1# < DEW TEMP#) 1 CONTINUE RETURN END

01.18.59.UCLP, 23. 0.352KLNS.