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ABSTRACT

Chen, J., Franklin, J.F. and Spies, T.A., 1993. An empirical model for predicting diurnal
air-temperature gradients from edge into old-growth Douglas-fir forest. Ecol. Modelling,
67: 179-198.

Edge — the boundary line between clearcut and adjacent old-growth forest — is one of
the critical landscape elements in the highly fragmented forest landscapes of North
America's Pacific Northwest. Ecological phenomena at edges may be better understood by
examining the physical environments near the edge. To further this objective diurnal air
temperature gradients were measured along 16 gradients from the edge into the interior
old-growth Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] forest over the 1989 and 1990
growing seasons and analyzed effects of edge orientation (relation of edge-facing to the
azimuth) and macroclimate (local weather conditions of the clearcut) on these gradients
were also explored through regression analysis. The air temperature gradient was expressed
with a simple exponential equation involving three intermediate variables of interest: air
temperature in the interior forest (TEMPIF), difference in air temperature between the
edge and inside the forest (A AT), and changing ratio of temperature along the gradient
(SLOPE). Linear or nonlinear regression equations were developed to predict TEMPIF,
1AT, and SLOPE. Correlation analysis always preceded regression analysis, in which the
relationships between the regression parameters and independent variables representing
edge orientation and macroclimate were further explored. A computer model developed
from the final empirical relationships successfully predicted air temperature gradients.
circumventing the need for time-consuming field measurements with expensive meteorologi-
cal instruments, and generated new information about the influences of edge orientation
and macroclimate on air temperatures. TEMPIF, AT, and SLOPE were shown to be
highly sensitive to the dependent variables. Although model application should be limited to
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edges created by recent (10- to 15-year-old) clearcuts adjoining old-growth Douglas-fir
forest, the modeling approach could be applied to edges with different characteristics by
modifying the relationships.

INTRODUCTION

Extensive use of dispersed clearcutting in the last several decades has
created a highly fragmented ("checkerboard") forest landscape in North
America's Pacific Northwest (Franklin and Forman, 1987). As a result,
edge — the boundary line between clearcut and adjacent old-growth forest
— has become one of the most important features of this landscape.
Indeed, forest values such as wildlife habitat and biological diversity have
been fundamentally changed because of the significant amount of edge and
result edge effects created by the "checkerboard" (Yahner, 1988; Franklin,
1989; Lehmkuhl and Ruggiero, 1991).

Environment of the edge is unique, clearly distinguishable from that of
the clearcut and interior forest (Chen, 1991). Both biological (Chen et al.,
1992) and physical variables respond to edge environments, producing edge
effects (i.e., ecological phenomena associated with edge). For instance, as
one moves along a gradient from the edge into the old-growth Douglas-fir
[Pseudotsuga menziesii (Mirb.) Franco] forest, the microclimate changes
considerably depending on edge orientation (i.e., relationship of edge-fac-
ing to the azimuth) and macroclimate (i.e., local weather conditions). Air
temperature — one of the key variables characterizing energy flow in the
biosphere (Lee, 1978; Campbell, 1986) and critical to predicting other
meteorological variables (Bocock et al., 1977; Taconet et al., 1986; Dwyer
et al., 1990), ecosystem processes in the Douglas-fir forest (Zobel et al.,
1976; Waring and Franklin, 1979; Chapin et al., 1987), and natural distur-
bances (Beck and Trevitt, 1989) — is of particular interest.

The ability to predict microclimatic patterns near forest edges under
specific macroclimatic conditions across a range of edge orientations is
important to those managing forest resources. To this end, we (1) examine
the empirical relationships between air temperature, edge orientation, and
macroclimate along gradients from the edge into the old-growth Douglas-fir
forest, (2) use regression analysis to develop a computer model based on
those empirical relationships to predict diurnal air temperatures over such
gradients during the growing season, and then (3) evaluate the model's
ability to predict gradients for varying edge orientations and macroclimates.
Our results can be used as inputs to ecological simulation models (e.g.,
Dale and Hemstrom, 1984; Running et al., 1989) and as an independent
variable for analyzing biological processes (e.g. Edmonds, 1987; Peters,
1990; Dreistadt et al., 1991).
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STUDY AREA AND DATA COLLECTION

The two study areas are located on the western slope of the Cascade
Range: the Wind River Experimental Forest, 45°48' N and 121°55' W, on
the Gifford Pinchot National Forest in southern Washington; and the H.J.
Andrews Experimental Forest, 44°14' N and 122°11' W on the Willamette
National Forest in central Oregon. Elevation of the study areas ranges
from 650 to 1000 m; slopes are gentle ( < 10°). The forests are representa-
tive of typical old-growth Douglas-fir forest in western Oregon and Wash-
ington and occupy typical sites of the Tsuga heterophylla and lower Abies
amabilis Zones (Franklin and Dyrness, 1973). Major tree species include
Douglas-fir, western hemlock [Tsuga heterophylla (Raf.) Sarg.], Pacific
silver fir (Abies amabilis Dougl. ex Forbes), Pacific yew (Taxus brevifolia
Nutt.), and western redcedar (Thuja plicata Donn ex D. Don) (Franklin et
al., 1981). Dominant trees are typically 50-60 m tall.

We selected for study 16 edges (13 at Wind River, 3 at H.J. Andrews)
along old-growth forest patches created when adjacent forest was clearcut
10-15 years earlier. The forest patches are more than 500 m in diameter so
as to provide an interior forest environment at least near their center. The
clearcuts were subsequently planted with several conifer species; regenerat-
ing trees on these cutover areas were generally less than 2.5 m tall.

At each of the 16 sites, we randomly located a transect extending from
each edge (0 m) into interior (240 m from the edge) old-growth forest and
established six sampling stations (0, 30, 60, 120, 180, and 240 m from the
edge) along it. The seventh sampling station, the center of the clearcut —
determined from aerial photos and ground measurements — provided the
macroclimatic data. All edges were coded and their orientations (0-360';
0 = north, 90 = east, 180 = south, 270 = west) recorded. At each sampling
station over two growing seasons (late June through September, 1989 and
1990), air temperature was measured every 15 s with thermocouples and
Campbell's 21X microloggers 2 m above the ground; measurements were
averaged over 30-min intervals. Equipment remained at each transect until
a clear day was recorded (usually 3-10 days), then was moved to another
transect.

MODEL DEVELOPMENT

Modeling basics

The air temperature gradient into the forest for any given time t (0-24
h) can be expressed by a simple exponential equation:
TEMP(t)=TEMPIF(t)+ AAT(t) exik-SLOPE(t)* 5]

	
SLOPE(t) ^ 0

(1)
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where TEMP is air temperature (°C) at time t and 3 is distance (m) from
the edge into the forest. TEMPIF, SAT, and SLOPE are the primary
intermediate variables of interest herein, representing, respectively, air
temperature in the interior forest, difference in air temperature between
the edge and forest, and change ratio of temperatures along the gradient.
A positive S AT indicates that air temperatures decrease with distance
from the edge, a negative S AT that they increase. Diurnal changes in air
temperature from the edge into the forest can be predicted by simulating
the dynamics of these three variables over a 24-h period.

TEMPIF, dAT, and SLOPE were independently estimated from field
data (134 days of air temperatures) through regression analysis. First,
appropriate regression equations were fit to the data for each of the three
variables of interest. We further examined the relationships between these
parameters involved and five independent variables representing edge
orientation (0) and macroclimate through correlation analysis and then
developed further regression equations, generating final equations for the
relationships between TEMPIF, d AT , and SLOPE and edge orientation
and macroclimate:

TEMPIF = function ( Tmm , Tmax , Tmin2 

S AT = function (0, Tmax 1 / Tnun Tmax , Tmin 2 )

SLOPE = function (0, Tmin, Tmax, 7;111112 )

Four independent variables used to describe the macroclimate are: Tmax
(daily maximum), Tima (daily minimum), Tmaxl (the previous day's maxi-
mum), Tmin2 (the next day's minimum air temperature). Based on these
relationships, a computer model written in TURBO C' was developed to
predict diurnal air-temperature gradients with distance from the edge into
interior forest given specific information on edge orientation and macrocli-
matic conditions. Edge effects were evaluated via combinations of -IA T
and SLOPE, which are highly correlated because of their intrinsic relation-
ship in equation (1), the basis for model development. The model was
verified by examining the sensitivities of TEMPIF, SAT, and SLOPE to
edge orientation and macroclimate.

Following is a detailed explanation of how we estimated each of the
three intermediate variables composing the empirical model for predicting
diurnal air-temperature gradients.

Estimation of TEMPIF

The literature proposes many methods for simulating the diurnal pattern
of air temperatures based on energy budget (Myrup, 1969; Lemon et al.,
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1971; Miller, 1980) or empirical data (Parton and Logan, 1981). Empirical
equations include simple curve fitting based on sine and exponential curves
(Allen, 1976; DeWit et al., 1978; Parton and Logan, 1981; Acock et al.,
1983; Floyd and Braddock, 1984) or sophisticated Fourier analysis (Carson,
1963; Walter, 1967; Watanabe, 1978). We chose simple curve fitting, which
is more widely used and recommended than Fourier analysis (Warm et al.,
1985; Rothermel et al., 1986; Beck and Trevitt, 1989; Hungerford et al.,
1989; Reicosky et al., 1989).

We used a simple combination of sinusoidal curve fitting in this study. A
similar method, previously applied (DeWit et al., 1978; Floyd and Brad-
dock, 1984; Hoogenboom and Huck, 1986; Rothermel et al., 1986), was
found to be the best under most circumstances (Reicosky et al., 1989). The
original approach requires the daily maximum and minimum temperatures
and the times of these extremes. We modified that approach in three ways:
(1) by adding to the simulation Tmax( and Tmin2 which provide the informa-
tion on trends in local weather condition, (2) by empirically estimating the
time of the temperature extremes t 1 (time of minimum temperature) and 12
(time of maximum temperature), and (3) by beginning the simulation
period at one t 1 and ending it at the next 1 1 . In fact, the simulation period
was divided into two segments: (1) t to t 2 , and (2) t 2 to the next t1.
Traditionally, 1 1 and t 2 have been calculated from time of sunrise and
sunset depending upon the location (latitude and longitude) of study sites
and days of the year (DeWit et al., 1978; Parton and Logan, 1981; Beck and
Trevitt, 1989). However, in our study, these two variables did not signifi-
cantly correlate with location and Julian day (by a F-test) so that the means
were used. The means computed for t i (n = 114) and t, (n = 119) from the
field data for the two seasons studied were 5.43 and 14.40 h, respectively.
The model algorithms are:

Tai l — AMPi tcos[ Tr( t — t 1 )T' ]}	 t < t,
TEMPIF =	 (2)

Tav2 AMP2 tcoskr(t + L')/(24 — T')])	 t> t,

where

Tao= ( Tmin + Tmax)/2

AMP 1 = ( Tmin — Tmax)/2

Tav2 = (Tmin2 Tina„)/2

AMP., =(Tm — Tmin2)/2

T' =t2-ti

L' = (24 — T') — t2
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Fig. 1. Linear relationship of diurnal air temperature in the interior forest (TEMPIF) and
local macroclimate (i.e. air temperature of adjacent clearcut); n = 34 (minimum tempera-
tures) and 39 (maximum temperatures).

T.,. and Tni n were found to be linearly related to the corresponding
maximum and minimum temperatures in the clearcut (Tmaxc and	 1 E

respectively) by the following simple linear regression equations (Fig. 1):

T.,.= 3.1012 + 0.7556 Tmaxc R 2 = 0.95 and MSE = 0.736
	 14

Tm,.= 2.1859 + 0.8566 Tminc	 R 2 = 0.84 and MSE = 1.034

Estimation of iAT

As for TEMPIF, the diurnal pattern of D AT values also produces a 	 Fig
sinusoidal curve (Fig. 2). Two-stage regression analysis was used to esti-	 earl
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Fig. 2. Difference in diurnal air temperature between edge and interior forest (AAT), and
00 is the maximum AAT, 13 1 is the average air temperature during time interval A i , and 02
is the average temperature during time interval A2.

and after time of maximum AAT (t'), and fit this curve with the following
equations:

c
AAT = 130— 44-131) os(rrt/Ai)	 t < t'
	 (3)

0 2 —	 —0 2 ) coskr(t + 0)/A 2 ]	 t >

where So is the maximum AAT, P i is the average AAT during time
interval A i (calculated as C-5.43, where 5.43 is the estimated mean for
T1 ), 02 is the AAT during time interval A 2 (calculated as 24-0 1 ), and A is
the difference between A i and A 2 (A2-01)•

te corresponding
Tmaxe and Tminc,
ations (Fig. 1):

also produces a
as used to esti-

in two, before

50	 100	 150	 200	 250	 300	 350

6 (°)
Fig. 3. Timing of the maximum AAT (t') as a function of edge orientation (0); t' occurs
earliest at an northeast-facing edge (0 = 74.8) and latest at a southwest-facing edge (0 =
254.8).
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Correlation analysis showed that t' was strongly related to 0 (Fig. 3).
Thus, in second-stage regression, we fit the following cosine equation
(non-linear) to estimate t':

t' = 12.925 + 3.3216 cos[ ir(0 + 74.78)/180] MSE = 2.793

In this equation, the value 74.78 indicates that maximum t AT occurs
earliest at a northeast-facing edge.

Correlation analysis showed that Po was strongly related to 0 and
diurnal temperature fluctuation, At (i.e., Tmax-Tinin ). In second-stage re-
gression, we square-root transformed the independent variables (At) and
fit the following non-linear equation to estimate po:

po = sqrt(A 0(1.0869 + 0.1828 cos • r(0 — 197.18)/1801} MSE = 1.372

In this equation, the value 197.18 indicates that po is maximum at a
southwest facing edge (Fig. 4a).

Correlation analysis showed that 13 1 appeared to be highly related to
Tmax, Tm in, T maxi , 0, and a new variable, a [i.e., ( Tmax— Tmin )/(Tmax( Tmm )19
representing the ratio of diurnal temperature fluctuation. p i values were
larger near southeast-facing edges with higher values of a. Therefore, we
fit the following non-linear equation in second-stage regression to estimate

0 1 = a{1.9230 + 0.6459 cos[ Tr(0 — 126.09)/180]) MSE = 0.649

In this equation, the value 126.09 indicates that p, is maximum at a
southeast-facing edge regardless of changes in cr. The predicted pattern is
illustrated in Fig. 4b.

Correlation analysis showed that 0 2 was significantly related to 0 and
diurnal temperature difference between Tmax and Tmin2 . In second-stage
regression, we fit the following non-linear equation to estimate 02:

02 = ( Tmax Tmm2 ) (0 .0927 + 0.01612 cos kr( 0 — 115 .26)/1801)

MSE = 0.686

In this equation, the value 115.26 indicates that 0 2 is maximum at a
southeast-facing edge. The predicted pattern is illustrated in Fig. 4c.

Fig. 4. Distributions, from second-stage regression, of predicted (a) Po values relative to
edge orientation (0) and diurnal temperature fluctuation, At (i.e. Tmax — T„„n ), (b) 0, values
relative to 0 and the ratio of diurnal temperature fluctuation, o [i.e., (Tmax —Tmm ) / (Tmaxi

-Trnin )], and (c) p, values relative to 0 and diurnal temperature fluctuation, cr (i.e. Tina,—
Trnin,)• Tmax and Train = daily maximum and minimum air temperatures, respectively; Tmaxi=
previous day's maximum; Tmin, = next day's minimum.

i.
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Estimation of SLOPE

SLOPE was estimated from field data for TEMPIF and st AT to void
the autocorrelation between SLOPE and the other two variables. Two-stage
regression analysis was used again to estimate SLOPE. Prior analysis
(correlation analysis) suggests that changes in SLOPE over time are related
to macroclimate. Because Tmax—Train plays an important role in determining
SLOPE before 14.40 h (the computed mean for t 2) and Trnax —Tmin2 after
14.40 h, in first-stage regression we divided the sinusoidal curve in two
sections and fit the data with the following equation (nonlinear):

SLOPE = y{ko + k i cos[rr(0 — K 2 )/180])	 (4)

where Ko, K t , and K2 were the parameters need further estimation in
second-stage regression. y is the variable computed as follows:

Tmax—Trmr,	 t < 14.40
Y = T

max — Tmin2	 t > 14.40

SLOPE estimates had to be corrected after first-stage regression. A very
large ( > 0.5) or small ( < 0.004) SLOPE value suggests the absence of a
clear edge effect (Fig. 5). Hence, before further statistical analysis, esti-
mated SLOPE values were reset to zero if they fell outside the range
0.004-0.5 (i.e., if there was no edge effect).

V
7
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4.)
E

a4 It:Or ePs

"0" 0.004
0.010,
0.025i

-""
- 0.1001
0.501

0	 30	 60	 90	 120	 ISO	 180	 210	 240

Distance from the Edge (m)
Fig. 5. Effect of changing ratio of diurnal air temperatures from edge into interior forest
(SLOPE) on temperature in the interior forest (TEMPIF) with distance from the edge.
SLOPE values > 0.05 (fast change over short distance) or < 0.004 (little or no change over
long distance) are not considered in the model because they do not produce meaningful
edge effects.
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Fig. 6. Variables K0 (a) and K i (b) estimated from equation (4) (see text) fit with a
three-term Fourier series; estimated coefficients are presented in Table 1.

Because K 2 values estimated from equation (4) appear to be stationary
over time, the mean (115.2) was used to produce the final SLOPE esti-

mates. Re-estimated values of o and K 1 had harmonic changing patterns
so that we used a three-term Fourier series in the second-stage non-linear
regression of the form:

K 0 , K t = A 0 +A i sin[-rr(t + co 1 )/12] +A, cos[Tr(t + (.02)]

MSE = 7.413 x 10 -8 for Ko

MSE = 2.182 x 10 -8 for Kt

where A I) is the mean value A t and A, are the amplitudes of the first and
second harmonics of the series, and (0 1 and w, are the phase changes. The
predicted patterns of Ko and K ) are illustrated in Fig. 6 and estimated
coefficients listed in Table 1.

Because the variable y has a discontinuity at 14:40 h (Fig. 7), a linear
smoothing technique (Harvey, 1981) was used over the 3-h window 12.90-
15.90 to make a smooth prediction and still minimize the residuals.
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Time (h)
Fig. 7. Linear smoothing of discontinuity feature resulting from estimating the changing
ratio of diurnal air temperatures from edge into interior (SLOPE) in second-stage regres-
sion with different independent variables for the periods before and after 14.40 h, the
computed mean time of maximum temperature.

MODEL EVALUATION

The diurnal air-temperature gradients from the edge into interior forest
simulated by the model are similar to those described by Chen (1991). Air
temperature varied sinusoidally over the simulation period (Fig. 8), increas-
ing exponentially during the day and decreasing at night with distance from
the edge. In the mid-morning and late afternoon, there was little to no
difference in air temperature (horizontal line) at the edge and inside the
forest. Figure 8 further illustrates the influence of local macroclimate on
air temperature gradients; on warm, sunny days (Fig. 8a) the gradients are
sharper and on cool, cloudy days weaker (Fig. 8b).

The influence of edge orientation is evident by comparing both simu-
lated maximum air temperatures at four contrasting edges (0 m; Fig. 9) and

TABLE 1

Estimated coefficients for Ko and K 1 in second-stage regression (equation 4) for determining
SLOPE estimates

Parameter a K0 K1

A 0 8.6905 x 10 -5 1.6946 x 10 -6
A l 3.756 x 10 -5 1.5024 X 10-4
A,
(t) 1

2.8765x 10 -5
1.633 x 10

2.0443x 10 -4
1.084 x 10

(0, 8.91 — 1.594 x 10

c.

Ao= mean: A l . A 2 = amplitudes of first and second harmonics: oi l , w, = phase changes.	 7
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7.5
0	 50 100 150 200 250 300

[Distance, from Edger (m)

Fig. 9. Simulated maximum diurnal air-temperatures at four edges (0 m) as influenced by
edge orientation (0) and diurnal air-temperature gradients at four Os at the computed mean
time of maximum (14.40 h) and minimum (5.43 h) temperatures for the following macrocli-
matic model inputs: T.— 26.0, Tn. = 10.0, Tmaxi = 27.0, Tr„,„, =15.2 (all °C).

air temperature gradients with distance from the edge for different edge
orientations (Fig. 10). In the early morning, temperature is highest (11.8°C
at 5.43 h) at an east-facing edge, which receives direct sunlight then, and
lowest (9.4°C) at a west-facing edge, which is completely shaded (Fig. 9).
However, temperature at an east-facing edge peaks earliest (13.93 h) of all
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Fig. 10. Sensitivity of LIAT and SLOPE (a) to edge orientation (0) for the macroclimatic
model inputs (15 July 1990) Tmax = 38.89,	 = 9.13, Tmaxi = 26.9, Trnin2 = 9.41 (all °C), and
(b) at a south-facing edge (0 =180°) for the macroclimatic model inputs for the same day
given in Table 2.

four edges and that at a west-facing edge latest (15.93 h). Air temperature
at a south-facing edge lags about 2 h behind that at an east-facing edge but
peaks highest of all four edges (14.43 h).

At 14.40 h, the computed mean time of maximum temperature in the
simulation period, air temperatures decline with distance from the edge
into interior forest, although south- and west-facing edges have steeper
temperature gradients (temperature differences of 4.04 and 3.63°C, respec-
tively) than do the other edge orientations (Fig. 10a). The depth of edge
influence is greater at the east- and south-facing edges than at the other
two orientations because east and south edges receive radiation earlier in
the day than do the other two and have longer periods for edge effects to
accumulate. However, at 5.43 h, the computed mean time of minimum
temperature in the simulation period, temperatures decrease with distance
from the edge at east-facing orientations, increase at west-facing orienta-
tions, and remain relatively unchanged at north- and south-facing orienta-
tions (Fig. 10b). These differences all relate to the distribution of solar
radiation over time.

Generally, the combination of a larger AAT and a smaller SLOPE
indicates a stronger and deeper edge effect, the combination of a smaller

AT and a larger SLOPE a weaker (or no) edge effect. Evaluation of edge
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effects becomes more complicated, however, with all other combinations of
these two variables. For example, it is difficult to evaluate the significance
of edge effects for air temperature gradients at east- and west-facing edges
in the mid-afternoon (Fig. 10a), where both iAT and SLOPE are smaller;
an index, such as degree days, has been frequently used in analyzing
biological responses. Application of this index, however, is also question-
able in analyzing many biological processes. Further study is urgently
needed to understand how AAT and SLOPE, separately and in combina-
tion, characterize edge effects.

Sensitivity analysis showed that TEMPIF, computed independent of
edge orientation, is indeed very sensitive to the input values for macrocli-
mate. Recall from model development (see Fig. 1 and related text) that
TEMPIF is linearly related to the maximum and minimum air temperatures
in the clearcut; the equation coefficients (0.7556 and 0.8566, respectively)
reflect the air-temperature differences in these two environments.

ZIAT and SLOPE, computed on the basis of edge orientation and
macroclimate, were found to be sensitive to both, as determined by a test
on an extremely hot day (15 July 1990). S AT was highest (0.62°C) at 5.43 h
and peaked earliest (9.93 h) at an east-facing edge, which received direct
solar radiation earliest; it peaked highest (5.98°C) at a south-facing edge,
latest (15.93 h) at a west-facing edge, and at about the same time (13.93 h)
at a north-facing edge as did maximum air temperature in the clearcut (Fig.
10a). SLOPE values at east- and south-facing edges were smaller than
those at north- and west-facing edges (Fig. 10a), a smaller value indicating
a greater depth of edge influence (recall Fig. 5). At night, values for both
variables differed little among the four edge orientations. D AT and SLOPE
values varied considerably according to macroclimate conditions (Fig. 10b,
Table 2). When the weather was stable and cool (conditions c and d. Table

TABLE 2

Simulation inputs (°C) for four different weather conditions (a, b, c and d) and their daily
temperature differences

Input a a b c d

Tma, 38.89 24.84 19.88 17.19
Tmin 9A3 6.15 11.13 13.15
Tmax I 35.52 18.03 23.84 20.22
Tmin2 9.41 7.27 7.99 10.25
Daily difference

(7.„„,—Tinin) 29.76 18.69 11.89 4.04

a Tmax = daily maximum air temperature; Tmth = daily minimum air temperature: Tma, =
previous days' maximum air temperature: Tm n , = next day's minimum air temperature.
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2), XAT and SLOPE values are small, indicating a weak edge effect. With
warmer and more variable weather (conditions a and b), values for S AT
and SLOPE increased, and edge effects became stronger and more distinc-
tive.

The model has two weaknesses. First, using sinusoidal curves may be
problematical. These curves were divided in two, with the two sections
joined to maintain least squares error (nonlinear regression) or averaged
locally (i.e., for SLOPE). Sinusoidal functions were used throughout model
development because both the first and second derivatives at the conjuga-
tions of the two sections of the curve were zero, indicating a smooth,
continuous regression line there and a minimum error. However, with
sinusoidal functions, the modeler has less control of the changing ratios of
the dependent variables over time. A solution would be to use more
Fourier terms, but this might create problems of overparameterization or
further analysis of regression residuals. Nevertheless, other types of func-
tions (e.g. exponential) should be explored for estimating the parameters
involved in the regression analysis.

Second, the technique for estimating regression coefficients (parameters)
is problematical. With this method, only the mean was computed, and the
variances associated with the mean were not carried through model con-
struction. Because of the large number of regressions (about 700 000), we
did not check the error distributions but instead assumed a normal distri-
bution with zero mean for residuals. However, further analysis of the
variances may help increase model capability and improve precision so that
the model might be applied more widely and help provide some other
unusual cases.

Despite the preceding weaknesses, this empirical model successfully
produced diurnal air-temperature gradients from the edge into interior
forest, circumventing the need for time-consuming field measurements with
expensive meteorological instruments and generating new information
about the effects of edge orientation and macroclimate on air tempera-
tures. Although applications of the model should be limited to recently
created edges (i.e. 10- to 15-year-old clearcuts) adjacent to old-growth
Douglas-fir forests on relatively flat ( < 10°) terrain, our modeling approach
could be applied to other types of edges by modifying the relationships
developed herein for TEMPIF, dAT, and SLOPE with information about
other variables (e.g., edge age, forest structure near the edge, seasonal
dynamics of regional weather conditions, topographic features). We think
that this model can be to be a powerful tool for evaluating edge effects in
the forested landscape.

temperature; Tmax , =
I air temperature.
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