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"'~ Decomposition of an experimental cohort of conifer boles in a temperate rainforest was studied during the
first two years after cutting. The decomposing bole was viewed as a succ~ional ecosystem with measurable

, inputs, outputs, internal cycling processes; and controlling (actors. Inputs included nitrogen fIXation, inter-

, "::. ception of canopythroughfall, and immigration ohylophages (insects) and decomposers (fungi and bacteria),

all small relative to nutrient pools in boles. Different xylophage functional groups colonized different tree
species and inoculated galleries with different decomposer assemblages. Outputs included fragmentation via

gallery excavation by insects ( < 1 per cent/yr), respiration (1 percent/yr) and leaching (0.02 percent/yr). Bole

chemistry, temperature, and moisture influenced colonization and biodegradation by xylophagcs and decom-

posers. These results from the initial stage of bole decomposition provide new information on processes

contributing to decomposition of fallen trees. Our study challenges the assumptions of chronoscquence

studies (the traditional approach to studying long-term successional processes) that initial conditions and

.,' ':;'; heterotroph colonization patterns (especially lag times) do not influence decomposition rates. " 7.H-.,-r
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Decomposition of woody litter is a major process contributing to biogeochemical cycling in forest
ecosystems,'but has been studied primarily in temperate regions. Woody tissues comprise as much
as 75 per cent of forest biomass, and represent a substantial pool of energy and resources (Fahey
1983; Kira 1978;Swift 1977). Large woody litter (tree boles and major branches) can amount to 22
per cent of aboveground biomass and 81 per cent of aboveground detrital i!1put(Harmon et al. 1986;
Kir 1978)
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Large woody material decays relatively slowly. In temperate ecosystems decay rates vary among
tree species with angiosperms typically showing decay rate constants > O.05/yr,and gymnosperms
< O.05/yr (Harmon et al. 1986). Quercus (oak) boles decay at rates of O.03/yr(haH-time=25 yr)
while Pseudotsuga (Douglas-fll') boles decay at rates of 0.005/yr (half-time 150 yr) with fragments
remaining for up to 400 yrs. (Harmon et al. 1986). Decay rates in tropical forests may be O.2-O.4Iyr
(Bultman and Southwell 1976;Kira 1978;Lang & Knight 1979). ..

The persistence of these large Jitter structures is important to the strUctural and functional in-
tegrity of forest ecosystems. Fallen tree boles stabilize soils (especially in montane regions), provide
substrate for seedling germination of key plant taxa, provide habitat for invertebrates and ver-
tebrates (including vectors of mycorrhizal fungi), and provide an important pool of water and
nutrients for uptake by tree roots and mycorrhizae (Ausmus 1977;Christy & Mack 1984;Franklin et
al. 1987; Harveyet al. 1979; Swift 1977). Therefore, factors governing the decomposition of tree
boles are important t.Qthe productivity and stability of forest ecosystelD$. However, relatively few
studies have addressed these factors (Ausmus 1977;Harmon et al. 1986;Swift 1977).

Typically, studies of long-term processes, such as wood decomposition, have involved com-
parison of characteristics among structures of different estimated ages (chronosequence). This ap-
proach assumes that the structures were initiallysimilar and that decomposition begins immediately
upon tree death. These assumptions ignore the potential effects of differences in initial conditions
(resulting from physiological state of the tree at time of death) or of heterotroph colonization pat-
terns (e.g., Schowalter 1985). Chronosequences yield results of decomposition but do not provide
information on the processes producing those results.

We have chosen to study decomposition of tree boles using an alternative approach. In addition
to examining conditions in fallen boles of different ages, we are studying various processes as-
sociated with decomposition of a cohort of freshly-cut conifer boles. This paper represents a synop-
sis of our results for the fll'st two years of decomposition. These results indicate tJiat initial
conditions and heterotroph colonization patterns may playa major role in establishing long-term
decomposition rates., ... .. ,.
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The HJ. Andrews Experimental Forest is located 80 km east of Eugene, Oregon, U .SA.; on the west
slope of the Cascade Range. The Andrews Forest has been a IBP site, is currently a Long Term
Ecological Research (LTER) site and is targeted to be a Geosph"ere-Biosphere Observatory for
studying global change (Dyer et al. 1988). This forest is adminislered jointly by the U.s. Forest
Service and Oregon State University. ::"'.:' ;'. .'. ::-": .- '..'. : " .;,i" ' .. , . ..., : ::..:

. The climate'ofthe Andrews Forest is mariiim~ with wet, relatively mild Wi'uters'and dry;'~arm
summers. Mean annual temperature-is 8Se, and mean annual precipitation is 2300 mm with >}5
per cent falling as rain between October and March. Soils are deep, well-drained typic dis~

trochrepts; slope gradients range from 20 to 60 per cent. Elevation ranges from 500 to 15~ ~~. ;~f
The temperate rainforest vegetation of the Andrews Forest is largely undisturbed coniferous

forest. These forests are dominated by 4OO-yrold Pseudotsllgamenzies;; (M~rb.) Franco~'commonly
exceeding 80 m in height and 125 em diameter at 2 m height. Tsuga heterophylla (Raf.) Sarg.
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(western hemlock) and 17mja plicata Donn (western red cedar) are abundant at elevations below
1100 m;Abies amabi/is (Dougl.) Forbes (Pacific silver flI) is abundant above 1000m.
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Experimental Boles

We are comparing decomposition of boles (logs) of Pseudotsuga, Tsuga,Abies and Thuja. These
species were selected on the basis of their dominance of the temperate rainforests of northwestern
North America and the range of decay rates represented: 0.03/yr for Abies vs. < 0.005/yr for Thuja
(Harmon et al. 1986;Scheffer & Cowling 1966). Boles were cut from freshly-felled, live, undiseased
trees from on or near the Andrews Forest in September 1985. All boles were 45-60 em in diameter,
5.5 m long, ~d had at least 90 per cent bark cover. Mass was ca. 5000 kg/bole. These initial condi-
tions were selected to control the potential effects of bole size, bark integrity, and prior fungal infec-
tion on colonizing heterotrophs and decomposition processes (Harmon et al. 1986;Witcosky et aL
1987). Fall of live, undiseased trees during autumn storms accounts for 40 per cent of the input of
boles to the forest floor in the Cascades (Harmon et al. 1986).

Sixteen boles of each tree species were randomly placed at 3x3 m spacing on either side of a
circular access road (2 ha area) at each of six undisturbed sites betWeen 500 and 1100m elevation.
This number of sites and boles permits replication of boles destructively sampled after 1,2, 3, 4, 5,

6,,8, ~6,22, 30, 60, 90, 120, 150, 180, and 210 years of decomposition... . . ...-..
Sampling Procedures

We view decomposing tree boles as distinct ecosystems with measurable nutrient inputs, outputs,
and internal nutrient cycling patterns. Accordingly, we are measuring nutrient inputs as intercep-
tion of canopy throughfall, nitrogen-fIXation, and immigration of heterotrophs; outputs as fragmen-
tation, respiration, leaching, and emigration of heterotrophs; internal cycling as substrate
mineralization and trophic transfers. Factors which influence these processes include temperature,
moisture, biochemical conditions, and heterotroph interactions.

Initial conditions of each bole were measured at the time of bole placement on the ground. One
8 em thick cross section was cut from the end of each bole. Samples were divided into outer bark, .
inner bark (phloem), sapwood and heartwood components. Initial density (masslvolume measure-
ment) and moisture content (weight loss after drying) were measured for each bole component.
.Component samples then were ground to pass a 4O-meshscrecn and analyzed for N, P, and K (argon
'plasma spectrophotometry, ICAP), lignin and cellulose (acid-detergent digestion). Terpenes (gas
chromatography) and phenols (Folin-Ciocalteu reagent) were measured later in a separate sample
of spring-cut boles immediately after cutting. One bole of each tree species at each site was destruc-

:~~elysampled at.the end of each of the first two years and analyzed as above. . .
Bole temperature and moisture content were monitored in one bole of each species at each of

.four siteS during the second year. Thermocouples recording air temperature or inserted into outer
_~d inner bark, sapwood, and heartwood were read continuously by a data logger. Moisture content
ofeachcomponentwasmeasuredmonthlyasweightlossofmaterialfromaradialcore. .

. Canopy throughfall was intercepted in galvanized steel collectors placed near boles of each
species at each site during the second year (Parker 1983). Runoff from a 0.5 m length of one bole of
each species per site was funnelled into a separate collector. Volume was measured every 3-4weeks
and samples analyzed for N, P, K, and dissolved organic carbon (DOC), as above. Nitrogen-fIXation

.was measured in bole components in the lab in spring of the second year. Samples from the set of
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spring-cut boles were measured imm~diately after cutting, for comparison. Samples were incubated
at 1YC under anaerobic and microaerophilic (1 per cent 01) conditions (Silvester et al. 1982). Fixed
nitrogen was measured as acetylene reduced over a 24-hr period.

Heterotroph immigration was measured during the first two years. At the end of the first (Sep-,
tember 1986) and second (September 1987)years, bark was peeled from two 0.0625 m- samples on
each harvested bole (lltree species/site/yr). The densities of adult ambrosia beetle (Coleop-
tera:Scolytidae) galleries in the sapwood, adult bark beetle (Coleoptera:Scolytidae) galleries in the
phloem, and larval wood-borer (Coleoptera:Cerambycidae) galleries also, at this stage, in the
phloem were recorded (Schowalter et al. 1981). Fungi carried by insects prior to their entry into
boles were assessed by culturing water rinses, exoskeletons (after rinsing) and guts of insects col-
lected by sterile techniques. Fungi also were cultured from wood samples at the time of bole harvest.
Invertebrates (protozoans, nematodes, and microarthropods) were collected from beetle galleries
and from 1 cmJ wood blocks containing gallery sections by Baerman extractors and modified high-
gradient extraction (Ingham et al. 1986;Merchant & Crossley 1970).

Fragmentation was measured as mined material removed from boles via excavation by
xylophagous insects. Cross sections (10 cm thick) of harvested boles were cut into 9Qo'radialwedges.
Bark and heartwood were removed. The volume, surface area at the sapwood-phloem interface,
and number and diameter (1-1.5 mm) of ambrosia beetle enlrances were recorded. Sapwood of
Pselldotsuga and Tsuga, but not Abies or Tlluja had been mined by ambrosia beetles. Pseudotsuga
and Tsuga samples were sliced radially into 1 cm thick sections. Galleries were traced from their
entrances with flOesteel wire and total length recorded. The volume of individual galleries multi-
plied by gallery density was expressed as a proportion of total sapwood volume. .

Phloem mined by adult bark beetles and, during this initial period, by larval wood-borers was
measured in two 0.5 m1bark samples from each harvested bole. Galleries of these insects did not
have regular cross-sectional areas as did ambrosia beetle galleries. Therefore, gallery volume could
not be measured precisely. Mining was recorded as a proportion of total phloem surface area. Be-
cause scolytid bark beetles and ambrosia beetles are largely restricted to recently-killed trees, the
samples from year 2 served as replicates for these insects.

Respiration rate was measured in the field and lab during the second year. Field measurements
involvedthe aIkalai trap method (Page et al. 1982). Two chambers covering500em1surface area were
mounted on one bole of each species at each site. Measurements were taken monthly as the amount of
CO: absorbed by NaOH over a 24 hr period. Respiration of bole components from a separate set of
freshly-cut (spring) trees and from 1.5yr-old boles wasmeasured in the lab usinggas chromatography.

Leaching was measured during the second year. Leachate from a 0.5 m length of one bole per
species per site was funnelled into a galvanized steel collector. Volume was measured at 3-4 week
intervals and analyzed for N, P, K, and DOC. Leaching was measured as the difference in nutrient
content between leachate and canopy throughfall.

We hav!: not been able to study internal substrate mineralization and cycling patterns. We plan
to employ both laboratory bioassays and selective introductions in the field to assess the contribu-
tions of various.decomposer functional groups to decomposition processes.

. .

RESULTS

Initial composition of wood components in boles of the four conifer species is .shown in Table 1.
Boles were about 50 per cent carbon. Concentrations of N (1000-4000 mglkg), P (10-600 mg/kg),

-- --



DECOMPosmON OF FALLENTREES 377

and K (100-3000 mg/kg) were highest in the phloem of all species, followed by outer bark, sapwood
and heartwood (Table 2). Phenol concentrations were highest in the outer bark and lowest in the
sapwood (Table 2). Concentrations and ratios of these nutrients and inhibitory compounds differed
among tree species and bole components. After one year of decomposition, concentrations ofK and
phenols gcnerally had declined in the outer bark and phloem; P had declined 50 per cent in the
phloem of Douglas-fir.

TABLE1. Initial percent composition (by volume) of boles of four conifer species
at the HJ. Andrews Experimental Forest in western Oregon

Species

-, 'PseiiaotsUga

Tsuga
Abies

17luja

TABLE2. Initial chemical composition (aUvalues mg/kg :!:1SD) of PseudolSUga
and Thuja boles at the HJ. Andrews Experimental Forest in western
Oregon

1. Data from a second set of boles cut in spring 1987.

Temperature and moisture fluctuationswere similar for all species, generally reflecting the
seasonalpattern. Maximummoisturewas observedin March,minimumin September. Maximum
temperatures occurred during August, minimumduring January. The amplitude of fluctuation
declined with depth in the bole, with bark closelytracking ambientfluctuationsand beartwood
remaining relatively stable. .

. Canopythroughfallamountedto 1600Vm2/yr,ofwhichabout55per centwasinterceptedbyboles
(28 m2 projected surface/bole). Interception accounted for inputs of 25 g DOClbole (3.0 mglkg
bole), 0.40 g Nlbole (0.07 mglkg), 0.75 g Plbole (0.15 mg/kg) and 15 g Klbole (0.29 mglkg). . .
. Nitrogen fIXationwas substantial in boles of PseudolSUgaand Abies in spring of the second year
(Table 3). Anaerobic nitrogen-fIXation was the primary pathway in Abies; anaerobic and
microaerophilic pathways were equally important in the other species. Rates in PseudolSUgaare
lower, by a factor of 20, than rates measured inPseudotsuga at more advanced stag~.of decomposi-
tion (Silvester et al. 1982). By comparison, nitrogen-fIXationwas not detectable in the set of spring-
cut boles. . .
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I mgikg),
.

.

.'

Outer Bark (%) Inner Bark (%) Sapwood (%) Heartwood (%)

38 6 26 30

4 6 62 30

4 4 62 30

38 6 11 46

Species Component N P K Phenols'

PseudotsUga Outer bark 1700(100) 110(20) 510 (130) 140,000(33.000)

Phloem 2000 (200) 450 (100) . 2300 (540) 38.000 (6,400)

Sapwood 800 (100) 90 (30) 490 (120) 5,900 (4,100) ... . .
26,000 (6,300)Heartwood 900 (100) 10 (6) 40 (20)

Thuja .. Outer bark .. 1900(300) _. ..110 (60) 650 (320) 26,000 (3,000)

Phloem 3100 (500) - _.. 400 (60) 3100 (600) 15,000 (4,300)

_ " Sapwood 1100 (200) ..:. 130 (SO) 700(250) 3,900 (1,800)

Heartwood 1000 (100) 30 (6) 230 (70) 30.000 (15,000)
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'. TABLE3. Nitrogen-fIXation rates in conifer boles after 1.5 years of decomposi-
,""i. . tion (spring) at the H. J. Andrews Experimental Forest in western

, ,. . Oregon I.,.

. .

Tree Species Anaerobic

(nmol CzH2Ig/d)
8.5

0.3

5.5

1.0

~tsuga

Tsuga
Abie.r

Thuja

1. ComJ'Onent rates adjusted Cortheir percentage contribution to bole volume.

Distinct heterotroph communities developed in the four conifer species. Pseudotsuga and Tsuga,
but notAbies or Thuja, were colonized by large numbers of ambrosia beetles (> 3OO/m2bole surface)

during the first spring after tree cuttin~ (Table 4). Pseudotsuga and Abies, but not Tsuga or Thuja,
were colonized by bark beetles (> 7/m bole surface); onlyAbies was colonized by substantial num-
bers (41m2bole surface) of wood-borers (Table 4). Wood-borers continued to colonizeAbies, Tsuga
and Thuja, but not Pseudotsuga, during the second year, reaching larval densities of > 51m2bole
surface in these species. Reproductive termites (Isoptera:Hodotermitidae) began colonizing
phloem, especially ofAbies, during the second year.

..",

. TABLE4. Colonizationof conifer boles byxylophage functionalgroups (sap-
wood-boringambrosiabeetles (Coleoptera:Scolytidae),and phloem-
boring bark beetles (Coleoptera: Scolytidae) and wood-borers
(Coleoptera: Cerambycidae)in westernOregonduring the first year
after tree cutting

Tree Species

.. :..1.Pseudotsuga
Tsuga

'IAbies

~. r'." .

,'~~ ~:.. 77ruja "

Number (% 1 S.E.) per m2bole surface oC

Ambrosia Beetles Bark Beetles Wood Borer Beetles

;;:~Prior to' insect penetration of the bark barrier, fungi. bacteria, and invertebrates (protozoans,'
nematodes, and microarthropods) were restricted to the outer bark. Xylophagous insects inocu-
lated galleries with a rich symbiotic assemblage of these organisms (Carpenter et al. 1988). Bark
beetles, but apparently not ambrosia beetles, introduced nitrogen-fIXingbacteria, as found by
Bridges (1981). _ All beetle functionalgroups inoculated boles with a variety of yeasts and as-
comycete (soft rot) fungi. especially Penicillium and stain fungi. Ophiostonra ( = Ceratocystis). Less
than 1 per cent of the fungi carried by these insects were basidiomycete (decay) fungi (Table 5).

Only termit.es..appare.~tlytransported basidiomycetes at appreciable rates. ..-'r~' -' .~.~... :;, '.T1~... , ~ 'W. '. . . J. '", .1... b

:;IGThe stain fungi colonized 93 per cent of Pseudotsuga sapwood and 57 per cent of Tsuga sapw~
but < 10% of Abies or 17lujasapwo<><4bythe end of year L Bitsidiomycete fruiting structures ap-
peared in the outer bark of all species by the end of the second year, but onlyAbies showed su~tan-
tial white rot developmentin the sapwood. c. .: ::~.~ti ~:'::

...

320 (20) 7.1 (1.5) .' 2.0(1.0)- - -"
310(15) 0.3(0.3) 1.5(0.7).. . . .

- .. 60 (10) ...... 8.1 (2.0) -r.t 4.6 (1.7) " I ,t. .......". .':.
40 (5) 0.7 (0.7)'" . . 1.3 (0.4)

".
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TABLE5. Frequency of occurrence (per cent) of fungi transported by xylophage
functional groups into conifer boles in western Oregon

Tsuga,
uface)
Thuja,
1num-
Tsuga

11.bole
)niring

..~.
. .~: ; .

1. Primarily Candida

.' Insect galleries supported a rich food web composed of amoe:bae, ciliates (protozoa), bacterial-
and fungal-feeding nematodes, the fungal-feeding and predaceous microarthropods. Most of these
organisms have symbiotic associations with xylophagous insects, but others, including predators and
parasites, springtails, and fungivorous Diptera larvae, entered beetle galleries independently.

Sapwood excavation amounted to about 0.2 per cent of sapwood volume in Pseudotsuga and
Tsuga, 0 per cent in Abies and Tl.uja. Phloem excavation amounted to 7-9 per cent in Pseudotsuga
and Abies, but was negligible in TSllgaand Thuja (Table 4). Wood borers accounted for additional
phloem excavation during the second year, but overall fragmentation, weighted by bole composition
(Table 1) amounted to < 1 per cent moss loss in all specieSduring the rust two years.

. Respiration rates of whole boles measured in the field showed a single sharp peak during Sep-
tember each year, coinciding with the period of maximum temperature and minimum moisture in
boles (Carpenter et al. 1988). Respiration measured in the laboratory indicated substantial respira-
tion (3-8 pmol CI'l/d) in phloem of freshly-cut (spring) boles, compared to rates generally < 1pmol
CI'l/d in other bole components (except Abies outer bark at 5pmol CI'l/d). Rates in the phloem of
1.5 yr-old experimental logs m~ured at the same time ranged from 0.5 to 1.6pmol Clg/d (Car-
penter et al. 1988). Weighted rates for the bole indicated a reduction of30-50 per cent when com-
paring the freshly-cut to 1.5 yr-old boles. Overal~ respiration accounted for mass losses of about 1
percent/yr. '--' ...

. .. Concentrations ofN, P, K, and DOC were 3-9 times higher in leachate than in canopy throughfall.
Leaching accounted for mass losses of about 0.02 per cent/yr. This pathway likely affected phloem
most during this initial stage, perhaps accounting for oet losses of K and (for some species)

inh.ibit~ryp~en~lsfromthis bole component. ...: ..:... .. .
~-:.._l".. . ..:..:...: '. _ :- ..:.. ..~.~ .. ..~;.:. - ':"''''' .

)zoans,
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). Less
.ble 5).
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.. .,.,_ -'1 .. .. . DISCUSSION 1-:':" .

Our 'work to date. coversonly the earliest colonization stage of a long-term and relatively poorly-
known process. Nevertheless, our results indicate potentially important effects of initial conditions

. ..-'-~ ... .. .'. -.,".'" :. " ",
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FungalGroups Ambrosia Bart Beetles WoodBorer Termites
Beetles (N .. 20) Beetles (N .. 10)

(N .. 30) (N = 10)

Ascomycctes

Botrytis 2 2 S 2

Cladosporium S S <1 <1

MorthnlJa 1 8 3 <1

OphWstoma 20 12 9 <1

PeniciJlium 11 12 9 69...
Thysanophora 3 4 2 2
Trichoderma 1 1 1 <1

Yeasts1 26 22 54 11

Basidiomycetes
Hetuobasidion <1 <1 <1 2
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andinitial colonization patternsonsubsequentdecompositionof fallentrees. Thesefactorsappear
to determinethe lag tUneto initiate decompositionandmaycontrol long-termrates.

Wood chemistry,especiallydifferent balancesof nutrientsandinhibitory extractivesamongtree
species,is a major factor determininginitial xylophagecolonizationpatterns(Bultman & Southwell
1976;Wood 1982). Injured or diseasedtreesreleasevolatilecompoundswhich attract xylophagous
insectssearching for suitable resources(Chapman1963;Schowalter1985;Witcosky et aI.1987;
Wood 1982). Chemical composition also changes seasonally.

Different xylophagefunctionalgroups respond to different cues. Manybark beetles and other
wood borers are attracted or repelled by specific volatile terpenes (Chapman 1963; Wood 1982).
We found verbenonelo beamajorconstituentof Thujabark,and alsopresent inAbies bark. This
monoterpene attracts some bark beetles (Dendroctonus spp.) when present at low concentration but
often repels theSe insects at higher concentration (Rudinsky 1973;Wood 1982). Ambrosia beetles
and some bark beetles are attracted to sources of ethanol, produced by anaerobic respiration of
phloem in combination with moisture saturation (Klimetzek et al. 1986;Moeek 1970;Witcosky et aI.
1987).We verifiedthisbyadding ethanol to bark extracts(ofthefourconiferspecies)placedon
cardboard cylinders at two sites removed from our boles. Ethanol increased the attraction of
ambrosia beetles and some wood-borers and predators.

Pheromones produced by the initial colonists synergize this host attraction, resulting in rapid
accumulation of xylophage populations and perhaps confounding initial preferences among tree
species (Schowalter et al. 1981; Wood 1982). Wood infected with pathogenic fungi also attracts
xylophagous insects (Witcoskyet al. 1987).

Penetration of the bark barrier byxylophagousinsectsiscriticalfor colonizationby decomposer
fungi (Ausmus 1977, Dowding 1984; Swift 1977). Therefore, chemically-determined patterns of
xylophage colonization also maydetermine decomposer colonization. Because of the dependence
of many fungi, bacteria, and invertebrates on bark penetration byinsects, liCehistory synchronization
and mutualistic interaction characterize many associations (Barras & Hodges 1969; Batra 1966;
Blanchette & Shaw 1978; Dowding 1984; French & Roeper 1972;Haanstad & Norris 1985). Dif-
ferent xylophage functional groups apparently transport different decomposer assemblages, e.g.,
bark beetles carried nitrogen-fiXing bacteria, termites carried basidiomycetes. The lag time to
colonization by particular xylophagescould determinethe lag time to colonizationby associated
decomposers (Kiarik 1974). . 1. "" . .. . '."-_. .... - - _'. 0.. :.. _ 0.. . (. ..."

. · &.Microbial establishment and biodegradation activity also are determined by bole environment.

.Terpenes, phenols, and other inhibitory extractives limit fungal and bacterial growth and substrate
biodegradation (Barz & Weltring 1985;Bultman & Southwell 1976;Scheffer & Cowling 1966;Swain
1979). Only afew fungi, y'easts,and bacteria are capable of metabolizing these compounds (Barz &
Weltring 1985), including some of the major initial colonists in our study, e.g., Candida (yeasts) and

.Pen.icillium. (fungi). Biodegradation of these compounds in boies with high concentrations likely
facilitates colonization by other decomposer groups (Rayner & Todd 1979). Some of these as-
sociated .bacteria and fungi may provide fIXednitrogen, vitamins, or other growth stimulators while
exploitingcellwallcom~nents released bydecomposer fungi (Barz & Weltring 1985). Blanchette
& Shaw (1978) reported that basidiomycete growth in wood chips with bacteria and yeasts present

. was 200 per cent greater than fungal growth in wood without bacteria or yeasts. Because bacteria
and ascomycetestend to prevail at high moisture content and basidiomycetesat low moisture
(Cooke & Rayner 1984;Kiarik 1974;RaYner& Todd 1979),pulses of biodegradation J>y. . ." . - '.. , . . - ., '. .' . . ". .,
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basidiomycetes likely alternate with pulses of biodegradation, nitrogen-fIXation, and mineralization
by ascomycetes and bacteria in seasonally wet environments. This pattern is evident in.the spring
(cool, wet) pulse in leaching of K and DOC (perhaps including inhibitory compounds) and the
autumn (warm, dry) pulse in respiration in our experimental boles. Mineralization of nitrogeD
and other DutrieDts could be enhanced by iDvertebrate grazers (Crossley 1977; Dyer 1986; ID-
gham et al. 1986; Schowalter 1985;Swift 1977), also largely influenced by patterns of xylophage
colonization.

Differences is bole decomposition rate among the four experimeDtai conifers (HarmoD et aI.
1986, Scheffer & CowliDg1966) could be explained by our early results. Abies decomposes most
rapidly, followed by Tsuga, Pseudotsuga and Thuja. Abies was colonized by phloem-borers, but Dot
sapwood-borers, and showed earliest sapwood degradatioD by white rot (basidiomycete) fungi.
Querr::us(oak) decomposes at a similar rate (O.03/yr,HarmoD et aI. 1986). We are comparing
decompositioD of Quercus boles at four sites (including western Oregon, Cedar Creek LTER, Min-
Desota, Konza Prairie LTER, Kansas, and Coweeta LTER, North Carolina) across a NW-SE COD-
tineDtai gradieDt. Interestingly, Quercus boles at all four sites also were colonized by phloem-borers
(but Dot sapwood-borers) during the first year and showed extensive basidiomycete peDetratioD of
the sapwood.

By contrast, Pseudotsuga and Tsuga were colonized by ambrosia beetles and ascomycete fungi at
densities which could have inhibited sapwood penetratioD by basidiomycete fungi except during the
brief period of bole dryin8 (Kaarik 1974). Although basidiomycetes arc the most efficieDtlignin-cel-
Iulose degraders, many of the ascomycetes and, perhaps, bacteria colonizing our boles are capable
of utilizing some structural compounds (Kaarik 1974;Ruel & Bamoud 1985). Thuja, the most
decay-resistant species remains largely uncolonized and unchanged after two years. NitrogeD-flXa-
tiODwas highest in Pseudotsuga and Abies, the two species colonized by bark beetles. .

The decompositioD of falleD trees remains a poorly-understood process. We have found that,
CODtraryto the assumptions of traditional chronosequence studies, initial condition of the falleDtree
(especially chemical composition at the time of death) and rates of heterotroph colonization deter-
mine decompositioD pathways and rates during the flrSttwo years. We do not know the extent to
which these initial differeDces between boles persist or boles become more homogenous through
time as a result of modification by heterotrophs. Kaiirik (1974) summarized studies showing that
wood initially colonised bystain fungi decayed less rapidly during subsequent establishment of decay
fungi than did previously-uncolonized wood. Manipulative experiments with differeDt decomposer

successions ~ ~Deces~ary to evalu.ate the effects of initial ~~lonizati~D patterns.. . . . ',' . -.110:... -
Processes associated with decompositioD of fallen trees also require further atteDtion. Boles

have Dot beeD appreciated as a potential source of nitrogen in forest ecosystems. Aerobic nitrogeD
fixatioD rates > 5 nmol CzHzreduced/Whe, have been reported for Pseudotsuga boles iDadvanced
stages of decompositioD (Silvester et aI. 1982). Rates were much lower in 2 yr-old boles of Pseudo-
tsuga and Abies, but suggest that prior colonizatioDand decay are Decessary to provide the eDergy
sources for elevated fixatioDrates. Boles of falIeDtrees could coDtribute substantially to the nitrogeD
budget of forest ecosystems, especially at advanced stages of decompositioD. Our study provides
Dew information on processes associated with log decomposition, but process-orieDted studies on
boles at advancedstagesof decompositioDwillbe Decessaryto refmedecomposit!oDmodels..The
relatively rapid rate ofbolc decomposition in tropical forests (Kira 1978;Lang & Knight 1979)offers
the possibility of shorter-term comparative studies. ,-..,,~,.- "'.. '. ., . k. ,..\
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