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1. INTRODUCTION

Research activities in the post-IBP phase of the Biome program prior to

July 1975 were reported in Internal Report 162. Summaries of research
and synthesis activities from July 1975 to August 1976 are presented

here.

The reports are arranged in the following order: Analysis of Indi-
vidual Terrestrial Ecosystems, which has three components (Behavior and

Strategies of Individual Ecos ystems, Environment and Plant Succession
and the Land-Use Model); Analysis of Watersheds, which has two com-
ponents (Watershed 10 and Findley Lake); and Analysis of aquatic

ecosystems, which is divided into two components (Lakes and Streams). A

total list of Biome publications is included in the Appendix. A more
specific list of open literature publications is available from the Biome

Office. Progress of the synthesis activities is discussed in Section 5.

2. ANALYSIS OF INDIVIDUAL TERRESTRIAL ECOSYSTEMS

2.1. Behavior and Strategies of Individual Ecosystems

2.1.1. Leaf conductance in different forest stands - R. H. Waring and

S. W. Running, Oregon State University.

A manuscript was completed describing how stomata of subordinate hardwood

species respond to light, evaporative stress, and soil water availability.

We found that except when light directly impinged upon the leaves of under-

story shrubs, their stomata remained closed. As shallow-rooted species

depleted their water supply stomata also closed. Species adapted to clear-

cuts,whether deciduous or evergreen, had higher leaf conductance rates than

more shade tolerant plants (1).

We have continued to develop more accurate means of estimating stand leaf

area (2). We find that the highest leaf areas (40-55 m 2 /m2 for all surfaces)
occur in environments where soil water is always in good supply and the

temperatures are cool (3). Where the evaporative demand is high internal

resistance to water flow appears to reduce leaf area proportionally. Only

in a few cases does nutritional stress appear to constrain foliage development

(3)

In research comparing individual species, we have extended earlier hypotheses

concerning a linear relation between cross-sectional area of conducting tissue

and leaf area from conifers to Rhododendron, Castanopsis, and Acer macrophyllum. 

The shrub Acer circinatum was found to have non-linear relationships which means

it is particularly adapted to responding to changes in the overstory (4).

Preliminary work on the sapwood of large conifers indicates that the entire

reservoir may be utilized in less than 10 days during periods of high transpi-

ration. Refilling of the reservoir appears to be a function of both supply and

demand. Rapid recharge follows summer storms that wet the soil to a depth

where roots are active. Fall storms are associated with reduced evaporative

demand so that deficits are refilled by diffusion, requiring up to 4 months.

Sapwood water flux may serve as an index to evaporative demand and root uptake

under specified conditions (5,6).
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