

PAPER TO KERKOND

J DIARS 5 AST

CNSIGH 1490 B

ACTING ACTINT

CONIFEROUS FOREST BIOME ECOSYSTEM ANALYSIS STUDIES DOM KROW WHAT

Sister's

INTERNAL REPORT 164

PROGRESS REPORT July 1975 - August 1976

> Edited by Robert L. Edmonds

CONIFEROUS FOREST BIOME

Summary of Research and Synthesis Activities July 1975 - August 1976

Edited by

Robert L. Edmonds

Internal Report No. 164

March 1977

Coniferous Forest Biome College of Forest Resources University of Washington Seattle, Washington 98195

TABLE OF CONTENTS

SECTION

1.

2.

INTRODUCTION 1						
ANALYSIS OF INDIVIDUAL TERRESTRIAL ECOSYSTEMS						
2.1.	2.1. Behavior and Strategies of Individual Ecosystems					
2	2.1.1.	Leaf conductance in different forest stands - R. H. Waring and S. W. Running, Oregon State University.	1			
	2.1.2.	Nutrient uptake and translocation by young Douglas-fir trees - H. Riekerk and C. S. Bledsoe, University of Washington.	2			
·	2.1.3.	Growth and nitrogen dynamics in Douglas-fir - D. W. Cole and P. Riggan, University of Washington.	7			
?	2.1.4.	Primary production and nutrient cycling in different forest environments - C. C. Grier, Oregon State University.	9			
7	2.1.5.	Comparative stand level nutrient availability from terrestrial litter decomposition - K. Cromack and R. Fogel, Oregon State Univ.	9			
	2.1.6.	Decomposition Cedar River - R. L. Edmonds, K. Vogt, D. Vogt, and G. Antos, University of Washington.	16			
	2.1.7.	Response of forest ecosystems to fertilizer - S. P. Gessel, University of Washington.	23			
	2.1.8.	Stand Structural Geometry - D. R. M. Scott and E. Jensen, University of Washington.	25			
	2.1.9.	Nutrient exchange - R. J. Zasoski and S. Colton, University of Washington.	26			
	2.1.10.	Nutrient leaching - D. W. Cole and D. W. Johnson, University of Washington.	27			
	2.1.11.	Role of Douglas-fir bark beetles in carbon and nutrient cycling - R. Gara and A. Eglitis, University of Washington.	30			
	2.1.12.	Forest vegetation dynamics within the Abies amabilis zone of a western Cascades watershed - J. N. Long, University of Washington.	31			

i

PAGE

TABLE OF CONTENTS (CONT'D)

SEC	TION			PAGE
	2.2.	Environ	ment and Plant Succession	33
		2.2.1.	Succession simulation - K. L. Reed, Dept. of Natural Resources, Olympia, Wash.	33
		2.2.2.	Validation data - W. H. Emmingham, Oregon State University.	35
	2.3.	Land Us	e Simulation - J. Hett, University of Washington	36
3.	ANALY	SIS OF W	ATERSHEDS	41
	3.1.	Watersh	ed 10, H. J. Andrews Experimental Forest	41
		3.1.1.	Litter decomposition- Comparative rates of CO ₂ production from the forest floor in the Douglas-fir ecosystem - C. T. Youngberg and M. J. Phillips, Oregon State University.	41
		3.1.2.	Vascular plant communities - J. F. Franklin, G. Hawk, J. Means, and A. Campbell, U.S. Forest Service and Oregon State University.	43
		3.1.3.	Watershed 10 - biomass, productivity, and nutrient cycling - C. C. Grier, Oregon State University.	44
		3.1.4.	Soil solution and groundwater chemistry - K. Cromack, P. Sollins and M. McCorison, Oregon State University.	45
		3.1.5.	Plant water relations, hydrology and meteorology - R. H. Waring and S. W. Running, Oregon State University.	48
		3.1.6.	Erosion processes - F. J. Swanson, Oregon State University.	48
		3.1.7.	Carbon, water, and nutrient cycling modeling in old-growth ecosystems - P. Sollins, Oregon State University.	49
		3.1.8.	Hydrology and erosion modeling and computer - J. J. Rogers, Oregon State University.	50
		3.1.9.	Stream linkages and comparisons - J. Lyford, J. Sedell, F. Triska, K. Cromack and M. McCorison, Oregon State University.	51

TABLE OF CONTENTS (CONT'D)

SEC	TION			PAGE
	3.2.	Findley	Lake, Cedar River Watershed	54
		3.2.1.	Use and conservation of carbon - R. Gara, R. Wissmar and G. Rau, University of Washington.	54
		3.2.2.	Litterfall and water inputs - H. Riekerk, University of Washington.	56
		3.2.3.	Terrestrial studies of soil water chemistry - F. C. Ugolini, R. Minden, J. Zachara, and H. Dawson, University of Washington.	62
4.	ANALY	SIS OF A	QUATIC ECOSYSTEMS	64
	4.1.		<i>Ecosystems -</i> N. Anderson, J. Hall, J. Lyford, tire, J. Sedell, F. Triska, Oregon State ity.	64
	4.2. Lake Ecosystems - R. Wissmar, J. Richey, A. Devol, University of Washington.			65
		4.2.1.	Carbon, nutrient and elemental cycling.	70
		4.2.2.	Land-lake interactions.	74
		4.2.3.	Higher consumers "Lake Washington Fish"	76
5.	SYNTH	ESIS ACT	IVITIES JULY 1975 - AUGUST 1976	82
	5.1.	Publications		
		5.1.1.	The biome synthesis volume	82
		5.1.2.	Other synthesis publications	83
	5.2.	Present	ations at Meetings	83
	5.3.	Use of 1	Biome Material in Teaching and Management	83

iii

1. INTRODUCTION

Research activities in the post-IBP phase of the Biome program prior to July 1975 were reported in Internal Report 162. Summaries of research and synthesis activities from July 1975 to August 1976 are presented here.

The reports are arranged in the following order: Analysis of Individual Terrestrial Ecosystems, which has three components (Behavior and Strategies of Individual Ecosystems, Environment and Plant Succession and the Land-Use Model); Analysis of Watersheds, which has two components (Watershed 10 and Findley Lake); and Analysis of aquatic ecosystems, which is divided into two components (Lakes and Streams). A total list of Biome publications is included in the Appendix. A more specific list of open literature publications is available from the Biome Office. Progress of the synthesis activities is discussed in Section 5.

2. ANALYSIS OF INDIVIDUAL TERRESTRIAL ECOSYSTEMS

2.1. Behavior and Strategies of Individual Ecosystems

2.1.1. Leaf conductance in different forest stands - R. H. Waring and S. W. Running, Oregon State University.

A manuscript was completed describing how stomata of subordinate hardwood species respond to light, evaporative stress, and soil water availability. We found that except when light directly impinged upon the leaves of understory shrubs, their stomata remained closed. As shallow-rooted species depleted their water supply stomata also closed. Species adapted to clearcuts, whether deciduous or evergreen, had higher leaf conductance rates than more shade tolerant plants (1).

We have continued to develop more accurate means of estimating stand leaf area (2). We find that the highest leaf areas $(40-55 \text{ m}^2/\text{m}^2 \text{ for all surfaces})$ occur in environments where soil water is always in good supply and the temperatures are cool (3). Where the evaporative demand is high internal resistance to water flow appears to reduce leaf area proportionally. Only in a few cases does nutritional stress appear to constrain foliage development (3).

In research comparing individual species, we have extended earlier hypotheses concerning a linear relation between cross-sectional area of conducting tissue and leaf area from conifers to <u>Rhododendron</u>, <u>Castanopsis</u>, and <u>Acer macrophyllum</u>. The shrub <u>Acer circinatum</u> was found to have non-linear relationships which means it is particularly adapted to responding to changes in the overstory (4).

Preliminary work on the sapwood of large conifers indicates that the entire reservoir may be utilized in less than 10 days during periods of high transpiration. Refilling of the reservoir appears to be a function of both supply and demand. Rapid recharge follows summer storms that wet the soil to a depth where roots are active. Fall storms are associated with reduced evaporative demand so that deficits are refilled by diffusion, requiring up to 4 months. Sapwood water flux may serve as an index to evaporative demand and root uptake under specified conditions (5,6).