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salamanders, primarily nocturnal benthic feeders, and 
trout, visual consumers of both terrestrial and aquatic 
prey, would exhibit distinct diets reducing direct diet 
overlap. We identified 4,897 prey items, classifying 
them into aquatic (50) and terrestrial (77) sources 
across 127 categories. Salamanders primarily preyed 
on aquatic invertebrates (Trichoptera, Ephemeroptera, 
and Plecoptera), while trout consumed a mix of ter-
restrial and aquatic invertebrates (Diptera, Trichop-
tera, and Plecoptera). Partial dietary overlap con-
firmed niche differentiation as a likely mechanism 
facilitating the coexistence of trout and salamanders. 
These findings highlight the role of dietary partition-
ing in structuring predator communities and inform 
predictions of how environmental changes may 
impact stream ecosystems.

Keywords  Pacific Northwest of North America · 
Experimental forests · Stream ecosystems · Old-
growth forest · Stream food webs

Introduction

Understanding the mechanisms that facilitate species 
coexistence is fundamental to explaining patterns of 
population dynamics and maintaining species diver-
sity (Holt, 2017; Huston, 1994; Mittelbach & McGill, 
2019). In stream ecosystems, research has centered 
on the competitive exclusion principle (Hardin, 
1960) as the primary factor driving the coexistence 
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of salamanders and fishes (Cecala et al., 2020; Rese-
tarits, 1995; Sepulveda & Lowe, 2011). This prin-
ciple posits that fully overlapping competitors can-
not coexist, thereby competitive asymmetries might 
arise owing to distinct traits such as morphologies, 
body sizes, or life histories (Keddy, 1989). Fish and 
amphibians frequently co-occur in freshwater eco-
systems, where their overlapping ecological niches 
provide an ideal system for studying the mechanisms 
and outcomes of interspecific competition and coex-
istence. Several empirical studies have documented 
asymmetries as a key factor underlying the coexist-
ence of amphibians and fishes (Cudmore & Bury, 
2014; Lowe et  al., 2018; Parker, 1993; Resetarits, 
1995; Sepulveda et  al., 2012; Sih et  al., 1992). In 
addition, other studies (Cecala et al., 2020; Sepulveda 
& Lowe, 2011) have identified temporal variabil-
ity and behavioral adaptations as alternative mecha-
nisms promoting species coexistence. For example, 
Dicamptodon larvae exhibit shifts in local dispersal 
(Sepulveda & Lowe, 2011) and increased refuge use 
in response to trout chemical cues (Rundio & Olson, 
2003). Similar forms of behavioral avoidance have 
been reported in other amphibians exposed to fish 
predators (Cecala et al., 2020; Kats et al., 1988). Col-
lectively, these studies highlight that beyond com-
petitive asymmetries and behavioral avoidance, addi-
tional mechanisms—such as niche partitioning—may 
also play a critical role in shaping patterns of coexist-
ence between salamanders and fishes.

Modern ecological theory highlights the impor-
tance of multiple mechanisms, including resource 
partitioning, in promoting species coexistence 
(Holt, 2017; Mittelbach & McGill, 2019). Dietary 
niche partitioning, as an evolutionary or behavioral 
response to avoid competitive exclusion, can mitigate 
interspecific competition and facilitate the coexist-
ence of ecologically similar consumers within a com-
munity (Schoener, 1974; Wiens et  al., 2010). This 
mechanism has been proposed to explain the sympa-
try of multiple salamander species (Cudmore & Bury, 
2014; Steele & Brammer, 2006; Vignoli et al., 2016) 
as well as resource differentiation among fish assem-
blages (Ross, 1986). However, relatively few studies 
in headwater streams have directly assessed dietary 
overlap between salamanders and fishes. Sepulveda 
et  al. (2012) found no evidence of dietary partition-
ing between Idaho Giant Salamanders [Dicamptodon 
aterrimus (Cope, 1868)] and resident salmonids. In 

contrast, studies by Falke et al. (2020) and Roon et al. 
(2022) documented seasonal and size-based dietary 
divergence between Coastal Giant Salamanders [D. 
tenebrosus (Baird & Girard, 1852)] and co-occurring 
fish species in Oregon and California. These findings 
emphasize the need for additional research across 
broader ecological contexts, including larger stream 
systems, to better evaluate the role of dietary niche 
partitioning in facilitating the coexistence of salaman-
ders and fishes.

In this study, we use stomach contents analysis to 
evaluate the dietary composition and overlap of resi-
dent Coastal Cutthroat Trout [Oncorhynchus clarkii 
clarkii (Richardson, 1836)] and Coastal Giant Sala-
manders within a large (fifth order) river during the 
seasonal low flow. The Coastal Cutthroat Trout is a 
visual consumer of food sources from both terres-
trial and aquatic origins (Trotter, 1989; Wilzbach & 
Hall, 1985). In contrast, the foraging behavior of the 
Coastal Giant Salamanders in streams is primarily 
nocturnal, relying on benthic prey items (Cudmore 
& Bury, 2014; Parker, 1994). Given these distinct 
feeding behaviors, we hypothesize dietary niche par-
titioning will occur between these two opportunistic 
generalist consumers. Our research offers valuable 
insights into the ecological interactions between the 
largest aquatic predators in the headwaters of the 
Pacific Northwest of North America (Hawkins et al., 
1983; Murphy & Hall, 1981). The findings from our 
study will enhance our understanding of the role 
these tertiary consumers play in regulating commu-
nity dynamics and ecosystem processes within stream 
networks.

Methods

Study site

The Lookout Creek Basin (6400-ha) is part of the 
H.J. Andrews Experimental Forest in the Willamette 
National Forest (Fig. 1) and is protected for research 
purposes (Swanson et  al., 1982). The basin is sur-
rounded by a mixture of old-growth (up to 700 years 
old) and second-growth riparian forest consisting of 
Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco], 
Western Hemlock (Tsuga heterophylla Sargent), 
Western Red Cedar (Thuja plicata Donn ex D.Don), 
Red Alder (Alnus rubra Bongard), Bigleaf Maple 
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(Acer macrophyllum Pursh), Black Cottonwood 
(Populus trichocarpa Torr. & A.Gray ex Hook.), and 
Sitka Willow (Salix sitchensis Sanson ex. Bong.). 
The climate of this region is Mediterranean with wet 
and mild winters, and dry and warm summers. Mean 
monthly atmospheric temperatures range between 
0.6 °C in January and 17.8 °C in July, whereas annual 
precipitation across elevations (410–1630 MASL) 
ranges between 2300 and 3550 mm with most of the 
precipitation (80%) occurring between November and 
April.

Aquatic vertebrates

Coastal Giant Salamanders and Coastal Cutthroat 
Trout are top vertebrate predators that co-occur in 
headwater streams of the Pacific Northwest, playing 
important roles in stream food webs (Hawkins et al., 
1983). Coastal Giant Salamanders are endemic to 
coastal regions from southern British Columbia to 

California (Good, 1989; Nussbaum, 1976) and exhibit 
complex life histories, including aquatic pedomor-
phic and metamorphosed terrestrial forms. Although 
their average lifespan is unknown, individuals may 
live up to 25  years (Duellman & Trueb, 1994) and 
reach sexual maturity at 85–115  mm snout-to-vent 
length (Nussbaum, 1976). They can display faculta-
tive pedomorphosis, with food availability influenc-
ing rates of metamorphosis (Coriell, 2003), suggest-
ing that competitive dynamics may have cascading 
effects on broader ecosystem processes. Their home 
ranges are highly localized, typically < 30 m for both 
larvae and adults (Chelgren & Adams, 2017; Sagar 
et  al., 2007; Johnston & Frid, 2002). In contrast, 
Coastal Cutthroat Trout are distributed from Alaska 
to California (Behnke, 1992; Penaluna et  al., 2016), 
typically live 4–5 years in their stream-resident form 
(up to 7–8 years in some cases), reach sexual maturity 
around age two, and maintain home ranges generally 
restricted to within 200 m of their birthplace (Trotter, 

Fig. 1   Map of H.J. Andrews Experimental Forest and Look-
out Creek, Oregon USA including photos (a–c) that illustrate 
pool habitats where we sampled Coastal Giant Salamanders 

and Coastal Cutthroat Trout within a 6-km section of the main-
stem of Lookout Creek. Streams are shown only for drainage 
areas > 1 km.2
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1989). Intraguild predation, particularly between 
Pacific Giant Salamanders larvae and salmonids, is 
well-documented. Large salamander larvae have been 
reported preying on both small trout (Antonelli et al., 
1972; Parker, 1993, 1994) and other salamander lar-
vae (Parker, 1994), while small salamander larvae can 
also be consumed by large trout (Parker, 1992).

Animal capture and handling

We sampled Coastal Cutthroat Trout and Coastal 
Giant Salamanders from a 6-km section of the main-
stem of Lookout Creek (Fig.  1). We captured these 
consumers using a single‐pass electrofishing pro-
cedure with a Smith-Root LR-24 backpack electro-
shocker without block nets (Arismendi et  al., 2021; 
Bateman et  al., 2005; Hankin & Reeves, 1988). We 
sampled animals inhabiting pool habitats (mean 
depth = 0.66 ± 022 SD cm) during the end of the 
seasonal low flow period (i.e., Aug 26–29, 2019). 
This approach facilitated the sampling of consumers 
across a diverse range of habitat conditions in a con-
densed timeframe minimizing the potential impact of 
episodic food pulses on their diets.

Size-structured populations of trout and salaman-
der can promote ontogenetic shifts in their ecological 
interactions (Ebenman & Persson, 1988; Werner & 
Gilliam, 1984). Therefore, we aimed to examine diets 
of relatively large body sizes to detect the potential 
occurrence of intraguild predation. An initial assess-
ment of the size structure and abundance of consum-
ers in our study system (Arismendi et al., 2021) sug-
gested trout between 80 and 200  mm (total length, 
FL) and salamanders between 50 and 300 mm (total 
length) as target sizes for our diet analysis.

Captured trout were anesthetized using 2.5-mL 
buffered tricaine methanesulfonate (MS-222) solution 
from stock solution of 20  g/L diluted using stream 
water. A duplicated dose for stream salamanders was 
mixed in a separate bucket. We kept sampled consum-
ers in the anesthetic solution until major locomotion 
ceased (i.e., until fish rolled onto their sides and sala-
mander did not squirm when being held). Consumers 
were weighed to the nearest gram and measured to the 
nearest millimeter (i.e., fork length and total length 
for trout; snout-vent length and total length for stream 
salamanders). We performed a gastric lavage proce-
dure (Foster, 1977) to collect stomach contents of 
consumers. Specifically, we inserted a non-stretchable 

straw attached to a 250-mL plastic wash bottle into 
the esophagus and flushed each stomach with filtered 
stream water. We filtered stomach contents using a 
coffee filter and then preserved contents in 90% etha-
nol before transportation to the lab. After completing 
the gastric lavage procedure, we placed consumers in 
an aerated bucket of fresh stream water and released 
them back to the stream with adequate in-stream 
cover after full recovery (generally within 15 min of 
collection).

Dietary contents and data analyses

In the laboratory, we identified prey items to the finest 
taxonomic resolution possible using available taxo-
nomic keys (Merritt et  al., 2019). In most cases, we 
were able to identify prey items at the family level. 
All prey items were counted and grouped in multiple 
categories and separated by terrestrial or aquatic ori-
gin. Adults of Ephemeroptera, Plecoptera, Trichop-
tera and Diptera with aquatic larvae and pupae were 
classified as of terrestrial origin. To evaluate how 
adequately we described prey richness (i.e., number 
of prey categories), we used sample-based species 
accumulation curves (Gotelli & Colwell, 2001). We 
considered each flushed stomach as the sampling unit 
assuming they represented a random sample of the 
consumer’s diet. Prey richness was adequately meas-
ured when the species accumulation curve reached an 
asymptote (Cortés, 1997). We used the random boot-
strapping method (9999 permutations) implemented 
in the ‘vegan’ package in R (Oksanen et  al., 2001) 
and adopted the end point prediction as the best esti-
mate of this asymptote. We performed a Mann–Whit-
ney rank test with the Yates continuity correction to 
compare median consumer sizes (i.e., total length and 
mass), accounting for the possibility that ontogenetic 
niche shifts associated with body size could influ-
ence dietary comparisons. We visualized diets of 
consumers at both a population and individual level. 
At the population level, we used alluvial and bipar-
tite plots based on the frequency of occurrence (%F) 
as the proportion of stomachs with a respective prey 
category (Hyslop, 1980). Alluvial and bipartite plots 
were built using the ‘ggalluvial’ (Brunson & Read, 
2017) and ‘bipartite’ (Dormann et al., 2007) packages 
implemented in R. For the alluvial plot, we used log-
transformed %F of prey categories grouped by order, 
whereas for the bipartite consumer–prey network 
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plot, we used prey categories grouped by family 
(%F > 3). At the individual level, we used a non-met-
ric multidimensional scaling (nMDS) ordination tech-
nique implemented in PRIMER-7 (Plymouth Marine 
Laboratory, PML). For this analysis, we used the 
numerical frequency (%N) as the counts in each prey 
category divided by the total number of prey items 
(Hyslop, 1980). We used a square root transformation 
for prey counts to down-weight the importance of 
the highly abundant categories (Clarke & Warwick, 
2001) and calculated the respective resemblance 
matrix of distances using the Bray–Curtis similarity 
index (Clarke, 1993; Marshall & Elliott, 1997). The 
nMDS technique places each diet category in a mul-
tivariate space in the most parsimonious arrangement 
(relative to each other) and uses iterative optimiza-
tion (999 random starts) to minimize stress during 
the dimensional reduction (Clarke & Gorley, 2006). 
The resulting stress of final 2D plot can be evaluated 
with stress < 0.05 indicating an excellent ordination, 
0.2 < stress < 0.1 representing a good/acceptable ordi-
nation, and stress ≥ 0.2 a poor ordination (Clarke, 
1993).

We used multiple analytical approaches to ensure 
a robust assessment of dietary partitioning, captur-
ing both fine-scale individual variation and broader 
population-level patterns. This integrative framework 
enables complementary metrics to highlight distinct 
aspects of the trophic ecology of trout and salaman-
ders. We evaluated dietary partitioning between sal-
amanders and trout by comparing several indices of 
niche overlap implemented in the package ‘spaa’ in 
R (Zhang, 2010) using %F and the bootstrap option 
(n = 99,999). These indices included Pianka (Pianka, 
1973), Schoener (Schoener, 1968), Petraitis (Petraitis, 
1979), Morisita (Morisita, 1959), and Levins (Lev-
ins, 1974). Indices ranged from 0 to 1, where 0 indi-
cated no overlap and 1 denoted complete overlap. 
In addition, we used a permutational multivariate 
analysis of variance (PERMANOVA) implemented 
in PRIMER-7 (Plymouth Marine Laboratory, PML) 
to test the hypothesis of diet overlap between sala-
mander and trout based on the Bray–Curtis similar-
ity index of %N (Clarke, 1993; Marshall & Elliott, 
1997). We used similarity of percentages analyses 
SIMPER (Clarke, 1993) implemented in PRIMER-7 
to describe which prey categories contributed most to 
the level of diet overlap observed between consum-
ers. Lastly, we evaluated similarities of individual 

diets using an analysis of similarities (ANOSIM) 
and estimated the significance of the R test statistic 
associated with ANOSIM using 99,999 permutations 
(Clarke, 1993). The R statistic ranges between −  1 
and 1, where −  1 indicated more similarity of diets 
between consumers than within consumers, 0 indi-
cated no difference in diets between consumers, and 
1 indicated less similarity in diets between consumers 
than within consumers. We tested differences in diet 
composition by species and body size (small = total 
length < median length; large = total length > median 
length).

Results

We collected stomach contents from 81 Coastal 
Giant Salamanders and 96 Coastal Cutthroat 
Trout. The range of size and mass of these con-
sumers were relatively similar (Fig.  S1). Yet, there 
were more large salamanders so that the median 
total length of salamanders (199  mm; interquartile 
range = 160–222 mm) was significantly (Mann–Whit-
ney U = 2184.5; P < 0.001) larger than trout (152 mm, 
interquartile range = 143–174  mm). Similarly, the 
median mass of salamanders (54.3  g; interquartile 
range = 26.2–72.3  g) was statistically significantly 
different (Mann–Whitney U = 3379; P = 0.003) com-
pared to the median mass of trout (33.2 g; interquar-
tile range = 25.4–50.9  g). However, there were no 
differences in the composition of diets between small 
and large body size groups for either salamanders 
(R statistic = −  0.071; pseudo-P = 0.863) or trout (R 
statistic = 0.024; Pseudo-P = 0.258). Thus, our fur-
ther analyses focused only on the comparison of diets 
between consumers without consideration of their 
body size.

From all stomach contents analyzed, we identified 
4,897 items and classified them into aquatic (n = 50) 
and terrestrial (n = 77) sources totaling 127 prey cat-
egories (Figs. S2−3). Only 19 stomachs were empty 
or fully digested, including 17 salamanders and two 
trout. Sample-based prey richness accumulation 
curves showed that our sampling size was roughly 
adequate to describe the diets of these aquatic verte-
brate consumers (Fig. S4).

The alluvial plot representing the overall diet of 
salamanders and trout at the order level showed that 
salamanders primarily preyed on aquatic invertebrates 



358	 Hydrobiologia (2026) 853:353–365

Vol:. (1234567890)

(i.e., Trichoptera, Ephemeroptera, and Plecoptera), 
whereas trout preyed on a mixture of terrestrial and 
aquatic invertebrates including Diptera, Trichoptera 
and Plecoptera (Fig.  2). Similarly, bipartite preda-
tor–prey networks illustrating the diet of each stom-
ach at the family level confirmed that salamanders 
preyed infrequently on terrestrial resources contrast-
ing to trout that preyed on resources of both terrestrial 
and aquatic origin (Fig. 3). For salamanders, mayflies 
in the families Baetidae, Ameletidae, and Heptage-
niidae were consumed more often, %F of 72, 46 and 
45%, respectively. Other common prey items were in 

the families Chironomidae (31%) and Glossosomati-
dae (25%). All these families were of aquatic origin. 
For trout, the most common prey items were the ter-
restrial Formicidae, and the aquatic families Chirono-
midae and Perlodidae, %F of 86, 62 and 35%, respec-
tively. Other common prey families included aquatic 
Baetidae (34%) and terrestrial Empididae (26%). 
There was evidence of piscivory (Cottidae—sculpins) 
in both salamanders and trout, but this prey category 
occurred infrequently (< 6%; Fig. S2). Moreover, we 
did not find evidence of intraguild predation between 
trout and salamanders.

Fig. 2   Overall composition of prey items in sampled stom-
achs of salamander and trout organized alphabetically by order. 
Lines represent log-transformed frequency of occurrence (%F) 

of prey categories across all sampled stomachs. Detailed infor-
mation about diets at the family level can be found in the Sup-
plement (Figs. S2−3)
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There was only partial dietary overlap between 
salamanders and trout based on multiple indices of 

niche similarity (Table 1). In addition, there was less 
similarity in diets between salamanders and trout than 

Fig. 3   A Bipartite 
predator–prey networks 
for salamander and trout. 
Lower bars represent 
the origin (terrestrial or 
aquatic) and frequency of 
occurrence (%F > 3 percent) 
of prey categories at the 
family level whereas upper 
bars represent individual 
stomachs sampled for each 
consumer. Linkage width 
indicates frequency of 
each trophic interaction. B 
Frequency of occurrence 
(%F) and origin (terrestrial 
or aquatic) of top-five major 
prey categories for sala-
mander and trout diets at 
the family level. C Boxplots 
of frequency of occur-
rence (%F) of aquatic prey 
categories from sampled 
stomachs of salamander 
and trout. Dots represent 
5th and 95.th percentiles, 
whereas boxes include 
median, and interquartile 
range. Detailed information 
of diets at the family level 
can be found in the Supple-
ment (Figs. S2−3)

Table 1   Indices of 
niche similarity to assess 
dietary overlap between 
salamanders and trout in 
Lookout Creek, Oregon. 
Values were estimated 
based on a bootstrap option 
in the package ‘spaa’ in R 
(Zhang, 2010)

Index of similarity Observed Averageb SDb Lower CIb 95% Upper CIb 95%

Pianka 0.499 0.519 0.102 0.320 0.790
Schoener 0.404 0.410 0.053 0.305 0.514
Petraitis 0.425 0.448 0.084 0.300 0.626
Morisita 0.489 0.500 0.096 0.310 0.681
Levins 0.608 0.656 0.188 0.343 1.070
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within these consumers (ANOSIM; R statistic = 0.56; 
pseudo-P < 0.001). Diets of salamanders and trout 
were statistically significantly different (Fig.  3; 
PERMANOVA; pseudo-F = 35.39; df = 1; pseudo-
P < 0.001), revealing dietary partitioning between 
them. The SIMPER analysis showed relatively high 
dissimilarity (89.25%) of diets between salamanders 
and trout. There were 39 families that contributed 
90% to this prey dissimilarity (Table S1) with 11 fam-
ilies contributing the most (63%), including terrestrial 
Formicidae (16%), aquatic Ameletidae (10%), aquatic 
Chironomidae (7%), aquatic Baetidae (6%), aquatic 
Heptageniidae (5%), aquatic Perlodidae (4%), aquatic 
Glossosomatidae (4%), aquatic Crustacea (3%), 
aquatic Ephemerellidae (3%), aquatic Leptophlebii-
dae (3%), and terrestrial Empididae (2%) (Fig. 4).

In addition, the SIMPER analysis showed an aver-
age similarity of diets within individual salaman-
ders of 24.34%. There were seven families preyed 
upon that contributed 90% to this level of similarity 

including Ameletidae (48%), Baetidae (15%), Hep-
tageniidae (14%), Chironomidae (5%), Glossoso-
matidae (4%), Crustacea (3%), and Leptophlebiidae 
(3%). All these families were of aquatic origin. For 
trout, the SIMPER analysis showed 30.04% average 
similarity of diets within individuals. Six prey fami-
lies from a mixture of terrestrial and aquatic origin 
contributed 90% to this similarity including terres-
trial Formicidae (65%), aquatic Chironomidae (14%), 
aquatic Perlodidae (5%), aquatic Ameletidae (3%), 
terrestrial Empididae (2%), and aquatic Simuliidae 
(2%).

Discussion

Our findings are consistent with the hypothesis of 
dietary partitioning between Coastal Giant Salaman-
ders and Coastal Cutthroat Trout during seasonal low 
flow. We show disparities in the use of food sources 
between these two consumers with each species 
exhibiting distinctive diets with higher intra- than 
interspecific similarities. Specifically, salamanders 
rely mainly on aquatic sources whereas trout use food 
resources from both terrestrial and aquatic origin. 
This is consistent with the literature for both Coastal 
Cutthroat Trout (Trotter, 1989; Wilzbach & Hall, 
1985) and Coastal Giant Salamander (Bury, 1972; 
Cudmore & Bury, 2014; Parker, 1994). Our study 
incorporates a broader spatial extent over a relatively 
short temporal scale and demonstrates that dietary 
partitioning may arise as a direct response to compet-
itive interactions, providing an additional mechanism 
that facilitates the coexistence of salamanders and 
fishes in stream ecosystems.

The dietary divergence between Coastal Giant 
Salamanders and Coastal Cutthroat Trout may result 
from at least four non-mutually exclusive mecha-
nisms. The first mechanism pertains to potential dif-
ferences in dietary preferences between these two 
consumers. Unfortunately, a comprehensive evalu-
ation of this mechanism was not possible due to the 
need for additional information on resource avail-
ability and quality. Terrestrial invertebrates, often 
more energy-dense than their aquatic counterparts 
(Cummins & Wuycheck, 1971), could influence the 
higher frequency of terrestrial items in trout diets 
compared to salamanders. However, our findings 
reveal a diverse diet composition for both consumers. 

Fig. 4   Nonmetric multidimensional scaling (nMDS) ordina-
tion of individual stomach contents of salamanders and trout 
based on Bray–Curtis dissimilarities of square root trans-
formed of %N including 127 prey categories in Lookout Creek, 
Oregon. Symbols represent individual stomachs. The ellipses 
delineate 95% confidence intervals
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Furthermore, substantial evidence points out that both 
Coastal Giant Salamander (Bury, 1972; Cudmore 
& Bury, 2014; Esselstyn & Wildman, 1997; Parker, 
1994) and Coastal Cutthroat Trout (Trotter, 1989; 
Wilzbach & Hall, 1985) are opportunistic generalist 
consumers with no clear dietary preferences.

The second mechanism is tied to the spatial vari-
ation in food availability. Our sampling procedure 
encompasses stomach contents of consumers in 
pool habitats within the mainstem of our study river. 
These habitats are known to support relatively simi-
lar within-stream macroinvertebrate assemblages (Li 
et al., 2001). In addition, both Coastal Giant Salaman-
ders (Sagar et al., 2007) and Coastal Cutthroat Trout 
(Trotter, 1989) are stream residents with restricted 
movement within their habitat ranges (less than 30 m 
and 200  m, respectively). Consequently, the spatial 
variation in food sources or consumer movement 
within our study river are unlikely to greatly influence 
our findings.

The third mechanism involves the temporal 
variation in food availability. The diet partitioning 
observed between Coastal Giant Salamanders and 
Coastal Cutthroat Trout could be influenced by the 
typical low availability of drift during the seasonal 
low flow in the region (Wooster et  al., 2016). This 
suggests that competition for these limited, high-
energy terrestrial resources (Cummins & Wuycheck, 
1971) could promote diet partitioning, as observed 
in other vertebrates (Porter et al., 2022). We demon-
strate a relatively low diet overlap between these two 
consumers during the seasonal low flow, but the low 
diet overlap is also consistent in other river systems 
across seasons (Roon et  al., 2022). Hence, temporal 
variation in food availability likely has little influence 
on our results.

Unfortunately, assessing competitive exclusion 
as the fourth mechanism explaining dietary partition 
between Coastal Giant Salamander and Coastal Cut-
throat Trout would necessitate experimental manipu-
lation to exclude consumers. However, we demon-
strate a greater intra-specific than interspecific overlap 
in diets as it has been reported in other river systems 
where these two consumers are in sympatry (Roon 
et  al., 2022). If intra-specific competition in sala-
manders (Jaeger, 1980; Nussbaum et  al., 1983) and 
trout (Chapman, 1966; Grossman & Simon, 2020) is 
stronger than interspecific competition, competitive 
exclusion might not occur (Chesson, 2000). Indirect 

evidence from long-term studies in our study system 
suggests that interspecific interactions might be of 
less relevance compared to intra-specific interactions. 
For instance, conspecific negative density-depend-
ence has been shown to be an important driver of 
annual growth of Coastal Cutthroat Trout (Arismendi 
et al., 2024) and body size of both Coastal Giant Sal-
amanders and Coastal Cutthroat Trout (Arismendi 
et al., 2024; Penaluna et al., 2025). Furthermore, dif-
ferences in morphology and behavior can contribute 
to dietary niche partitioning. Coastal Giant Salaman-
ders are primarily benthic and spend much of their 
time sheltering under cover objects (Cudmore & 
Bury, 2014; Parker, 1994), making encounters with 
terrestrial prey on the water surface less probable. 
In contrast, Coastal Cutthroat Trout are active visual 
predators that forage in the water column, relying 
heavily on sight to capture both aquatic and terrestrial 
prey (Trotter, 1989; Wilzbach & Hall, 1985). These 
contrasting foraging strategies could reduce direct 
competition and help facilitate their coexistence in 
shared stream habitats.

Our study has some limitations including the abil-
ity to evaluate potential seasonal variation in diets 
between consumers (Falke et  al., 2020; Roon et  al., 
2022). However, Roon et  al. (2022) documented 
consistent low diet overlap between Coastal Giant 
Salamander and Coastal Cutthroat Trout in Cali-
fornia across seasons suggesting diet partitioning 
year-round. In addition, our sampling procedure can-
not evaluate dietary differences associated with the 
ontogeny of these consumers (Ebenman & Persson, 
1988; Falke et  al., 2020; Werner & Gilliam, 1984). 
We document no differences in dietary composition 
of consumers by size, but we cannot extrapolate our 
findings to animals smaller than 10 mm (total length). 
Instead, we evaluate potential intraguild predation 
between salamander and trout (Antonelli et al., 1972; 
Parker, 1993, 1994) and show that piscivory occurs 
infrequently for these consumers in our study system. 
Future studies conducted in other settings and con-
trolled stream mesocosms can complement our find-
ings to elucidate the mechanisms of competitive and 
facilitative interactions.

We provide a comprehensive baseline of infor-
mation about the dietary composition of Coastal 
Giant Salamander and Coastal Cutthroat Trout in a 
relatively large river system with implications for 
future studies assessing the impact of natural and 



362	 Hydrobiologia (2026) 853:353–365

Vol:. (1234567890)

human-related disturbances in stream networks such 
as droughts and wildfires. These consumers are the 
largest aquatic predators in the headwaters of the 
Pacific Northwest of North America (Hawkins et al., 
1983; Murphy & Hall, 1981). We demonstrate that 
dietary partitioning during low flow is consistent with 
other studies in smaller systems (Falke et  al., 2020; 
Roon et  al., 2022) supporting niche partitioning as 
a mechanism that explains the coexistence of these 
consumers. Salamanders and trout play an important 
role regulating community dynamics and ecosystem 
processes in streams and the better understanding of 
their coexistence can serve the needs of the conser-
vation of these aquatic systems in a rapidly changing 
world.
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