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ABSTRACT

In late June 2021, multiple days of record-breaking heat caused an unprecedented amount of foliage death in the forests of the
Pacific Northwest, USA. Portions of tree canopies with healthy green foliage prior to the heat changed to red or orange shortly
after the event. The change in foliage color could be readily seen in satellite imagery and was corroborated as foliar death (heat
scorch) by aerial surveys and extensive observations on the ground. To better understand the patterns and processes driving
foliar death, we used satellite imagery to identify 293,546 ha of forest, or~4.7% of forest area, that were damaged in western
Oregon and Washington by this extreme heat event. Analysis of underlying drivers of the observed heat damage indicated greater
sensitivity was related to abiotic factors such as sun exposure, aspect, and microclimate, as well as biotic factors like tree species
and stand age, budburst phenology, and foliar pathogens impacting tree health. Iconic, culturally and economically significant
species like western redcedar, western hemlock, and Sitka spruce were disproportionately sensitive to heat damage, including in
old-growth stands where they are canopy dominants. These findings highlight the multifaceted challenges posed to forests by
extreme heat waves, and the need to better understand their impact on forest ecosystems in a rapidly warming climate.

1 | Introduction evolved to tolerate periods of extreme weather, trees rarely die

immediately in response to heat and drought; rather, forest mor-

Droughts and heatwaves exacerbated by anthropogenic cli-
mate change are anticipated to be a major driver of future for-
est change (Allen et al. 2015). As long-lived species that have

© 2025 John Wiley & Sons Ltd.

tality usually occurs from a combination of stressors acting over
multiple years (Andrus et al. 2024; Franklin et al. 1987). While
drought events impacting trees have been widely observed and
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documented (e.g., Allen et al. 2010; Anderegg et al. 2013; Andrus
et al. 2024; Bose et al. 2024; Hammond et al. 2022), studies ex-
amining the long-term impacts of short duration, extreme heat
have been largely restricted to seedlings and laboratory studies
(Fauset et al. 2019; Marias et al. 2016; Slot and Winter 2017). The
effects of short, extreme heatwaves are poorly captured in most
ecosystem models, and in some cases are not represented at all
(Jiang et al. 2019; Kala et al. 2016). This is partly because there
are multiple proposed mechanisms underlying heat stress and
damage to leaves (Berry and Bjorkman 1980; Teskey et al. 2015).

Plant responses to heat stress affect many physiological processes
and biological structures simultaneously. Rising temperatures ini-
tially increase photosynthesis rates until an optimum is reached,
beyond which photosynthesis declines with increasing mitochon-
drial respiration, photorespiration, and decreasing active Rubisco
and electron transport (O'Sullivan et al. 2016; Scafaro et al. 2023).
Rising temperatures also limit CO, availability because increases
in vapor pressure deficit (VPD) induce stomatal closure (Grossiord
et al. 2020). Finally, direct cellular damage increases the permea-
bility of thylakoid membranes, which disrupts photosynthetic elec-
tron transport (Sharkey 2005) and causes damage associated with
oxidative bursts (Hiive et al. 2011; Zhu et al. 2024). Substantial
cellular damage leads to tissue necrosis shortly after exposure to
extreme heat (Colombo and Timmer 1992; Hiive et al. 2011; Javad
et al. 2025; Krause et al. 2010; Marchin et al. 2022; Neuner and
Buchner 2023). The connections between heat stress and tree fo-
liar damage have been studied in controlled settings but rarely in
natural environments.

Between June 25-29, 2021, an extreme heat wave occurred in the
Pacific Northwest (PNW) of the United States and southwest-
ern Canada (Loikith and Kalashnikov 2023; Mass et al. 2024;
Thompson et al. 2022), which caused widespread damage to tree
foliage. During this event, daily maximum air temperatures ex-
ceeded 40°C for at least three consecutive days, anomalies in max-
imum daily air temperature exceeded 15°C across much of the
region, and all-time high temperatures were recorded in Canada
(49.6°C), Washington (48.8°C), and Oregon (48.3°C) (Fleishman
et al. 2025). Maximum land surface temperatures exceeded 40°C
in many forested areas and exceeded 47°C in many nonforested
areas (Figure 1). This heat wave was unprecedented regionally in
the modern instrumentation record and had among the most ex-
treme temperature anomalies ever recorded globally (Thompson
et al. 2022). Observation and climate model-based estimates of the
probability of such a heat wave occurring under the recent histori-
cal climate range widely: from 0.001% to 1.8% per year (100,000 to
56-year return interval, respectively) (Fleishman et al. 2025).

The 2021 heat wave had unprecedented effects on PNW for-
ests. A few days after the heat wave ended, trees with dead or
“scorched” foliage (Figure 2, Figures S1 and S2) appeared on the
landscape as far south as Roseburg, Oregon (latitude: 43.215° N)
and as far north as southern British Columbia (latitude ~49.5°
N, ~700km range). Foliage “scorch” occurs when healthy green
leaves turn red, orange, or brown as living tissues die and chlo-
rophyll is degraded due to a variety of causes. Hereafter, we use
the terms foliage scorch, foliar death, leaf death, and foliar mor-
tality interchangeably. The death of tree leaves causes an acute
stress that may lead to short-term or long-term reductions in tree
growth, declines in defenses, or even tree mortality, particularly

if combined with stresses from other biotic and abiotic factors
like co-occurring drought and pathogens.

In response to widespread reports of foliar death, the USDA Forest
Service Aerial Detection Survey (ADS) conducted aerial surveys
of coastal forests in northern Oregon and southern Washington.
They documented ~92,000ha of damaged forest in only a portion
of the affected range (U.S. Forest Service-PNW Forest Health
Protection 2023). Ground-level and aerial observations in the
months after the heat wave indicated that foliar mortality was
widespread but affected some forest stands more than others (Still
et al. 2021). Foliar death was in some cases accompanied by mor-
tality of branches and entire trees, with seedlings and saplings
being the most sensitive (Still et al. 2021). Although it is important
to understand forest sensitivity to extreme heat (Allen et al. 2015;
Hammond et al. 2022; Teskey et al. 2015), to date, there has been
no systematic analysis of which forests, species, or landscape posi-
tions were affected by this heatwave and why.

Initial assessments of the 2021 extreme heat wave associated
forest sensitivity with biophysical factors that vary across the
landscape. For example, observations suggested that tempera-
ture anomalies were important and varied geographically, that
more leaf death occurred on south- and west-facing slopes,
that sensitivity varied among tree species, and that vegetative
phenology seemed to relate to the amount of damage (Still
et al. 2023). Spatial variations in temperature anomalies during
the event have been widely documented (e.g., White et al. 2023),
and it is known that heat stress may be amplified or dampened
by canopy position, canopy structure, aspect, and topographic
position (De Frenne et al. 2021; Dobrowski 2011). The condition
of the forest should also affect sensitivity to heat, especially tree
water status, as well as species-specific differences in heat toler-
ance, tree age, and biotic stressors like foliar pathogens (Allen
et al. 2015). Finally, interactions among weather, topography,
and forest condition affect fine-scale variation in forest micro-
climate (De Frenne et al. 2019; Frey et al. 2016; Wolf et al. 2021),
which could cause differentiated impacts over relatively short
distances.

Our primary aim in this study was to quantify the effects of the
2021 heat event on foliar mortality in the forests of Oregon and
Washington west of the Cascade mountains. First, we devel-
oped a robust, straightforward method for detecting heat-killed
foliage using machine learning and satellite images acquired
immediately before and after the heat wave. Next, we used geo-
spatial datasets to determine which biophysical factors were as-
sociated with sensitivity to foliar damage across the landscape.
These geospatial datasets represent factors that may mediate
foliage sensitivity to extreme heat and consisted of surface and
air temperatures, topographic variables, dominant tree species,
canopy height, and for Douglas-fir (Pseudotsuga mengziesii ),
budburst phenology and the presence of a foliar pathogen. This
spatially explicit approach was used to (1) examine the associa-
tions between potential contributors to extreme heat sensitivity
in these temperate, conifer-dominated forests and (2) suggest
future controlled experiments or simulations to test causal rela-
tionships. Next, we identified spatial “hotspots” where mapped
foliar mortality was particularly intense and evaluated the eco-
system and cultural context of two of these hotspots: old-growth
forests of Olympic National Park and the plantation forests of
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FIGURE1 | Maximum land surface temperatures in the study area during the heatwave (June 25-29, 2021), derived from the MODIS (Moderate
Resolution Imaging Spectroradiometer) daily daytime land surface temperature product (MYD11A1, Hulley and Hook 2021). Hotspots >47°C in-

clude urban areas, agricultural valleys, and burn scars from the 2020 Oregon wildfires. Isotherm line intervals are 2°C and begin at 36°C. Map lines

delineate study areas and do not necessarily depict accepted national boundaries.

the Oregon Coast Range. These analyses allowed us to describe
how specific heat sensitivities could lead to large future changes
in forest species composition, structure, function, carbon stor-
age, and ecosystem services if extreme heat waves become more
common. Finally, we place the response of PNW forests to the
2021 heat wave in a global context and provide recommenda-
tions for further research.

2 | Materials and Methods

2.1 | Study Area

Based on communications with researchers and forestry profes-
sionals about the regional extent of canopy damage related to

the 2021 heat event (Figure 2), this study focused on forested
lands in the western portions of Oregon and Washington, USA

(Figure 3). Forests of this area are primarily temperate conifer-
ous forests (Franklin and Dyrness 1973). At lower elevations,
dominant canopy tree species include Douglas-fir (Pseudotsuga
mengiesii ), western hemlock (Tsuga heterophylla ), and western
redcedar (Thuja plicata ). At higher elevations, dominant can-
opy tree species include Pacific silver fir (Abies amabilis ) and
noble fir (Abies procera ). Deciduous tree species like Oregon
white oak (Quercus garryanna), red alder (Alnus rubra ), and
bigleaf maple (Acer macrophyllum) are common in wetter val-
ley bottoms and at the margins of non-forest ecosystems that
were historically maintained by frequent fire. Other forests are
locally dominated by other tree species due to particular envi-
ronmental conditions, such as moisture limitation (e.g., Pacific
madrone, Arbutus mengziesii ), and disturbance history, such as
the presence or absence of past logging activity. By percentage
of the study area where a given species has the plurality of basal
area (scale: 900m? grid cells, see “forest condition” section),
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FIGURE2 | Photographic evidence of foliar death on the landscape. (a) Douglas-fir trees near Logsden, OR (latitude: 44.74°N) with scorched foli-
age on west-facing branches. (b) Aerial photograph of Douglas-fir dominated hillsides near Newport, OR (credit: Daniel DePinte, latitude: 44.61°N).

(c) True-color imagery composite of an upper stretch of the Hoh River on the Olympic Peninsula, WA (composite of Sentinel-2 imagery between June
1 and 24, 2021.) (d) The same stretch of the Hoh River, composite dates July 4-21, 2021. Insets in lower right show zoomed-in imagery from white
boxes in the center left of the images. Notable species in this valley include Sitka spruce, bigleaf maple, western hemlock, western redcedar, red alder,

and Douglas-fir.

the five most common species in the study area are Douglas-
fir (Pseudotsuga mengziesii, 65% of forest area), western hemlock
(Tsuga heterophylla ,12.1%), red alder (Alnus rubra , 7.7%), west-
ern redcedar (Thuja plicata, 3.6%), and bigleaf maple (Acer mac-
rophyllum , 3.6%) (Ohmann 2012; Bell et al. 2023). All other tree
species made up the remaining 9.2% of forested area (Table 2).

2.2 | Mapping Scorch

To map forests that exhibited heat killed, or “scorched” upper-
canopy foliage (that which is visible to a satellite), we gathered
multispectral remote sensing data for the entire study region,
collected reference data for forested pixels (scorched vs. un-
scorched pixels), developed a model for classifying forested

pixels as scorched, and applied masking techniques to the result-
ing prediction maps to exclude nonforest pixels and pixels with
spectral properties consistent with scorch prior to the heat event.

The imagery that we used to map scorched foliage was 10-m
spatial resolution pre- and postheat wave composites of sur-
face reflectance (SR) data from the Sentinel-2 L2A product
(Copernicus Sentinel-2 (processed by ESA) 2022). We used a
median composite and approximately 3 weeks of data for pre-
and postheat wave intervals (June 1-24 and July 4-30, respec-
tively), which was the minimum time range that resulted in
relatively cloud-free composites and was sufficiently near in
time to the event to minimize the inclusion of changes in foli-
age associated with other agents and/or phenological changes.
Before compositing, we masked pixels that contained clouds
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FIGURE 3 | Map of scorched foliage, highlighting regional hotspots. Classification of scorch produced at 100 m? resolution was averaged over a
10,000 m? footprint and expressed as percent of hectare scorched. Black background represents areas that were masked out of the analysis. Green
background represents areas within the study area that had <10% canopy scorch (transparent value in legend). Inset in upper left shows study region
in blue. Map lines delineate study areas and do not necessarily depict accepted national boundaries.

or cloud shadows using the “S2 Cloud Probability” layer in
Google Earth Engine (GEE; Gorelick et al. 2017). Briefly, we
used a cloud probability threshold of 30%, above which a pixel
was excluded from consideration if its cloud displacement
index was also greater than —0.5 (calculated using the GEE
operator ee.Algorithms.Sentinel2.CDI) or if it had a value
greater than 0.01 in Sentinel-2 band 10 (the “cirrus” band).
Pixels were also masked if projected shadows intersected with
low reflectance in the NIR band (band 8). We also masked pix-
els that had reflectance values higher than 0.035 in Sentinel-2
band 1 (the “aerosols” band) to exclude observations that were
contaminated by smoke or haze, primarily from fires smolder-
ing in southern Oregon.

To assemble a data set of training points, we used a two-stage
approach. For the first stage, points of each class were chosen
using Planet imagery. For areas of the Oregon Coast where sub-
stantial foliage scorch was documented in ground observations,
we obtained five scene pairs of single-date (one pre-June 24,
one post-July 4), high-resolution image acquisitions from Planet
Scope 2 Superdove satellites (Planet Labs). These 3-m spatial
resolution, true-color images from pre- and postheat wave were
uploaded into GEE for training point selection. Scorch points
were chosen as the centroid of a >3 3 pixel area of forest that
transitioned from visibly green before the heat wave to visibly
orange/red after. For a point to be labeled “unscorched,” the cen-
ter pixel and surrounding 33 area needed to be visibly green
both before and after the heat wave. 971 points were selected in
this way (528 scorch, 443 unscorched).

For the second stage of training data collection, an additional
354 training points were selected. Selection was done via visual
inspection of true-color composites made from the pre- and pos-
theatwave Sentinel-2 imagery described previously. We applied
the same criteria of selecting the centroid of 3 x 3 pixel areas of
either pure scorch or unscorched pixels, in this case, to avoid
pixels that may be influenced by edge effects. Damaged points
were selected within areas that were verified by ground ob-
servations as hotspots of canopy scorch. There were a greater
number of unscorched examples selected in this round of point
selection (52 scorch, 302 unscorched) as extra examples were in-
cluded of locations where scorch did not occur but visible haze
was present in the post-heatwave imagery near smoldering fires
in southern Oregon. These points were included to improve the
classification of pixels as “unscorched” when their spectral sig-
nature was influenced by haze and not tree canopy damage.

To train a random forest classifier (ee.Classifier.smileRan-
domForest in GEE) using these points, we extracted blue (B),
green (G), red (R), and near infrared (NIR) bands from both
pre- and postheat wave Sentinel image composites. For predic-
tors, we used postheat wave composite values in the R, G, and
B bands, the red to green ratio (red-green index, RGI), an index
of vegetation greenness (enhanced vegetation index, EVI; Huete

et al. 2002), an index of whiteness (normalized saturation-value
difference index, NSVDI; Ma et al. 2008), and the difference
between pre- and postheatwave composites in RGI and EVI.
NSVDI was used to help counterbalance changes in band values
that were caused by haze/smoke and not scorch. The classifier
was configured with 50 decision trees, 3 variables per split, a
minimum leaf population of 1, and a bag fraction of 0.5, which
are the default settings in Google Earth Engine. Classification
was done using a probability threshold of 0.5 to mimic the ex-
pectation for a binomial process.

After producing a classified map of scorch/unscorched, we ap-
plied a series of masks to ensure that further analysis only in-
cluded forested areas and forest pixels which did not show signs
of previous damage. To develop a mask to exclude non-forested
pixels from our analysis, we used the Dynamic World near real-
time land use/land cover product (Brown et al. 2022). For every
pixel and every date of Sentinel-2 imagery used in our study, the
Dynamic World product provided the probability that a pixel be-
longed to each of nine possible land cover classes. We made a
preheat wave median composite of class probability values and
then classified each pixel as forest or nonforest. We tested proba-
bility thresholds between 30% and 80% in increments of 10% for
the “tree” class and between 5% and 30% in 5% increments for
all other classes and used combinations of these thresholds to
create a series of forest masks. Based on visual inspection of the
study region and judging effectiveness in discriminating nonfor-
est from forest pixels, we determined the best performing mask
used criteria where pixels were considered forest if they had a
median probability of belonging to the “tree” class greater than
40% as well as a lower than 15% probability of belonging to any
other class. Compared to other thresholds, this combination was
particularly effective at excluding forest roads and clearcut areas
containing grass and shrubs. However, there remained notable
cases where pixels around the perimeter of clearcuts and those
making up narrow forest roads were inappropriately included in
the forest class. To ensure that these areas could not be classified
as scorched forest, we added a 1-pixel (10 m) square buffer to our
base mask using the focal max operator in GEE, which effec-
tively expanded the nonforest-classified areas to include these
edge cases, thus eliminating them from our forest canopy scorch
analyses.

In addition to the mask of nonforested areas, we developed two
masks to ensure we excluded forest pixels that were orange/red
before the heat wave. The first mask used the Monitoring Trends
in Burn Severity (Eidenshink et al. 2007, Picotte et al. 2020,
https://www.mtbs.gov/) raster product to exclude all pixels that
were within the burn perimeter of a wildfire (severity class 1 or
greater) that ignited in the years 2020 or 2021. This was done
to exclude any trees that had been damaged in a wildfire and
still retained fire-scorched dead foliage. The second mask was
developed to handle all other biotic or abiotic causes of damage
preheat wave. This mask was made by training a random forest
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classifier on just the postheat wave composite imagery and ap-
plying it to the preheat wave composite. If a pixel was classified
as “scorched” in the preheat wave imagery, it was masked from
further analysis.

To validate the random forest classifier and to generate an un-
biased estimate of total scorch area for our map, we used the
map of scorch as a stratifier to randomly sample 349 scorch
pixels and 349 unscorched pixels. The centroids of these pix-
els were uploaded as points to Google Earth Engine without
labels. We visually interpreted change in the Sentinel-2 true-
color image composites at each point location and labeled the
actual scorch status for each pixel. These points were used to
apply an error-adjusted area estimation approach (Olofsson
et al. 2013) to generate a bias-corrected scorch area estimate
with a 95% confidence interval. This approach uses an error
matrix constructed for the class of interest (scorch) to quantify
omission and commission rates. The total estimate of scorched
area is adjusted to subtract the percentage of area represented
by the commission rate and add the percentage of area repre-
sented by the omission rate. The error adjustment procedure
uses a similar quantification of the omission and commission
rates to quantify the standard error of the area estimate, from
which the 95% confidence interval is calculated (Olofsson
et al. 2013). Validation of the random forest classifier was
done using the full training data set in both a hold-one-out
cross-validation and a 10-fold cross-validation. Additionally,
we used the training dataset together with the stratified ran-
dom sample of points (n =1983) to conduct a spatially blocked
cross-validation using the “spatial kfold” package in Python.
We used random allocation of blocks to folds, a block size of
10km, and 15 folds to generate a mean and standard deviation
of model accuracy. This method gives an accuracy estimate
that is robust against spatial autocorrelation.

2.3 | Forest Scorch Related to Environmental
Predictors

To quantify how the frequency of forest canopy scorch varied
as a function of different potential drivers of forest sensitivity to
extreme heat—specifically, geomorphology, tree species, stand
height, site climatology, heat wave temperatures, and vegeta-
tive bud burst phenology—we developed a Scorch Probability
Index (SPI). Within discrete intervals across the range of each
data source, we calculated SPI as the proportion of mapped
scorched forest area to total forest area, which demonstrates
where scorch occurrence was disproportionately high relative to
the existing areal coverage under a given set of conditions (e.g.,
for southwest-facing topographic positions). To facilitate the rel-
evant SPI comparisons, we leveraged existing geospatial data
sets to quantify terrain attributes, air and land surface tempera-
tures, tree species dominance, forest canopy height, and tree
phenology (Table 1). In the figures that present the continuous
variables considered (Figures 4-7 and S4), each point in the plot
represents the center value of equally sized bins that were used
to discretize the continuous variable. We also delineated four
“hotspots” of scorch within the study region after visual inspec-
tion of the map of canopy scorch. These hotspots were chosen
based on the intensity of scorch within subregions of the study
area that are biogeographically distinct (Figure S3). Scorch

patterns were analyzed within these hotspots when factors spe-
cific to these biogeographic regions appeared to play a role in
determining scorch severity.

2.3.1 | Terrain Features

To characterize landform types and topographically driven heat
loading, we used the Ecologically Relevant Geomorphology
(ERGo) data set produced by the Conservation Science Partners
(CSP) (Theobald et al. 2015). This data set is available at 10-m
resolution and was aggregated for analysis with other predic-
tors to a common resolution of 30-m using nearest-neighbor
resampling. From this data set, we used the Continuous Heat-
Insolation Load Index (CHILI), which scales between 0 and 1
and is a “surrogate for effects of insolation and topographic shad-
ing on evapotranspiration.” A CHILI value of 0 represents the
coolest, most shaded landscape positions, whereas 1 indicates
the most sun-exposed, warmest positions. The CHILI index was
computed as a function of latitude, slope, aspect (McCune and
Keon 2002), and an aspect “folding parameter” of 22°, which re-
flects the location of “thermal south” as 22° west of due south
(the aspect where cumulative thermal loading is greatest, given
that direct sun in the afternoon leads to higher maximum sur-
face temperatures than direct sun exposure in the morning).
We also used a simplified version of the CSP ERGo landforms
classification to assign a descriptive characterization to land-
scape features (Table S1). We used a 10-m map of elevation (U.S.
Geological Survey, 3D Elevation Program 10-Meter Resolution
Digital Elevation Model) with the ee.Terrain.aspect function in
GEE to assign aspect values to each 10-m pixel, which we resa-
mpled using nearest neighbor to 30-m resolution.

2.3.2 | Air and Land Surface Temperature

We obtained daily minimum, mean, and maximum air tem-
peratures (T,;) at 800m spatial resolution for our entire study
area from the PRISM Climate Group (PRISM Climate Group,
accessed 2023). Daily data for November 20, 2020, through June
31, 2021, were used to calculate maximum T during the heat
wave and as input to the Douglas-fir bud burst model described
in the following section. We used PRISM 30-year climate nor-
mals (1991-2020) at the same spatial resolution for the dates
of the heat wave (June 25-29) to quantify the number of stan-
dard deviations above mean T,,, maximum the daily T, max-
imum values were during the heat wave. The daily time series
and climate normals are subject to uncertainties in station data
availability and spatial interpolation. As such, the PRISM grid-
ded values should be viewed as reasonable estimates, not actual
observations. Data for land surface temperature (T, ) Were
obtained from the MODIS daily land surface temperature and
emissivity product (Hulley and Hook 2021) and were used to
examine potential maximum canopy temperatures experienced
by forests during the heat wave. For each day of the heat wave,
temperatures were obtained for the time points closest to mid-
day (acquisition times across days varied between 12:00 and
13:30 local time) and only values with a quality flag of 0 (“good
quality”) were kept. Daily T ., . grids were reduced to a single
estimate of the highest T experienced across the duration
of the heat wave.

surface

Global Change Biology, 2025

7 of 20

8SUS017 SUOLULIOD BARERID 3|t dde 3y Aq paueob @18 S9p1e VO (88N JO S3INJ 10} ARIQIT BUIUO 48] UO (SUORIPUOD-PUE-SWBIALIOD" A3 1M ARRIq 1 BU1IUO//SANY) SUORIPUOD PUe SIS L 8} 39S *[G202/0T/0E] U0 ARIgIT8UNUO ABIIM * AX1q17 80IARS 159104 [UOIEN - U0YBULLEH 0URISU0D AQ T2502 GOB/TTTT 0T/I0p/w00"A8 1M AReiq 1pul uo//SdRy Wwoiy papeoiumod ‘TT ‘G202 ‘987ZS9ET



TABLE1 | Description of environmental attributes to be related to canopy scorch.

Attribute group Attribute name Attribute description
Terrain Aspect (degrees) Slope direction in degrees
Continuous Heat-Insolation Load Index (CHILI) Surrogate for effects of insolation and
topographic shading on evapotranspiration
(McCune and Keon 2002)
CSP ERgo Landform Descriptive characterization to landscape features
found in the map (Theobald et al. 2015)
Temperature Air temperature (T,; ) maximum (°C) Maximum observed air temperature during June

Air temperature (T

air

Surface temperature (T, .

Forest condition Budbreak date

Canopy height (m)

Dominant species

Swiss needle cast

) maximum anomaly (unitless)

) maximum (°C)

25-29, 2021 (PRISM Climate Group 2023)

Number of standard deviations above the long-term
mean maximum air temperature observed during
June 25-29, 2021 (PRISM Climate Group 2023)

Satellite remote sensing of land surface
temperature (MODIS; Hulley and Hook 2021)

The date of budburst as the first date when
both chilling and forcing requirements
are met (Ford et al. 2016)

Tree canopy height based on Landsat imagery
and GEDI lidar acquisitions (Potapov et al. 2021)

Tree species with the greatest proportion of the
basal area, based on gradient nearest neighbor
imputed forest structure and composition
mapping (Bell et al. 2021, Davis et al. 2022)

Locality and severity of Swiss needle cast as
observed in Aerial detection surveys (U.S. Forest
Service-PNW Forest Health Protection 2023)

Spatially explicit estimates of air temperature, T,; normals, and
T urface €OUld nOt be directly compared with the terrain features
(CHILI, landform type, aspect) because of the mismatch be-
tween spatial resolutions. At a scale of 800-1000m (800 m for
PRISM T,;. and 1km for MODIS T, . ), a variety of aspects,
landform types, CHILI values, landcover types, and tree spe-
cies can exist within a given pixel. Given the spatial mismatch
between terrain and vegetation features (10-m and 30-m reso-
lution) and temperature products (800-m and 1-km resolution),
when temperature relationships were analyzed, we filtered our
map of damage to include only the grid cells in the T,;. and
T urface Products that contained > 75% forest cover and compared
foliar scorch as a function of temperature within species (see fol-
lowing section) to get a relative sense of species sensitivity to
high temperatures.

2.3.3 | Forest Condition

The distribution of tree species was characterized using the 2021
version of the gradient nearest neighbor (GNN; Ohmann and
Gregory 2002) forest attribute maps for Oregon and Washington
(Bell et al. 2021). As applied in Oregon, Washington, and
California, GNN imputes measurements from USDA Forest
Service Forest Inventory and Analysis—a national forest inven-
tory of USA forests (Burrill et al. 2024)—to all forested 30-m

pixels based on the similarity between plots and pixels in terms
of climate, topography, and Landsat multispectral satellite im-
agery (Bell et al. 2021; Davis et al. 2022). For each pixel in the
map (30-m resolution), tree species are assigned using the spe-
cies with the greatest proportion of the basal area as measured
on the plot imputed as the nearest neighbor. Though pixel-level
uncertainty of relative abundance, and thus dominance, of tree
species for these maps can be high, analyses at landscape to re-
gional levels like ours are well supported (Bell et al. 2023). Still,
over- or underrepresentation of some species could bias our re-
sults. Canopy height was obtained from a global forest canopy
height map (Potapov et al. 2021) produced at 30-m spatial reso-
lution, using Global Ecosystem Dynamics Investigation (GEDI)
spaceborne LIDAR data and Landsat multispectral imagery.

To test the effect of the timing of Douglas-fir spring budburst
(leaf phenology) on sensitivity to damage, we used a budburst
prediction model (Ford et al. 2016), which predicts the date of
budburst as the first date when both chilling and forcing re-
quirements are met. Chilling and forcing were calculated as a
function of hourly temperature, beginning November 1, 2020,
and running through the beginning of the heat wave (June 24,
2021). Spatially explicit estimates of daily minimum and max-
imum T,;, from PRISM (see previous section) were disaggre-
gated to hourly values using the MEteoroLOgical observation
DISaggregation Tool (MELODIST) (Forster et al. 2016). Within
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FIGURE 4 | Relationship between stand height, percent of a giv-
en species on the landscape, and percent of the scorch damaged forest
within the five most common species in the study area. Canopy heights
are binned at an interval of 1 m. Species labels are assigned to pixels
based on the species with the greatest proportion of the basal area with-
in the stand that the pixel represents (900 m? footprint).

each pixel, the first date when both chilling and forcing require-
ments were met was assigned to the pixel as the estimated date
of budburst.

To examine the potential role of a foliar pathogen, Swiss needle
cast (SNC, Nothophaeocryptopus gaeumannii), we incorporated
into this study a map of SNC visible symptoms produced during
an Aerial Detection Survey (ADS) campaign in 2018 (US Forest
Service-PN'W Forest Health Protection 2023). Survey flights
were flown in late April to early June covering 2.7 million hect-
ares of forest in western Oregon and Washington. Observers
aboard the aircraft identified stands of Douglas-fir with yellow-
brown foliage discoloration, which is a symptom of SNC infec-
tion. Polygons were drawn around affected stands and labeled
as either moderately or severely infected. Both infection classes
are used in this study to identify the near-coast zone of wide-
spread SNC infection in the Coast Range (Figure 3). No explicit
spatial analysis was done with these data because visible symp-
toms can vary from year to year within a given stand and the
mapping methodology used in the survey can result in variation
in mapped polygon locations between survey dates. The 2018
ADS survey was the nearest in time to the heat wave and was
used in this study to identify the general zone of widespread
SNC infection (Shaw et al. 2021).

2.4 | Statistical Analysis

To test the significance of relationships between scorch oc-
currence and potential drivers of sensitivity, we drew a spa-
tially stratified sample of observations from the study area
and used them to conduct two analyses: logistic regression
and effect size quantification using Hedges' g. A sampling
grid with ~950m spacing was used to draw an initial sample
(n=400,000 points), within which there were 72,370 forested
points. From the pool of forested pixels, we selected every
dominant species type with at least 2000 points (n=5) in the
data set and analyzed: (1) the relationship between covari-
ates and the probability of scorch occurrence and (2) effect
sizes between the distribution of covariates for scorched and
unscorched forest pixels. We did not apply denser sampling,
which would have provided a sufficient sample size to exam-
ine all dominant tree species, to avoid spatial autocorrelation
in the sample that could bias these statistical tests.

To quantify whether potential drivers were significantly re-
lated to increases or decreases in the probability of scorch, we
fit multiple logistic regressions (using the glm function, “stats”
package, R Core Team (2024)) between scorch occurrence and
a single covariate for each regression: canopy height, CHILI,
maximum heatwave T .. ., heatwave T, T anom-
aly, and the number of standard deviations heatwave T,
was above normal T, . . Relationships between each of
these covariates and scorch within species were deemed sig-
nificant if the 95% confidence interval for the estimated slope
of scorch probability in logit space with respect to the covari-
ate did not include 0.

To quantify effect sizes we calculated Hedges' g for the same
covariates listed above, using the hedges_g function in the
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TABLE 2 | Landscape representation and scorch damage in stands where the given species has the greatest proportion of the basal area (stand

scale 900 m?).

Species

Presence in forest

Scorch
Presence in proportionality
scorched forest Index

% of scorch:

Common name Scientific name Area (ha) Percent Area (Ha) Percent % of forest
Douglas-fir Pseudotsuga mengiesii 4,096,873 65.3 138,187 56.5 0.9
Western hemlock Tsuga heterophylla 760,174 12.1 44,970 18.4 1.5
Red alder Alnus rubra 481,115 7.7 15,719 6.4 0.8
Western redcedar Thuja plicata 225,972 3.6 13,332 5.5 1.5
Bigleaf maple Acer macrophyllum 225,706 3.6 9814 4.0 L1
Pacific silver fir Abies amabilis 130,631 2.1 1177 0.5 0.2
Grand fir Abies grandis/concolor 52,087 0.8 1954 0.8 1.0
Sitka spruce Picea sitchensis 49,261 0.8 4624 1.9 2.4
Black cottonwood Populus balsamifera 32,423 0.5 1801 0.7 1.4
ssp. Tric.
Oregon ash Fraxinus latifolia 25,332 0.4 1882 0.8 1.9
Tanoak Lithocarpus densiflorus 22,832 0.4 952 0.4 1.1
Pacific madrone Arbutus menziesii 20,827 0.3 1660 0.7 2.0
Noble fir Abies procera/shas./magn. 17,950 0.3 207 0.1 0.3
Umbellularia Umbellularia californica 16,733 0.3 446 0.2 0.7
Lodgepole pine Pinus contorta 15,807 0.3 1200 0.5 1.9
Oregon white oak Quercus garryana 14,196 0.2 2501 1.0 4.5
All other species 82,034 1.3 3969 1.6 1.2
Total 6,269,953 100 244,395 100 1.0

Note: Listed species are the 16 most common species by forest area, with all remaining species grouped in “All other species”. Color coding shows which species had a

scorch proportionality index below 1 (blue) or above 1 (red).

“effectsize” package in R (Ben-Shachar et al. 2020). g values
were interpreted as significant if the 95% confidence interval
based on a two-tailed test did not span zero.

3 | Results
3.1 | Spatial Extent of Canopy Damage

In the 6.3 million ha of forest in our study area (western
Oregon and Washington), we detected 244,395ha of forest
canopy with dead foliage (Figure 3), which is greater than
250% of the area previously reported based on spatially lim-
ited aerial surveys (U.S. Forest Service-PN'W Forest Health
Protection 2023). Overall accuracy of the map was 92.4%
assessed using hold-one-out cross-validation, 91.2% using
10-fold cross-validation (Table S2), and 94.1% on average (stan-
dard deviation 5.5%) using spatially blocked cross-validation.
Using the error-adjusted area estimation procedure given by
Olofsson et al. (2013), we found that 293,546 ha were scorched
(95% confidence interval=233,674-353,418ha), which is
greater than our mapped scorch area and is consistent with
omission error being greater than commission error in cross-
validation results (Table S2).

3.2 | Factors Influencing Spatial Patterns
of Sensitivity

The top five species by forest area—Douglas-fir (Pseudotsuga
mengziesii ), western hemlock (Tsuga heterophylla ), red alder
(Alnus rubra ), western redcedar (Thuja plicata ), and bigleaf
maple (Acer macrophyllum)—were also the top five species in
mapped scorch area. However, the Scorch Probability Index (SPI)
showed that western hemlock, western redcedar, and bigleaf
maple experienced disproportionately high amounts of canopy
scorch (Table 2). In contrast, Douglas-fir and red alder had an SPI
below 1, indicating that the fraction of mapped scorched forest
they represent is less than the fraction of total forest they rep-
resent. Notable species for their high sensitivity to heat damage
were Sitka spruce (Picea sitchensis , SP1=2.4), black cottonwood
(Populus trichocarpa , SPI=1.4), and Oregon ash (Fraxinus lati-
folia , SPI=1.9). High-elevation species such as Pacific silver fir
(Abies amabilis , SP1=0.2) and noble fir (Abies procera , SP1=0.3)
experienced relatively little heat damage.

In addition to dominant tree species composition, forest height
and phenological status also appeared to affect patterns of fo-
liar scorch. Among four of the top five most damaged species,
foliar scorch was more common in stands with shorter trees
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(Figure 4). Effect sizes and logistic regression slope parame-
ters between SPI and canopy height were negative for three of
the five most common dominant tree species (Tables S3 and
S4). An exception was western hemlock, which had SPI above
1 in forests with height >35m, particularly in older forests
along rivers in the western portion of the Olympic Peninsula
(effect size and slope significantly positive—Tables S3 and S4).
Finally, within stands dominated by Douglas-fir, trees that
broke bud between April 19 and May 12 were more likely to
experience damage than those that broke bud before or after
those dates (Figure 5).

Across the study area, there was a tendency for higher propor-
tions of foliar scorch (SPI >1) on terrain positions with greater
thermal loading. Specifically, mapped foliar scorch was more
common when CHILI was greater than 0.63 (vertical dashed line
in Figure 6a). Cooler north- and east-facing slopes largely fell
under this threshold and had less scorch damage (Figure 6b,c),
whereas south- and west-facing slopes were largely above this
limit and made up a higher proportion of the mapped canopy
scorch. CHILI values for valleys and ridge features had distinct
SPI peaks at ~0.68, above the aforementioned threshold (0.63)
where SPI rises above 1 (Figure 6a). Forests experiencing scorch
had significantly greater CHILI values for forests dominated
by three of the five most common dominant tree species (not
bigleaf maple or western redcedar; Tables S3 and S4). However,
valleys accounted for a larger proportion of mapped scorched
forest (i.e., valleys account for 16% of the forested landscape, but
22.7% of scorched forest) than did peaks/ridges (7% of forested
landscape, 6.6% of scorched forest), possibly due to the lower
air temperature extremes experienced by higher elevation land-
scape features.

Patterns of canopy scorch within species across the range of
T, max @nd Ty anomaly during the heat wave (Figure 7)
showed that scorch prevalence increased above a maximum T,
of approximately 38°C. SPI values exceeded 1 at different thresh-
olds for different species, with western redcedar being the most
vulnerable (40°C) and bigleaf maple being the most tolerant
(42.5°C). The general pattern of rising mapped scorch prevalence
to SPI values greater than 1 beyond 40°C can be seen in observa-
tions of maximum T, . as well (Figure S4). Forests experienc-
ing scorch had significantly greater maximum T, and T, . .
for forests dominated by four of the five most common dominant
tree species (no red alder; Tables S3 and S4). T, ;. . values more
closely correspond to sunlit leaf temperatures (T,,,), Which typi-
cally exceed air temperatures by 5°C-10°C (e.g., Still et al. 2023).
In addition to apparent thresholds in maximum T, c;and T_, . ..
the size of the maximum heat wave temperature anomaly was
also relevant to foliar sensitivity. Heat wave air temperatures
were at least 2.5 standard deviations above mean T, . for
the vast majority of forested areas, and across species the SPI
exceeded 1 at anomalies of 3.7 standard deviations or greater
(Figure 6). Forests experiencing scorch had significantly greater
maximum T,, anomalies for forests dominated by the five most
common dominant tree species, but no significant effects were
noted for bigleaf maple when examining temperature anoma-
lies as standard deviations above the mean (Tables S3 and S4).
Western redcedar had a high proportion of scorch at relatively
low absolute temperatures but high temperature anomalies,
while in comparison bigleaf maple was relatively insensitive to
the magnitude of anomalies. Instead, foliage disproportionately
died in this species where it occupied low-lying landscape posi-
tions, such as valley bottoms and low hillslopes, where the heat
wave led to overall higher T (Figure 7).

air-max
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FIGURE 6 | Influence of terrain features on scorch. (a) Scorch
Proportionality Index (SPI) within a given bin of the Continuous Heat-
Insolation Loading Index (CHILI). Color scheme matches the scheme
used in the map in Figure S6b. Distribution of CHILI values within
different landform types. Percentages next to landform labels indi-
cate the percent of the study area that falls into that landform type (see
Table S1). All distributions sum to 1. (c) Percentage of scorched forest by
hillslope aspect within equal area 45° slices. Nearly half of the scorched
forest was within three aspects (S, SW, and W).

3.3 | Regional Variation in Canopy Scorch

Hotspots of mapped forest canopy scorch occurred in the
Olympic Peninsula (49,664ha), the Coast Range of northwest
Oregon and southwest Washington (45,333 ha), and the Cascade
Mountain foothills in the northern half of Oregon (35,407 ha)
and in Washington (24,685 ha). Regional delineations are shown
in Figure S3. On the Olympic Peninsula, damage was most ex-
tensive in Olympic National Park and Olympic National Forest,
where it was conspicuously severe in the floodplain terraces and
low elevation hillslopes of the river valleys west of the Olympic
divide. Mapped canopy scorch was also prominent in the river
valleys of the western foothills of the Cascade Mountains in

both Washington and Oregon (Figure 3). In the Oregon Coast
Range, which is characterized by lower elevation mountains and
steeper, narrower river valleys, there was a more even balance
between river valley hotspots and distributed canopy scorch on
hillslopes.

4 | Discussion

The 2021 heat wave in the Pacific Northwest of North America
was an uncontrolled test of the thermal tolerance of trees in their
native environments. Overall, our results suggest that species
distributions, species sensitivities to temperature extremes, and
biotic stressors are important contributors to the unique regional
hotspots of foliar mortality we observed. To our knowledge, there
are no known examples of heat wave-induced foliar death at this
scale in the historical record, making this event unique in the mod-
ern era. Further investigation into the specific conditions which
are required to cause foliar death at this scale is merited, in an-
ticipation of more common and more extreme future heat events.

A combination of high heat and high solar insolation can injure
foliage by damaging photosystems and disrupting many aspects
of photosynthesis (Teskey et al. 2015; Berry and Bjorkman 1980;
Bongi and Long 1987). Foliar damage and death may also occur
from membrane leakage or protein denaturation (Lancaster and
Humphreys 2020; Marias et al. 2016). Because species and gen-
otypes vary in temperature thresholds that cause foliar death
(Lancaster and Humphreys 2020, Marias et al. 2016), these dif-
ferences may partly explain spatial variation in foliage death.
The temperature thresholds we observed (i.e., temperatures re-
sulting in SPI > 1) were close to observed thermal limits of leaf
photosystems. Irreversible damage to leaf photosystems begins
at leaf temperatures above 40°C-45°C for many species (Teskey
et al. 2015). Future research should aim to more precisely quan-
tify critical thresholds (in both temperature and duration of expo-
sure) in highly sensitive species, both in the presence and absence
of high solar insolation. These studies would enhance our ability
to predict the extent of foliar mortality expected under a given set
of heat wave conditions and topographic variables.

Of the 10 most common tree species we studied, high scorch
probability index values (SPI >1) were observed for forests
dominated by three shade-tolerant conifers (western hemlock,
western redcedar, and Sitka spruce) and forests dominated
by three riparian/wetland angiosperms (black cottonwood,
Oregon ash, and bigleaf maple). This was surprising be-
cause these forests typically occupy geographic areas near
the coast or topographic positions buffered from extremes
in temperature and vapor pressure deficit (Davis et al. 2019;
Dobrowski 2011) (Table 2). Thus, compared to species such as
red alder and Douglas-fir, these species may not have had the
same natural selection pressures for high heat tolerance. That
is, they may have evolved a lower thermal threshold for dam-
age to photosystems and other cellular structures, as well as a
lower ability to resist wilting caused by uncontrolled transpi-
ration. In contrast, upland forests dominated by Douglas-fir
experienced extreme temperatures but were less sensitive to
the heat wave (SPI <1). After disturbances such as fire, this
shade-intolerant, early-seral species often regenerates in high-
light environments with extreme surface temperatures. Thus,
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cies. Only 800 m grid cells with > 75% forest cover were included in the analysis.

we hypothesize that low scorch resulted from natural selection
for higher heat tolerance. This is also consistent with the ob-
servation that functional and morphological traits associated
with leaf thermal tolerance are common in drought-tolerant
tree species (Miinchinger et al. 2023), since habitats that are
exposed to extreme temperatures may also be drier locations.
For high elevation species that also exhibited SPI <1, canopy
scorch was often observed in forests where T . . . went
above 40°C, but those conditions were rare for these species
in our study area (see Pacific silver fir in Figure 7). Therefore,
our results suggest that higher elevation species were not pro-
tected by higher thermal tolerances but rather had less ex-
posure to high temperature extremes in the 2021 heat wave
because of their topographic position (Figure 6b).

The change in canopy color due to heat-damaged foliage al-
lowed us to explicitly map impacts across the study region.

However, the heat wave may have also had negative effects
on trees in areas where foliar damage was undetected (Ford
et al. 2016). Heat waves that occur early in the growing sea-
son can slow growth, even when signs of stress are not appar-
ent (Harrington et al. 2023). In Ontario, Canada, there was a
spring heat wave in 2010 that coincided with leaf expansion of
sugar maple trees (Acer saccharum Marsh.). This heat wave
was associated with an earlier cessation of diameter growth,
lower annual growth, and later onset of diameter growth the
next year (Stangler et al. 2016). In contrast, dendrometer ob-
servations of 21 tree species across Europe showed that a late-
season heat wave caused stem dehydration and temporary
bole shrinkage, but no clear reduction in annual growth given
that most of the seasonal growth was already completed by
that time (Salomodn et al. 2022). Thus, extreme heat seems to
have a larger impact on tree growth when it occurs early in the
growing season. In addition to reducing growth, extreme heat
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may pre-dispose trees to damage from other biotic and abiotic
stressors, ultimately leading to tree mortality after several
growing seasons (Andrus et al. 2024; Franklin et al. 1987). It
is still unclear whether tree mortality will increase as a result
of the 2021 heat wave, or how tree growth has been impacted
across the region. Future research which focuses on quanti-
fying lasting physiological impairment or enhanced mortality
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rates among scorched populations of trees would lend import-
ant insight into the long-term consequences of this event.

At the local scale, species interact with unique combinations of
biotic and abiotic factors that are not fully captured in regional
scale analysis. In particular, tree species dominance appeared to
not only play a major role in determining forest canopy scorch,
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but also constrained the effects of other variables, such as can-
opy height (Figure 3) and temperature (Figure 6). In order to
better understand more localized interactions we identified two
regional scorch hotspots to describe in greater detail: Olympic
National Park, where old-growth trees had extensive foliage
damage, and the Oregon Coast Range, where foliage damage was
mostly observed in young Douglas-fir plantations and where a
foliar pathogen affecting Douglas-fir is widespread.

4.1 | Canopy Scorch in Old-Growth Forests
of the Olympic National Park

We found extensive areas of foliage scorch in portions of the
Olympic Peninsula, WA, including portions of the Olympic
National Park (ONP), a 373,000ha World Heritage Site and
International Biosphere Reserve. The ONP contains ~150,000 ha
of forest, 69% of which has been classified as old growth (Bell
et al. 2023; Davis et al. 2022). Forest dominated by western hem-
lock (53.3%), western redcedar (10.7%), and Sitka spruce (1%)
accounted for 84% of the canopy heat damage within the park.
These forests were concentrated in the Humptulips, Quinault,
Queets, Hoh, and Bogachiel river valleys (Figures S6 and 8).
Ninety-five percent of the damage to these three species hap-
pened at elevations between 33 and 655m, where T, was
4-5 standard deviations above average. Absolute T, . . -
was 40°C-42°C and CHILI values tended to be high, indicating
high sun exposure (Figure S6). From June to July, there may be
cloud cover for 40%-50% of daylight hours in this region (Dye
et al. 2020). Cloud cover provides critical shielding from direct
sun and mitigates the negative effects of heat waves in other
summer-dry West Coast climates (Clemesha et al. 2018). In con-
trast to the cooler, wetter conditions of the Olympic Peninsula,
the heat wave of 2021 was associated with clear skies, high tem-
peratures, and adiabatic heating at low elevations—conditions to
which western hemlock, western redcedar, and Sitka spruce may
not have been acclimated or genetically adapted. The apparent
sensitivity of some old-growth forests of the ONP is concerning
because of their great ecological and societal importance. The
ecological and societal values of these old forests include storage
of large quantities of carbon (Gray and Whittier 2014), support-
ing biodiversity (Spies et al. 2018), providing cooler microcli-
mates (Wolf et al. 2021; De Frenne et al. 2019; Frey et al. 2016;
Kim et al. 2022; Schowalter 2017), and acting as refugia from
some high-severity fires (Gavin et al. 2003; Huff 1995). If these

ancient forests experience repeated events of widespread foliage
death, or if scorch impacts are exacerbated by other stressors, we
may lose many of the ecological and economic benefits these for-
ests provide.

4.2 | Canopy Scorch in Plantation Forests
of the Oregon Coast Range

The mountains of the Oregon Coast Range span from southern
Oregon to southwest Washington, rising to a maximum eleva-
tion of 1250 m. These mountains, known for having some of the
most productive forests in the world (Diaz et al. 2018), have a
large component of fast-growing, even-aged stands of Douglas-
fir and western hemlock, managed on short harvest rotations
(35-55years) (Table 3). Douglas-fir, which is among the most
valuable timber species worldwide, is used for plantation forestry
on every forested continent (Gilson and Maguire 2021; Lavender
and Hermann 2014). After the 2021 heat wave, these Douglas-fir
and hemlock forests had widespread foliage scorch with notable
hot spots north of Florence, OR (latitude: 43.972° N), includ-
ing near-coast stretches of the Necanicum, Nehalem, Nestucca,
Siletz, and Yaquina Rivers, the watersheds of several rivers that
drain into Tillamook Bay, and the headlands to the north and
south of the mouth of the Columbia River (Figure 9a).

The OR Coast Range has a Mediterranean climate (~8-month
wet season, ~4-month dry season) but also has a pronounced
rain shadow that makes areas west of the Coast Range crest
wetter, cloudier, and milder than the inland Willamette Valley.
Therefore, it is plausible that the lack of acclimation to high tem-
peratures and adiabatic heating at low elevations explain why
damage hotspots occurred primarily west of the Coast Range
crest (Figure 9a) and near the coast (Figure 9b). In addition,
leaf death was associated with the timing of budburst. Using a
model to predict the timing of vegetative budburst in Douglas-
fir (Ford et al. 2016), we found that foliar death was more com-
mon on trees that burst bud ~6-9weeks before the heat wave,
compared to trees that burst bud earlier or later (Figure 5). This
effect was corroborated by field observations in the northern
half of the Coast Range. At low-elevation sites, Still et al. (2023)
noted particularly strong patterns of dead first-year foliage and
tissue necrosis in expanding shoots. In contrast, Douglas-fir in
the southern part of the Coast Range experienced equally high
temperatures, had an earlier date of bud burst (predicted), and

TABLE 3 | Landscape representation of the six most common species in the Coast Range region, as described for Table 2.

Species Presence in forest Presence in scorched forest Scorch proportionality index
Common name Area (Ha) Percent Area (Ha) Percent % of scorch: % of forest
Douglas-fir 422,100 61.0 25,758 57.3 0.94

Western hemlock 103,583 15.0 10,802 24.0 1.61

Red alder 116,962 16.9 4,686 10.4 0.62

Western redcedar 8,050 1.2 765 1.5 1.46

Bigleaf maple 9,166 1.3 392 0.9 0.66

Sitka spruce 28,144 4.1 2,219 4.9 1.20

Note: Color coding shows which species had a scorch proportionality index below 1 (blue) or above 1 (red).
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had less leaf damage (Figure 3). Early flushing individuals may
have had an enhanced ability to resist wilting and tissue damage
during the heat wave, perhaps because they were able to trans-
port water more effectively to the new shoots, regulate leaf os-
motic potential, and dissipate excess solar energy. In contrast,
late budburst dates tended to occur at high elevations, where
maximum heatwave T,; and T . . were lower than at low ele-
vations, likely leading to lower SPI in these trees.

In addition to the interaction of foliar phenology and heat wave
temperatures, patterns of Swiss needle cast (SNC) infection cor-
responded closely with scorch hotspots. SNC is a common foliage
disease of Douglas-fir near the coast in Oregon and Washington
(Shaw et al. 2021). The fruiting bodies of the ascomycete micro-
fungus, Nothophaeocryptopus gaeumannii block needle stomata
(Figure 9c¢), causing chronic limitation of transpiration and carbon
assimilation, which leads to poor foliage retention and reduced tree
growth (Manter 2002). The near-coast zone, where SNC is most
prevalent (Shaw et al. 2021), had the most foliage scorch, and scorch
decreased with increasing distance from the coast (Figure 9b).
Trees with a history of SNC infection may have been more suscepti-
ble to foliage death in the 2021 heat wave because of generally poor
health compared to more inland trees (Saffell, Meinzer, Voelker,
et al. 2014; Saffell, Meinzer, Woodrulff, et al. 2014). SNC may have
also reduced transpirational cooling (Manter 2002), driving foliage
temperatures higher than in healthy needles, increasing the proba-
bility of foliar death. This is supported by observations in the Coast
Range where scorch mostly occurred on the new foliage, but in the
SNC areas, scorch was also pronounced on second-year needles (fig
9d, Still et al. 2023). It remains to be seen whether the 2021 heat
wave will have measurable effects on long-term productivity or
mortality of Coast Range Douglas-fir.

4.3 | Extreme Heat Poses a Multifaceted Challenge
to Forests

Heat and drought events have been associated with increases
in tree mortality in all of Earth's major forest ecosystems (Allen
et al. 2015; Hammond et al. 2022). Our work highlights the com-
plex interactions among biotic and abiotic factors that influence
forest responses to extreme heat. These interactions resulted in the
complex patterns of forest canopy scorch we observed after the 2021
heat wave in the PNW. Although this heat wave was remarkably
unusual, similar heat waves were responsible for record-breaking
temperatures across South America in the summer of 2022 (Rivera
et al. 2023). In the winter of the following year (i.e., August and
September 2023), the same region experienced another heat wave.
Early reporting (Kew et al. 2023) indicated that this heat wave was
also characterized by record-setting, out-of-season temperatures
that caused substantial damage to vegetation.

The factors that affected leaf scorch from the 2021 heat
wave included maximum temperatures, temperature anom-
alies, degree of sun exposure, species distributions, species-
specific thermal tolerances, topographic position, timing of
budburst, and perhaps the presence of foliar pathogens. Our
findings revealed disproportionately greater damage to some
late-successional, shade-tolerant tree species, such as west-
ern hemlock and western redcedar. If heat waves increase
in frequency and severity, we may see major changes in the

composition of old-growth forests and reduced productivity of
Coast Range plantation forests.

The effects of rare extreme events are represented poorly in the
models used to project forest change, resulting in overly opti-
mistic projections of ecosystem resistance and resilience to cli-
mate change (Allen et al. 2015; Harmon and Bell 2020). Our
remote sensing approach provides a valuable starting point for
quantifying the effects of heat waves and other emerging forest
disturbances (Kennedy et al. 2014; McDowell et al. 2015) and
could be used to understand the effects of other heat waves on
forest canopies in other regions. Our results also point to new
laboratory, greenhouse, and field studies that would be valuable
for increasing our understanding of how extreme heat leads to
ecological consequences.
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