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Abstract
1.	 Correlative species distribution models (SDMs) are essential tools in conservation 

biology, global change assessment and reserve prioritization, linking species 
occurrences with environmental conditions. These models often rely on coarse-
scale spatial and temporal predictors, overlooking fine-scale environmental 
conditions experienced by organisms. Additionally, SDMs commonly use short-
term occurrence data to make long-term predictions, which can reduce reliability.

2.	 We hypothesized that long-term and finer temporal resolution data would 
provide more accurate predictions by capturing population variability under 
microclimatic conditions. Using data from 37 bird species in the H. J. Andrews 
Experimental Forest (Oregon, USA), we built SDMs with a 10-year (2010–
2019) dataset of breeding season observations at 184 sites. We evaluated four 
modelling frameworks that differed in temporal extents (short-term [1 year] 
vs. long-term [10 years]) and resolution (fine vs. coarse) of environmental data. 
Predictors included hourly microclimate temperatures beneath the forest canopy 
and LiDAR-derived vegetation variables. We evaluated interannual transferability 
and compared model performance based on temporal extent, resolution and 
species traits.

3.	 Temporally dynamic (long-term) models with higher resolution microclimate data 
outperformed static and short-term models (AUC and TSS difference ~ 0.06, 
difference in unreliability index of ~0.04) and were more accurate and spatially 
consistent, particularly for migratory species. Increased temporal resolution 
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1  |  INTRODUC TION

Species distribution models (SDMs) have emerged as indispensable 
tools in applied ecology. They spatially assess species distributions 
using a mechanistic or, more commonly, correlative approach (Elith 
& Leathwick, 2009; Zurell et al., 2020, 2022). Applications include 
conservation biology (Guisan et al., 2013; Zurell et al., 2022), global 
change assessment (Newbold et al., 2020; Wenger et al., 2011), spe-
cies interactions (Wenger et al., 2011) and spatial reserve prioriti-
zation (Bicknell et al., 2017; Carroll et al., 2010). Despite their value 
in predicting the potential impacts of global change, SDMs typically 
rely on coarse-scale spatiotemporal data due to their widespread 
availability (Araújo et al., 2019). However, this approach overlooks 
the fine-scale ecological conditions experienced by many species, 
creating a mismatch between the scale of predictor data and the 
fine-grained, long-term needs of conservation decisions (Guisan 
et al., 2013; Mateo et al., 2019). Consequently, only 1%–5% of con-
ventional correlative SDM studies are relevant for local and regional 
management decisions (Araújo et  al.,  2019; Guisan et  al.,  2013). 
However, local and landscape-scale management decisions increas-
ingly require accurate models that can predict biodiversity responses 
to changing site-level conditions (Harris & Betts, 2023; Lembrechts 
et al., 2019).

The goal of SDMs is often to extrapolate to new locations and 
time periods under environmental change (Araújo et  al.,  2019; 
Engler et al., 2017; Rousseau & Betts, 2022) to inform conserva-
tion and management planning. However, conventional SDMs are 
typically static in time, integrating species occurrence and envi-
ronmental data collected at a single point in time (i.e. short tem-
poral extent) or averaged over several years or seasons (i.e. coarse 
temporal resolution; Milanesi et  al.,  2020; Zurell et  al.,  2022). 
These models assume that species are in equilibrium with their 
environment, occupying all suitable habitats, and that habitat 
relationships remain unchanged over time (Zurell et  al.,  2022). 
However, mobile species commonly violate this assumption, as 
they often exhibit significant year-to-year variations in their dis-
tribution patterns, due to behavioural flexibility (Chávez-González 
et  al.,  2020; Frey, Hadley, & Betts,  2016), variation in resource 

availability and population fluctuations (Yegorova et  al.,  2013). 
Short-term data generally do not capture this temporal variability. 
When the ecological goal is to predict where a species occurs at 
a variety of scales and through time, alternatives to correlative 
SDMs exist in the form of process-based (i.e. mechanistic) mod-
els, such as ecophysiological models (Kearney & Porter,  2009), 
population models (Akçakaya, 2000), individual-based population 
models (Railsback & Harvey, 2002) and dynamic occupation mod-
els (MacKenzie et al., 2003). However, these approaches require 
much more a priori knowledge and experimental data, making 
them resource-intensive (Briscoe et  al.,  2021, 2023; Dormann 
et al., 2012; Tourinho & Vale, 2023).

Birds are an ideal taxon for studying biogeography, global 
change and ecology in general due to their ecological diversity, 
sensitivity to environmental changes and the abundance in oc-
currence data (Anderle et al., 2024; Bonnet et al., 2002; Gregory 
& van Strien,  2010; Zurell et  al.,  2022). Their life history traits, 
particularly body size and migratory behaviour, make them 
well-suited for examining responses to microclimatic variation. 
Indeed, large-scale climate and land-use dynamics strongly influ-
ence general bird distribution patterns, but forest and landscape 
characteristics mediate local responses (Northrup et  al.,  2019; 
Rigo et  al.,  2024). Smaller-bodied species, with a higher mass-
specific metabolic rate (Brown et  al.,  2004; Kleiber,  1932) and 
surface-to-volume ratio (i.e. poorer thermoregulatory ability), 
are more vulnerable to microclimatic fluctuations in time (Henry 
et al., 2023; McKechnie & Wolf, 2010). Conversely, larger bodied 
species exhibit greater physiological resilience to temperature ex-
tremes and respond more slowly to small microclimatic variations 
(Kleiber, 1932; McKechnie & Wolf, 2010). Migratory birds have a 
high movement capacity and are able to engage in adaptive habi-
tat selection decisions on a year-by-year basis, making them more 
sensitive to interannual fluctuations (Doligez et al., 2002; Vitasse 
et al., 2021). On the other hand, resident and partially migratory 
species respond more quickly to intraannual changes in environ-
mental conditions (Boyles et al., 2011; Cox & Cresswell, 2014). For 
these reasons, temporally explicit models accounting for local mi-
croclimate variation should be more reliable for informing habitat 

improved performance for small-bodied species, whereas long-lived, larger 
species performed similarly in short- and long-term models.

4.	 Synthesis and applications. To our knowledge, this is the first empirical study to 
demonstrate the benefits of long-term dynamic SDMs with spatially matched 
predictor variables. If predicting the future of biodiversity under land-use and 
climate change is the goal, practitioners should consider additional investment in 
multi-year biodiversity monitoring rather than single-year ‘snapshots’ of species 
distributions.

K E Y W O R D S
bird distribution, correlative models, dynamic models, long-term observations, microclimate, 
old-growth forests, SDMs
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    |  3ANSELMETTO et al.

management and conservation, such as identifying the location 
and variability of refugia under global changes (Elo et  al.,  2023; 
Lembrechts et al., 2019).

Our overall objective was to test the degree to which long-term 
distributional data improve SDMs' capacity to predict new locations 
in different time periods. We used long-term datasets on bird distri-
butions (37 species) and under-canopy temperatures collected over 
10 years in a forest mosaic across a 900-m elevational gradient at 
the H.J. Andrews Experimental Forest (HJA) in the Cascades Range 
(western Oregon, USA; Figure 1). The dataset provides a rare oppor-
tunity to assess how long-term population dynamics and fine-scale 
microclimatic variation influence SDM predictions in time (i.e. over 
10 years) and space (i.e. across the HJA forest mountain landscape). 
We evaluated how SDMs that vary in temporal extent (short-term 
vs. long-term) and resolution (fine vs. coarse) to determine their 
ability to forecast bird distributions at the landscape scale over 
time. Specifically, we compared four SDM frameworks (Figure  2): 
(i) a single random year of species observations and environmental 

conditions (reflecting the short temporal extent of most SDMs), 
(ii) predictor variables with microclimate conditions averaged over 
10 years, and the proportion of time a species is observed at a given 
site across all years (representing models using climate normal and 
response data collected over several years), (iii) a long-term ensem-
ble of annual models with model predictions averaged across years 
and (iv) a long-term dynamic SDM approach that accounts for spa-
tiotemporal autocorrelation.

Our central hypothesis was that SDMs using long-term data, by 
capturing interannual population and distribution dynamics, should 
provide more reliable predictions to new locations and time periods. 
However, we also expected that this effect could be mediated by 
species longevity and movement capacity (i.e. life history and eco-
logical traits). We expected that long-term dynamic models should 
be particularly important for migratory species with high interannual 
variation in population sizes and that fine-scale spatiotemporal pre-
dictors would improve niche modelling for small-bodied species with 
relatively short lifespans.

F I G U R E  1  (a) Location of the H. J. Andrews Experimental Forest (HJA) in the Cascade Range, USA. (b) Map of vegetation height (from 
1-m canopy height model) and sampling locations for bird occurrence and temperature data loggers. (c) Mean of maximum daily spring 
temperatures and elevation contours.
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2  |  MATERIAL S AND METHODS

2.1  |  Study area

We collected long-term bird and microclimate data at the H.J. Andrews 
Experimental Forest (HJA) in Oregon's Cascade Range (44.23° N, 

122.188° W; Figure  1), encompassing 6400 ha. The forest ranges in 
elevation from 407 to 1632 m a.s.l., with dominant species including 
Douglas fir (Pseudotsuga menziesii) and western hemlock (Tsuga hetero-
phylla) at lower elevations, and Pacific silver fir (Abies amabilis), noble 
fir (Abies procera), and mountain hemlock (Tsuga mertensiana) at higher 
elevations. Most of the landscape consists of old-growth forest stands 

F I G U R E  2  Conceptual diagram showing the different modelling frameworks applied in the study. (a) Random year: Static SDMs built 
using a random year of occurrences and environmental variables. (b) Temporal occupancy: Static SDMs built using the temporal occupancy 
(no. annual observations/no. years) of a species for each sampling location as weights within the BRT model and the average environmental 
conditions as predictors. (c) Long-term ensemble: Dynamic SDMs built as an average of annual models. (d) Long-term dynamic SDMs: Fully 
dynamic models built using all the observations and environmental conditions accounting for spatiotemporal autocorrelation. Coloured 
boxes around the input data indicate the temporal resolution and extent of the predictors.

 13652664, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2664.70177 by N

icolò A
nselm

etto - U
niversity D

egli Studi D
i , W

iley O
nline L

ibrary on [30/09/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  5ANSELMETTO et al.

with complex vertical structures and age-class distributions, while 25% 
of the forest is second-growth, regenerating after clearcutting or par-
tial retention harvests (Kim et al., 2022; Figure 1b). A small portion of 
high elevation is covered by mountain meadows and shrublands. The 
climate in the HJA is marine temperate, with an annual mean tempera-
ture of 9°C and annual precipitation ranging from 1660 to 2810 mm 
and mostly occurring from October to April. Local microclimates are in-
fluenced by elevation, topography and vegetation structure (Figure 1c; 
Frey, Hadley, Johnson, et al., 2016; Wolf et al., 2021).

We used bird and microclimate sampling locations (n = 184) 
(Betts et al., 2023; Schulze et al., 2023), as previously described by 
Frey, Hadley, and Betts (2016), Frey, Hadley, Johnson, et al. (2016), 
Wolf et al. (2021), and Kim et al. (2022). Points were stratified across 
elevation gradients (460–1558 m), vegetation structure (plantations 
n = 66 vs. primary forest n = 118) and distance from the roads.

2.2  |  Overview of SDM framework

SDMs followed the Overview, Data, Model, Assessment, and Prediction 
(ODMAP) protocol (Zurell et al., 2020) (refer to the Table S1.1 for ad-
ditional details). We assumed that (i) microclimate and forest structure 
drive the distribution of our focal bird species within the landscape 
(Kim et al., 2022), (ii) bird surveys provide adequate and representative 
data with negligible detection errors and unbiased species identifica-
tion and (iii) vegetation structure remains stable over the 10 years. All 
analyses were performed in R version 4.2.3 (R Core Team, 2023) (see 
Table S1.2 for the specific R packages).

2.3  |  Species data

We used a 10-year avian point count inventory collected (2010–
2019), covering 184 points (Betts et  al.,  2023; Frey, Hadley, & 
Betts, 2016; Kim et al., 2022). Surveys, conducted from May to July, 
lasted 10 min between 5:00 and 10:30 AM (Figure  1b). Surveyors 
visited each point up to six times per year from 2010 to 2013 and 
up to four times per year from 2014 to 2019 (see Kim et al., 2022 
for additional details). As this study involved only field observations 
of birds and did not require animal handling, no ethical approval for 
animal use was necessary. Site-use permissions were approved for 
use at the HJ Andrews Experimental Forest. We included 37 species 
(49% of the 75 species detected in total) for which model calibration 
and validation over time were possible. We excluded species that 
were not observed for at least 3 years. We used presence/absence 
as the response variable and considered a species present at each 
site when detected at least once during point count surveys within 
the breeding season, when they are territorial and least likely to 
move around as vagrants.

We obtained traits (i.e. morphological, ecological, and life his-
tory traits) from the AVONET dataset (Tobias et al., 2022), and used 
them to relate the performance of the SDM to the ecology of the 
species. A principal component analysis (PCA) was used to reduce 

the dimensionality of trait data. We retained the first principal com-
ponent (p < 0.001, 73.3% of variance explained), strongly correlated 
with body size in the analysis. Further information regarding species 
codes, names, traits and PCA results can be found in Table S1.3 and 
Figure S1.1.

2.4  |  Environmental predictors

2.4.1  |  Microclimate data

We used 184 HOBO temperature dataloggers (168 UA-002-64 and 
16 U22-001 (Onset Computer Corporation)) affixed to a custom PVC 
radiation shield mounted on a fibreglass post at 1.5 m height above-
ground and facing south to collect data every 20 min year-round (see 
Frey, Hadley, Johnson, et al., 2016).

Using data from 2009 to 2019, we derived 56 temperature met-
rics (e.g. monthly minimum, mean, maximum, growing degree days 
and cooling degree days) from daily minimum, mean and maximum 
temperatures of the understory. We calculated these metrics using 
monthly values from July of the previous year until June of the ref-
erence year to capture relevant microclimate patterns 1 year before 
species observations. For example, when referring to the 2015 mi-
croclimate, we considered data from 1 July 2014 to 30 June 2015. 
To create comprehensive microclimate maps for the landscape, we 
followed the procedure outlined by Wolf et al. (2021) using boosted 
regression trees (BRT) models with different microclimate metrics as 
response variables and vegetation, elevation and microtopography 
as predictors (Frey, Hadley, Johnson, et al., 2016; Wolf et al., 2021). 
We generated these maps at 25-m resolution. More details on mi-
croclimate variables can be found in the Table S1.4.

2.4.2  |  Vegetation structure

We obtained 10 vegetation variables from a LiDAR flight (Oregon 
Lidar Consortium,  2016) operated between May and June 2016 
using a Leica ALS80 sensor and capturing an average of 12.64 points 
per square meter (Oregon Lidar Consortium, 2016). The derived var-
iables encompassed canopy cover, canopy point density and several 
height metrics. We resampled the vegetation structure raster data 
at 25 m resolution to ensure spatial consistency with microclimate 
data (see the Table  S1.4 for additional information on vegetation 
structure).

2.4.3  |  Variable pre-selection

We narrowed an initial pool of 66 variables by examining the 
correlation between variables (r > 0.9) and the variance inflation 
factor (VIF) (Naimi et  al.,  2014). The algorithm finds a pair of 
variables with the highest linear correlation (greater than the 
threshold) and then excludes the variable with the highest VIF in 
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the pair. We performed this operation for all 10 years and retained 
variables eligible for model calibration for more than 5 years. 
Our aim was to speed up the computation time and avoid highly 
correlated variables, even though BRTs are considered robust to 
multicollinearity (Pichler & Hartig, 2023). We obtained a final set of 
41 variables (32 microclimate and 9 vegetation variables; Table S1.4).

2.5  |  Species distribution modelling

We used boosted regression trees (BRTs) through the dismo R pack-
age v1.3–14 (Hijmans et al., 2023) and the dynamicSDM R package 
v1.3.2 (Dobson et al., 2023) to model species distribution. BRTs are 
machine learning models in which multiple decision trees are se-
quentially trained on the residuals of the preceding tree. This boost-
ing forward-fitting technique enhances the diversity of trees in an 
ensemble, improving predictive performance and resulting in an ad-
ditive regression approach that is widely recognized as an effective 
method in SDMs (Elith et al., 2008).

All models treated response variables (bird distributions) as 
dichotomous (presence/absence) but varied in the way long-term 
data were summarized. To assess the interplay between species 
occurrence and environmental conditions, we employed four 
distinct modelling frameworks (i.e. random year, temporal occu-
pancy, long-term ensemble and long-term dynamic) based on their 
temporal extent and resolution, from fully static, short-term mod-
els to fully dynamic, long-term models. See Table S1.5 for the list 
of settings of BRTs for dismo and dynamicSDM packages used in 
the calibration.

2.5.1  |  Random year

This framework is based on a randomly selected year from those 
available for calibration, creating a snapshot in time. We used the 
random year approach to reflect studies that obtain data for SDMs 
from short-term data collection (Figure  2a) and as a proxy of the 
typical use of occurrence data from sources like GBIF, which are 
often modelled as a function of average climate conditions without 
accounting for interannual variability.

2.5.2  |  Temporal occupancy

The temporal occupancy framework is based on Snell Taylor 
et al. (2021) (Figure 2b). This combines average environmental condi-
tions (temporal extent = 10 years, temporal resolution = 1 year) with 
dynamic species responses (temporal extent = 10 years, temporal 
resolution = 10 years). By calibrating BRT models using the propor-
tion of times a species was observed over 10 years at a given site (i.e. 
temporal abundance) as a weight, this approach enables the inclu-
sion of long-term data but does not match the interannual popula-
tion fluctuations directly to microclimate changes. This makes the 

temporal occupancy approach more similar to a static approach 
rather than a dynamic approach. This approach is accessible for an-
nual monitoring datasets. For this approach, we excluded five spe-
cies (Catharus ustulatus, Cyanocitta stelleri, Poecile rufescens, Regulus 
satrapa and Setophaga occidentalis) that had a cumulative 100% 
prevalence over the 10-year period and no absences were obtained. 
Therefore, the temporal occupancy framework was applied only to 
32 different bird species.

2.5.3  |  Long-term ensemble

We built long-term ensemble models by creating year-specific mod-
els with year-specific response and predictor variables and then av-
eraging model predictions across all years (Figure 2c). This approach 
requires both observations and predictor values to be collected at 
the same temporal resolution over the long term. This ensemble 
modelling strategy provides a nuanced understanding of temporal 
dynamics.

2.5.4  |  Long-term dynamic

For long-term dynamics models (Milanesi et al., 2020), we split the 
long-term dataset into five spatiotemporal blocks that account for 
both temporal and spatial autocorrelation; we then calibrated mod-
els using default BRT settings. During calibration, each unique block 
is excluded in a spatiotemporal cross-validation procedure (Bagchi 
et al., 2013). In particular, we split blocks through the spatiotemp_
block of the dynamicSDM R package v. 1.3.2 (Dobson et al., 2023) 
using forest structure as the spatial layer for spatial sampling unit 
splitting (split degree = 1). The model uses each spatiotemporal block 
as the test dataset and the others as training data. The calibration 
procedure returns a list of fitted values equal to the length of the 
blocks. We then calculated both the mean and the uncertainty of 
the predictions from the five resulting BRT models. As with the long-
term ensemble approach, this framework incorporates fine temporal 
resolutions (1 year) and long temporal extents (10 years), but trains 
models in such a way that directly incorporates interannual variation 
(i.e. models are built to minimize error when predicting to different 
years and spatial blocks in the landscape) (Figure 2d).

2.6  |  Model performance and spatial predictions

One challenge associated with validating SDMs is that hold-out (test) 
data may be correlated with training data due to spatial or temporal 
autocorrelation (Dormann et  al.,  2007; Rousseau & Betts,  2022; 
Valavi et al., 2019). For instance, if a bird species persists at a site 
due to site fidelity, holding out a single random year from a model 
trained using the same sites could result in inflated prediction 
success. To rigorously evaluate model accuracy and calibration while 
reducing the influence of both spatial and temporal autocorrelation, 
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    |  7ANSELMETTO et al.

we implemented a spatiotemporal validation strategy with two 
main components (Figure S1.2). First, we used a leave-one-year-out 
cross-validation (e.g. Roberts et al., 2017; Wenger & Olden, 2012), 
where models were trained on all but one focal year and tested on 
that held-out year. However, to eliminate the potential bias caused 
by temporal autocorrelation, we applied an additional validation 
scheme in which we held out 30% of spatial locations in the single 
focal year as an independent test set. Models were trained on data 
from the remaining 70% of locations and from all years but the focal 
test year. This means that (i) no test location was included in model 
training, (ii) no data from the test year were used in training and 
(iii) the test year had no overlap in time or space with the training 
set. Also, as the bird territory sizes are smaller than the distance 
between points, no individuals were simultaneously present in test 
and training data. This procedure allowed us to assess predictive 
performance on spatially and temporally independent data, reducing 
the inflation of performance metrics due to individual persistence, 
spatial autocorrelation or repeated environmental conditions across 
years. It is important to note that since our objective was not to 
extrapolate beyond the boundaries of our study region (the HJA), we 
considered our spatial blocking approach to be sufficient (Rousseau 
& Betts, 2022; Valavi et al., 2019; Wang et al., 2023).

We calculated several metrics to assess the performance of the 
models both in terms of accuracy/discrimination and calibration/
generalizability (i.e. the agreement between predicted probabilities 
of occurrence and observation of presence and absence) (Table S1.6). 
For the former, we employed AUC (Area Under the receiving oper-
ator Curve), TSS (True Skill Statistic), F1 score, Cohen's kappa, sen-
sitivity and specificity as proxies of model accuracy. We used the 
value that maximized the TSS as thresholds for threshold-dependent 
metrics. We also assessed model calibration and generalizability 
using point biserial correlation through the Pearson's correlation co-
efficient (r), unreliability index, log likelihood, Brier score and slope 
and intercept of the calibration line (Kenney & Keeping, 1962; Miller 
et al., 1991).

The primary output of our modelling consisted of predictions 
about the relative probability of occurrence across the HJA land-
scape. For dynamic frameworks (i.e. long-term ensemble and long-
term dynamic models), we also derived the uncertainty based on the 
5th and 95th percentiles of the predictive probability distribution as 
a bootstrap estimate of uncertainty across the k-fold predictions.

We tested the degree to which the variation in performance 
among the four frameworks is explained by species' life history traits 
such as migratory habit (resident, n = 11; partially migratory, n = 5; or 
migratory, n = 21) and body size (derived through principal compo-
nent analysis of species' life history traits). We used linear mixed-
effect models on performance results to test for differences among 
modelling frameworks as a function of migratory habit and body 
size. In all analyses of trait data, we incorporated nested random ef-
fects (species within families) to account for phylogenetic similarity 
between species and graphically checked assumptions of residuals' 
normality and homoscedasticity. We performed Tukey's post-hoc 
tests on significant effects (p < 0.05) with Bonferroni adjustment. 

We also used Spearman's rank (rs) to quantify the correlations among 
spatial predictions (fitted values) from different modelling frame-
works. We chose Spearman's rank correlation because we obtained 
non-normally distributed probabilities, requiring non-parametric 
tests.

3  |  RESULTS

3.1  |  Model performance and life history traits

Models utilizing long-term data, particularly dynamic ones (long-
term ensemble and long-term dynamic models), had better perfor-
mance than short-term models and static approaches (random year 
and temporal occupancy) in terms of both accuracy (e.g. AUC, TSS, 
F1 score) and calibration (e.g. Pearson's r, unreliability index, Brier 
score) across 37 species according to the spatiotemporal validation 
procedure (Figures 3–5, Figures S2.1 and S2.2). The mean AUC of 
long-term dynamic models was 0.69, 9% higher than the AUC of ran-
dom year models (0.63). Similar differences existed for TSS (0.71 vs. 
0.66), Pearson's r (0.27 vs. 0.19), unreliability index (0.14 vs. 0.18) 
and Brier score (0.17 vs. 0.18). In general, model performance for 
models with long-term dynamic frameworks was acceptable to good 
for most of the species (24 species with AUC > 0.6, TSS > 0.3, r > 0.2 
and low unreliability index), with seven showing excellent accuracy 
results (AUC > 0.75, TSS > 0.7 and r > 0.4) (Figure S2.2). Notably, for 
random year models, 48% of species have validation results that 
overlap AUC = 0.5 (random performance) but for long-term models 
this is only 20% (Figure 3). Model performance metrics improved for 
86.5% of the species when using long-term dynamic models rather 
than static models. Relative performance (especially in terms of ac-
curacy) increased as the modelling framework incorporated more 
complex temporal data, but calibration was lower for the temporal 
occupancy models rather than random year for most of the species, 
and long-term ensemble and long-term dynamics had similar Brier 
score, unreliability index and log likelihood but different calibration 
slopes and Pearson's r (Figure S2.2).

Migratory species had the highest model performance for most 
of the metrics, followed by residents. Decreases in performance 
between long-term dynamic and random year models were more 
severe for resident species; on average, random year models for 
residents had AUCs that were 0.08 lower than long-term dynamic 
models (5th percentile = −0.04, 95th percentile = 0.19; Figure  4a) 
and values of unreliability higher than 0.04 (−0.24, 0.13), indicating 
both poorer accuracy and calibration (Figure 4c and Table S2.1). The 
lowest drops in AUC (0.04), TSS (0.05), F1 (0.03) and r (0.09) were 
for migratory species. We compared AUC and unreliability index 
to visualize the trade-offs between accuracy and calibration of the 
different models (Figure 4b). The centroids of the dynamic models 
(long-term ensemble and long-term dynamic models) stood out as 
substantially improved over more static modelling frameworks.

Body size was not significantly related to any performance 
metrics but the Brier score (p = 0.04), which showed improving 
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8  |    ANSELMETTO et al.

calibration for larger birds (Figure 5). The interaction between body 
size and the modelling framework was statistically significant for 
TSS, Cohen's kappa, r and the unreliability index. Smaller birds had 
the highest accuracy with dynamic models, while larger birds had 
similar performance across the modelling frameworks, with tempo-
ral occupancy and random year models performing better than dy-
namic models for some metrics.

3.2  |  Spatial predictions

We compared the spatial predictions for the probability of 
occurrence (i.e. fitted values) across modelling frameworks, 
body sizes and migratory habits. Migratory species showed the 
greatest degree of similarity among modelling frameworks (mean 
rs = 0.70 ± 0.03), followed by resident (rs = 0.58 ± 0.04) and partially 
migratory (rs = 0.43 ± 0.06) species. We observed the greatest 
similarity between model spatial predictions for the two long-term 
dynamic approaches for migratory species (rs = 0.78 ± 0.04) and the 

lowest between the two static models for partially migratory species 
(rs = 0.29 ± 0.09). The long-term ensemble framework showed the 
most similarities to the other models (rs = 0.73 ± 0.04 with temporal 
occupancy and 0.63 ± 0.04 with long-term dynamic and random 
years). Similarly, spatial predictions were not significantly correlated 
with body size (β = 0.021 ± 0.013; p = 0.23), and the interaction term 
between body size and modelling framework was not statistically 
significant (p = 0.06) (see Table  S2.5 for fixed effects of the 
interactions).

We also visually compared spatial predictions for the 37 birds 
(Figure  6 and Figures  S2.4–S2.10). The two static frameworks 
showed less variability in spatial patterns (i.e. less heterogeneity 
in prediction) of occurrence probabilities, with the random year 
framework returning low occurrence probabilities and temporal 
occupancy returning high values, as expected. We observed higher 
probability gradients (i.e. spatial variations in patterns of predicted 
probability of occurrence) across the landscape in dynamic mod-
els; the two dynamic models also showed the greatest similarity in 
model predictions.

F I G U R E  3  Model performance (AUC) according to the spatiotemporal validation procedure across 37 bird species under four different 
modelling frameworks. (a and b) show the median (symbols) and 5th–95th percentile range (vertical lines) of AUC values for each species. 
The horizontal dashed line represents AUC = 0.50, indicating random prediction performance. For approximately half of the species, the 
random year models yielded AUC values crossing this threshold, whereas only one fifth of species showed such results with long-term 
dynamic models. Species names and codes are provided in Table S1.3.

(a)

(b)
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    |  9ANSELMETTO et al.

4  |  DISCUSSION

To our knowledge, ours is the first study to test for potential 
performance boosts of dynamic long-term SDMs on an empirical 
dataset with spatially matched predictor variables (i.e. microclimate 
data at the scale of individual sample points). Model performance 

was influenced by temporal extent and resolution, with single-year 
models performing worst for every metric. Among the other models, 
long-term dynamic models outperformed temporal occupancy and 
long-term ensemble approaches for most metrics.

Vertebrate populations are known to fluctuate interannually 
(Lack, 1954). Behavioural plasticity allows vagile animals to switch 

F I G U R E  4  Results of the spatiotemporal validation of the different models according to the four modelling frameworks and three 
migratory habits (resident, partially migratory, and migratory). (a) Violin plots of AUC results, (b) mean (centroids) and 95th-percentile 
ellipsoids of AUC and unreliability index and (c) violin plots of unreliability index for each migratory habit. Letters indicate results of post-
hoc tests of linear mixed-effect models (see Tables S2.2 and S2.3; Figures S2.1 and S2.2 for further details). Uppercase letters indicate 
significant differences for AUC (panel a) and unreliability index (panel c) among the migratory habits. We observed an improvement in model 
performance with increasing temporal complexity (dynamicity) of the models.

(a)

(b) (c)
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10  |    ANSELMETTO et al.

spatial locations over time (Fretwell & Lucas, 1969). Given this in-
terannual dynamism in distributions, it is not surprising that models 
incorporating long-term data with interannual dynamics performed 
the best when predicting to new periods. Milanesi et  al.  (2020) 
demonstrated similar improvements in dynamic SDMs using simu-
lated data. Long-term models are less biased by short-term popula-
tion fluctuations that can cause mismatches between habitat quality 
and species distributions. For instance, random mortality of individ-
uals and inefficient habitat selection behaviour can cause animals to 
select suboptimal habitats (Van Horne, 1983). Over long periods of 
time, stochastic events causing such mismatches are more likely to 
be averaged out. Therefore, single-year models are more prone to ex-
trapolation errors, especially when test years feature environmental 
extremes that are not present in training datasets. Extrapolation is 

well known to cause model misspecification and, therefore, reduce 
accuracy (Betts et al., 2006; Rousseau & Betts, 2022). This likely ex-
plains why some models in our study—especially those calibrated ac-
cording to the random year framework—had very poor performance, 
with, for example, AUC < 0.5. On the contrary, long-term dynamic 
models are trained using data across all years in spatial blocks, thus 
much less likely to result in extrapolation errors. Interestingly, seven 
out of the nine species for which long-term models either failed or 
were worse than random year models were for species with large 
home ranges or transient behaviour (e.g. common raven, osprey, red 
crossbill, Vaux's swift).

Migratory species had the highest model performance across all 
models. We speculate that this could be due to the high movement 
capacity of these species, which enables them to engage in adaptive 

F I G U R E  5  Relationship between model performance from the spatiotemporal validation according to the four modelling frameworks and 
the body size of the species (see Figure S1.1). The panels indicate (a) AUC, (b) TSS, (c) F1 score, (d) Cohen's kappa, (e) sensitivity, (f) specificity, 
(g) point biserial correlation (Pearson's correlation; r), (h) unreliability index and (i) Brier score. p values and R2 are reported in the panels. The 
arrow below indicates the body size gradient across the x-axis. The importance of dynamic models emerges, especially for short-lived smaller 
birds.

 13652664, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2664.70177 by N

icolò A
nselm

etto - U
niversity D

egli Studi D
i , W

iley O
nline L

ibrary on [30/09/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  11ANSELMETTO et al.

habitat selection decisions on a year-by-year basis. Indeed, some mi-
gratory passerines are known to have efficient algorithms for selecting 
habitat (Betts et al., 2008; Doligez et al., 2002). For resident species, 
temporal occupancy models provided significant improvements over 
random year models or surpassed long-term ensemble models for 
some metrics, while further gains from dynamic approaches were 
smaller. This pattern of performance suggests diminishing returns be-
tween model complexity and performance for residents, but not for 
migratory species. Regarding body size, smaller birds benefited more 
from dynamic models, likely because their greater sensitivity to micro-
climate fluctuations necessitates higher mobility.

For several decades, conservation and applied ecology has relied 
on SDMs to project the effects of global change on species distri-
butions (Tourinho & Vale,  2023; Zurell et  al.,  2022). The rapid in-
crease in data availability at different spatial and temporal scales is 
pushing ecological models to promising frontiers (Araújo et al., 2019; 
Tosa et al., 2021; Tourinho & Vale, 2023; Zurell et al., 2020, 2022). 
Although process-based and hybrid models are growing in popu-
larity, they require detailed demographic and dispersal data, which 
remain scarce. Consequently, correlative SDMs still dominate the 
field and can be considered flexible across taxa and landscape types. 
However, most SDM studies use short-term data or ignore temporal 
scales in modelling, resulting in tools with limited applicability to bio-
diversity conservation and landscape planning, especially in a time 
of rapid global change.

Out of 82 papers gleaned from Web of Science (2022–2024) 
on correlative SDMs (search terms in title, abstract and keywords: 
(“species distribution model*” OR “environmental niche model*” 
OR “habitat suitability model*” OR sdm* OR enm* OR hsm*) AND 
(“vertebrat*” OR “bird*” OR “mammal*” OR “reptil*” OR “amphib*” 
OR “chordata”)) in the five top journals dealing with this topic 
(Diversity and Distribution, Journal of Biogeography, Journal for Nature 
Conservation, Global Ecology and Conservation and Science of the Total 
Environment) only four papers (<5%) applied an approach that can 
be considered to be long term and dynamic (i.e. Elo et  al.,  2023; 
Lindenmayer et al., 2022; Stevens et al., 2022; Thomsen et al., 2023). 
Roughly one-third of studies failed to match the temporal extent of 
species occurrences and predictors. It is promising that we found 
some papers using long-term observations, but few authors incorpo-
rate these directly in the models to improve their calibration and re-
liability. However, we recognize the cost and labour associated with 
collecting these long-term data.

We recommend prioritizing long-term data in SDMs whenever 
possible, especially when fine-spatial scale variations, such as micro-
climate data, are available. The question is, how long is long enough? 
No universal rules exist—and it is beyond the scope of this paper to 
provide a clear answer. The ideal temporal extent likely varies based 
on taxa life expectancy, population dynamics, life history traits and cli-
mate variability. Mobile, short-living taxa (e.g. birds, small mammals) 
that are more coupled to shorter climate conditions than stable and 

F I G U R E  6  Spatial predictions of probability of occurrence for three example species, (a) Wilson's warbler, (b) red crossbill and (c) hairy 
woodpecker according to the four modelling frameworks. The colour scale is different for each species to improve visualization and 
comparison between frameworks. Maps for the other species can be found in the Supporting Information.
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12  |    ANSELMETTO et al.

long-living ones (e.g. trees, lichens) may require shorter temporal ex-
tents but higher temporal resolution. Generally, dynamic SDMs should 
be preferred whenever a collection of data exists over multiple years 
(i.e. long-term). Our findings highlight the potential of dynamic SDMs 
to improve predictions of species distributions under global change, 
making them important for applied ecology, such as conservation 
planning and habitat management in rapidly changing environments. 
Dynamic approaches might be of particular interest in regions and 
landscapes with greater environmental variability and mosaic com-
plexity (e.g. mountain ranges, ecotones and transition zones) and when 
dealing with global change (Bradter et al., 2022; Milanesi et al., 2020). 
Indeed, recent and predicted future shifts in climate and land use are 
characterized by rapid dynamics and large intra- and interannual vari-
ations (IPCC, 2023). When only short-term data are available, it is im-
portant to temporally match predictors and responses.

Managers and policymakers increasingly require reliable distri-
bution models at sufficiently fine spatial scales to be relevant in con-
servation planning. For instance, long-term dynamic SDMs will be 
more reliable for locating microclimate refugia (Milanesi et al., 2020; 
Wolf et  al.,  2021), fine-scale biodiversity hotspots and refugia 
(Lembrechts et al., 2019; Lenoir et al., 2017), and for monitoring hab-
itat changes over the long term in relation to management actions 
(Jefferys et  al.,  2024; Malchow et  al.,  2024). By integrating inter-
annual variability through nuanced modelling frameworks and fine-
scale microclimatic drivers, we demonstrate a practical and scalable 
application of what will increasingly be necessary in a rapidly chang-
ing biosphere: the incorporation of environmental dynamism and 
microclimate into ecological models (e.g. Bradter et  al.,  2022; Elo 
et al., 2023; Lembrechts et al., 2019; Milanesi et al., 2020).
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Table S1.1. ODMAP protocol for the study (sensu Zurell et al., 2020).
Table S1.2. List of R packages used in the analysis with citations.
Table  S1.3. List of the 37 species used in model calibration, 
validation and prediction with their code, common and scientific 
name, family and order, migratory habit and information about 
models fitting (LTE = long-term ensemble, RY = random year, TEMP_
OCC = temporal occupancy, DYNA = long-term dynamic). Taxonomic 

information derived from BirdLife International (2020).
Table S1.4. List of environmental variables used in the models with 
variable group (either microclimate or vegetation structure) and data 
source, unit and brief description and ecological meaning.
Table S1.5. List of default settings of BRTs for dismo and dynamicSDM 
packages used in the calibration.
Table  S1.6. List and description of the performance metrics used 
in the study grouped by metric type (accuracy or calibration) and 
describing the range of values and a summary of their description 
and interpretation.
Figure S1.1. Principal component (PC) analysis on birds life history 
traits. The first PC axis was negatively associated with several body 
lengths measurements and body mass and explains the 73.3% of the 
total variance. The second PC axis was related to species movement 
and dispersal capacity (migratory habit and hand-wing index, HWI) 
and shows no significance according to null distributions built 
through random permutations. Therefore, we only used PC1 and 
interpreted it as a proxy of body size. Copyright-free images were 
downloaded from https://pixabay.com/.
Figure S1.2. Spatiotemporal validation strategy used for assessing 
model performance. (A) Temporal component: each fold holds out 
1 year for testing (red), while training occurs on all remaining years 
(blue); in the example, the model for the target species was performed 
over the entire timespan (10 years: 2010–2019). This procedure 
iterates across all years to evaluate model generalizability in time. 
(B) Spatial component: 70% of sites were used for training (blue), 
and 30% of spatially independent sites were reserved as a test set 
(red). This design ensured both spatial and temporal independence 
of the test data.
Table S2.1. Drop-off of the different validation metrics grouped by 
migratory habit calculated as the difference in performance between 
long-term dynamic and random year models for the main metrics.
Table S2.2. Results of linear mixed models and post-hoc comparisons 
on the most important performance metrics and migratory habit. 
Letters after the migratory habit indicate significant differences for 
each performance metric among the migratory habits, while letters 
in the rows indicate significant differences among the frameworks 
for each performance metric. Letters in the cells indicate statistically 
significant differences among the modelling frameworks within the 
migratory habits for each performance metric. Letters represent 
pairwise comparisons with a confidence level of 0.95 (alpha = 0.05).
Table S2.3. Results of linear mixed models and post-hoc comparisons 
on performance metrics and body size (PC1). Letters in the rows 
indicate significant differences among the frameworks for each 
performance metric. Letters represent pairwise comparisons with a 
confidence level of 0.95 (alpha = 0.05).
Table S2.4. Results of linear mixed models and post-hoc comparisons 
on Spearman's rank correlation and migratory habit. Letters indicate 
significant differences among the frameworks and represent 
pairwise comparisons with a confidence level of 0.95 (alpha = 0.05).
Table S2.5. Fixed effects of the linear mixed effect models assessing 
the relation between Spearman's rank correlation and body size.
Figure S2.1. Results of temporal leave-one-year-out cross-validation 
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of the different models according to the four modelling frameworks 
and three different movement behaviours (resident, partially 
migratory and migratory) of birds. Violin plots of (A) TSS, (B) F1 
score, (C) Cohen's kappa, (D) sensitivity, (E) specificity, (F) Pearson's 
r, (G) Brier score and (H) log likelihood. Similarly to Figure 4 (AUC 
and unreliability index), we observed gradients of improvement in 
performance as a result of increases in the temporal complexity 
(dynamicity) of the models.
Figure S2.2. Trade-offs and performance patterns of species 
distribution modelling frameworks across accuracy, discrimination 
and calibration metrics retrieved fromfrom our the spatiotemporal 
validation in which random years and 30% of locations were held 
out as test data. Principal component analysis (PCA) biplot showing 
the distribution of the four different modelling frameworks based 
on 12 different performance metrics. on the different performance 
metrics. PC1 (35.8% of variation explained) mostly captures 
variation in accuracy and discrimination, while PC2 (22.1%) is more 
correlated to calibration quality. Arrows represent the contribution 
and direction of each metric; ellipses represent 95% confidence 
regions for each framework. A clear gradient is visible from the most 
static model (ry; random year) to the most complex (dyna; long-term 
dynamics) in terms of increasing accuracy and discrimination along 
PC1 (x-axis), while the pattern for calibration along PC2 (y-axis) is 
more nuanced.
Figure S2.3. Variable importance according to migratory habit (rows: 
resident, partially migratory and migratory) and modelling framework 
(columns: random year, temporal occupancy, long-term ensemble and 
long-term dynamic models). Variables were grouped into categories: 
CDD (cooling degree days) and GDD (growing degree days), 
Tmean = monthly or seasonal mean temperatures, tvar = standard 
deviation of temperature, Tmax = monthly or seasonal maximum 
temperatures, Tmin = monthly or seasonal minimum temperatures, 
vegetation = LiDAR-derived vegetation variables.
Figure S2.4. Spearman's rank correlations testing for consistency 
in spatial predictions of probability of occurrence among modelling 
frameworks based on body size (PC1) (upper right corner) and 
migratory habit (lower left corner). Letters indicate post-hoc results 
on linear mixed-effect models and indicate significant differences 
among the pairs of frameworks. Migratory species had the greatest 
degree of similarity between modelling frameworks. Long-term 
ensemble framework was the most similar to all the other models.
Figure S2.5. Spatial predictions of probability of occurrence for (A) 
American robin (AMRO), (B) black-headed grosbeak (BHGR), (C) 
brown creeper (BRCR), (D) black-throated grey warbler (BTYW) 
and (E) chestnut-backed chickadee (CBCH) according to the four 
modelling frameworks. The colour scale is different for each species 
to improve visualization and comparison between frameworks.
Figure S2.6. Spatial predictions of probability of occurrence for 
(A) common raven (CORA), (B) dark-eyed junco (DEJU), (C) evening 
grosbeak (EVGR), (D) golden-crowned kinglet (GCKI) and (E) Canada 
jay (CAJA) according to the four modelling frameworks. The colour 

scale is different for each species to improve visualization and 
comparison between frameworks.
Figure S2.7. Spatial predictions of probability of occurrence for (A) 
hammond's flycatcher (HAFL), (B) hermit thrush (HETH), (C) hermit 
warbler (HEWA), (D) Hutton's vireo (HUVI) and (E) MacGillvray's 
warbler (MGWA) according to the four modelling frameworks. The 
colour scale is different for each species to improve visualization and 
comparison between frameworks.
Figure S2.8. Spatial predictions of probability of occurrence for (A) 
Northern flicker (NOFL), (B) olive-sided flycatcher (OSFL), (C) osprey 
(OSPR), (D) Pacific wren (PAWR) and (E) pine siskin (PISI) according 
to the four modelling frameworks. The colour scale is different for 
each species to improve visualization and comparison between 
frameworks.
Figure S2.9. Spatial predictions of probability of occurrence for (A) 
pileated woodpecker (PIWO), (B) Pacific-slope flycatcher (PSFL), 
(C) red-breasted nuthatch (RBNU), (D) ruffed grouse (RUGR) and 
(E) rufous hummingbird (RUHU) according to the four modelling 
frameworks. The colour scale is different for each species to improve 
visualization and comparison between frameworks.
Figure S2.10. Spatial predictions of probability of occurrence for (A) 
sooty grouse (SOGR), (B) Steller's jay (STJA), (C) Swainson's thrush 
(SWTH), (D) Townsend's solitaire (TOSO) and (E) Vaux's swift (VASW) 
according to the four modelling frameworks. The colour scale is 
different for each species to improve visualization and comparison 
between frameworks.
Figure S2.11. Spatial predictions of probability of occurrence for 
(A) varied thrush (VATH), (B) Warbling vireo (WAVI), (C) Western 
tanager (WETA) and (D) yellow-rumped warbler (YRWA) according 
to the four modelling frameworks. The colour scale is different for 
each species to improve visualization and comparison between 
frameworks.
Figure S2.12. Principal component analysis (PCA) summarizing the 
results of performance and correlations in spatial predictions for all 
the species grouped by migratory habit. (A) Results of PC1 versus 
PC2, (B) results of PC1 versus PC3. The full shapes with bigger 
size represent the centroids of the three migratory habits resident, 
partial migratory and migratory.
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