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occurrences with environmental conditions. These models often rely on coarse-

conditions experienced by organisms. Additionally, SDMs commonly use short-

Handling Editor: Pieter De Frenne term occurrence data to make long-term predictions, which can reduce reliability.

2. We hypothesized that long-term and finer temporal resolution data would
provide more accurate predictions by capturing population variability under
microclimatic conditions. Using data from 37 bird species in the H. J. Andrews
Experimental Forest (Oregon, USA), we built SDMs with a 10-year (2010-
2019) dataset of breeding season observations at 184 sites. We evaluated four
modelling frameworks that differed in temporal extents (short-term [1year]
vs. long-term [10years]) and resolution (fine vs. coarse) of environmental data.
Predictors included hourly microclimate temperatures beneath the forest canopy
and LiDAR-derived vegetation variables. We evaluated interannual transferability
and compared model performance based on temporal extent, resolution and
species traits.

3. Temporally dynamic (long-term) models with higher resolution microclimate data
outperformed static and short-term models (AUC and TSS difference~0.06,

difference in unreliability index of ~0.04) and were more accurate and spatially

consistent, particularly for migratory species. Increased temporal resolution
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1 | INTRODUCTION

Species distribution models (SDMs) have emerged as indispensable
tools in applied ecology. They spatially assess species distributions
using a mechanistic or, more commonly, correlative approach (Elith
& Leathwick, 2009; Zurell et al., 2020, 2022). Applications include
conservation biology (Guisan et al., 2013; Zurell et al., 2022), global
change assessment (Newbold et al., 2020; Wenger et al., 2011), spe-
cies interactions (Wenger et al., 2011) and spatial reserve prioriti-
zation (Bicknell et al., 2017; Carroll et al., 2010). Despite their value
in predicting the potential impacts of global change, SDMs typically
rely on coarse-scale spatiotemporal data due to their widespread
availability (Aradjo et al., 2019). However, this approach overlooks
the fine-scale ecological conditions experienced by many species,
creating a mismatch between the scale of predictor data and the
fine-grained, long-term needs of conservation decisions (Guisan
et al., 2013; Mateo et al., 2019). Consequently, only 1%-5% of con-
ventional correlative SDM studies are relevant for local and regional
management decisions (Araudjo et al.,, 2019; Guisan et al., 2013).
However, local and landscape-scale management decisions increas-
ingly require accurate models that can predict biodiversity responses
to changing site-level conditions (Harris & Betts, 2023; Lembrechts
et al., 2019).

The goal of SDMs is often to extrapolate to new locations and
time periods under environmental change (Araudjo et al., 2019;
Engler et al., 2017; Rousseau & Betts, 2022) to inform conserva-
tion and management planning. However, conventional SDMs are
typically static in time, integrating species occurrence and envi-
ronmental data collected at a single point in time (i.e. short tem-
poral extent) or averaged over several years or seasons (i.e. coarse
temporal resolution; Milanesi et al., 2020; Zurell et al., 2022).
These models assume that species are in equilibrium with their
environment, occupying all suitable habitats, and that habitat
relationships remain unchanged over time (Zurell et al., 2022).
However, mobile species commonly violate this assumption, as
they often exhibit significant year-to-year variations in their dis-
tribution patterns, due to behavioural flexibility (Chavez-Gonzalez
et al.,, 2020; Frey, Hadley, & Betts, 2016), variation in resource

improved performance for small-bodied species, whereas long-lived, larger
species performed similarly in short- and long-term models.

4. Synthesis and applications. To our knowledge, this is the first empirical study to
demonstrate the benefits of long-term dynamic SDMs with spatially matched
predictor variables. If predicting the future of biodiversity under land-use and
climate change is the goal, practitioners should consider additional investment in

multi-year biodiversity monitoring rather than single-year ‘snapshots’ of species

bird distribution, correlative models, dynamic models, long-term observations, microclimate,
old-growth forests, SDMs

availability and population fluctuations (Yegorova et al., 2013).
Short-term data generally do not capture this temporal variability.
When the ecological goal is to predict where a species occurs at
a variety of scales and through time, alternatives to correlative
SDMs exist in the form of process-based (i.e. mechanistic) mod-
els, such as ecophysiological models (Kearney & Porter, 2009),
population models (Akcakaya, 2000), individual-based population
models (Railsback & Harvey, 2002) and dynamic occupation mod-
els (MacKenzie et al., 2003). However, these approaches require
much more a priori knowledge and experimental data, making
them resource-intensive (Briscoe et al., 2021, 2023; Dormann
et al., 2012; Tourinho & Vale, 2023).

Birds are an ideal taxon for studying biogeography, global
change and ecology in general due to their ecological diversity,
sensitivity to environmental changes and the abundance in oc-
currence data (Anderle et al., 2024; Bonnet et al., 2002; Gregory
& van Strien, 2010; Zurell et al., 2022). Their life history traits,
particularly body size and migratory behaviour, make them
well-suited for examining responses to microclimatic variation.
Indeed, large-scale climate and land-use dynamics strongly influ-
ence general bird distribution patterns, but forest and landscape
characteristics mediate local responses (Northrup et al., 2019;
Rigo et al., 2024). Smaller-bodied species, with a higher mass-
specific metabolic rate (Brown et al., 2004; Kleiber, 1932) and
surface-to-volume ratio (i.e. poorer thermoregulatory ability),
are more vulnerable to microclimatic fluctuations in time (Henry
et al., 2023; McKechnie & Wolf, 2010). Conversely, larger bodied
species exhibit greater physiological resilience to temperature ex-
tremes and respond more slowly to small microclimatic variations
(Kleiber, 1932; McKechnie & Wolf, 2010). Migratory birds have a
high movement capacity and are able to engage in adaptive habi-
tat selection decisions on a year-by-year basis, making them more
sensitive to interannual fluctuations (Doligez et al., 2002; Vitasse
et al., 2021). On the other hand, resident and partially migratory
species respond more quickly to intraannual changes in environ-
mental conditions (Boyles et al., 2011; Cox & Cresswell, 2014). For
these reasons, temporally explicit models accounting for local mi-
croclimate variation should be more reliable for informing habitat
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FIGURE 1

(a) Location of the H. J. Andrews Experimental Forest (HJA) in the Cascade Range, USA. (b) Map of vegetation height (from

1-m canopy height model) and sampling locations for bird occurrence and temperature data loggers. (c) Mean of maximum daily spring

temperatures and elevation contours.

management and conservation, such as identifying the location
and variability of refugia under global changes (Elo et al., 2023;
Lembrechts et al., 2019).

Our overall objective was to test the degree to which long-term
distributional data improve SDMs' capacity to predict new locations
in different time periods. We used long-term datasets on bird distri-
butions (37 species) and under-canopy temperatures collected over
10years in a forest mosaic across a 900-m elevational gradient at
the H.J. Andrews Experimental Forest (HJA) in the Cascades Range
(western Oregon, USA; Figure 1). The dataset provides a rare oppor-
tunity to assess how long-term population dynamics and fine-scale
microclimatic variation influence SDM predictions in time (i.e. over
10years) and space (i.e. across the HJA forest mountain landscape).
We evaluated how SDMs that vary in temporal extent (short-term
vs. long-term) and resolution (fine vs. coarse) to determine their
ability to forecast bird distributions at the landscape scale over
time. Specifically, we compared four SDM frameworks (Figure 2):
(i) a single random year of species observations and environmental

conditions (reflecting the short temporal extent of most SDMs),
(ii) predictor variables with microclimate conditions averaged over
10years, and the proportion of time a species is observed at a given
site across all years (representing models using climate normal and
response data collected over several years), (iii) a long-term ensem-
ble of annual models with model predictions averaged across years
and (iv) a long-term dynamic SDM approach that accounts for spa-
tiotemporal autocorrelation.

Our central hypothesis was that SDMs using long-term data, by
capturing interannual population and distribution dynamics, should
provide more reliable predictions to new locations and time periods.
However, we also expected that this effect could be mediated by
species longevity and movement capacity (i.e. life history and eco-
logical traits). We expected that long-term dynamic models should
be particularly important for migratory species with high interannual
variation in population sizes and that fine-scale spatiotemporal pre-
dictors would improve niche modelling for small-bodied species with
relatively short lifespans.
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FIGURE 2 Conceptual diagram showing the different modelling frameworks applied in the study. (a) Random year: Static SDMs built
using a random year of occurrences and environmental variables. (b) Temporal occupancy: Static SDMs built using the temporal occupancy
(no. annual observations/no. years) of a species for each sampling location as weights within the BRT model and the average environmental
conditions as predictors. (c) Long-term ensemble: Dynamic SDMs built as an average of annual models. (d) Long-term dynamic SDMs: Fully
dynamic models built using all the observations and environmental conditions accounting for spatiotemporal autocorrelation. Coloured
boxes around the input data indicate the temporal resolution and extent of the predictors.

2 | MATERIALS AND METHODS

21 | Studyarea

We collected long-term bird and microclimate data at the H.J. Andrews
Experimental Forest (HJA) in Oregon's Cascade Range (44.23°N,

122.188°W; Figure 1), encompassing 6400ha. The forest ranges in
elevation from 407 to 1632ma.s.l., with dominant species including
Douglas fir (Pseudotsuga menziesii) and western hemlock (Tsuga hetero-
phylla) at lower elevations, and Pacific silver fir (Abies amabilis), noble
fir (Abies procera), and mountain hemlock (Tsuga mertensiana) at higher
elevations. Most of the landscape consists of old-growth forest stands
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with complex vertical structures and age-class distributions, while 25%
of the forest is second-growth, regenerating after clearcutting or par-
tial retention harvests (Kim et al., 2022; Figure 1b). A small portion of
high elevation is covered by mountain meadows and shrublands. The
climate in the HJA is marine temperate, with an annual mean tempera-
ture of 9°C and annual precipitation ranging from 1660 to 2810mm
and mostly occurring from October to April. Local microclimates are in-
fluenced by elevation, topography and vegetation structure (Figure 1c;
Frey, Hadley, Johnson, et al., 2016; Wolf et al., 2021).

We used bird and microclimate sampling locations (n=184)
(Betts et al., 2023; Schulze et al., 2023), as previously described by
Frey, Hadley, and Betts (2016), Frey, Hadley, Johnson, et al. (2016),
Wolf et al. (2021), and Kim et al. (2022). Points were stratified across
elevation gradients (460-1558 m), vegetation structure (plantations

n=66 vs. primary forest n=118) and distance from the roads.

2.2 | Overview of SDM framework

SDMsfollowed the Overview, Data, Model, Assessment, and Prediction
(ODMAP) protocol (Zurell et al., 2020) (refer to the Table S1.1 for ad-
ditional details). We assumed that (i) microclimate and forest structure
drive the distribution of our focal bird species within the landscape
(Kim et al., 2022), (i) bird surveys provide adequate and representative
data with negligible detection errors and unbiased species identifica-
tion and (iii) vegetation structure remains stable over the 10years. All
analyses were performed in R version 4.2.3 (R Core Team, 2023) (see

Table $1.2 for the specific R packages).

2.3 | Species data

We used a 10-year avian point count inventory collected (2010-
2019), covering 184 points (Betts et al., 2023; Frey, Hadley, &
Betts, 2016; Kim et al., 2022). Surveys, conducted from May to July,
lasted 10min between 5:00 and 10:30AM (Figure 1b). Surveyors
visited each point up to six times per year from 2010 to 2013 and
up to four times per year from 2014 to 2019 (see Kim et al., 2022
for additional details). As this study involved only field observations
of birds and did not require animal handling, no ethical approval for
animal use was necessary. Site-use permissions were approved for
use at the HJ Andrews Experimental Forest. We included 37 species
(49% of the 75 species detected in total) for which model calibration
and validation over time were possible. We excluded species that
were not observed for at least 3years. We used presence/absence
as the response variable and considered a species present at each
site when detected at least once during point count surveys within
the breeding season, when they are territorial and least likely to
move around as vagrants.

We obtained traits (i.e. morphological, ecological, and life his-
tory traits) from the AVONET dataset (Tobias et al., 2022), and used
them to relate the performance of the SDM to the ecology of the
species. A principal component analysis (PCA) was used to reduce

-
the dimensionality of trait data. We retained the first principal com-
ponent (p<0.001, 73.3% of variance explained), strongly correlated
with body size in the analysis. Further information regarding species

codes, names, traits and PCA results can be found in Table $1.3 and
Figure S1.1.

2.4 | Environmental predictors
2.41 | Microclimate data

We used 184 HOBO temperature dataloggers (168 UA-002-64 and
16 U22-001 (Onset Computer Corporation)) affixed to a custom PVC
radiation shield mounted on a fibreglass post at 1.5m height above-
ground and facing south to collect data every 20 minyear-round (see
Frey, Hadley, Johnson, et al., 2016).

Using data from 2009 to 2019, we derived 56 temperature met-
rics (e.g. monthly minimum, mean, maximum, growing degree days
and cooling degree days) from daily minimum, mean and maximum
temperatures of the understory. We calculated these metrics using
monthly values from July of the previous year until June of the ref-
erence year to capture relevant microclimate patterns 1year before
species observations. For example, when referring to the 2015 mi-
croclimate, we considered data from 1 July 2014 to 30 June 2015.
To create comprehensive microclimate maps for the landscape, we
followed the procedure outlined by Wolf et al. (2021) using boosted
regression trees (BRT) models with different microclimate metrics as
response variables and vegetation, elevation and microtopography
as predictors (Frey, Hadley, Johnson, et al., 2016; Wolf et al., 2021).
We generated these maps at 25-m resolution. More details on mi-
croclimate variables can be found in the Table S1.4.

2.4.2 | Vegetation structure

We obtained 10 vegetation variables from a LiDAR flight (Oregon
Lidar Consortium, 2016) operated between May and June 2016
using a Leica ALS80 sensor and capturing an average of 12.64 points
per square meter (Oregon Lidar Consortium, 2016). The derived var-
iables encompassed canopy cover, canopy point density and several
height metrics. We resampled the vegetation structure raster data
at 25m resolution to ensure spatial consistency with microclimate
data (see the Table S1.4 for additional information on vegetation

structure).

2.4.3 | Variable pre-selection

We narrowed an initial pool of 66 variables by examining the
correlation between variables (r>0.9) and the variance inflation
factor (VIF) (Naimi et al., 2014). The algorithm finds a pair of
variables with the highest linear correlation (greater than the
threshold) and then excludes the variable with the highest VIF in
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the pair. We performed this operation for all 10years and retained
variables eligible for model calibration for more than 5years.
Our aim was to speed up the computation time and avoid highly
correlated variables, even though BRTs are considered robust to

multicollinearity (Pichler & Hartig, 2023). We obtained a final set of
41 variables (32 microclimate and 9 vegetation variables; Table S1.4).

2.5 | Species distribution modelling

We used boosted regression trees (BRTs) through the dismo R pack-
age v1.3-14 (Hijmans et al., 2023) and the dynamicSDM R package
v1.3.2 (Dobson et al., 2023) to model species distribution. BRTs are
machine learning models in which multiple decision trees are se-
quentially trained on the residuals of the preceding tree. This boost-
ing forward-fitting technique enhances the diversity of trees in an
ensemble, improving predictive performance and resulting in an ad-
ditive regression approach that is widely recognized as an effective
method in SDMs (Elith et al., 2008).

All models treated response variables (bird distributions) as
dichotomous (presence/absence) but varied in the way long-term
data were summarized. To assess the interplay between species
occurrence and environmental conditions, we employed four
distinct modelling frameworks (i.e. random year, temporal occu-
pancy, long-term ensemble and long-term dynamic) based on their
temporal extent and resolution, from fully static, short-term mod-
els to fully dynamic, long-term models. See Table S1.5 for the list
of settings of BRTs for dismo and dynamicSDM packages used in
the calibration.

2.5.1 | Random year

This framework is based on a randomly selected year from those
available for calibration, creating a snapshot in time. We used the
random year approach to reflect studies that obtain data for SDMs
from short-term data collection (Figure 2a) and as a proxy of the
typical use of occurrence data from sources like GBIF, which are
often modelled as a function of average climate conditions without

accounting for interannual variability.

2.5.2 | Temporal occupancy

The temporal occupancy framework is based on Snell Taylor
etal.(2021) (Figure 2b). This combines average environmental condi-
tions (temporal extent=10years, temporal resolution=1year) with
dynamic species responses (temporal extent=10years, temporal
resolution=10years). By calibrating BRT models using the propor-
tion of times a species was observed over 10years at a given site (i.e.
temporal abundance) as a weight, this approach enables the inclu-
sion of long-term data but does not match the interannual popula-
tion fluctuations directly to microclimate changes. This makes the

temporal occupancy approach more similar to a static approach
rather than a dynamic approach. This approach is accessible for an-
nual monitoring datasets. For this approach, we excluded five spe-
cies (Catharus ustulatus, Cyanocitta stelleri, Poecile rufescens, Regulus
satrapa and Setophaga occidentalis) that had a cumulative 100%
prevalence over the 10-year period and no absences were obtained.
Therefore, the temporal occupancy framework was applied only to

32 different bird species.

2.5.3 | Long-term ensemble

We built long-term ensemble models by creating year-specific mod-
els with year-specific response and predictor variables and then av-
eraging model predictions across all years (Figure 2c). This approach
requires both observations and predictor values to be collected at
the same temporal resolution over the long term. This ensemble
modelling strategy provides a nuanced understanding of temporal

dynamics.

2.54 | Long-term dynamic

For long-term dynamics models (Milanesi et al., 2020), we split the
long-term dataset into five spatiotemporal blocks that account for
both temporal and spatial autocorrelation; we then calibrated mod-
els using default BRT settings. During calibration, each unique block
is excluded in a spatiotemporal cross-validation procedure (Bagchi
et al., 2013). In particular, we split blocks through the spatiotemp_
block of the dynamicSDM R package v. 1.3.2 (Dobson et al., 2023)
using forest structure as the spatial layer for spatial sampling unit
splitting (split degree=1). The model uses each spatiotemporal block
as the test dataset and the others as training data. The calibration
procedure returns a list of fitted values equal to the length of the
blocks. We then calculated both the mean and the uncertainty of
the predictions from the five resulting BRT models. As with the long-
term ensemble approach, this framework incorporates fine temporal
resolutions (1year) and long temporal extents (10years), but trains
models in such a way that directly incorporates interannual variation
(i.e. models are built to minimize error when predicting to different
years and spatial blocks in the landscape) (Figure 2d).

2.6 | Model performance and spatial predictions

One challenge associated with validating SDMs is that hold-out (test)
data may be correlated with training data due to spatial or temporal
autocorrelation (Dormann et al., 2007; Rousseau & Betts, 2022;
Valavi et al., 2019). For instance, if a bird species persists at a site
due to site fidelity, holding out a single random year from a model
trained using the same sites could result in inflated prediction
success. To rigorously evaluate model accuracy and calibration while
reducing the influence of both spatial and temporal autocorrelation,
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we implemented a spatiotemporal validation strategy with two
main components (Figure 51.2). First, we used a leave-one-year-out
cross-validation (e.g. Roberts et al., 2017; Wenger & Olden, 2012),
where models were trained on all but one focal year and tested on
that held-out year. However, to eliminate the potential bias caused
by temporal autocorrelation, we applied an additional validation
scheme in which we held out 30% of spatial locations in the single
focal year as an independent test set. Models were trained on data
from the remaining 70% of locations and from all years but the focal
test year. This means that (i) no test location was included in model
training, (i) no data from the test year were used in training and
(iii) the test year had no overlap in time or space with the training
set. Also, as the bird territory sizes are smaller than the distance
between points, no individuals were simultaneously present in test
and training data. This procedure allowed us to assess predictive
performance on spatially and temporally independent data, reducing
the inflation of performance metrics due to individual persistence,
spatial autocorrelation or repeated environmental conditions across
years. It is important to note that since our objective was not to
extrapolate beyond the boundaries of our study region (the HJA), we
considered our spatial blocking approach to be sufficient (Rousseau
& Betts, 2022; Valavi et al., 2019; Wang et al., 2023).

We calculated several metrics to assess the performance of the
models both in terms of accuracy/discrimination and calibration/
generalizability (i.e. the agreement between predicted probabilities
of occurrence and observation of presence and absence) (Table S1.6).
For the former, we employed AUC (Area Under the receiving oper-
ator Curve), TSS (True Skill Statistic), F1 score, Cohen's kappa, sen-
sitivity and specificity as proxies of model accuracy. We used the
value that maximized the TSS as thresholds for threshold-dependent
metrics. We also assessed model calibration and generalizability
using point biserial correlation through the Pearson's correlation co-
efficient (r), unreliability index, log likelihood, Brier score and slope
and intercept of the calibration line (Kenney & Keeping, 1962; Miller
etal., 1991).

The primary output of our modelling consisted of predictions
about the relative probability of occurrence across the HJA land-
scape. For dynamic frameworks (i.e. long-term ensemble and long-
term dynamic models), we also derived the uncertainty based on the
5th and 95th percentiles of the predictive probability distribution as
a bootstrap estimate of uncertainty across the k-fold predictions.

We tested the degree to which the variation in performance
among the four frameworks is explained by species' life history traits
such as migratory habit (resident, n=11; partially migratory, n=5; or
migratory, n=21) and body size (derived through principal compo-
nent analysis of species' life history traits). We used linear mixed-
effect models on performance results to test for differences among
modelling frameworks as a function of migratory habit and body
size. In all analyses of trait data, we incorporated nested random ef-
fects (species within families) to account for phylogenetic similarity
between species and graphically checked assumptions of residuals'
normality and homoscedasticity. We performed Tukey's post-hoc
tests on significant effects (p<0.05) with Bonferroni adjustment.

B Jourmalof Applied Ecoogy |
We also used Spearman's rank (r) to quantify the correlations among
spatial predictions (fitted values) from different modelling frame-
works. We chose Spearman's rank correlation because we obtained

non-normally distributed probabilities, requiring non-parametric
tests.

3 | RESULTS
3.1 | Model performance and life history traits

Models utilizing long-term data, particularly dynamic ones (long-
term ensemble and long-term dynamic models), had better perfor-
mance than short-term models and static approaches (random year
and temporal occupancy) in terms of both accuracy (e.g. AUC, TSS,
F1 score) and calibration (e.g. Pearson's r, unreliability index, Brier
score) across 37 species according to the spatiotemporal validation
procedure (Figures 3-5, Figures S2.1 and S2.2). The mean AUC of
long-term dynamic models was 0.69, 9% higher than the AUC of ran-
dom year models (0.63). Similar differences existed for TSS (0.71 vs.
0.66), Pearson's r (0.27 vs. 0.19), unreliability index (0.14 vs. 0.18)
and Brier score (0.17 vs. 0.18). In general, model performance for
models with long-term dynamic frameworks was acceptable to good
for most of the species (24 species with AUC>0.6, TSS>0.3,r>0.2
and low unreliability index), with seven showing excellent accuracy
results (AUC>0.75, TSS>0.7 and r>0.4) (Figure S2.2). Notably, for
random year models, 48% of species have validation results that
overlap AUC=0.5 (random performance) but for long-term models
this is only 20% (Figure 3). Model performance metrics improved for
86.5% of the species when using long-term dynamic models rather
than static models. Relative performance (especially in terms of ac-
curacy) increased as the modelling framework incorporated more
complex temporal data, but calibration was lower for the temporal
occupancy models rather than random year for most of the species,
and long-term ensemble and long-term dynamics had similar Brier
score, unreliability index and log likelihood but different calibration
slopes and Pearson's r (Figure S2.2).

Migratory species had the highest model performance for most
of the metrics, followed by residents. Decreases in performance
between long-term dynamic and random year models were more
severe for resident species; on average, random year models for
residents had AUCs that were 0.08 lower than long-term dynamic
models (5th percentile=-0.04, 95th percentile=0.19; Figure 4a)
and values of unreliability higher than 0.04 (-0.24, 0.13), indicating
both poorer accuracy and calibration (Figure 4c and Table 52.1). The
lowest drops in AUC (0.04), TSS (0.05), F1 (0.03) and r (0.09) were
for migratory species. We compared AUC and unreliability index
to visualize the trade-offs between accuracy and calibration of the
different models (Figure 4b). The centroids of the dynamic models
(long-term ensemble and long-term dynamic models) stood out as
substantially improved over more static modelling frameworks.

Body size was not significantly related to any performance
metrics but the Brier score (p=0.04), which showed improving
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FIGURE 3 Model performance (AUC) according to the spatiotemporal validation procedure across 37 bird species under four different
modelling frameworks. (a and b) show the median (symbols) and 5th-95th percentile range (vertical lines) of AUC values for each species.
The horizontal dashed line represents AUC=0.50, indicating random prediction performance. For approximately half of the species, the
random year models yielded AUC values crossing this threshold, whereas only one fifth of species showed such results with long-term
dynamic models. Species names and codes are provided in Table S1.3.

calibration for larger birds (Figure 5). The interaction between body
size and the modelling framework was statistically significant for
TSS, Cohen's kappa, r and the unreliability index. Smaller birds had
the highest accuracy with dynamic models, while larger birds had
similar performance across the modelling frameworks, with tempo-
ral occupancy and random year models performing better than dy-

namic models for some metrics.

3.2 | Spatial predictions

We compared the spatial predictions for the probability of
occurrence (i.e. fitted values) across modelling frameworks,
body sizes and migratory habits. Migratory species showed the
greatest degree of similarity among modelling frameworks (mean
r,=0.70+0.03), followed by resident (r,.=0.58+0.04) and partially
migratory (r,=0.43+0.06) species. We observed the greatest
similarity between model spatial predictions for the two long-term

dynamic approaches for migratory species (r,=0.78+0.04) and the

lowest between the two static models for partially migratory species
(r,=0.29+0.09). The long-term ensemble framework showed the
most similarities to the other models (r,=0.73+0.04 with temporal
occupancy and 0.63+0.04 with long-term dynamic and random
years). Similarly, spatial predictions were not significantly correlated
with body size (#=0.021+0.013; p=0.23), and the interaction term
between body size and modelling framework was not statistically
significant (p=0.06) (see Table S2.5 for fixed effects of the
interactions).

We also visually compared spatial predictions for the 37 birds
(Figure 6 and Figures 52.4-52.10). The two static frameworks
showed less variability in spatial patterns (i.e. less heterogeneity
in prediction) of occurrence probabilities, with the random year
framework returning low occurrence probabilities and temporal
occupancy returning high values, as expected. We observed higher
probability gradients (i.e. spatial variations in patterns of predicted
probability of occurrence) across the landscape in dynamic mod-
els; the two dynamic models also showed the greatest similarity in

model predictions.
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4 | DISCUSSION was influenced by temporal extent and resolution, with single-year
models performing worst for every metric. Among the other models,

To our knowledge, ours is the first study to test for potential long-term dynamic models outperformed temporal occupancy and

performance boosts of dynamic long-term SDMs on an empirical long-term ensemble approaches for most metrics.

dataset with spatially matched predictor variables (i.e. microclimate Vertebrate populations are known to fluctuate interannually

data at the scale of individual sample points). Model performance (Lack, 1954). Behavioural plasticity allows vagile animals to switch
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spatial locations over time (Fretwell & Lucas, 1969). Given this in-
terannual dynamism in distributions, it is not surprising that models
incorporating long-term data with interannual dynamics performed
the best when predicting to new periods. Milanesi et al. (2020)
demonstrated similar improvements in dynamic SDMs using simu-
lated data. Long-term models are less biased by short-term popula-
tion fluctuations that can cause mismatches between habitat quality
and species distributions. For instance, random mortality of individ-
uals and inefficient habitat selection behaviour can cause animals to
select suboptimal habitats (Van Horne, 1983). Over long periods of
time, stochastic events causing such mismatches are more likely to
be averaged out. Therefore, single-year models are more prone to ex-
trapolation errors, especially when test years feature environmental
extremes that are not present in training datasets. Extrapolation is

well known to cause model misspecification and, therefore, reduce
accuracy (Betts et al., 2006; Rousseau & Betts, 2022). This likely ex-
plains why some models in our study—especially those calibrated ac-
cording to the random year framework—had very poor performance,
with, for example, AUC<0.5. On the contrary, long-term dynamic
models are trained using data across all years in spatial blocks, thus
much less likely to result in extrapolation errors. Interestingly, seven
out of the nine species for which long-term models either failed or
were worse than random year models were for species with large
home ranges or transient behaviour (e.g. common raven, osprey, red
crossbill, Vaux's swift).

Migratory species had the highest model performance across all
models. We speculate that this could be due to the high movement
capacity of these species, which enables them to engage in adaptive
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FIGURE 6 Spatial predictions of probability of occurrence for three example species, (a) Wilson's warbler, (b) red crossbill and (c) hairy
woodpecker according to the four modelling frameworks. The colour scale is different for each species to improve visualization and
comparison between frameworks. Maps for the other species can be found in the Supporting Information.

habitat selection decisions on a year-by-year basis. Indeed, some mi-
gratory passerines are known to have efficient algorithms for selecting
habitat (Betts et al., 2008; Doligez et al., 2002). For resident species,
temporal occupancy models provided significant improvements over
random year models or surpassed long-term ensemble models for
some metrics, while further gains from dynamic approaches were
smaller. This pattern of performance suggests diminishing returns be-
tween model complexity and performance for residents, but not for
migratory species. Regarding body size, smaller birds benefited more
from dynamic models, likely because their greater sensitivity to micro-
climate fluctuations necessitates higher mobility.

For several decades, conservation and applied ecology has relied
on SDMs to project the effects of global change on species distri-
butions (Tourinho & Vale, 2023; Zurell et al., 2022). The rapid in-
crease in data availability at different spatial and temporal scales is
pushing ecological models to promising frontiers (Araujo et al., 2019;
Tosa et al., 2021; Tourinho & Vale, 2023; Zurell et al., 2020, 2022).
Although process-based and hybrid models are growing in popu-
larity, they require detailed demographic and dispersal data, which
remain scarce. Consequently, correlative SDMs still dominate the
field and can be considered flexible across taxa and landscape types.
However, most SDM studies use short-term data or ignore temporal
scales in modelling, resulting in tools with limited applicability to bio-
diversity conservation and landscape planning, especially in a time
of rapid global change.

Out of 82 papers gleaned from Web of Science (2022-2024)
on correlative SDMs (search terms in title, abstract and keywords:

I*n [

(“species distribution model*” OR “environmental niche mode
OR “habitat suitability model*” OR sdm* OR enm* OR hsm*) AND
(“vertebrat*” OR “bird*” OR “mammal*” OR “reptil*” OR “amphib*”
OR “chordata”)) in the five top journals dealing with this topic
(Diversity and Distribution, Journal of Biogeography, Journal for Nature
Conservation, Global Ecology and Conservation and Science of the Total
Environment) only four papers (<5%) applied an approach that can
be considered to be long term and dynamic (i.e. Elo et al., 2023;
Lindenmayer et al., 2022; Stevens et al., 2022; Thomsen et al., 2023).
Roughly one-third of studies failed to match the temporal extent of
species occurrences and predictors. It is promising that we found
some papers using long-term observations, but few authors incorpo-
rate these directly in the models to improve their calibration and re-
liability. However, we recognize the cost and labour associated with
collecting these long-term data.

We recommend prioritizing long-term data in SDMs whenever
possible, especially when fine-spatial scale variations, such as micro-
climate data, are available. The question is, how long is long enough?
No universal rules exist—and it is beyond the scope of this paper to
provide a clear answer. The ideal temporal extent likely varies based
on taxa life expectancy, population dynamics, life history traits and cli-
mate variability. Mobile, short-living taxa (e.g. birds, small mammals)
that are more coupled to shorter climate conditions than stable and
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long-living ones (e.g. trees, lichens) may require shorter temporal ex-
tents but higher temporal resolution. Generally, dynamic SDMs should
be preferred whenever a collection of data exists over multiple years
(i.e. long-term). Our findings highlight the potential of dynamic SDMs
to improve predictions of species distributions under global change,
making them important for applied ecology, such as conservation
planning and habitat management in rapidly changing environments.
Dynamic approaches might be of particular interest in regions and
landscapes with greater environmental variability and mosaic com-
plexity (e.g. mountain ranges, ecotones and transition zones) and when
dealing with global change (Bradter et al., 2022; Milanesi et al., 2020).
Indeed, recent and predicted future shifts in climate and land use are
characterized by rapid dynamics and large intra- and interannual vari-
ations (IPCC, 2023). When only short-term data are available, it is im-
portant to temporally match predictors and responses.

Managers and policymakers increasingly require reliable distri-
bution models at sufficiently fine spatial scales to be relevant in con-
servation planning. For instance, long-term dynamic SDMs will be
more reliable for locating microclimate refugia (Milanesi et al., 2020;
Wolf et al., 2021), fine-scale biodiversity hotspots and refugia
(Lembrechts et al., 2019; Lenoir et al., 2017), and for monitoring hab-
itat changes over the long term in relation to management actions
(Jefferys et al., 2024; Malchow et al., 2024). By integrating inter-
annual variability through nuanced modelling frameworks and fine-
scale microclimatic drivers, we demonstrate a practical and scalable
application of what will increasingly be necessary in a rapidly chang-
ing biosphere: the incorporation of environmental dynamism and
microclimate into ecological models (e.g. Bradter et al., 2022; Elo
et al., 2023; Lembrechts et al., 2019; Milanesi et al., 2020).
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Table S1.1. ODMAP protocol for the study (sensu Zurell et al., 2020).
Table S1.2. List of R packages used in the analysis with citations.
Table S1.3. List of the 37 species used in model calibration,
validation and prediction with their code, common and scientific
name, family and order, migratory habit and information about
models fitting (LTE =long-term ensemble, RY =random year, TEMP_
OCC=temporal occupancy, DYNA=long-term dynamic). Taxonomic
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information derived from BirdLife International (2020).

Table S1.4. List of environmental variables used in the models with
variable group (either microclimate or vegetation structure) and data
source, unit and brief description and ecological meaning.

Table S1.5. List of default settings of BRTs for dismo and dynamicSDM
packages used in the calibration.

Table S1.6. List and description of the performance metrics used
in the study grouped by metric type (accuracy or calibration) and
describing the range of values and a summary of their description
and interpretation.

Figure S1.1. Principal component (PC) analysis on birds life history
traits. The first PC axis was negatively associated with several body
lengths measurements and body mass and explains the 73.3% of the
total variance. The second PC axis was related to species movement
and dispersal capacity (migratory habit and hand-wing index, HWI)
and shows no significance according to null distributions built
through random permutations. Therefore, we only used PC1 and
interpreted it as a proxy of body size. Copyright-free images were
downloaded from https://pixabay.com/.

Figure S1.2. Spatiotemporal validation strategy used for assessing
model performance. (A) Temporal component: each fold holds out
1year for testing (red), while training occurs on all remaining years
(blue); in the example, the model for the target species was performed
over the entire timespan (10years: 2010-2019). This procedure
iterates across all years to evaluate model generalizability in time.
(B) Spatial component: 70% of sites were used for training (blue),
and 30% of spatially independent sites were reserved as a test set
(red). This design ensured both spatial and temporal independence
of the test data.

Table S2.1. Drop-off of the different validation metrics grouped by
migratory habit calculated as the difference in performance between
long-term dynamic and random year models for the main metrics.
Table S2.2. Results of linear mixed models and post-hoc comparisons
on the most important performance metrics and migratory habit.
Letters after the migratory habit indicate significant differences for
each performance metric among the migratory habits, while letters
in the rows indicate significant differences among the frameworks
for each performance metric. Letters in the cells indicate statistically
significant differences among the modelling frameworks within the
migratory habits for each performance metric. Letters represent
pairwise comparisons with a confidence level of 0.95 (alpha=0.05).
Table S2.3. Results of linear mixed models and post-hoc comparisons
on performance metrics and body size (PC1). Letters in the rows
indicate significant differences among the frameworks for each
performance metric. Letters represent pairwise comparisons with a
confidence level of 0.95 (alpha=0.05).

Table S2.4. Results of linear mixed models and post-hoc comparisons
on Spearman's rank correlation and migratory habit. Letters indicate
significant differences among the frameworks and represent
pairwise comparisons with a confidence level of 0.95 (alpha=0.05).
Table S2.5. Fixed effects of the linear mixed effect models assessing
the relation between Spearman's rank correlation and body size.
Figure S2.1. Results of temporal leave-one-year-out cross-validation
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of the different models according to the four modelling frameworks
and three different movement behaviours (resident, partially
migratory and migratory) of birds. Violin plots of (A) TSS, (B) F1
score, (C) Cohen's kappa, (D) sensitivity, (E) specificity, (F) Pearson's
r, (G) Brier score and (H) log likelihood. Similarly to Figure 4 (AUC
and unreliability index), we observed gradients of improvement in
performance as a result of increases in the temporal complexity
(dynamicity) of the models.

Figure S2.2. Trade-offs and performance patterns of species
distribution modelling frameworks across accuracy, discrimination
and calibration metrics retrieved fromfrom our the spatiotemporal
validation in which random years and 30% of locations were held
out as test data. Principal component analysis (PCA) biplot showing
the distribution of the four different modelling frameworks based
on 12 different performance metrics. on the different performance
metrics. PC1 (35.8% of variation explained) mostly captures
variation in accuracy and discrimination, while PC2 (22.1%) is more
correlated to calibration quality. Arrows represent the contribution
and direction of each metric; ellipses represent 95% confidence
regions for each framework. A clear gradient is visible from the most
static model (ry; random year) to the most complex (dyna; long-term
dynamics) in terms of increasing accuracy and discrimination along
PC1 (x-axis), while the pattern for calibration along PC2 (y-axis) is
more nuanced.

Figure $2.3. Variable importance according to migratory habit (rows:
resident, partially migratory and migratory) and modelling framework
(columns: random year, temporal occupancy, long-term ensemble and
long-term dynamic models). Variables were grouped into categories:
CDD (cooling degree days) and GDD (growing degree days),
Tmean=monthly or seasonal mean temperatures, tvar=standard
deviation of temperature, Tmax=monthly or seasonal maximum
temperatures, Tmin=monthly or seasonal minimum temperatures,
vegetation=LiDAR-derived vegetation variables.

Figure S2.4. Spearman's rank correlations testing for consistency
in spatial predictions of probability of occurrence among modelling
frameworks based on body size (PC1) (upper right corner) and
migratory habit (lower left corner). Letters indicate post-hoc results
on linear mixed-effect models and indicate significant differences
among the pairs of frameworks. Migratory species had the greatest
degree of similarity between modelling frameworks. Long-term
ensemble framework was the most similar to all the other models.
Figure S2.5. Spatial predictions of probability of occurrence for (A)
American robin (AMRO), (B) black-headed grosbeak (BHGR), (C)
brown creeper (BRCR), (D) black-throated grey warbler (BTYW)
and (E) chestnut-backed chickadee (CBCH) according to the four
modelling frameworks. The colour scale is different for each species
to improve visualization and comparison between frameworks.
Figure S2.6. Spatial predictions of probability of occurrence for
(A) common raven (CORA), (B) dark-eyed junco (DEJU), (C) evening
grosbeak (EVGR), (D) golden-crowned kinglet (GCKI) and (E) Canada

jay (CAJA) according to the four modelling frameworks. The colour

scale is different for each species to improve visualization and
comparison between frameworks.

Figure S2.7. Spatial predictions of probability of occurrence for (A)
hammond's flycatcher (HAFL), (B) hermit thrush (HETH), (C) hermit
warbler (HEWA), (D) Hutton's vireo (HUVI) and (E) MacGillvray's
warbler (MGWA) according to the four modelling frameworks. The
colour scale is different for each species to improve visualization and
comparison between frameworks.

Figure $2.8. Spatial predictions of probability of occurrence for (A)
Northern flicker (NOFL), (B) olive-sided flycatcher (OSFL), (C) osprey
(OSPR), (D) Pacific wren (PAWR) and (E) pine siskin (PISI) according
to the four modelling frameworks. The colour scale is different for
each species to improve visualization and comparison between
frameworks.

Figure $2.9. Spatial predictions of probability of occurrence for (A)
pileated woodpecker (PIWO), (B) Pacific-slope flycatcher (PSFL),
(C) red-breasted nuthatch (RBNU), (D) ruffed grouse (RUGR) and
(E) rufous hummingbird (RUHU) according to the four modelling
frameworks. The colour scale is different for each species to improve
visualization and comparison between frameworks.

Figure $2.10. Spatial predictions of probability of occurrence for (A)
sooty grouse (SOGR), (B) Steller's jay (STJA), (C) Swainson's thrush
(SWTH), (D) Townsend's solitaire (TOSO) and (E) Vaux's swift (VASW)
according to the four modelling frameworks. The colour scale is
different for each species to improve visualization and comparison
between frameworks.

Figure $2.11. Spatial predictions of probability of occurrence for
(A) varied thrush (VATH), (B) Warbling vireo (WAVI), (C) Western
tanager (WETA) and (D) yellow-rumped warbler (YRWA) according
to the four modelling frameworks. The colour scale is different for
each species to improve visualization and comparison between
frameworks.

Figure $2.12. Principal component analysis (PCA) summarizing the
results of performance and correlations in spatial predictions for all
the species grouped by migratory habit. (A) Results of PC1 versus
PC2, (B) results of PC1 versus PC3. The full shapes with bigger
size represent the centroids of the three migratory habits resident,

partial migratory and migratory.
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