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Abstract Accurate mapping of headwater streams and their flow status has important implications for
understanding and managing water resources and land uses. However, accurate information is rare, especially in
rugged, forested terrain. We developed a streamflow permanence classification model for forested lands in
western Oregon using the latest light detection and ranging-derived hydrography published in the National
Hydrography Dataset. Models were trained using 2,518 flow/no flow field observations collected in late
summer 2019-2021 across headwaters of 129 sub-watersheds. The final model, the Western Oregon WeT DRy
model, used Random Forest and 13 environmental covariates for classifying every 5-m stream sub-reach across
426 sub-watersheds. The most important covariates were annual precipitation and drainage area. Model output
included probabilities of late summer surface flow presence and were subsequently categorized into three
streamflow permanence classes—Wet, Dry, and Ambiguous. Ambiguous denoted model probabilities and
associated prediction intervals that extended over the 50% classification threshold between wet and dry. Model
accuracy was 0.83 for sub-watersheds that contained training data and decreased to 0.67 for sub-watersheds that
did not have observations of late summer surface flow. The model identified where predictions extrapolated
beyond the domain characterized by the training data. The combination of spatially continuous estimates of late
summer streamflow status along with uncertainty and extrapolation estimates provide critical information for
strategic project planning and designing additional field data collection.

Plain Language Summary Understanding where small streams are located and if they flow year-
round or seasonally matters for how these streams and their watersheds are managed. We developed a model
trained on simple flow/no flow field observations and 13 variables that describe climate, topography, and land
cover conditions to provide predictions of whether a 5-m stream sub-reach is likely to have late summer flow or
may go dry. The model is applied to a high resolution, light detection and ranging-derived stream network for
426 sub-watersheds in western Oregon and represents years with average to slightly drier-than-average rainfall.
We also evaluated differences in model accuracy between watersheds that did and did not have training data to
provide more realistic uncertainty estimates of model predictions. Field observations for these types of models is
generally limited both in number of observations and their geographic distribution. Accuracy estimates for
watersheds with (83% correct) and without (67% correct) training data can help managers decide if they use
model predictions or if they need to collect additional field data. In addition, this model identifies stream
locations where the model is extrapolating, which can be used for identifying locations where more data
collection is needed for model improvement.

1. Introduction

Headwater streams, the first- and second-order streams that extend to the upper portions of watersheds (Golden
et al., 2025), account for most of the channel network by length (Downing et al., 2012), yet accurate mapping of
both their location and permanence of streamflow remains a limiting factor (Brinkerhoff, 2024; Messager
et al., 2024). The management of headwaters streams, and their adjacent riparian forests, frequently depends on
their streamflow permanence classification (Acuiia et al., 2017; Boisjolie et al., 2017; Brinkerhoff et al., 2024;
Kampfetal., 2021; Messager et al., 2024). A crucial, primary classification is whether the streams have perennial,
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or year-round flow, or are non-perennial, defined as the stream being dry at some point in a typical year (Busch
et al., 2020).

The location of streams, hereafter referred to as hydrography, and streamflow permanence is especially difficult to
determine in headwater streams in forested regions. Frequently, the complex, rugged terrain can hinder obser-
vations, and the channels can lack strong topographic signatures, and can be obscured by vegetation (Benstead &
Leigh, 2012; Kim et al., 2023; Metes et al., 2022). Depending on the resolution of the hydrographic data used, the
upper extents of perennial headwater streams might not be delineated on stream network maps (Anderson
et al., 2024; Messager et al., 2024). Streamflow data and classifications are lacking in part because of the rarity of
data collection in the headwaters region of the river network and the bias in data collection in the downstream,
perennial regions of the river network (Krabbenhoft et al., 2022; van Meerveld et al., 2020). There remains a
persistent need for better mapping and characterization of headwaters and their streamflow permanence (Brin-
kerhoff, 2024). For the United States, the most widely available data set to determine streamflow permanence, the
National Hydrography Dataset, has been shown to have errors for headwater streams by as much as 50% (Fritz
et al., 2013) based on data that may be decades out of date (Hafen et al., 2020).

There has been substantial recent momentum in both the development of models and data collection methods to
classify and characterize streamflow permanence in headwater streams across a range of time scales and
geographical extents. Mapping streamflow permanence status has included approaches that span from physical
models of individual catchments at varying temporal resolutions (Hafen et al., 2023; Mahoney et al., 2023;
Scheller et al., 2024; Ward et al., 2020); statistical models to identify wetted channel length dynamics (Botter
et al., 2021, 2024; Bujak-Ozga et al., 2023; Jensen et al., 2018), or surface flow duration, including changes
through time (Peterson et al., 2024; Sauquet et al., 2021). In addition, classification models of streamflow
permanence have used empirical approaches for individual catchments (Durighetto et al., 2022; Kaplan
et al., 2022; Pate et al., 2020; Whiting & Godsey, 2016), and have been expanded to all streams and rivers at
regional (Jaeger et al., 2019; Sando et al., 2022), and global extents (Messager et al., 2021; Sauquet et al., 2021).
Hybrid approaches that combine physical and empirical approaches are also evolving (D6ll et al., 2024; Mimeau
et al., 2024).

Data requirements vary for these different approaches, with intensive data collection efforts generally corre-
sponding to modeling at fine spatial and temporal resolutions. Consequently, there have been advancements in
technology to facilitate cost effective data collection opportunities of surface flow presence versus absence,
including electrical resistance sensors (ER sensors; Bhamjee et al., 2016; Chapin et al., 2014; Goulsbra
et al., 2014), multi-sensor technologies that also leverage the use of field cameras (Assendelft & van Meer-
veld, 2019), and simple one-time visual observations leveraging applications on mobile devices and crowd-
sourcing (FLOWPER (Jaeger et al., 2020), Stream Tracker (Kampf, 2018), Crowd Water (Seibert et al., 2019),
DRYVER (Truchy et al., 2023)). Simple wet or dry observations during low flow periods are particularly useful
given that more extensive data collection can be extremely expensive, yet there remains a desire to provide model
estimates over large geographic extents in locations where no hydrologic measurements exist or are rare and
observation of streamflow permanence through remote sensing is not a viable option, such as in forested head-
water systems (Kim et al., 2023).

In the Pacific Northwest of United States, the U.S. Geological Survey (USGS) developed the PROSPERpyw
model (PRObability of Streamflow PERmanence; Jaeger et al., 2019), which provides a probability of year-round
flow for 30-m-stream reaches. PROSPERp\y is a Random Forest (RF) model that used climatic and physio-
graphic covariates trained on visual wet or dry observations. Two main limitations of the existing PROSPERpxw
model are the relative coarseness of the underlying hydrography on which the streamflow permanence estimates
are based and lack of observational data for some portions of the modeling domain, particularly small forested
streams in the rugged region of western Oregon. PROSPERpyy is based on the National Hydrography Dataset
Plus Medium Resolution (NHD MR), which is derived from a combination of USGS 1:100,000 scale maps and
1:62,500-scale maps and has a resolution of 30-m (Johnston et al., 2009). This resolution can underestimate the
full extent of the stream network, especially in mountainous terrain, where channel length may be underestimated
by as much as 50% (Christensen et al., 2022; Clarke et al., 2008; Colson et al., 2008; Vance-Borland et al., 2009).
Conversely, light detection and ranging (LiDAR)-derived hydrography can improve mapping accuracy in
headwater streams (Metes et al., 2022; Russell et al., 2015) and there are major efforts across many regions for
LiDAR-derived hydrography (Anderson et al., 2024). However, LIDAR-derived hydrography can delineate many
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additional headwater channels with unknown flow status. It is challenging for managers to plan management
actions that involve these newly mapped channels without some means of classification of which reaches are
more or less likely to support perennial flow. Field observations of each reach of each channel is time consuming
and often not logistically possible on the timeline of the planning efforts, especially if observations were not
collected in advance during the time of minimum annual flow.

The objective of this study was to develop a new streamflow permanence classification model at a sub-regional
scale for forested headwaters, using updated, high resolution LiDAR hydrography and new observations of
streamflow permanence that span a large geographic area and were collected over three summers. We incor-
porated additional elements of algorithm comparison, uncertainty analyses, and identification of model extrap-
olation. We included additional components in the covariate selection process to address land and water
management interests in evaluating the importance of drainage area, precipitation, and forest cover on streamflow
permanence (Clarke et al., 2008; Kampf et al., 2021; Segura et al., 2020). We evaluated three model algorithms,
RF, Logistic Regression (LR), and Extreme Gradient Boosting (XGB) as part of model development. Addi-
tionally, we evaluated the accuracy of models when training data were located physically near to the prediction
area versus data that is physically further away and thus may not represent local conditions. Finally, the model
identifies stream sub-reaches that are outside of the training data set; therefore, streamflow permanence pre-
dictions are considered extrapolations, representing first approximations of streamflow permanence.

2. Data and Methods
2.1. Study Site

This study was conducted in forested, mountainous areas of western Oregon (Figure 1). The study area included
three ecoregions, the Coast Range, the Cascades, and the Klamath Mountains (Omernik & Griffith, 2014). The
lowland Willamette River valley that separates the Coast and Cascade Ranges in the northern half of the study
area was excluded from this study due to its high population density, limited forest cover, and human modifi-
cations to stream networks. The Coast Range had the lowest average elevations of the three mountain regions with
maximum elevations of 1,200 m; maximum elevations were approximately 2,300 m in the Klamath Region and
exceeded 3,000 m for the Cascade Range. The climate is maritime temperate with cool, wet winters. More than
2,000 mm average annual precipitation occurs in the Coast Range and higher elevations of the Cascade Range.
The Klamath Mountains are drier, receiving only approximately 1,440 mm of annual precipitation (PRISM,
2014). Summers are dry and warm with little to no precipitation in late July and August (Daly et al., 2008; Gaines
et al., 2022).

The geology of the study area is complex and we broadly characterize the geology in lithologic provinces
following O’Connor et al. (2014); these lithologic provinces generally correspond to the three ecoregion
boundaries. The Coast Range and western flank of the Cascade Range are characterized by marine sediments that
comprise the Coast Range sedimentary rocks lithologic province interspersed with either more resistant Columbia
River basalt and volcanic rocks collectively referred to as Coast Range volcanic rocks and Columbia River basalt
lithologic province. Un-weathered basalt and andesite comprise the High Cascades lithologic province and occur
along the Cascade Crest. Older aged, deeply dissected volcanic rocks correspond to the Western Cascades
lithologic province that flanks the west side of the High Cascades province. The Klamath lithologic province to
the south is a complex combination of older Paleozoic and Mesozoic volcanic, sedimentary, and metamorphic
rocks with intense deformation history.

The study area extends across 31,443 km? and is composed of 871 sub-watersheds at the 12-digit Hydrologic Unit
Code (HUC12) scale. The size of individual HUC12s within the study area range from 17 to 194 km* with a
median of 70 km”. The modeling domain within the larger study area includes a subset of 426 HUC12s selected
based on the following criteria: (a) LiDAR-derived elevation models (DEMs) are available in a publicly
accessible repository at the Oregon Department of Geology and Mineral Industries (DOGAMI, 2025) for at least
90% of the area within each HUC12 boundary, and (b) LIDAR-derived hydrography are available as part of the
latest updates to the National Hydrography Dataset (NHD; USGS, 2021; DOGAMI, 2025) as of 1 September
2022. Location resolution of the LIDAR ranges between 1 and 3 m, with 20-cm vertical resolution for elevation.
The NHD resolution is 1:12,000.
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Figure 1. Study area extent in western Oregon (a), study area that includes 871 12-digit Hydrologic Unit Code (HUC12) sub-watersheds and modeling domain of 426
sub-watersheds with 2,518 FLOWPER observations for model training (b), overlay of the Environmental Protection Agency Level Three ecoregions within the study
area (Omernik & Griffith, 2014) (c), and overlay of the five major lithologic provinces within the study area (O’Connor et al., 2014) (d). The Willamette Valley
ecoregion is excluded from analysis due to our focus on forested sub-watersheds. Base map from Esri and its licensors, copyright 2022.

2.2. Field Observations of Surface Water Presence

We used the FLOWPER feature mapping application (Jaeger et al., 2020) to collect observations of late-summer
streamflow status (i.e., wet or dry) in the modeling domain between 15 July and 30 September for the years 2019,
2020, and 2021. Observations represent a single location and did not include repeat observations at the same
location within a year. FLOWPER is a survey form hosted within the ArcGIS Survey123 application that es-
tablishes a protocol and data entry standard for collecting streamflow permanence observations. Data collection
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was conducted by several entities with an emphasis for data collection at road-stream crossings on public lands to
ensure rapid data collection across the broadest possible area with minimal access restrictions.

Surface water presence and absence data were collected during the late summer seasons of 2019, 2020, and 2021
across 140 HUCI12s in the study area. Annual precipitation for these years was 85% (2019) to 96% (2021) of the
30-year normal (1981-2010 period) for the study area (PRISM, 2014) and late summertime low-flow conditions
were apparent by August of each year (National Drought Mitigation Center, 2019). Year of observation was
included in the model, with model results characterizing a classification of flow status during low flow periods for
each year and reported as a mean across these 3 years. Our study included a mean of 19 observations per HUC12
with a standard deviation of 36. Observations of wet streams occurred across drainage areas ranging from 0.0032
t0 52.3 km? and dry observations occurred across drainage areas ranging from 0.0008 to 33.8 km?. A total of 1,412
observations were wet, 36 were discontinuous, and 1,204 observations were dry with 99 repeat locations where
observations were taken at the same location in more than one year of the study period. Approximately 19%, 63%,
and 18% of the data were collected in 2019, 2020, and 2021, respectively. Based on the NHD LiDAR-derived
hydrography, which is equivalent to 1:12,000 (USGS, 2021), approximately 52% of the observations were
collected in Strahler first-order streams, 32% were collected in second-order streams, 12% were collected in third
order streams, 3% were collected on fourth-order streams, with the remainder being fifth order and larger order
streams. Finally, approximately 33% of the observations were collected in the Western Cascades lithologic
province followed by 22% of the observations occurring in the High Cascades lithologic province, with the
remaining observations collected in the other three lithologic provinces (Figure 1).

2.3. Climatic and Physiographic Covariates

We assembled a spatial data set of 96 hydro-topographic and climatic variables for consideration in the model
(Table S1 in Supporting Information S1). Covariates were selected to capture different aspects of environmental
and geophysical conditions contributing to surface flow expression (Costigan et al., 2016; Hammond et al., 2021;
Shanafield et al., 2021). The primary determinant of covariate inclusion was the availability of spatially
continuous coverage across the 426 HUC12s in the modeling domain. Covariates included 5-m resolution hydro-
topographic metrics derived from 5-m resolution LIDAR DEMs (DOGAMI, 2025). Climatic covariates included
800-m resolution precipitation and air temperature data for each calendar year extending from 2015 to 2021 and
the 30-year climate normal period represented by 1980-2010. Lag periods of 2015-2018 were included to
describe antecedent conditions in years prior to the study period.

2.4. Model Workflow

The workflow in Figure 2 shows components of: (a) model preprocessing of the data and developing the training
data set (Section 2.4.1), (b) the cross-validation framework (Section 2.4.2), (¢) covariate selection (Section 2.4.3),
(d) model development (Section 2.4.4), (e) predictions (Section 2.4.5), and (f) subsequent analysis of the final
model (Section 2.4.6).

2.4.1. Model Preprocessing
2.4.1.1. Processing of Observation Data

A total of 2570 observation points within 129 sub-watersheds (i.e., HUC12s) were selected for model devel-
opment from the FLOWPER database by filtering observation data with the following criteria: (a) Points located
in natural channels to avoid the potentially confounding influence of artificial diversions and canals on model
inference. (b) A streamflow status of either wet or dry; points with discontinuous flow status were removed
because the objective was a binomial classification. Furthermore, the low frequency of discontinuous data (<10%
overall) would not produce a sufficiently accurate classification model. (c) High geolocation accuracy as defined
by having a 10-m or less 95% circular error probable, meaning that estimated position location has a 95% or
greater probability of falling within 10-m or smaller radius (Chaitanya et al., 2016). The 10-m distance limit was
imposed to be consistent with the 10-m observation distance of the FLOWPER survey and to constrain the in-
fluence of measurement error on model calibration. (d) Points within 10 m of the NHD LiDAR-derived hy-
drography (USGS, 2021).
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Figure 2. Schematic of workflow to describe steps within (1) model preprocessing, (2) cross validation with proximal versus
distal data, (3) covariate selection considering five methods, (4) model development considering three algorithms, (5) model
predictions, and (6) model and prediction analysis. Dark and light shading refer to the proximal and distal validation process
in Steps 2, 3, and 4.
2.4.1.2. Covariate Processing
Values of the climatic and physiographic covariates considered in the model were extracted from the gridded
spatial layers both as local values and non-local values (Table S1.1 in Supporting Information S1). Local co-
variate values represent conditions at the immediate location of the stream reach (5-m) and correspond to the
location of the observation point. FLOWPER observations are taken based on surface flow conditions over a 10-m
stream reach. A smaller 5-m stream reach length was chosen to capture the fine scale variability of LiDAR-
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derived covariates. Non-local values represent values over varying lengths or drainage areas, e.g., basin average
values. Different non-local sizes and types were generated to include down-channel and up-channel conditions
over relatively large distances (e.g., 50-m, 500-m, 1,000-m) and upslope conditions (e.g., 100-m, 250-m, 500-m,
basin average) to capture dominant influences of topographic conditions at varying scales. The most frequently
used non-local size was the basin scale drainage area weighted average of the covariate as estimated with flow
conditioned parameter grids (Barnhart et al., 2020), which have been used in streamflow permanence modeling
across a range of geographic scales (Jaeger et al., 2019; Jensen et al., 2018; Kaplan et al., 2020; Sando
et al., 2022). Basin-scale averages were estimated for covariates where the influence of that covariate on surface
flow expression is thought to be due to an accumulation of that condition (e.g., climate, landcover, lithology).

2.4.1.3. Aligning Training Data and Covariates to the Stream Network Modeling Domain

A stream network was generated to serve as the modeling domain on which the model was trained, and predictions
were estimated and correspond to the areas represented by 426 HUCI12 sub-watersheds (refer to Text S1 in
Supporting Information S1 for details). The stream network was generated as stream points to represent 5-m
stream sub-reaches within the LiDAR-derived hydrography for the study area.

Model training data were produced by aligning the observation points to the nearest stream point of the stream
network in the modeling domain. Additionally, each stream point within the modeling domain outside of the
training data locations was also attributed with each of the 96 predictor covariates to allow for prediction at stream
points throughout the stream network.

2.4.1.4. Training Data Processing: Filtering and Spatial Balancing

The training data were subsequently filtered to produce a total of 2,518 observations for inclusion in the model.
Subsequent filtering included removing observations that had missing values in the covariates, which can occur as
a result periodic missing values in underlying source grids of a given covariate. Data were examined for low
variation (coefficient of variation < 0.5) with covariates, although none were flagged for removal except for
Strahler stream order, where variability was limited by the inherently constrained nature of the data. Training data
were then examined for multi-collinearity through pairwise correlation analysis among each of the 96 covariates.
Only covariates with extremely high correlation (greater than 0.97) were removed because inclusion of highly
correlated variables tends to result in higher predictive performance (Hanberry, 2024). Although parsimony was a
consideration, the overall objective of this model was predictive accuracy (Shmueli, 2010). The potential of
producing a model containing many features that in turn included potentially redundant information was deemed
acceptable if it resulted in maximum predictive accuracy. The filtered data reduced the 2,570 observations to
2,518 observations (1,361 wet observations, 1,157 dry observations; Table S2.1 in Supporting Information S1)
from 129 HUCI12 sub-watersheds.

The filtered data underwent a first tier of data splitting through pseudo-random spatial balancing to account for
different densities of data across the model domain (refer to Text S2 in Supporting Information S1 for details).
Random splits were not stratified across years. Spatial balancing used oversampling of both categories at the
HUCI12 level to ensure equal numbers of wet and dry observation within a spatial group, resulting in a training
data set of 3,076 wet/dry (1,538 wet and 1,538 dry) points for model training. More wet points are in the balanced
training data set than in the source observation data because in some spatial grouping arrangements dry was the
majority class. The training data set were divided into 20 sub-groups, to ensure both a sufficiently large population
of groups and sufficient number of observations present in each group subsequent randomization and splitting for
training and validation during cross validation procedures (refer to Text S2 in Supporting Information S1 for
details).

2.4.2. Cross Validation That Accounts for Differences Between Spatially Distal and Spatially Proximal
Data

A second tier of data splitting through cross validation was imposed in the modeling workflow to evaluate model
accuracy for sub-watersheds that either have data or do not have data. Specifically, we evaluate accuracy for (a)
sub-watersheds that have training data within the sub-watershed (HUC12) boundary, here referred to as a
proximal condition, and (b) sub-watersheds that do not have training data within the sub-watershed boundary,
here referred to as a distal condition. The cross validation described in this section was applied in both the
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Covariate Selection (Section 2.4.3) and Model Development (Section 2.4.4) components of the workflow
(Figure 2). A limitation of conventional cross validation approaches that randomly assign data to training and
validation folds without consideration for the potential of spatial autocorrelation is that it can produce optimistic
estimations of predictive performance as a result of training and testing with nearby neighbors (Roberts
et al., 2017; Tsamardinos et al., 2015). This can result in training subsets that are spatial neighbors to the testing
data subset and therefore highly spatially correlated. To mitigate the potential consequence of the conventional
cross validation approach, we imposed (a) a completely random cross validation to provide a characterization of
predictive performance for training data that are spatially near or proximal to the prediction locations and (b) a
spatial cross validation to provide a characterization of predictive performance for training data that are spatially
far or distal to the prediction locations (Figure 2) (refer to Text S3 in Supporting Information S1 for details). To
evaluate predictive performance for both the proximal and distal strategies, we implemented a 5-fold cross
validation approach by taking data from the 20 spatially balanced groups and randomly assigning into a 5-fold
(completely random without resampling) where each fold contains approximately the same amount of data
(Figure S3.1 in Supporting Information S1). The distal strategy included assigning spatial groupings to folds such
that the hold out test data did not have observations from within a sub-watershed (refer to Text S3 in Supporting
Information S1 for details).

2.4.3. Covariate Selection

A subset of covariates for fitting streamflow permanence prediction models was pre-selected from the full suite of
96 covariates using covariate selection. Covariate pre-selection prior to model development saves computational
time by identifying a subset of covariates that is most important to prediction without requiring all 96 covariates.
This would consequently increase model accessibility by reducing model size, complexity, and computation time
required for running the final prediction model.

2.4.3.1. Covariate Ranking

Covariate selection was applied to identify and rank the most important variables to aid in computational effi-
ciency (refer to Text S4 in Supporting Information S1 for details). Covariate selection essentially front loads the
most important covariates for predicting streamflow permanence and thus allows for identification of parsimo-
nious model without the arduous process of tuning and fitting models to all 96 covariates. A total of five covariate
selection methods were implemented (Figure S4.1 in Supporting Information S1). Three conventional methods,
Boruta, Joint Mutual Information Maximization (JMIM), and Permutation covariate selection methods, were
employed and two additional spatial approaches, Spatial 1-RF and Spatial-2—Boruta, which are modified spatial
approaches to mitigate the influence of spatial bias from clustering of observations within sub-watersheds. The
five methods generated ranked combinations of a subset of covariates based on their importance for predicting
late summer streamflow status.

For each individual covariate selection approach, ranked covariate combinations were generated that included a
minimum of four covariates and a maximum of 96 covariates, which were all covariates considered. Combi-
nations were defined by starting with the first four ranked variables of each covariate selection method and
increasing to all 96 covariates, with covariates being added sequentially in descending order of importance ac-
cording to the ranking by each of the five covariate selection methods. To expedite processing time, after 10
covariates, the next three covariates in descending order of importance were added to the covariate combination.
A total of 50 covariate permutations for each of the five covariate selection methods were evaluated.

Following the covariate selection, three covariates, drainage area (DA), annual precipitation (P_Annual) and
proportion of forest cover, were reordered as the top three important covariates to ensure these three covariates
could be evaluated for their importance in the final model. Reordering of the three covariates did not influence
their importance in the model in RF and XGB because the model development process uses an internal
randomization of covariate splits that occurs during model fitting. Covariate order does not influence LR pre-
diction results due to the commutative property of the model terms. It is possible that relative covariate impor-
tance can be influenced by order particularly if multicollinearity exist in the data. However, including these
covariates ensured consideration of covariates that described water inputs, overstory vegetation influences, and
drainage area. Land and water stewardship agencies within the Pacific Northwest region are interested in un-
derstanding the influence of these covariates on streamflow permanence. Drainage area threshold values have
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been identified as a regulatory strategy for streamflow permanence (Clarke et al., 2008). Similarly, timber harvest
has been shown to potentially have mixed influences over time on low flow conditions in forested streams (Coble
et al., 2020; Segura et al., 2020). Therefore, understanding the relative importance of forest cover on streamflow
permanence could have land management implications (Kampf et al., 2021). Finally, land and water resource
managers were interested in understanding the importance of precipitation given the potential sensitivity of
streamflow permanence to changes in precipitation in this region (Ward et al., 2020) and the prospect of future
regional changes in precipitation (Luce et al., 2013).

2.4.3.2. Covariate Combination Scoring

RF models were fit to each of the 50 covariate permutations for each of the five covariate selection methods using
the Ranger package (Wright & Ziegler, 2017) in R (R Core Team, 2024) with the following hyper-
parameterization: (mtry = rounded sqrt (number of covariates), number of random splits = 3, number of
trees = 1,000, probability trees = true, classification = true, split rule = extratrees, method = permutation).
Hyperparameter tuning was not conducted in an effort to reduce processing time.

Matthews Correlation Coefficient (MCC) (Matthews, 1975; Equation 1) scores from the RF models were
compared to determine which covariate combination produced the best scores.

o T_sxp )
VPS( = S)(1 = P)

where

N =TN + TP + FN + FP

TP +F
g IP+FN
N
TP
p- IP+FP
N

where TP is true positives, TN is true negatives, FP is false positives, and FN is false negatives.

MCC was chosen to evaluate covariate combinations over simple and balanced accuracy because MCC is more
robust to imbalances between wet and dry classification, by accounting for correct classifications of both classes,
whereas even balanced accuracy may show inflated performance if predictions are better for a given class (Chicco
et al., 2021; Chicco & Jurman, 2020). MCC values range from —1 to 1. MCC of —1 indicates a model that is
always wrong; MCC of 0 is correct in half of instances and equivalent to random chance, and MCC of 1 is correct
in all instances. Landis and Koch (1977) offer an interpretation of Cohen's Kappa (Cohen, 1960) that can be
applied to MCC scores and breaks out the ranges as: <0 “poor,” 0-0.2 “Slight,” 0.21-0.40 “Fair,” 0.41-0.60
“Moderate,” 0.61 to 0.80 “Substantial,” and 0.81 to 1.0 “Almost Perfect.”

MCC scores were estimated for each RF model using spatial cross validations to characterize spatially distal
predictive performance and 20 repeats of 5-fold random cross validation to characterize spatially proximal
predictive performance. If there was not a spatial aspect to covariate selection, we expected that MCC scores from
the distal and proximal evaluations would be similar for each covariate selection method.

2.4.4. Model Development

We developed streamflow permanence prediction models using three different algorithms, LR, RF, and XBG
(Figure 2). The three different model development methods were selected because each algorithm has previously
been used in hydrological applications, including streamflow permanence (LR: Jensen et al., 2018; Kaplan
et al., 2022; RF: Hammond et al., 2021; Messager et al., 2021; Yu et al., 2019; SGB: Sahour et al., 2021; LR, RF,
XGB: Papacharalampous et al., 2023; Zounemat-Kermani et al., 2021). Further, each of these methods has
different strengths for parameterization and hyper-parameterization complexity, and variance versus bias
tradeoff. For example, decision tree models tend to minimize bias at the expense of increased variance whereas
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Figure 3. Schematic of streamflow permanence classes in WOWTDR model based on proximity of streamflow permanence
probability (SPP) and associated prediction intervals (PI) to 0.5 threshold that determines Wet/Dry class membership and
Ambiguous and No prediction classes.

LR models tend to minimize variance at the expense of increased bias (refer to Text S5 in Supporting Infor-
mation S1 for details). All three algorithms included the random cross validation framework for evaluating
predictive performance in areas spatially proximal to the training data and spatial cross validation to evaluate
predictive performance in areas spatially distal from the training data (Figure 2). A nested cross validation routine
was part of each of the proximal and distal cross validation routines for both RF and XBG to tune selected
hyperparameters within these models (Figure S5.1 in Supporting Information S1). Nested cross validation was not
necessary in LR because there are no hyperparameters to tune.

For RF, we used a high number of trees (2000), set the resampling to bootstrap, tuned the “mtry” parameter (the
number of variables to consider at each decision tree node split) using a nested loop, and used the default
hyperparameter of 10 for minimum node size (S 5). For XGB, we tuned nine hyperparameters (Table S5.1 in
Supporting Information S1). Hyperparameter tuning methodology was the same for both proximal and distal
validation strategies.

Preliminary analyses were conducted to examine interactions, autocorrelation coefficients, and mixed effects for
LR compared to RF. Prediction accuracy of LR were low compared to simple RF. In addition, including in-
teractions, autocorrelation coefficients, and mixed effects was computationally expensive, taking days to run and
resulting in large covariance matrices. Therefore, these components were not included in the LR algorithm given
the tradeoff between model performance and computational cost; final selected covariates were included
additively.

Performance tests included MCC, Negative Predictive Value (NPV), Positive Predictive Value (PPV), Accuracy,
Receiver Operator Characteristic Area Under the Curve (AUC), and Precision-Recall Area Under the Curve
(PRAUC) (Figure 2). The optimal covariate combination for fitting the final model was selected based on the
highest median MCC calculated from the 100 scores produced by the repeat cross-validation routine. MCC was
chosen because it accounts for classification accuracy and provides a measure of sensitivity and specificity
(Chicco & Jurman, 2020; Chicco et al., 2021).

2.4.5. Model Prediction

The final model, which we term the Western Oregon WeT DRy (WOWTDR) model, was then applied to each
stream point representing a 5-m sub-reach of stream in 426 HUC12 sub-watersheds. We calculated an estimated
probability of late summer surface flow, hereafter termed probability of streamflow permanence (SPP), using
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covariates for each year 2019, 2020, and 2021, then averaged SPP across years for a mean SPP. Values of SPP
ranged from 0% to 100% with a threshold of 50% determining membership of Dry or Wet classes (Figure 3). Dry
classification corresponded to probabilities with their associated 95% prediction interval being less than 50%,
which are considered to be sub-reaches that are likely to go dry in late summer. Wet classification corresponds to
probabilities and their associated 95% prediction interval being greater than 50%, which are considered to be sub-
reaches that are likely to have surface flow during late summer. Upper and lower 95% prediction intervals (PI)
were computed by multiplying the standard error (SE) output from the WOWTDR model by 1.96 and adding and
subtracting this value from the estimated probability, respectively (Altman & Bland, 2005).

Two additional classifications, “Ambiguous” and “No Prediction,” were included as separate classifications in
addition to wet and dry classes. An Ambiguous classification corresponded to the cases where the prediction
interval around the probability of late summer streamflow crossed the 50% threshold (Figure 3). We interpret
these Ambiguous classifications as suggesting that the model did not have enough information to make a
definitive class determination between Wet and Dry. “No Prediction” corresponded to locations within the stream
network with drainage areas that were substantially smaller or larger than the observational data set, including the
extreme upper reaches of the stream network, or downstream portions of the network where rivers are large,
which in this environment, in almost all cases, have late summer surface flow. Drainage areas ranged from 0.0008
to 52.3 km?; however prediction was limited to the range between the 1st and 99th percentile, 0.008 and 7.7 km?,
respectively, to prevent prediction marginal conditions pertaining to the most influential variable in the model. All
locations outside of this range were categorized as “No Prediction.”

2.4.6. Model and Prediction Analysis

This section details subsequent analyses of the final WOWTDR model including variable importance, WOWTDR
accuracies between sub-watersheds with proximal and distal data, identifying where the model is extrapolating,
and summarizing predictions across the modeling domain.

2.4.6.1. Variable Importance

Variable Importance scores were estimated using the DALEX package (Biecek, 2018) using a post-hoc per-
mutation approach to evaluating how the MCC of the final model is reduced when each model covariate was
removed. Partial Dependence Profiles (PDPs) were also produced using DALEX. PDPs were estimated by
evaluating how model probability of Wet changes across the full range of a given covariate, when all other
covariates were held constant.

2.4.6.2. Model Accuracy for Sub-Watersheds With and Without Training Data

We evaluated the predictive performance of WOWTDR by comparing classification accuracy for HUC12 sub-
watersheds that contain model calibration data (proximal) and those not containing calibration data (distal)
(Figure 2).

2.4.6.3. Extrapolation

Model extrapolation is a condition by which a model is used to infer or estimate a condition that is beyond the
bounds of the information used to inform the model. This is particularly a concern for models using RF algorithms
because these decision tree algorithms do not produce mathematical relations to response data that would
facilitate extrapolation beyond the bounds of the input data. However, identifying extrapolated sub-reaches can be
useful to understand which locations are well represented or not well represented by the model, providing users an
additional level of confidence in model prediction. Also, identification of sub-watershed with extrapolated model
predictions can inform future data collection efforts in support of model refinement and improvement. Therefore,
to understand where along the stream network WOWTDR was likely to be extrapolating beyond the bounds of the
available training data, a single-class support vector machine (SVM) model was fit to training data using the
Kernlab package in R (Karatzoglou et al., 2004) (refer to Text S6 in Supporting Information S1 for details).
Single-class SVMs work by creating a multi-dimensional convex hull (i.e., envelope) around the data, where the
number of dimensions is equal to the number of different covariates in WOWTDR. A given combination of
covariate data at a given point along the stream are then fed to the fitted SVM, and the model determines whether
the data reside inside or outside the convex hull. Those data determined to be outside of the convex hull are areas
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Figure 4. Matthews Correlation Coefficient (MCC) scores with associated 95% confidence interval bars for Random Forest
models iteratively fit to increasingly more covariates by covariate selection method where the covariate selection method
dictates ranked order of the 96 possible covariates and include manual reordering of DA, P_Annual, and Proportion Canopy.
The red dashed lines are annotations of covariate combination resulting in the highest overall MCC across both distal
validation strategy and applied to the proximal validation strategy.

where the WOWTDR model is likely to be extrapolating. We report locations where the model is extrapolating for
the three streamflow classes: Wet, Dry, Ambiguous, in addition to locations identified as No Prediction. No
Prediction locations occur when there are insufficient data to make a prediction, the stream is a fifth Strahler order
stream or larger, or the stream is outside of the 1st and 99th percentile drainage area range described previously.

2.4.6.4. Prediction Summaries

WOWTDR prediction results were summarized by ecoregion, lithologic province, and land ownership (State of
Oregon, 2016). Land jurisdictions include Bureau of Land Management (BLM), U.S. Forest Service (USFS),
additional federal agencies (e.g., National Park Service, U.S. Fish and Wildlife Service), state, private industrial,
private non-industrial, and other (e.g., Tribal, municipal, and other lands not captured by jurisdictions).

3. Results
3.1. Optimal Covariate Selection

The five different covariate selection methods showed consistent increases in MCC scores for the proximal
validation strategy until the number of covariates used in the model reached 10 (Figure 4). After 10 covariates,
Boruta, Spatial —1, and Spatial-2 MCC scores increased more slowly with the inclusion of more covariates. Note
that these results incorporate the manual reordering forcing the inclusion of DA, P_Annual, and Proportion
Canopy. JMIM and Permutation MCC scores decreased temporarily before a slow increase with Spatial-1 having
the highest MCC scores. MCC scores were smaller, and associated 95% confidence intervals were notably larger,
for spatially distal covariate selection approaches (Figure 4). Smaller MCC scores in the distal validation strategy
were expected given that an absence of observations in the watersheds yielded notably difference orders of
importance for the 96 covariates (Table S7.1 in Supporting Information S1), although some variables were
consistently identified as important (Table 1). Three covariates (drainage area (DA), total annual precipitation
(P_Annual), and proportion canopy cover)) were manually reranked to the top of each covariate selection
approach from their original position (Table S7.1 in Supporting Information S1). Eight consistent covariates
appeared three, and in one case, four times in the top 13 covariates across the five selection methods. Of these
eight consistent covariates, three were representations of precipitation or vapor pressure, three were represen-
tations of elevation, and the remaining two were representations of channel length and water storage. Fifteen
covariates appeared in only one selection approach. Based on MCC scores, the covariates from Spatial-1 were
selected for the final model development. Because the Spatial-1 approach explicitly accounts for spatial de-
pendencies, it is not surprising that this approach performed the best.
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Table 1
Covariates Included as the Top 13 for Each of the Five Covariate Selection Methods, Boruta, Permutation, Joint Mutual Information Maximization (JMIM), Spatial-1,
and Spatial-2

Covariate Times of occurrence across five covariate selection approaches Covariate selection type

DA 5 Spatial-1 (7)

Elev 3 Spatial-1
Elev_Normalized 3 Spatial-1
Length_Channel 3 Spatial-1

Downstream Channel Slope_50m 1 Spatial-1
Downstream Channel Slope_lkm 1 Spatial-1
Length_Hillslope Spatial-1

Elev_Rescaled 3

Curvature_profile

Downstream Channel Slope_100m
Lithologic Province

Local Slope Position relative to Intermediate

TPI_500_m

O S -y

Note. Full table ranking for all 96 possible covariates is provided in supplement (Table S7.1 in Supporting Information S1). No fill cells indicate topographic covariates,
light gray cells indicate climate covariates, dark gray cells indicate land cover, soil, and storage capacity. The number in parenthesis indicates rank for drainage area
(DA), annual precipitation (P_Annual), and Proportion Canopy Cover (Proportion Canopy) prior to reordering for the Spatial-1 selection approach.

3.2. Model Selection

Final model fits for the RF, LR, and XGB algorithms and the 13 covariates identified by the Spatial-1 covariate
selection indicated that RF and XGB resulted in the highest median MCC score for both spatially proximal (0.58)
and spatially distal (0.26 and 0.32, respectively) evaluations (Table 2). LR resulted in the lowest proximal (0.24)
and distal (0.20) median MCC scores, respectively. An evaluation of the LR model's standardized beta co-
efficients suggest the influence from introducing the three covariates was minor overall given that two of the three
covariates, DA and P_Annual, were relatively low for importance (fourth and sixth, respectively). To facilitate
easier interpretation and utility for land and water managers, there was a strong preference for a single global
model. RF was selected as the final model because although the median MCC scores were the same for RF and
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Table 2

MCC Scores for the Spatially Proximal and Spatially Distal Evaluations of the Random Forest (RF), Logistic Regression (LR) and Extreme Gradient Boosting (XGB)

Models Fit to the Optimal Covariate Set

Median

Predictive performance evaluation type Covariates Model MCC Lower bound Upper bound
Spatially Proximal 13 RF 0.58 0.58 0.59

13 LR 0.24 0.24 0.25

13 XGB 0.58 0.57 0.59
Spatially Distal 13 RF 0.26 0.24 0.27

13 LR 0.20 0.17 0.22

13 XGB 0.32 0.31 0.33

XGB under the proximal validation strategy, Ranger implementation of RF included estimates of standard error of
prediction, which provided additional interpretative value to end users. Here, standard error provided by RF was
prioritized over performance accuracy in the distal validation strategy, which was higher for XGB.

3.3. WOWTDR Model Performance and Covariate Importance

The final WOWTDR model is a 13-covariate streamflow permanence prediction model that used the RF algo-
rithm fit to FLOWPER observations to train the model (Table 1). WOWTDR model included three precipitation
and temperature covariates, nine hydro-topographic covariates that describe the location within the channel
network, and a static land cover covariate of percent canopy cover (Table 1). Distribution of values for sub-
reaches within the modeling domain is generally well represented by the training data for these 13 covariates
although training data has slightly greater representation of higher elevation sites with lower minimum tem-
perature relative to the prediction locations (Figure S7.1 in Supporting Information S1). Total precipitation for the
current year of the observation, drainage area, and upstream channel length were the three most important
covariates for determining the likelihood of late summer streamflow (Figure 5).

The partial dependence profiles depict generally expected relations between the likelihood of streamflow
permanence and individual covariates (Figure 5). As expected, streamflow permanence probability generally
increased with increasing total annual precipitation. Probabilities increased sharply at approximately 1,300 mm
total annual precipitation and continued to increase until approximately 3,200 mm. Probability values decreased
once annual precipitation exceeded 3,200 mm, but this decrease was influenced by a limited number of obser-
vations in the training data at high precipitation levels, including some dry stream observations in headwaters that
had very small drainage areas and at elevations of less than 1,000 m above sea level (msl, Figure S7.2 in Sup-
porting Information S1). As expected, probabilities of streamflow permanence increased with increases in
drainage area and upstream channel length (Figure 5). Also as expected, probabilities of wet sub-reaches
decreased with steeper channel slopes, when calculated for short distances of 50 m, but remained level, and
varied little with channel slope over longer distances (1 km). We expected streamflow permanence probabilities
to increase with increased water storage capacity, and this was the case for water storage capacities between 20
and 35 mm. However, probability of permanence initially decreased with water storage capacity between the
values of 0 and 10, and varied little from 10 to 20. Minimum August temperature, hydraulic conductivity,
normalized elevation, and minimum May temperature from the previous year all had generally similar magni-
tudes of covariate importance (Figure 5). The probability of permanence generally decreased when these
covariates increased, except for minimum May temperature of the previous year. Probabilities markedly
increased as minimum May temperature of the previous year exceeded 5°C. Similar to normalized elevation,
probability of permanence decreased with higher elevation, although this relationship was driven by a limited
number of observations in the training data for elevations higher than 1,600 m (Figure 5, Figure S7.2 in Sup-
porting Information S1). Probabilities remained relatively level with increases in proportion canopy cover and
hillslope length, except for a slight increase in probability of permanence when canopy cover exceeded 0.75 and
when hillslope length increased from O to 0.25. Hillslope length was calculated as 0.5/drainage density and
represented the flow path length prior to reaching the channel (Tucker et al., 2001). We expected that short
hillslope lengths would have a rapid response to hydrologic inputs and would substantially contribute to channel
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Figure 5. Partial dependence profiles for all covariates in the WOWTDR model are presented in order of descending relative importance. Relative importance score for
the given covariate is depicted inside of the associated profile plot. X axis values and ranges are dependent on range of the data for the respective covariate. Y axis is the
likelihood of late-summer streamflow being Wet, with 0.0 being dry and 0.5 being the decision boundary between the Wet and Dry. Relative importance score for the
given covariate is displayed in the bar chart.

flow draining small contributing areas (D’Odorico & Rigon, 2003). However, we acknowledge this expectation
may vary across the different lithologic provinces (Hale & McDonnell, 2016).

3.4. WOWTDR Proximal Versus Distal Comparison

We evaluated the accuracy of WOWTDR for HUC12s where field observations existed and where they did not
exist, termed proximal and distal respectively (Figure 6). In addition, we were also interested in evaluating how
data that resulted in Ambiguous classification influenced predictive performance. Therefore, we evaluated per-
formance metrics (a) considering all the data, (b) excluding data that resulted in Ambiguous predictions, and (c)
considering only data that resulted in Ambiguous predictions (Figure 6). Evaluation of predictive performance
excluding Ambiguous data was conducted to provide the end user greater confidence in Wet and Dry
classifications.

As expected, performance metrics were higher using proximal validation strategies compared to distal validation
strategies (Figure 6). Including all the data in the proximal evaluation, accuracy was 0.83 with a MCC of 0.67 with
similar negative and positive predictive values (0.82 vs. 0.84). Negative predictive value indicates the likelihood
that a Dry prediction is truly dry and positive predictive value indicates the likelihood that a Wet prediction is truly
wet. Accuracy decreased to 0.67 and MCC markedly decreased to 0.34 using the distal validation strategy with
corresponding decreases in negative and positive prediction values (0.67, 0.66). Performance metrics increased
when data that resulted in Ambiguous classifications were excluded (Figure 6). Accuracy and MCC metrics were
0.90 and 0.80, respectively for the proximal condition, indicating substantial agreement to validation data, and
0.71 and 0.43 for the distal condition, which suggested moderate agreement to validation data. Finally,
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Figure 6. Comparison of four model performance metrics, (a) Accuracy, (b) Matthews Correlation Coefficient, and

(c) Negative and (d) Positive Predictive value) for the proximal and distal conditions of WOWTDR predictions while also
considering the influence of ambiguous predictions. Negative Predictive Value indicates the likelihood that a Dry prediction
is truly dry and Positive Predictive Value indicates the likelihood that a Wet prediction is truly wet. Bars are 95% confidence
intervals using the percentile bootstrapping method.

performance metrics were lowest when considering only Ambiguous data, although surprisingly, metrics were
higher than 50% for accuracy (0.71) and >0 for MCC (0.42), which indicated that classification accuracy was
better than a random coin flip, suggesting moderate prediction strength. Confidence intervals, using the percentile
bootstrapping method (refer to Text S3 in Supporting Information S1 for details), were generally small (<0.02)
when considering all the data, excluding Ambiguous data, and considering just the Ambiguous data (Figure 6).
Confidence intervals were slightly larger for the distal conditions compared to the proximal conditions.

3.5. Extrapolation Detection Model

The SVM model was chosen over the isolation forest (IF) method of detecting extrapolations at any given
subreach because it had 99.7% accuracy on hold-out test data and 94.8% on simulated outlier data (Table S6.2 in
Supporting Information S1) and achieved better accuracy than IF in 3 of 4 tests and was within 1% of IF on the test
3 (refer to Text S6 in Supporting Information S1 for details).

WOWTDR extrapolated for 23% of sub-reaches in the modeling domain that includes Strahler order one through
four (Figure 7). Surprisingly, Ambiguous classifications only accounted for 16% of extrapolated sub-reaches
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Figure 7. Proportion of stream sub-reaches extrapolated by HUCI12 (a), distribution of extrapolated stream sub-reaches in a
HUC12 with low proportion of extrapolation (b) and high proportion of extrapolation (c), distribution among the four
predictions for the 426 sub-watersheds in the prediction domain (d). Base map from Esri and its licensors, copyright 2022.
indicating that Ambiguous classifications should not necessarily be equated with extrapolation. Consequently,
extrapolation detection can be used to identify locations within the model domain that are outside the range of and
therefore not represented by the training data. Approximately 31% of extrapolated predictions were classified as
Wet and were located in the downstream portions of the network where sub-reaches generally have reliable late
summer streamflow but are still upstream of the no prediction zone.
BURNETT ET AL. 17 of 29

858017 SUOWWOD 8AIIR1D 8|qedl dde au Ag peuleAob ke Sa[o1e YO ‘85N JO S3INJ 10} A%euq 1 8U1IUO AB|IA UO (SUORIPLIOD-PLE-SLLBY 0D A8 | 1M AtRIq 1 BU1|UO//SANU) SUOHIPUOD PUe SWB | 3U3 89S *[G202/80/T0] Uo ARiqi8uliuo A3 |1 ‘8Ly0r0HMSZ0Z/620T OT/I0p/L00 Ao im Areiq 1 jpuljuo'sqndnBe//:sdny wouy papeojumod ‘. ‘520z ‘€L6.7v6T



V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Water Resources Research 10.1029/2025WR040478

Rock Creek

¥22,5%i028

o~

2 Kilometers 7

0 5 Kilometers

, 2 .
el s .”1 | 4 PR AP ) il
Observations Prediction —— No Prediction
@ Dry Ambiguous — Wet

@ Wet — Dy [ Huct2 Boundary

Figure 8. WOWTDR predictions of streamflow permanence classifications of Dry, Wet, Ambiguous, and No Prediction for
two representative HUC12 sub-watersheds and observations (a, ¢). No prediction zones at both upstream and downstream
extents of flow network with general downstream sequence of Dry, Ambiguous, and Wet classifications (b, d). Base map
from Esri and its licensors, copyright 2022.

3.6. Prediction Summaries

Overall, as expected, classifications transitioned from Dry in the uppermost headwaters to Wet in a downstream
direction and were generally consistent across the 3 years (Figure 8, Figure S7.3 in Supporting Information S1).
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Figure 9. Distribution of probability of permanence and associated 95% Prediction Interval by prediction class of Wet, Dry,
and Ambiguous (a) and by extrapolated and not extrapolated sub-reaches(b). Boxplots of distribution of prediction interval
by prediction class (c) and extrapolated and not extrapolated sub-reaches (d). Box center lines indicate the median, box edges
are the 25th and 75th percentile; lines extend to the 5th and 95th percentiles.

Ambiguous classifications tended to correspond to transition zones between Wet and Dry classifications. There
was only slightly higher frequency of both Wet and Dry classifications occurring in 2019 compared to 2020 and
2021 and slightly more Ambiguous classifications in 2020 (Figure S7.3 in Supporting Information S1).

The prediction interval was generally similar for Wet and Dry prediction classes, but was larger and more variable
within sub-reaches classified as Ambiguous (Figure 9). Most prediction intervals in sub-reaches with an
Ambiguous streamflow permanence class were <0.1; therefore, most of the Ambiguous predictions were a result
of model estimates near the 0.5 decision threshold between Wet and Dry as opposed to an estimate far from the
threshold but with larger intervals (Figure 3).

The prediction intervals for sub-reaches both within and outside of the extrapolation zones had very similar
prediction interval distributions (Figure 9b) such that prediction interval is not a useful identifier of an extrap-
olated location. Instead, the lack of difference in prediction interval magnitudes between extrapolated and non-
extrapolated sub-reaches underscores the need for a separate extrapolation identification model.

Our evaluation of WOWTDR predictions across the 116,494 km of mapped sub-reaches indicated differing levels
of Wet, Dry, Ambiguous, and No Prediction classifications by Strahler Order, lithology, ecoregion, and land
jurisdictional (Figure 10).

The starkest patterns in streamflow status classification were across Strahler stream orders (Figure 10a) with a
progressive shift to a greater proportion of sub-reaches classified as Wet as stream order increased from first- to
third-order. Strahler first-order streams are dominated by either Dry (0.5) or Ambiguous (0.28) classes
(Figure 10a). Sub-reaches that are classed as No Prediction in first-order streams represent the farthest upstream
sub-reaches of the channel network. The proportion of dry sub-reaches decreased for second-order streams to 0.21
as the proportion of both Ambiguous and Wet classes increased (0.32 and 0.46, respectively). Third-order streams
were dominated by Wet classifications (0.86) with a small proportion of No Prediction sub-reaches (0.03). The
proportion of No Predictions increased to 0.4 for fourth-order streams. All sub-reaches in fifth-order and larger
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Figure 10. WOWTDR classification prediction across 116,494 km of light detection and ranging stream network smaller than
Strahler fifth-order within the modeling domain by (a) Strahler Order, (b) lithologic province, (c) Environmental Protection
Agency Level 3 Ecoregion classification, and (d) land jurisdiction. The y-axis is the proportion of the total stream length
where the relative contributions of the four possible predictions classes are stacked to a total of one for each given category.

were classified as No Prediction. The increase of Ambiguous class and reduction of Dry class in second-order
sub-reaches suggests that second- order is where streams in western Oregon transition from Wet to Dry on the
LiDAR-derived hydrography used in this study.

Dry classifications were proportionally higher than other classifications for the Coast Range sedimentary rocks
(0.4), Klamath (0.53), and Western Cascades (0.45) lithologic provinces (Figure 10b). Conversely, the High
Cascades and Coast Range volcanic rocks and Columbia River basalt lithologic provinces had a relatively high
proportion of wet classifications (0.32 and 0.30, respectively). Both the High Cascades and Coast Range volcanic
rocks and Columbia River basalt lithologic provinces had a relatively small number of observations with which to
train the model (213 and 20, respectively) compared to other lithologic provinces.

The distribution of stream status classifications by ecoregion was similar to the distribution by lithologic province
(Figure 10c). In general, the distribution of classifications was approximately similar for the Coast Range,
Cascades, and Klamath Mountains ecoregions. However, the Coast Range ecoregion had a larger relative pro-
portion of streams classified as Wet and Klamath Mountains ecoregion had a higher relative proportion of streams
classified as Dry.

Across our study region, BLM lands contained the largest proportion of Dry sub-reaches (0.53) followed by U.S.
Forest Service (0.4) and Private Industrial land (0.4), which was largely composed of private forests (Figure 10d).

4. Discussion

The modeling approach used in this study includes a robust consideration of spatial balancing and several un-
certainty components that include (a) an Ambiguous prediction class, (b) model predictive performance in sub-
watersheds containing training data and those that do not, and (c) identification of where the model was
extrapolating. We suggest that such an approach is critical to helping managers make informed decisions by
providing a clear understanding of the level of uncertainty and where the uncertainty occurs in the landscape and
within models (Tonkin et al., 2019).

Existing streamflow permanence models for this region include the PROSPERpyyw model (Jaeger et al., 2019), a
regional model based on a relatively coarse hydrography that does not adequately represent small streams, and
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individual catchment scale models that are based on higher resolution hydrography and intensive data collection
over smaller spatial extents for catchments of generally less than 64 km? (Hafen et al., 2023; Ward et al., 2018,
2020). The WOWTDR model bridges this geographic and spatial resolution gap by providing predictions for
western Oregon that covered a geographic extent much larger than small individual catchment studies while
leveraging high-fidelity LiDAR-derived hydrography and a framework that allows users to infer key influences of
processes that drive flow permanence.

4.1. Merits and Tradeoffs of Intensive Model Development

The model development approach used in this study included numerous processing-intensive components that,
when considered in aggregate, are novel inclusions for empirical models. Strategies were implemented to solve
modeling challenges while achieving both the highest accuracy and highest understanding of uncertainty possible.
Aside from the overarching computational challenge of developing a model that provides relatively fine spatial
resolution estimates (5-m sub-reaches) on LiDAR-derived hydrography, over a relatively large geographic extent
(426 HUC12 sub-watersheds), intensive processing components were incorporated that each come with tradeoffs
between computational cost and model accuracy. Components of our empirical modeling approach included (a)
additional components of uncertainty, (b) spatial balancing to account for imbalanced data, (c) intensive covariate
selection routines to reduce 96 possible covariates, (d) and testing multiple algorithms. The tradeoffs for each of
the four components need to be carefully considered in future modeling efforts.

4.1.1. Incorporating Uncertainty in Model Predictions

In the WOWTDR model, Ambiguous classifications are assigned where the model is unable to determine with
certainty that late-summer streamflow status is either Wet or Dry. However, the relatively small size of the mean
prediction interval associated with WOWTDR model performance estimate (<0.1, Figure 9) suggests that
WOWTDR predictions of Ambiguous occur with a high level of precision (Figure 3). The implication of this
result is that additional observations in Ambiguous zones may not necessarily improve WOWTDR predictive
performance if the Ambiguous classification is the result of the model receiving conflicting response observations
over similar ranges of covariate expression. It is likely that conflicting observations are not in error, but instead are
a result of a consequence of local-scale conditions not captured by the predictor covariates. A range of local
conditions that influence streamflow permanence have been identified in individual catchment studies including
covariates that describe geomorphic planform, cross-sectional area, and subsurface characterization (Bush
et al., 2023; Jensen et al., 2018; Ward et al., 2018; Warix et al., 2023), yet fine-scale gridded data sets remain
coarse and do not capture on-the-ground conditions (Dohman et al., 2021; Hafen et al., 2023; Kaplan et al., 2020;
Prancevic & Kirchner, 2019).

Conversely, Ambiguous classifications may indicate real streamflow permanence conditions that are in an in-
termediate state between wet and dry where, definitive surface flow conditions are not evident, but instead, may
include some degree of discontinuous surface water presence or near surface water presence (Gallart et al., 2012).
The duration of this intermediate flow data could be extremely short or sustained throughout the late summer
streamflow period (Costigan et al., 2017). Although the FLOWPER mobile app includes a streamflow status
option of “discontinuous flow” to approximately demarcate the intermediate state of “continuous flow” and
“dry,” there were very few occurrences of these observations, which were ultimately excluded from the training
data set. More observational data of this intermediate flow state is needed to distinguish between Ambiguous
classification more definitively in the WOWTDR model that represent this intermediate flow state or represent a
limitation in the model to distinguish between Wet and Dry. Ambiguous predictions are less frequent in
occurrence than Wet or Dry predictions and can help land managers prioritize field observations to a smaller
portion of the stream network.

Similarly, our estimation of areas of extrapolation, where WOWTDR provides predictions beyond the watersheds
for which there was training data, is an important component of this work. There is a risk that model predictions
that extend to areas beyond training data can result in meaningless predictions if covariates are substantially
different than the training data (Meyer & Pebesma, 2021). The distribution of our training data and that of the
larger modeling domain indicate that training data generally represented the distribution of covariates in the
modeling domain well (Figure S7.1 in Supporting Information S1). Nevertheless, predictions in extrapolation
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zones should be considered carefully and identification of these areas can help prioritize additional field
observation campaigns for research as well as management planning.

4.1.2. Consideration of Spatial Dependence

Despite thousands of field observations, the spatial distribution of late summer streamflow observations was
sparse for the large study area (only 129 out of 426 watersheds had observational data available) with observations
often not evenly spatially distributed throughout a given HUC12 watershed. The nature of these data presented
two challenges to assessing model performance: (a) the imbalance between wet and dry observations and (b) the
spatial autocorrelation inherent to clustered data.

To mitigate these two challenges, we incorporate balancing of wet and dry observations by spatial groups. The
even distribution of wet and dry allows the model decision threshold between wet and dry to sit at 0.5 on a scale
from 0.0 to 1.0, which allows a straightforward post-hoc classification of Wet, Dry, and Ambiguous. There is a
risk of inducing bias by potentially duplicating spurious observation data. However, spatial balancing partially
mitigates the risk of biasing the performance estimates by ensuring each spatial group had sufficient observations
(at least 73) to accommodate the iterative validation process and evaluating the model performance for proximal
and distal to the training data. As a result, data that would be considered spurious with unusually high or low
values would have less potential to bias the model. The final number of spatial groups to meet the criteria of
sufficient iteration both across and within groups was 20.

Our model performance analysis included a computationally intensive evaluation of predictive performance using
a spatial cross-validation strategy, representative of performance distal to training data, and a non-spatial cross-
validation strategy, representative of predictive performance proximal to model training data. Roberts
et al. (2017) demonstrated that spatial cross-validation tends to produce lower estimates of predictive perfor-
mance on spatially dependent data when compared to results from a conventional random cross-validation
strategy. We acknowledge that the application of spatial cross-validation is not novel to empirical streamflow
permanence modeling (refer to Messager et al., 2021; Sando et al., 2022). However, here we explicitly report the
results of the distal and the proximal because they exhibit the performance differences between spatial and non-
spatial approaches described by Roberts et al. (2017). These differences provide critical insight on the relative
performance improvement in sub-watersheds containing training data over those that do not, as well as quanti-
tative information on model generalizability, a feature that was not included in the regional-scale PROSPER py-
These insights could be used by land managers who make risk decisions for the purpose of prioritizing resources.
For example, overall proximal predictive performance accuracy may be sufficiently high (when Ambiguous is
removed) for using WOWTDR predictions for planning purposes. Conversely, for watersheds without training
data, median predictive performance that is below a value of interest may result in decision makers determining
that field observations are necessary to inform planning. However, our analysis was not able to include estimates
of a minimum amount of observation data to achieve a given accuracy. As a different method to identify areas
where the model is applicable or not applicable, Meyer and Pebesma (2021) provided a dissimilarity index and a
subsequent “area of applicability (AOA)” as a function of covariate importance and distance to training data. They
note that the AOA is sensitive to the cross-validation strategy in addition to the sampling design, and more work is
needed. Our collective proximal/distal cross-validation strategies and extrapolation detection component is an
alternative approach to this concept to inform area of applicability of the WOWTDR model.

4.1.3. Intensive Covariate Selection

Our covariate selection approach required substantial development time and processing, but resulted in a more
efficient model than simply using all the available data. Covariate selection showed that including more than 13
covariates did not result in substantial increases in predictive performance metrics for the spatially proximal
validation strategy, and for spatially distal performance metrics, there was a marked decline when more than 13
covariates were included (Figure 4). Decreases in performance metrics as more covariates are included past a
particular high point is a consequence of sparse training data relative to the number of covariates or dimensions
that can be considered in the model. The additional covariates result in overfitting to noisy data and cause reduced
performance of average conditions (Theodoridis & Koutroumbas, 2006; Trunk, 1979). However, each of the
covariate selection methods resulted in different covariate rankings and predictive performance estimates, which
demonstrate there is no one-size-fits-all approach to covariate selection. Given that Spatial-1 and Boruta utilize
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variable importance estimates within a repeated resampling routine to choose variables, we expect that these two
methods will consistently outperform the other methods considered for predicting categorical wet and dry
streamflow classes. However, the Spatial-1 covariate selection approach resulted in the highest performance
metrics for both spatially proximal and distal strategies, suggesting that covariate selection approaches that ac-
count for spatial dependencies should be considered when selecting variables and evaluating model performance
in streamflow permanence classification. Other machine learning modeling have identified the importance of
spatial cross-validation to remove spatially correlated covariates that would result in overfitting and limit the
model's ability to provide prediction beyond the training locations (Meyer et al., 2019). In our modeling case,
Spatial-1 was the preferred covariate selection approach and may be a preferred approach in similar modeling
scenarios where there are numerous covariates across a broad range of resolution that must be filtered and where
data are sparse, spatially dependent, and highly imbalanced. However, if validating the spatially distal strategy is
not a priority, the Boruta covariate selection approach would be acceptable, although the resulting model would
not generalize as well to sub-watersheds that do not have training data.

The choice to override the covariate selection and manually re-order drainage area, annual precipitation, and
proportion forest canopy cover to ensure their inclusion in the final model was intentional to balance the tradeoff
between model performance and the legitimate interests of end users to understand controls on streamflow
permanence that can help inform management decisions. Understanding apparent influences of these three
covariates can be more easily translated into land management decisions compared to other covariates that may be
more difficult to construct management plans around. For example, hillslope length, total wetness index, or vapor
pressure deficit may result in more accurate streamflow permanence estimates, but if a goal is to develop
management activities related to streamflow permanence, incorporating the influence of these nuanced landscape
or climatic characteristics is less straightforward. This tradeoff between taking a purely data driven approach and
including these subjective choices for covariate inclusion was a purposeful decision to arrive at a multi-solution
objective.

4.1.4. Testing Multiple Model Development Algorithms

We tested multiple model development algorithms to explore best options for the challenging task of delineating
wet and dry stream sub-reaches across a region. Many existing flow permanence models have only used one
algorithm exclusively without comparison (e.g., RF: Doll et al., 2024; Jaeger et al., 2019; Sando et al., 2022; Yu
et al., 2019; LR: Jensen et al., 2018; Kaplan et al., 2022) although Messager et al. (2021) evaluated different RF
algorithms. Our results show that RF had a higher mean MCC value than LR, indicating that RF prediction
accuracy was higher (Table 2). In contrast, a similar workflow and similar array of covariates in Penaluna
et al. (2022) showed that LR more accurately predicted the upper extent of trout in stream networks compared to
RF. In that study, LR likely had higher prediction accuracy than RF because the relation between the drainage area
covariates and the response variable, presence of fish, was strong and relatively linear. Unsurprisingly, XGB
performed better than RF in our distal evaluation, suggesting marginally less overfitting and broader general-
izability than RF. This result is generally consistent with the Sahour et al. (2021) finding that XGB more
accurately prediction streamflow compared to RF when using correlations to tree ring sizes. The higher prediction
accuracy of XGB likely results from its ability to learn from residuals. However, the cost of XGB's increased
prediction accuracy is the need to tune multiple hyperparameters in a computationally intensive process.
Furthermore, we were not able to locate an XGB implementation that contained native support for estimating
standard errors of prediction. Given the improvement in interpretive value provided by inclusion of standard error
of prediction estimates and the relative ease of developing a RF model, the results do not provide enough evidence
to suggest a deviation from the use of RF for this application to streamflow permanence.

4.2. Streamflow Permanence in Forested Headwaters of Western Oregon
4.2.1. Patterns in Streamflow Permanence

We recognize that stratifying the landscape by Strahler stream order is scale dependent and that the low order
headwater regions encompass both perennial and non-perennial sections of streams (Christensen et al., 2022;
Golden et al., 2025). Our modeling results corroborate this assessment such that, for this LIDAR-derived hy-
drography resolution and in the forested headwaters of western Oregon, the transition between the nonperennial
and perennial portions of the network frequently occurs in the second-order streams.
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4.2.2. Controls on Streamflow Permanence

Surface flow presence demonstrates the balance between the subsurface capacity to transmit water and time-
varying delivery of water from upstream (Durighetto & Botter, 2022; Godsey & Kirchner, 2014; Prancevic &
Kirchner, 2019; Ward et al., 2018). Topographic variables including drainage area, slope, and curvature, which
govern subsurface transmissivity, and discharge, which describes the upstream delivery (Durighetto & Botter,
2022; Godsey & Kirchner, 2014) have been correlated with where surface flow presence expands and contracts
across a given network (Prancevic & Kirchner, 2019). In our study, the inclusion of the four covariates, drainage
area, channel length, which is highly correlated (Pearson's correlation coefficient = 0.93) with drainage area and
may be considered a surrogate, channel slope, and water storage capacity, as important variables following annual
precipitation (Figure 5) is consistent with these prior works and the conceptual framework of morphology and
lithology controlling how water moves through the landscape and drives streamflow permanence (Durighetto &
Botter, 2022; Leach et al., 2024). Stream sub-reaches with larger drainage area, which serves as a proxy variable
for discharge, correspond to reliable, persistent flow (Durighetto & Botter, 2022; Godsey & Kirchner, 2014), and
sub-reaches with higher channel slope have shorter and/or more rapid subsurface flow paths resulting in more
transport in the subsurface and consequently, smaller streamflow permanence probabilities (Prancevic &
Kirchner, 2019). These covariates are interpreted as the best available surrogates for key watershed processes of
streamflow permanence, but effective characterization of lithologic influences are lacking even though lithologic
influence has been identified to be a key driver of streamflow permanence in other studies (Leach et al., 2024;
Moidu et al., 2021). Therefore, although the prevalence of variables that describe morphology and lithology in
empirical models supports this perceptual idea that morphology and lithology control streamflow permanence, the
capacity to identify covariates across a region that accurately influence streamflow permanence at the scale of a 5-
m reach remains limited.

Climate may not necessarily control the spatial dynamics of where wet and dry reaches occur in an individual
catchment (Durighetto & Botter, 2022), but can influence streamflow volume year-to-year and across broader
geographical extents (Botter et al., 2021; Hammond et al., 2021; Messager et al., 2021; Ward et al., 2020). The
WOWTDR modeling domain was large enough geographically that precipitation differed substantially among
watersheds; therefore, it was not surprising that precipitation was the most important predictor (Figure 5), which
is consistent with models at larger regional (Hammond et al., 2021; Jaeger et al., 2019; Sando et al., 2022) and
global extents (Botter et al., 2021; Messager et al., 2021). We would expect precipitation to be less important if the
modeling domain was smaller and less diverse, consistent with other similarly scoped empirical modeling ex-
amples (Jaeger et al., 2023; Kaplan et al., 2022).

4.2.3. Limitations

This model relies on LIDAR DEMs and LiDAR-derived hydrography. While the availability of these types of
data worldwide are highly variable by location, in the coming decades, these data are expected to be increasingly
available across much of the coterminous United States due to ongoing investment by the USGS 3D elevation
program (3DEP) and the 3D hydrography program (3DHP) to produce 1-m resolution LiDAR and comple-
mentary hydrography (Anderson et al., 2024).

The goal of proximal and distal cross-validation was to provide the end user with an estimate of model perfor-
mance in areas lacking observation data. However, the spatial grouping approach can substantially alter estimates.
Ecoregion and stream gage locations have been used for spatial groupings for rivers in geographically larger
domains (e.g., Messager et al., 2021; Sando et al., 2022). However, these factors were not applicable to this study
focusing on headwater stream networks in a geographically smaller modeling domain. Instead, we grouped
observations by HUC12s as a means of practical convenience. Whether grouping observations this way is
physically meaningful is unknown and would require additional study.

The WOWTDR model provides estimates for conditions that are consistent with approximately normal to below-
normal annual precipitation conditions and may not represent wetter than average conditions. Repeated collection
of training data at sites across years across a range of hydroclimatic conditions would be needed to provide
predictions that represent drier and wetter climatic conditions and the potential influence of year-to-year
differences in climate, including changing snowpack on streamflow permanence for a given location.
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5. Next Steps

Estimating the extent of perennial flow in headwaters streams will remain an ongoing need for land managers and
an ongoing challenge for researchers for numerous reasons. Deriving the extent of perennial streams from LiDAR
and remote sensing applications continues to be challenging (Kim et al., 2023), leaving modeling as the best
means for understanding flow across large spatial extents. The regional-scale PROSPERpy, model (Jacger
et al., 2019) was an original effort to model streamflow permanence across a large geographic extent using RF.
This model provided predictions at relatively fine spatial resolution (30 m) for that point in time. Since then, the
PROSPERpyw has been refined (e.g., Sando et al., 2022) and extended (e.g., Messager et al., 2021). Notable
distinctions between the sub-regional WOWTDR and the regional-scale PROSPERpyy, include WOWTDR
providing streamflow classifications at a markedly higher spatial resolution to address needs of end users (Kampf
et al., 2021). Additionally, WOWTDR results suggest that intensive spatial balancing, covariate selection, and
uncertainty analysis provide worthwhile contributions to streamflow permanence modeling, although more work
remains. Sando et al. (2022) showed that driver variables important to streamflow permanence vary across space.
Additional study is necessary to understand if this variation across space is highlighting spatial groupings of
observation data that are different enough to warrant spatially focused and potentially more accurate prediction
models.
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S1 Preparation of LIDAR DEM and stream network modeling domain

This study required processing of light detection and ranging (LiDAR) elevation data
(DOGAMLI, [2025]) that not only comprise the topographic covariates, but is the basis of the
flow direction layer required for processing all covariates as flow conditioned values.
Additionally, a stream network was generated to serve as the modeling domain on which the
model was trained, and predictions were estimated. All processing for this step occurred in
Python ver. 3.7 (Python Software Foundation, 2018) and utilized multiple ArcGIS Pro ver. 2.8
(Esri, 2021) functions within the Python environment.

Covariates flagged as “patch scale” in Table S1 were processed as drainage-area weighted values
to produce Flow Conditioned Parameter Grids (FCPGs). FCPGs account for change in average
basin value with downstream accumulation (Jaeger et al., 2019; Barnhart et al., 2020; Sando et
al., 2022). FCPG processing requires an eight direction (i.e., D8) flow direction grid that is
derived from the LiDAR-derived digital elevation models (DEMs) (DOGAMI, [2025]) to
accumulate values in the downstream direction for each gridded covariate dataset. When gridded
covariate datasets are categorical the result is a drainage-area weighted proportion of presence
and when the datasets are categorical the gridded values are continuous values representing
drainage-area weighted means of the gridded values over the accumulation area. Therefore, this
modeling approach requires that the underlying LiDAR-derived elevation data are consistent
throughout the modeling domain, which contributes to limitations of applying this approach to
the contiguous western Oregon study area. The modeling domains of previous streamflow
permanence models have included contiguous areas that comprise larger watersheds (Jaeger et
al., 2019, 2023; Sando et al., 2022)

LiDAR-derived DEM data (DOGAMLI, [2025]) were downloaded, pit-filled, smoothed, and
reprojected to Universal Transverse Mercator (UTM) Zone 10N (North American Datum, 1983).
Vertical units representing orthometric height above mean sea level are in units of meters. DEMs
were resampled to a 5-m spatial resolution. The steps ensure the elevation and spatial
characterization of hydro-topographic conditions represented by DEMs were consistent across
the study domain that included many 12-digit Hydrologic Unit Code (HUC12) sub-watersheds
that are not geographically adjacent.

The associated flowline network was processed into stream points that each represent a 5- to 7-m
sub-reach. These stream points served as the stream network on which the model was developed.
National Hydrography Dataset (NHD) flowlines (U.S. Geological Survey, 2021) representing the
stream network were aligned to the DEM using the Arc Hydro Tools Create Drainage Line
structures tool as described in the Arc Hydro reference manual for use where flowlines may not
have been derived from the available source DEM (Esri, 2019). Aligned flowlines were split into
5- to 7-m sub-reaches to ensure spatial agreement with the predictor covariates produced from
the DEM. Subreach length varied depending on the direction a given flowline crossed the
corresponding DEM grid cells (7 m along diagonals). Sub-reaches were then simplified to points
(hereafter stream points to disambiguate with other points) representing the center of the sub-



reach. Stream points and sub-reaches are synonymous, indicating that modeling occurs on points
that represent the sub-reach.



Table S1.1. Covariate table that describes the 96 covariates considered for the creation of the WOWTDR model. DataShortname is

the name of the covariate as it appears in the scripts and within the data tables of training and prediction data. ManuscriptShortname

is the covariate name as it appears in the text. Descriptive name provides a more comprehensive description of the covariate. Type

indicates whether the covariate describes landcover, physiography, jurisdiction, or climatic conditions. Scale indicates whether the

covariate value is ‘local’ and drawn from the location of the given sub-reach or if it is at the patch scale that captures the average of

condition over a larger area upstream of the sub-reach. Scaling Values to Subreach describes how covariate data were scaled to the

sub-reach. Data Description and Derivation Method describes what covariate values represent and when applicable, how they were

derived from other data sources. Map Source indicates the raw data source. Source Resolution describes the native resolution of the

raw source data in terms of 2-dimensional spatial resolution. When described as “mapped’’ this indicates a data source drawn from a

categorical map of polygons.

Sourc
e
Resolu | Param
Data Manuscript | Descriptive tion eter- Potentia | Derivation
Shortname | Shortname | Name Rank | Scale | (m) ization | | Driver | Method Data Source Citation
Topogra https://gis.dog
phic ami.oregon.gov | Stage, A. R. (1976). An
Draina | control /arcgis/rest/ser | Expression for the Effect of
ge on vices/LiDAR/DI | Aspect, Slope, and Habitat
Area hydrolo GITAL_TERRAI | Type on Tree Growth. Forest
Averag | gic a = aspect, N_MODEL_MO | Science, 22(4), 4573€"460.
COS Aspect Non- e conditio | northness = | SAIC/ImageSer | https://doi.org/10.1093/for
aspect_cos | N/A (Northness) 23 | local 1| (FCPG) | n cos(a) ver estscience/22.4.457
Topogra https://gis.dog
phic ami.oregon.gov | Stage, A. R. (1976). An
Draina | control /arcgis/rest/ser | Expression for the Effect of
ge on vices/LiDAR/DI | Aspect, Slope, and Habitat
Area hydrolo GITAL_TERRAI | Type on Tree Growth. Forest
Averag | gic a = aspect, N_MODEL_MO | Science, 22(4), 457a€“460.
SIN Aspect Non- e conditio | westness = | SAIC/ImageSer | https://doi.org/10.1093/for
aspect_sin | aspect_sin | (Westness) 39 | local 2 | (FCPG) | n sin(a) ver estscience/22.4.457



https://doimspp.sharepoint.com/:x:/r/sites/usgs-WOWTDR/Shared%20Documents/Table_S1.xlsx?d=w39c541577a734b39b22ab9ea4560db8c&csf=1&web=1&e=1AqzE0

Roberts, D. W., & Cooper, S.
V. (1989). Concepts and
techniques of vegetation
mapping. General Technical
Report INT - U.S.
Department of Agriculture,
Forest Service,
Intermountain Research
Station (USA).

Topogra https://gis.dog | https://scholar.google.com/
phic a = aspectin | ami.oregon.gov | scholar_lookup?title=Conce
Draina | control degrees, /arcgis/rest/ser | pts+and+techniques+of+veg
ge on TRASP vices/LiDAR/DI | etation+mapping&author=R
Area hydrolo | aspect=(1 | GITAL_TERRAI oberts%2C+D.W.+%28Utah+
Averag | gic - N_MODEL_MO | State+University%2C+Logan
aspect_tras | aspect_tras | TRASP Non- e conditio | cos((pi/180) | SAIC/ImageSer | %2C+UT%29&publication_y
p p Aspect 34 | local (FCPG) | n (a-30))/2 ver ear=1989
Soil Survey Staff, Natural
Landcov Resources Conservation
er Service, United States
Draina | control https://www.ar | Department of Agriculture.
ge on cgis.com/home | Web Soil Survey Metadata.
Area hydrolo /item.htmlI?id= | Available online at SSURGO-
Averag | gic cdc49bd63ea5 | Metadata-Tables-and-
Bedrock_D | Bedrock D | Depth to Non- e conditio 4dd2977f3f285 | Columns-Report.pdf. Last
epth_fix epth_fix Bedrock (m) 47 | local (FCPG) | n None 3e07fff accessed 23 Feb 2025.




Bell, David M., Matthew J.
Gregory, Marin Palmer, and
Raymond Davis. "Guidance
for forest management and
landscape ecology
applications of recent
gradient nearest neighbor
imputation maps in

Landcov California, Oregon, and
er Washington." Gen. Tech.
Draina | control Rep. PNW-GTR-1018.
ge on Portland, OR: US
Area hydrolo Depan‘ment_of Agr/cy_lture,
. . Forest Service, Pacific
Proportion Averag | gic https://lemma. Northwest Research Station.
cancov_20 | Proportion | Canopy Non- e conditio forestry.oregon | 41 p.(Online only). 1018
17 Canopy Cover 88 | local (FCPG) | n None state.edu/data | (2023).
Bell, David M., Matthew J.
Gregory, Marin Palmer, and
Raymond Davis. "Guidance
for forest management and
landscape ecology
applications of recent
gradient nearest neighbor
imputation maps in
Landcov California, Oregon, and
er Washington." Gen. Tech.
Draina | control Rep. PNW-GTR-1018.
ge on Portland, OR: US
% Area hydrolo Department_of Agr/c_u_lture,
. . Forest Service, Pacific
Coniferous Averag | gic https://lemma. Northwest Research Station.
cancov_co | cancov_co | Canopy Non- e conditio forestry.oregon | 41 p.(Online only). 1018
n_2017 n_2017 Cover 46 | local (FCPG) | n None state.edu/data | (2023).




Bell, David M., Matthew J.
Gregory, Marin Palmer, and
Raymond Davis. "Guidance
for forest management and
landscape ecology
applications of recent
gradient nearest neighbor
imputation maps in

Landcov California, Oregon, and
er Washington." Gen. Tech.
Draina | control Rep. PNW-GTR-1018.
ge on Portland, OR: US
% Area hydrolo Depan‘ment_of Agr/c'u_lture,
. Forest Service, Pacific
Hardwood Averag | gic https://lemma. Northwest Research Station.
cancov_hd | cancov_hd | Canopy Non- e conditio forestry.oregon | 41 p.(Online only). 1018
w_2017 w_2017 Cover 69 | local (FCPG) | n None state.edu/data | (2023).
Alkhasawneh, M. Sh., Ngah,
U. K., Tay, L. T., Mat Isa, N.
A., & Al-batah, M. S. (2013).
Topogra https://gis.dog | Determination of Important
phic ami.oregon.gov | Topographic Factors for
Draina | control /arcgis/rest/ser | Landslide Mapping Analysis
ge on vices/LiDAR/DI | Using MLP Network. The
Combined Area hydrolo | profile GITAL_TERRAI | Scientific World Journal,
Profile and Averag | gic curvature+ | N_MODEL_MO | 2013, 415023.
Planimetric Non- e conditio | planimetric | SAIC/ImageSer | https://doi.org/10.1155/201
curve curve Curvature 38 | local (FCPG) | n curvature ver 3/415023




Topogra

phic el =
control elevation at
on location, https://gis.dog
hydrolo | e1l00 = ami.oregon.gov
gic elevation at | /arcgis/rest/ser
conditio | location 100 | vices/LiDAR/DI
100 Averag | nover m GITAL_TERRAI
mDownstre eover | very downstrea N_MODEL_MO
d_slp100_ | d_slp100_ | am Channel Non- distanc | large m abs(e0 - SAIC/ImageSer
m m Slope 14 | local e extent; e100) /100, | ver None
e0=
Topogra | elevation at
phic location,
control | e1000 = https://gis.dog
on elevation at | ami.oregon.gov
hydrolo | location /arcgis/rest/ser
gic 1000 m vices/LiDAR/DI
1000m Averag | conditio | downstrea GITAL_TERRAI
Downstrea eover | nover m abs(e0 - N_MODEL_MO
d_slp1000_ m Channel Non- distanc | small e1000) / SAIC/ImageSer
m Gikm Slope 5 | local e extent; 1000, ver None




Topogra

phic

control el =

on elevation at

hydrolo | location, https://gis.dog

gic e20 = ami.oregon.gov

conditio | elevation at | /arcgis/rest/ser

over location 20 | vices/LiDAR/DI
20m Averag | small- m GITAL_TERRAI
Downstrea eover | moderat | downstrea N_MODEL_MO
m Channel Non- distanc | e m abs(e0 - SAIC/ImageSer

d_slp20_m | d_slp20_m | Slope 29 | local e extent; e20)/ 20, ver None

Topogra | e0 =

phic elevation at

control location, https://gis.dog

on e30= ami.oregon.gov

hydrolo | elevation at | /arcgis/rest/ser

gic location 30 | vices/LiDAR/DI
30m Averag | conditio | m GITAL_TERRAI
Downstrea eover | nover downstrea N_MODEL_MO
m Channel Non- distanc | moderat | m abs(eO - SAIC/ImageSer

d_slp30_m | d_slp30_m | Slope 44 | local e e; e30) / 30, ver None
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Topogra | e0 =

phic elevation at

control location, https://gis.dog

on e50 = ami.oregon.gov

hydrolo | elevation at | /arcgis/rest/ser

gic location 50 | vices/LiDAR/DI
50m Averag | conditio | m GITAL_TERRAI
Downstrea eover | nover downstrea N_MODEL_MO
m Channel Non- distanc | moderat | m abs(eO - SAIC/ImageSer

d_slp50_m | Gsom Slope local e e; e50) / 50, ver None

Topogra

phic

control

on

hydrolo https://gis.dog

gic ami.oregon.gov

conditio /arcgis/rest/ser

n and vices/LiDAR/DI

biologic GITAL_TERRAI

Value al N_MODEL_MO
Elevation at sub- | suitabilit SAIC/ImageSer
elev E (m) Local reach y None ver None
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elev_norm

Enormalized

Median-
normalized
Elevation

Local

Value
at sub-
reach

Topogra
phic
control
on
hydrolo
gic
conditio
nand
biologic
al
suitabilit
Y

Median-
normalized
Elevation
calculated
by taking
elevation
value at
given cell
and dividing
by median
elevation of
the HUC12
sub-
watershed
the point of
interest is
contained
within.

https://gis.dog
ami.oregon.gov
/arcgis/rest/ser
vices/LiDAR/DI
GITAL_TERRAI
N_MODEL_MO
SAIC/ImageSer
ver

None
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Rescaled

Elevation
calculated
by taking
elevation
Topogra | value at
phic given cell
control and dividing
on by median
hydrolo | elevation of | https://gis.dog
gic the HUC12 ami.oregon.gov
conditio | sub- /arcgis/rest/ser
n and watershed vices/LiDAR/DI
biologic | the point of | GITAL TERRAI
Value al interest is N_MODEL_MO
elev_rescal | elev_rescal | Rescaled at sub- | suitabilit | contained SAIC/ImageSer
e e Elevation 33 | Local reach y within. ver None
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Topogra
phic

Upstream
accumulate
d drainage
area in units
of square
kilometers
using Esri
D8 flow
path routing

https://gis.dog
ami.oregon.gov

control and /arcgis/rest/ser
on subsequent | vices/LiDAR/DI
hydrolo | Esri D8 flow | GITAL TERRAI
Value gic accumulatio | N_MODEL_MO
Drainage at sub- | conditio | ntoolsin SAIC/ImageSer
FAC_sgkm | DA Area (sgkm) 7 | Local reach n ArcGIS Pro ver None
Indicato
r of
vertical
distance Nobre, A.D., Cuartas, L.A.,
to water https://gis.dog | Hodnett, M., Renn¢, C.D.,
which Flow ami.oregon.gov | Rodrigues, G., Silveira, A.
Draina | relates Distance /arcgis/rest/ser | and Saleska, S., 2011. Height
ge to (Spatial vices/LiDAR/DI | Above the Nearest
HAND Area surface | Analyst)a€” | GITAL_TERRAI Drainage—a hydrologically
(Basin Averag | flow ArcGISPro | | N_MODEL_MO | relevant new terrain model.
Weighted Non- e expressi | Documentat | SAIC/ImageSer | Journal of Hydrology, 404(1-
HAND_1 HAND_1 Average) 25 | local (FCPG) | on ion ver 2), pp.13-29.
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Topogra https://gis.dog | McCune, B., & Keon, D.
phic ami.oregon.gov | (2002). Equations for
Draina | control | theta= /arcgis/rest/ser | potential annual direct
ge on aspectin vices/LiDAR/DI | incident radiation and heat
Area hydrolo | degrees, HLI | GITAL_TERRAI load. Journal of Vegetation
Averag | gic =1- N_MODEL_MO | Science, 13(4), 6033€“606.
Heatload Non- e conditio | cos(theta- SAIC/ImageSer | https://doi.org/10.1111/j.16
hload hload Index 56 | local 5| (FCPG) | n 45)/2 ver 54-1103.2002.tb02087.x
Geomor https://gis.dog
phic ami.oregon.gov
indicato /arcgis/rest/ser | Tucker, Gregory E., Filippo
r of vices/LiDAR/DI | Catani, Andrea Rinaldo, and
Value gic N_MODEL_MO from digital terrain
Hillslope Non- at sub- | conditio | 0.5* 1/ SAIC/ImageSer | data." Geomorphology 36,
HslopelLen | Luiisiope Length 6 | local 5 | reach n DrainDens ver no. 3-4 (2001): 187-202.
Soil Survey Staff, Natural
Resources Conservation
Geologic Service, United States
Draina | control https://www.ar | Department of Agriculture.
Saturated ge on cgis.com/home | Web Soil Survey Metadata.
Hydraulic Area hydrolo /item.html?id= | Available online at SSURGO-
Conductivity Averag | gic cdc49bd63ea5 | Metadata-Tables-and-
Hydro_Con (Ksat) in Non- e conditio 4dd2977f3f285 | Columns-Report.pdf. Last
ductivity H um/s 11 | local 30 | (FCPG) | n None 3e07fff accessed 23 Feb 2025.
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Spatial

groupin
g of the
combina
tion of
vegetati
ve and Omernik, J. M., & Griffith, G.
geologic E. (2014). Ecoregions of the
conditio Conterminous United States:
ns that https://www.e | Evolution of a Hierarchical
Multi- | influenc pa.gov/eco- Spatial Framework.
level e research/level- | Environmental
Factor | hydrolo iii-and-iv- Management, 54(6), 1249—
or gic ecoregions- 1266.
EPA Level 3 Non- | Mapp | Catego | conditio continental- https://doi.org/10.1007/s00
L3region L3region Ecoregion 90 | local | ed rical n None united-states 267-014-0364-1
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S2 Pseudo random spatial balancing

HUCI12s were initially weighted based on the number of observations within a given HUC12.
Spatial groups that include several HUC12s were then formed by randomly combining
observations within HUC12s, accounting for their weighting, in order to prevent a spatial group
of many HUC12s that have a large number of observations (Figure S2.1). Processing for this step
and all subsequent steps outlined in Figure 2 occurred within the R ver. 4.3 (R Core Team,
2024). HUC12s boundaries were not used as the sole basis for spatial grouping because the
software only allows 80 groups and there are 129 HUC12s. Furthermore, because observations
per HUC12 vary from 1 to 376, there was a risk that using HUCs as individual groups could
present a situation where models are evaluated against a very small test set, which could produce
a very optimistic or very pessimistic estimation of predictive performance.

Pseudo-randomly grouping observations into 20 sub-groups of multiple HUC12s allowed for a
sufficiently large population of groups for the purpose of randomly reshuffling the groups of
training data during the spatial cross validation routine described later, while ensuring that
minimum data per group were sufficiently large for producing representative test folds. Spatial
balancing ensured there was a minimum of 76 observations within a group (maximum
observations for a group was 624) which we assumed to be a sufficiently large dataset for the
purposes of producing cross-validation performance metrics. The high variability of observations
within groups was due to the non-uniform opportunistic sampling of observations within
HUC12s that prohibited uniform group sizes while also having at least 20 spatial groups.

Spatial balancing was conducted with the oversampling function in the mlr3 package in R (Lang
et al., 2019) by iterating over training data in each of the spatial groups. We termed this process
spatial balancing because oversampling was applied on a group basis to achieve balance between
numbers of wet and dry training data at the relatively small spatial scales of the groups in
comparison to the overall size of the study area. Oversampling randomly duplicates minority
class data to ensure the resulting model will produce a decision boundary between the two
classes at 50% everywhere across space. Oversampling was chosen over the undersampling
alternative (i.e., removal of majority class data) to ensure the fitted model captures as much
information about the diverse landscape of the modeling domain as possible. We considered
employing the Synthetic Minority Oversampling TEchnique (SMOTE), a method that
synthesizes minority data resulting in outcomes that are less biased than random oversampling
(Chawla et al. 2002); however, this approach was not integrated into the mlr3 package we
employed. Adaptive Synthetic Sampling (ADASYN) is similar to SMOTE and generates
synthetic minority class data with small errors to induce variation (He et al., 2008). Future
iterations of this research will likely consider employment of ADASYN because it was recently
integrated into the mlr3 package.

A potential consequence of oversampling the minority class is the possibility of inducing bias
into the model by over representing a condition that is less prevalent on the landscape than the
oversampled data suggests. Oversampling at the HUC12 level was considered but deemed
problematic because some HUC12s contained fewer than 10 total observations, which may have

65



overbiased the model when replicating such a small dataset. Additionally, some HUC12s only

contained observations from a single late-summer streamflow status (i.e., wet, or dry but not
both).

Table S2.1. Summary of FLOWPER observations across years, Strahler Order, Ecoregion
(Omernick and Griffith, 2014), and lithologic province (O’Connor et al., 2014).

Wet Dry % Wet | % Dry | Total ;4; t(;fl
Year

2019 | 328 206 61.4% | 38.6% 534 21.2%
2020 [ 906 833 52.1% | 47.9% 1739 69.1%
2021 127 118 51.8% | 48.2% 245 9.7%

1361 1157 | 54.1% | 45.9% | 2518

Strahler Order

1 529 766 40.8% | 59.2% 1295 51.4%
21 511 307 62.5% | 37.5% 818 32.5%
31 249 71 77.8% | 22.2% 320 12.7%
4 72 13 84.7% | 15.3% 85 3.4%

1361 1157 | 54.1% | 45.9% | 2518

L3 Ecoregion

Cascades | 757 576 56.8% | 43.2% 1333 52.9%
Klamath Mountains | 204 300 40.5% | 59.5% 504 20.0%
Coast Range | 400 281 58.7% | 41.3% 681 27.0%

1361 1157 | 54.1% | 45.9% | 2518

Lithologic Province
High Cascades | 359 194 64.9% | 35.1% 553 21.8%
Klamath 182 261 41.1% | 58.9% 443 17.5%
Western Cascades | 409 410 49.9% | 50.1% 819 32.3%
. dimigf‘;rtﬁi‘;iz 262 | 236 | 52.6% | 47.4% | 498 | 19.6%
Coast Range volcanic
rocks and Columbia 149 56 72.7% | 27.3% 205 8.1%
River basalt
1361 1157 | 56.2% | 43.8% | 2518
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Figure S2.1. Schematic of pseudo random spatial balancing of HUCI2s as part of training data
processing. Allocation of HUCI2s to spatial groups are approximately random but account for
differences in data densities among different HUC12s to allow for relatively even number of
observations within a spatial group.

S3 Cross validation methods that accounts for differences between spatially distal and spatially
proximal data

There are numerous approaches to evaluating model performance, with k-fold cross validation
and data splitting being among the most frequently used (Kuhn et al., 2013). We chose cross-
validation for predictive performance evaluation over more conventional data splitting (e.g., 20%
and 80% validation and testing split, respectively) because cross validation has been shown to be
as effective as data splitting (Kuhn et al., 2013). Additionally, the repeated resampling of the
data during cross validation prevents a single spurious grouping of spatial groups from
overbiasing the result while also ensuring the full spatial variability of the data are used to
evaluate model performance. The consequence of spurious selection that is possible with simple
data splitting is the possibility of overly pessimistic or optimistic estimation of predictive
performance that does not represent the average performance across the model domain (Roberts
et al., 2017). One criticism of cross validation approaches is that they tend to overestimate
variation resulting in large confidence intervals around a measure of central tendency; however,
repeated cross-validation combined with bootstrapping of performance metrics have been shown
to effectively mitigate this issue (Kuhn et al., 2013). The next section details the cross-validation
routine that includes bootstrapping, accounting for proximal and distal validation strategies.

Cross validation for sub-watersheds with proximal data

We implemented a 5-fold cross validation approach to evaluating model predictive performance
by ignoring spatial grouping assignment and randomly assigning training data into a 5-fold
(completely random without resampling), ignoring spatial grouping, where each fold contains
approximately the same amount of data (Figure S3.1). A model is fitted to 4 folds then tested on
the holdout fold. This is repeated until all folds have been held out as an independent test set. In
both the covariate selection procedure and the model development, independent tests were
evaluated using the Matthews Correlation Coefficient (MCC). In this case, a test on the holdout
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fold for 5 folds results in 5 MCC estimates. This process is repeated 30-more times with the
random assignment inducing a stochasticity to the resulting MCC estimates. The result is 150
predictive performance estimates from which a median MCC and corresponding 95% confidence
interval was assessed with 10,000 bootstrap resamples (with replacement). A criticism of this
approach is that it is likely to be optimistic when data are spatially correlated (Tsamardinos et al.,
2015; Roberts et al., 2017). This is because of the random assignment of data to folds that allows
proximal data (i.e., neighbors) to be used to train and then test the model. However, the
conventional cross validation approach may provide interesting insights from the standpoint of
predictive performance because users of the resulting model will want to understand how the
model is doing in areas that are proximal to the model training data. Because the cross-validation
routine is free to choose train and test data the model, we interpret the results as quantifying
predictive performance proximal to the model training points. We use sub-watershed (HUC12)
as a proxy for proximal data meaning predictions are considered proximal when they occur
within a sub-watershed containing data that constrained the model. This assumes conditions
within a watershed are more similar than conditions between watersheds.

Cross validation for sub-watersheds with distal data
To provide insight on model predictive performance outside of sub-watersheds containing data,
i.e., predictive performance in spatially distal settings, we implemented a spatial cross validation
approach using grouping. Spatial groupings of data are held out for testing during the cross
validation, and as such, predictive performance on those holdouts is representative of
performance across components of space for which the training data did not inform the model.
Spatial cross validation was implemented exactly like the conventional cross validation of the
proximal data with the exception being that data were randomly assigned to each of the 5-folds
based on their spatial grouping described in SI 2 such that data within an individual balanced
spatial group was assigned to only one fold compared to the potential for data from a spatial
group being assigned to more than one fold as is the case with the proximal data cross evaluation
(Figure S3.1). The same routine as the proximal data of model fitting using one holdout fold
including repeats and bootstrapping methods to achieve a median and 95% confidence test
evaluation was applied. This resulted in the hold out test data not having observations from
within a sub-watershed.
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Figure S3.1. Assignment of spatially balanced groups into folds to conduct a distal validation
strategy that mitigates the influence of spatial dependence on estimates of prediction accuracy
by ensuring model fit data are from different groups than the model test data.

S4 Covariate Selection Methods

Covariate selection is a method for identifying and ranking covariates in order of importance to
reduce model dimensionality (Bommert et al., 2020). Covariate selection provides selection of a
subset of the most important covariates prior to the more computationally intensive model fitting
and evaluation phase. Covariate selection approaches vary depending on the objective of the
filter and can result in vastly different rankings of covariates. In our application, covariate
selection establishes an order of covariate importance that ideally front loads the most important
covariates for predicting late summer streamflow status and thus allows for identification of
parsimonious model without the arduous process of tuning and fitting models to all variables.

Five covariate selection methods were implemented and were ranked using Random Forest and
MCC (Figures S4.1, S4.2). Three conventional methods were employed: Boruta, Joint Mutual
Information Maximization (JMIM), and Permutation covariate selection (Kursa and Rudnicki,
2010; Speiser et al., 2019; Bommert et al., 2020). We implemented two additional ranking
approaches that are modified spatial approaches to mitigate the influence of spatial bias from
clustered observations within sub-watersheds. For example, HUC12 170900040401 has over 300
observations. A first approach, Spatial-1- Random Forest, more explicitly considers spatial
autocorrelation (Pihur et al., 2009). The second approach also accounts for spatial
autocorrelation but uses the Boruta algorithm (Pihur et al., 2009).
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For each of the two additional spatial covariate selection approaches, 25 resamples were drawn
without replacement by random selection of 80% of the 20 spatial groups of training data so that
each resample evaluates slightly different combinations of spatial groupings of data. Only 25
resamples were chosen to keep processing time on the rank aggregation stage to a reasonable
level because this stage utilizes Monte Carlo simulation. The Spatial-1- Random Forest method
generates a Random Forest model for each resample. The variable importance rankings are then
extracted from the 25 models and aggregated ranking (Pihur et al., 2009) is performed to
establish a final ranking of all covariates. In Spatial-2 — Boruta, the Boruta algorithm (Kursa and
Rudnicki, 2010) is run on each of the 25 resamples to produce 25 rankings of covariates. Final
rankings of the 96 covariates are derived from the 25 Boruta rankings by using rank aggregation
(Pihur et al., 2009). Boruta utilizes bootstrap resampling and Random Forest to conduct an
evaluation of variable importance, however, the internals of Boruta do not account for spatial
grouping, so substantial differences between Spatial-1 and Spatial-2 are expected. Twenty-five
rankings of the 96 variables are then evaluated with the aggregated ranking function
‘RankAggreg’ ver. 0.6 (Pihur et al., 2009) in R over 100 Monte Carlo simulations to produce a
ranking of the 96 features.

Feature filtering
(importance ordering)
Boruta| | JMIM | |Permutation Spatial 1 - Spatial 2 -
Random
Boruta
Forest
Iterate Plot MCC scores by
Random through number of covariates to
Forest variable > MCC | identify peaks for
Famdlom combinations selection of covariate for
OGS for each filter final model fitting
validation
Figure S4.1. Workflow for covariate selection.
Spatial 1- Random Forest
Generate 25 random
Training Data Sre;;?;p::i osf f:ifh Fit Random Forest Extract variable Rank Aggregation Final ranking of 96
groupedinto 20 |~ p group > (RF)Modelsto each [P importance rankings [® (using RankgAggreg [-» "8
. 80% replacement . ; covariates
spatial groups across each of the 25 resamples from 25 RF models in R) of 25 rankings
resample
Spatial 2 - Boruta
Generate 25 random
— resamples of the )
Training Data . Rank Aggregation ‘
groupedinto20 [ spatial groups with Run Boruta on each Extract rankings from 3| (using Rankghggreg |-} Final rank'mg of 96
R 80% replacement of the 25 resamples 25 Boruta runs . N covariates
spatial groups across each in R) of 25 rankings
resample
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Figure §4.2. Process for Spatial-1 — Random Forest (top) and Spatial-2 — Boruta (bottom)
covariate selection methods.

S5 Model Development

Model Algorithms

Logistic Regression (LR) was implemented with the ‘glmnet’ package (Friedman et al., 2010)
and is a parametric statistical model used for binomial classification problems. The approach
uses a logit transformation to cast a categorical response as continuous 0 to 1 as a function of log
of the odds (Hosmer and Lemeshow, 1992). It has been used for modeling streamflow
permanence in previous work (Jensen et al., 2018; Gendaszek et al., 2020).

Random Forest (RF) was incorporated because it has seen increased application in streamflow
permanence modeling across a range of scales (Moidu et al., 2021; Penaluna et al., 2022; Sando
et al., 2022). Random forest is a machine learning model algorithm that harnesses the power of
randomization and large amounts of data to implement a technique called bagging that uses
bootstrapped resampling of the available training data to generate an ensemble of weakly
correlated decision trees that estimate the response variable (Breiman, 2001). Each decision tree
contains different combinations of covariates and different decision splits for each covariate. The
use of randomization and resampling minimizes variance and overfitting. Furthermore, RF trees
account for interactions among covariates and due to the heavy use of randomization and
bagging, are robust to multi-collinearity.

The Ranger implementation of random forest was used here because it uses parallelization to
reduce processing times (Wright and Ziegler, 2017) and includes a jackknife procedure to
estimate standard error of prediction, from which prediction interval can be computed (Wager et
al., 2014). To induce additional randomization and further reduce the potential for overfitting, we
parameterized the algorithm to build extremely random trees that choose random decision tree
splits rather than the optimal split method in the conventional RF algorithm (Geurts et al., 2006).
Furthermore, we also parameterized Ranger to use probability machines that use conditional
probability functions to produce outcomes in terms of probability of class membership ranging
from 0.0 to 1.0 instead of the more conventional binary outcome (Malley et al., 2012). To
minimize the potential for overfitting, we used a high number of trees (2000), set the resampling
to bootstrap, tuned the ‘mtry’ parameter (the number of variables to consider at each decision
tree node split) using a nested loop, and established a minimum node size of ten, which is the
default hyperparameter value for probability RF. Tuned ‘mtry’ values were 3 and 12 for the
distal and proximal approaches, respectively.

The broader class of algorithms under the gradient boosted machines umbrella have seen use in
ecological applications (Abedi et al., 2022; Naghibi et al., 2020; Sahin, 2020; Yu et al., 2021),
but as of this writing, there is no evidence of use in streamflow permanence modeling. XGB was
implemented with the ‘xgboost’ package (Chen et al., 2022) and is a formulation of the concept
of regularized gradient decent boosting which is an ensemble of decision trees. Rather than using
bagging to produce decision trees in parallel as in Random Forest, XGB uses gradient boosting
to produce a series of shallow decision trees where each iteration uses the residual errors from
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the previous decision tree to fit the next (e.g. gradient descent). The objective of XGB is to
minimize bias and model underfitting (Friedman, 2001, 2002; Natekin and Knoll, 2013). XGB
differs from conventional gradient boosted machines (Friedman, 2001) by implementing a
regularization method to mitigate overfitting (Vinayak and Gilad-Bachrach, 2015). Our nested
cross validation routine tuned nine hyperparameters that evaluated all possible combinations of
values between the lower threshold and upper threshold, increasing at fixed step sizes (Table
S5.1). Our parameterization further minimized the overfitting potential by incorporating an early
stopping routine within the Nested Spatial Cross-validation routine. The early stopping routine
stops searching for optimal combinations of hyperparameters for a given tree when accuracy of
the training subset converges with accuracy on an independently withheld test set. Compared to
Random Forest, XGB tends to be computationally faster, more robust to imbalances in the
training response data, and due to the use of gradient descent, has the potential to achieve higher
prediction accuracy if the dataset is sufficiently large.

Table S5.1 — XGB Hyperparameter Search Table

Lower Upper Step
Hyperparameter Threshold | Threshold | Size
nrounds 700 5000 100
max_depth 1 20 1
colsample bytree 0.2 1 0.1
colsample bylevel 0.2 1 0.1
gamma 0 1 0.1
min_child weight 1 10 1
eta 0.01 0.1 0.01
lambda 0.01 1000 0.01
subsample 0.01 1 0.01

Model Performance Tests

Model performance was evaluated under both proximal and distal validation that each included a
nested routine within the cross-validation process (Figure S5.1). Nesting allows for tuning
hyperparameters as part of model optimization but is distinct from evaluation of the model
through performance tests. Nesting substantially increases processing time but is necessary to
preserve the separation between the cross-validation testing and the model evaluation (Bischl et
al., 2012). Performance tests included MCC, Negative Predictive Value (NPV), Positive
Predictive Value (PPV), Accuracy (ACC), Receiver Operator Characteristic Area Under the
Curve (AUC), and Precision-Recall Area Under the Curve (PRAUC) (Figure 2).

Negative Predictive Value is defined as.

TN

NPV = Eq. S1
TN+FN
Positive predictive value is precision and defined as
ppy =2 Eq. S2
TP+FP
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Where TP is true positives, TN is true negatives, FP is false positives, and FN is false negatives.

Accuracy is defined as

TP+TN
P+N

ACC = Eq. S3

Where P is the number of real positive cases in the training data, and N is the number of real
negative cases in the training data.

Receiver Operator Characteristic Area Under the Curve (AUC) is a plot of the True Positive Rate
(TPR; sensitivity) and the False Positive Rate (FPR; 1- specificity) and a measure of
discriminative ability at all thresholds. An AUC of 1 indicates no overlap between the TPR and
FPR. An AUC of 0.5 indicates complete overlap of TPR and FPR and that the model has no
ability to discern between wet and dry classes. An AUC of 0 indicates that the model predicts
wet for all dry classes and dry for all wet classes.

TP

TPR = Eq. S4
TP+FN

FPR = —F Eq. S5
TN+FP

Finally, Precision-Recall Area Under the Curve is a plot of the PPV (Precision, Eq. S2) and
Recall is TPR (Sensitivity, Eq. S4). Although PRAUC scalar values are on the 0-1 scale as the
AUC, PRAUC is better suited to imbalanced data where false positives are more significant than
false negatives because precision is the numerator. Since the positive value here is “wet”
PRAUC is the proportion of Wet, precision is the proportion of “wet” predictions that were truly
“wet and recall is the proportion of “wet” predictions out of all positive instances in the data. A
value of 1 suggests that the model has perfect precision and recall at all thresholds
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Figure S5.1. Nested routine within the random (proximal data) and spatial (distal data) cross
validation.

S6 Extrapolation Detection Model

Extrapolation of the WOWTDR model is a potential cause for concern. The underlying Random
Forest decision trees that comprise WOWTDR do not extrapolate because decision trees are not
functions and thus are not able to describe how probability of a response condition might change
as a function of the increase or decrease of an associated covariate condition. As such,
interpretations of WOWTDR model predictions in extrapolation zones need to be considered
more carefully. We tested the use of both Isolation Forests (IFs) and Support Vector Machines
(SVMs) (Al Farizi et al., 2021) to determine where on the landscape WOWTDR predictions are
occurring outside of the model training data. While these models are designed to identify data
outliers, in our use case, we consider outlier detection with extrapolation detection because it
indicates the level of similarity between the simultaneous expression of covariates at a given
point and the overall training dataset. Hereafter, use of the word outlier is considered
synonymous with extrapolation.

IFs split variables at random locations across the range of randomly selected covariates, isolating
the point. The number of splits it takes to isolate a point from the rest of the data is an indication
of ‘outness’ and therefore considered an outlier, such that a small number of splits represents an
outlier; many splits represent a smaller likelihood of being an outlier. SVMs work by creating a
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‘hull’ in n-dimensional space to encapsulate the covariate expression ranges described by the
training data. The SVM algorithm then calculates eigenvalues and eigenvectors as the distance
between a given location characterized by a combination of covariate information and the edge
of the hull. Larger positive distances indicate more ‘inness’ inside the hull and thus are not
outliers and increasingly negative distances exhibit more ‘outness’, indicating data are outside of
the range captured by the training data and thus represent locations where the WOWTDR model
is extrapolating.

To evaluate how often and where extrapolation occurs in the WOWTDR model, we developed
an extrapolation detection model (Figure S6.1). The flow permanence model training data were
split into a 90%/10% training and testing dataset. Training data were rescaled to reduce
extrapolation detection bias on any particular variable by centering data on the median and
scaling by median absolute deviation.

SVM and IF extrapolation detection models were fit to the training dataset for the purpose of
extrapolation identification. SVM and IFs were tested against different variations of the available
data designed to evaluate the effectiveness of each model for extrapolation identification under
different scenarios as follows, additional details are provided in the Methods section below:

(1) 10,000 random resamples with replacement of the training data to examine accuracy
when no new information is considered, (2) Data from 10,000 resamples with
replacement of the hold out test data to evaluate accuracy on data from the same
population the training data were drawn from but excluding the training data, (3) 10,000
resamples with replacement of the original training data where covariate data associated
with data points are randomly reshuffled amongst the data to examine accuracy when
new combinations of covariates are presented without changing numerical values, (4)
10,000 simulated data points generated using the inverse transformation sampling method
on the empirical cumulative distribution function of the training data to examine accuracy
with a new dataset simulated on covariate composition and distribution from the original
training data, and (5) 10,000 simulated data points that contain a 50% split of non-outliers
and outliers where outliers were generated by increasing values by 0.25 median absolute
deviations.
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Methods

Fitting the models

Unlike isolation forests (IFs), SVMs operate on distributional assumptions of the underlying
data. As a result, the training data for IFs and SVMs were transformed by centering to median of
the respective covariate and scaling to the median absolute deviation (MAD) of the respective
covariate (Table S6.1). The result is transformed data where values are distance from median
measured in units of median absolute deviation using the RobScale function in r (Signorell,
2023). This is a more robust approach than mean centering and standard deviation scaling,
particularly when data are non-normally distributed as with the data in this study. Log
transformation of specific variables exhibiting significant skew (e.g., flow accumulation) was
considered but determined to be unnecessary because outlier detection performance during
preliminary testing produced similar results with and without transformation. Covariate-specific
centers and scaling coefficients produced during robust scaling were retained for the purpose of
rescaling data used to generate predictions.

Table S6.1. Robust Scaling Values centered to median and scaled to median absolute deviation

(MAD).
Covariate Median | MAD
Proportion Canopy 0.74 0.09
P Annual 1636.09 | 727.57
DA 0.15 0.17
Elev 625.23 | 350.03
Elev Normalized -0.06 1.6
Tmin Aug 11.52 0.92
Downstream Channel
Slope 50m 0.21 0.15
Downstream Channel
Slope 1km 0.09 0.08
Length Hillslope 0.13 0.07
Length Channel 0.54 0.64
Tmin May previousyear 6.33 1.08
WaterStorageCapacity 17.57 4.69
Hydraulic Conductivity 9 10.1

SVM parameters:

Nu =0.002

Kernel = rbfdot

Tol =0.00001
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Support Vector Machine (SVM) and Isolation Forest (IF) extrapolation detection models were fit
to the training dataset for the purpose of extrapolation identification. The IF tree is too complex
to provide here, but the SVM parameters are provided in the table above.

Both the SVM and the IF model were evaluated for extrapolation detection suitability using five
different tests. The first four tests use different data drawn from the original observation data
using different methods to determine if the models were generalized enough to adequately
discriminate outliers in new data. In test 1 through 4, no outlier data are presented so errors are
representative of the false negative rate (how frequently data that should be ‘in’ are determined
by the model to be ‘out’). All test outcomes are evaluated with simple accuracy to simplify
interpretation on the scale of 0.0 to 1.0 with scores of 0.5 representing truly random
performance, and scores below 0.5 representing model outcomes that are more consistently
inverted from truth. Simple accuracy is appropriate here because for the first four tests, all data
should be “in” and in the case of test 5, the data are balanced.

Test 1 and Test 2 examine how frequently the model misclassifies ‘in’ data as ‘out’. Because
none of the data are outliers, a low accuracy on either would indicate a poorly parameterized
model that detects outliers within the ‘in’ distribution and a lower accuracy Test 2 than Test 1
would suggest that the models are highly constrained to the training data and likely not suitable
for evaluating whether new data represent extrapolations beyond the original training domain.

Test 3 uses the training data to show the influence, if any, of randomly reshuffling covariate
expression combinations. All data were labeled ‘in’ for this. Low accuracy on Test 3 suggests a
model that is calibrated to the unique multi-variate combinations in the training data and not be
generalizable to new information. On the other hand, a high accuracy score indicates the
extrapolation detection model is largely insensitive to unique multi-variate combination and
instead captures a more generalized boundary around the data.

Test 4 uses simulated data drawn from the training set distribution to demonstrate outlier
detection performance on new data drawn from the same distribution. All data were labeled ‘in’
because they were ultimately derived from the training data. Data not labeled ‘in” A low
accuracy on this test would be indicative of an outlier detection model that is over-fit to the data
because it does not accept data from a similar distribution. The simulation methodology to
generate data for Test 4 is described in more detail below.

Test 5 uses simulated data drawn from the training dataset distribution where half of the
simulated data are artificially altered by incrementally increasing and incrementally decreasing
median absolute deviations from the median. A relatively high split of 50% was chosen to ensure
the outlier detection was being rigorously challenged and ensure a balanced accuracy assessment
for the purpose of discerning a given model’s ability to discriminate between outliers and non-
outliers. High accuracy in Test 5 (arbitrarily established at 85%) would indicate an outlier model
with good discriminatory power. Data from test 5 were incorporated into a sensitivity analysis
for the purpose of understanding how sensitive each outlier detection model is to varying
magnitudes and directionality of outliers, i.e., extreme conditions outside the upper and lower
bounds of the original data distribution. Test 5 includes 50% outlier data at increasing positive
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and negative magnitudes to characterize accuracy when new data are presented with half of the
data known to be positive (‘in’) and half the data are known to be negative (‘out’).

Simulating data

Simulated data for tests 4 and 5 were generated using the inverse transformation sampling
method (Henderson and Nelson, 2006; Harar et al., 2022) on the empirical cumulative
distribution function (ECDF) of the training data. The ECDF was fitted using the ‘ecdf” function
in R “Stats’ package. Because the ECDF is non-continuous and a series of steps, the inverse
transformation sampling method required the use of interpolation to generate continuous values
along the ECDF (Harar et al., 2022). Inversion occurs first by fitting a linear interpolation model
using the ECDF as the X values and the original data to the Y and taking 100000 evaluations of
the interpolation model at 100000 randomly selected locations along the ECDF. Note that
simulating data from a multivariate normal distribution was evaluated, but data were determined
to not conform to multivariate normal distribution with sufficient agreement to produce
meaningful simulations. Use of data simulated from a Generative Adversarial Network was
tested, but is not shown here because resulting data were less congruent to the original data than
using the inversion method described above. There was a high level of agreement between
distribution of the simulated data for 13 predictor covariates (colored density histogram)
compared to the original data (density plot indicated with black line). Figure S6.2 depicts the
high level of agreement between distribution of the simulated data for four of the 13 covariates
and is representative of the close agreement for the other nine covariates.
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Figure S6.2. Density histograms of simulated data are overlaid with density plots of the original
data for four of the most important covariates to demonstrate that simulated data are drawn
from the same distribution.

Simulating outliers

Outlier simulation data for Test 5 were generated by identifying and isolating the simulated
datapoints used in test 4 that were not erroneously identified as outliers, then splitting the
available data in half. Erroneous outlier conditions in test 4 were removed for this evaluation,
reducing the 10000 candidate datapoints to 9443 to prevent those outcomes from confounding
the analysis. Half of the data points was unchanged and thus not outliers. The other half of the
data points was multiplied by a specified percentage of each covariates respective MAD to
produce artificially extreme data then added to the original data values to examine sensitivity
under increasing magnitudes and subtracted from the original values to examine sensitivity to
decreasing value magnitudes. To examine sensitivity of both the SVM and IF outlier detection
models to outliers, increases to the process was repeated from 0 to 200% in increments of 1%.
The result was then plotted to characterize accuracy as a function of a multiplier of MAD for
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confirmation that simulated distributions are moving to the right without substantially changing
the shape of the distribution. Figure S6.3 shows the simulated distribution for four of the
predictor covariates when values are increased by 50% of the respective MAD. Simulations
depict the expected shift to the right along the x-axis caused by the value increasing, with some
deviation from the original shape due to covariates having discrete ranges due to naturally
limiting upper ranges (e.g., 100% forest canopy cover) and in the case of drainage area,
underlying transformations of the data.

Proportion Canopy P_Annual
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6 “f
0.0002 1
3_
0 0.0000 1
% 000 025 050 075 100 1000 2000 3000 4000 5000
e
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8 DA Elev
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-4 0 4 8 0 1000 2000 3000

Figure S6.3. Density histograms of simulated outlier data are overlaid with density plots of the
original data for four of the most important covariates to demonstrate that simulated data are
drawn from the same distribution. For this figure the simulation where 50% of data include the
addition of two times the median absolute deviation of the respective covariate appears. The
most extreme of the outlier simulations is depicted to better visualize the shifting of the
distribution to be outside of the original data distribution. Drainage area is log transformed here
for visualization purposes only.
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Results

Testing results show that both the SVM and IF outlier detection models accurately identified
non-outlier data with greater than 90% accuracy with one exception (Table S6.2). Test 3 is the
only test where SVM receives a lower score than IF, and the score is only 1% lower, indicating
that SVM is slightly less capable at discerning outliers. However, the relatively high accuracy
indicates that the multivariate combinations are accounted for in both models, with the SVM
having detected a clearer boundary and thus being more sensitive to reshufflings of the
covariates relative to the other covariates. In contrast, IF less accurately identified outliers during
Test 4. Test 5 is the only test where known outliers were introduced to the detection models;
SVM accurately identified 100% of outliers, and IF accurately identified 90% of outliers (Table
S6). The high accuracy (> 85%) of both models for discriminating ‘in’ data suggests the
simulated data is capturing the covariate domains expressed in the training data, and thus both
models are appropriate for evaluating the extrapolation models. The lower outcomes of IF in
Tests 4 and 5 are likely a consequence of the underlying decision trees in the IF being more
constrained to the training data than the SVM. A comparison of the confusion matrices from Test
5 (Table S6.4; Table S6.5) shows that more IF prediction errors were false positives than false
negatives, suggesting the IF model is more likely to erroneously identify a condition as an
extrapolation than it is to erroneously identify a condition as not an extrapolation. The SVM false
positive and false negative rates were much lower and more similar to each other. With SVM
outcomes, trends are similar between the additive and subtractive cases. With IF outcomes,
accuracy is much lower when reducing covariate values, likely because the IF is more narrowly
constrained to specific combinations of covariate conditions observed in the training data. The
100% accuracy of SVM in Test 5 is consistent with the sensitivity analysis results (Figure S9)
that depict SVM consistently achieving 100% extrapolation detection accuracy once covariate
values are uniformly increased by 6.5% and is an artifact of removing data that appeared to be
confusing for the SVM from Test 5 to prevent these datapoints from confounding the outcomes.

Table S6.2. Outlier detection accuracies of the Isolation Forest (IF) and Support Vector
Machine (SVM) models for the four testing conditions using different variations on WOWTDR
model training data as specified in the ‘Data’ column. For Test 5 results are shown for the 25%
increase in Median Absolute Deviation.

Test Model |Accuracy| True Outliers Data
1 IF 0.95 0 Train
1 SVM 0.99 0 Train
2 IF 0.97 0 Test
2 SVM 0.99 0 Test
3 IF 0.96 0 Reshuffle
3 SVM 0.95 0 Reshuftle
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4 IF 0.86 0 Simulated
4 SVM 0.95 0 Simulated
5 IF 0.90 50% Simulated
5 SVM 1.00 50% Simulated

Table S6.3. Isolation Forest Confusion Matrix output for Test 5 where 50% of the data are
known outliers that have had values increased by 25% of the Mean Absolute Deviance from the

Median for each covariate.

Reference
Prediction FALSE TRUE
FALSE 4322 532
TRUE 402 4191

Table S6.4. SVM Confusion Matrix output for Test 5 where 50% of the data are known outliers
that have had values increased by 25% of the Mean Absolute Deviance from the Median for each

covariate.
Reference
Prediction FALSE TRUE
FALSE 4724 0
TRUE 0 4723

Sensitivity analysis

The outlier detection capability of the SVM exceeds the capability of IF (Figure S6.4), which is
likely because the IF needs additional tuning to improve performance. IF was not evaluated for
sensitivity due to the acceptable level of outlier detection performance from the SVM. The SVM
plateaus in performance when reaching a marked inflection in performance at an approximately
0.2 median absolute deviation increase then plateaus at an accuracy of 0.97 when 0.4 median
absolute deviations have been added to the data. Trends are similar in the case of subtraction but
with a more defined decline of accuracy when decreasing by less than 0.25 median absolute
deviations. IF reaches a major inflection at about 0.45 median absolute deviations but continues
to increase in accuracy to 2 median absolute deviations. This trend does not mirror in the case of
subtraction. The highest accuracy IF achieves in the subtraction case is approximately 0.83 in the
extreme case of values decreasing by 2 median absolute deviations, and likely because of IFs
more sensitive nature evidenced in tests 1-5. Accuracy would likely continue to improve at larger
magnitudes of change, but we only examined increases and decreases up to two MADs to keep
the processing time reasonable while characterizing extrapolation detection across a broad range
of conditions.

The testing methods presented here were intended to provide an indication of outlier detection
performance across a broad range of potential covariate expressions. Test 2 suggests reasonably
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high detection accuracy on “in” data, and Test 4 suggests very good detection of outliers when

all covariate expressions are higher or lower than what is normal for the training data. However,
the high accuracy score of Test 3 suggests that novel covariate expression combinations that are
within the normal range of the training data may not be accurately characterized as ‘out’. This

concern is somewhat alleviated by the relatively low change in covariate values (+/- 0.25 MAD)
necessary to be ‘out’ (Fig S6.5), which suggests this approach offers more fidelity on
extrapolation detection over simply establishing an envelope from the minimum and maximum
values of each covariate.

Addition ] Subtraction
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Figure S6.4. Sensitivity analysis of the two outlier detection models from the addition and

Proportional Change of MAD

Model

IF

SVM

subtraction of multiples of median absolute deviations (MAD) ranging from 0.005 to 2 (i.e. 0.5%

to 200%).
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Figure S6.5. Histograms of the simulated data containing 50% outliers where outliers are
simulated from original data by uniformly increasing covariate values by 0.25 Median Absolute
Deviations (MADs) (left panel) and 0.005 Median Absolute Deviations (right panel). X axis is
SVM estimated similarity score to original training data, where values < 0 are outliers.
Histogram is colored blue for data points that are truly outliers and red where data points are
not outliers. Note the overlap of blue and red on the left panel indicating that the outlier
detection model incorrectly identified some outliers as being ‘in’ whereas the right panel
contains no overlap, suggesting that the SVM outlier detection model can correctly identify all
data as outliers when it is different by 0.25 or more MAD:s.

Extrapolation Identification in WOWTDR

The SVM model became the basis for extrapolation detection for WOWTDR because we
determined that SVM was the best outlier detection model for our data. Extrapolation detection
was conducted on every sub-reach during this process by rescaling the covariate data with the
robust scaling method described previously to prepare it for introduction into the SVM using the
SVM to estimate extrapolation by classifying the resulting score with the following logic:
ISEXTRAPOLATION = TRUE when scores are < 0 and FALSE when scores are > 0.
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S7 WOWTDR Model Results
Table S7.1. Covariate selection results for all 96 covariates.
Column headings indicate the spatial covariate selection method, rank is the relative numerical
ordering of covariates sequenced for the given covariate selection method. Cell values are

covariate ManuscriptShortname from Table S1.

Rank | Boruta Permutation JMIM Spatial 1 Spatial 2
1| DA Tmin_Aug ppt_sum_yr m_2 E Lchannel
2 | Lchannel TPI_500_m elev_rescale Enormalized DA
3 | elev_rescale prof_curve vpdmax8_yr m_0 | Tmin_Aug Enormalized
4 | E vpdmax8 yr m_0 | ppt5_ yr m 0O G50m ppt_sum_yr_m_2
5 | ENormalized ppt8_yr m_0 pptdiffnrml Glkm E
6 | tmin5_yr m 0 tmin5_ yr m 0 ppt8_yr m_1 Lhillslope elev_rescale
7 | pptdiffnrml tmin8_yr m_1 ppt8_nrml DA ppt8_yr_ m_0
8 | PYear tmax5_ yr m 0 Wstorage Lchannel d_slp100_m
9 | ppt_sum_yr_ m_2 | Wstorage PYear TMin_May-1 pptdiffnrml
10 | ppt8_yr_m_1 tp_slppos_ratio vpdmax8_yr_m_1 | WSstorage PYear
11 | H ppt8_nrml Lith_Prov H tmax8_yr_m_1
12 | Wstorage tp_dissection Tmin_Aug SlpDrainDens vpdmax8_yr_m_0
13 | TMin_May-1 H ppt8_yr_ m_0 tmin8_yr_m_1 tmin5_yr_m_0O
14 | Lhillslope curve ppt_nrml_sum d_slp100_m vpdmax8_yr m_2
15 | G50m tph_ge 3 2017 E PYear ppt5_yr m_1
16 | SlpDrainDens tphc_ge 3 2017 ppt5_yr m_2 pptdiffnrml tmax5_yr m_2
17 | vpdmax8 yr m_0 | elev_rescale vpdmax5 yr m_2 | ppt8 _yr m_1 vpdmax5_yr m_2
18 | tmin5_yr_m_2 ppt_ratio_aug_yr ppt_sum_yr m_1 | TPI_5000_m ppt5_yr m 0
19 | vpdmax5_yr_m_2 | hload ppt8_yr_m_2 tmin5_yr_m_0 G1lkm
20 | ppt5_yr_m_1 tmin8_yr_m_2 tmax8_yr_m_1 tphh_ge_3 2017 vpdmax5_yr_m_0
21 | Tmin_Aug d_slp100_m tphc_ge 3 2017 tp_sarelratio2 tmin5_yr_m_2
22 | ppt5_yr_m_2 TPI_50_m tmax5_yr_m_0 tmin8_yr_m_2 vpdmax5_yr_ m_1
23 | Glkm vpdmax5_yr_m_1 | aspect_trasp aspect_cos LHillslope
24 | ppt_ratio_aug_yr tp_roughness2 ppt_ratio_aug_yr tp_vrm tmax5_yr_m_1
25 | pptpropnrml NLCD4 Enormalized HAND_1 G50m
26 | vpdmax8 yr m_1 | ppt5_yr m_1 slope_pct_taudem | TPI_50_m ppt5_yr m_2
27 | d_slp100_m SlpDrainDens pptpropnrml Water_Depth_fix ppt8_nrml
28 | cancov_hdw_2017 | vpdmax5 yr m 0 | hload tmin5_yr m_2 ppt8 _yr m_1
29 | ppt_nrml_sum tmin5_yr m_2 tmin5_yr m 0 d_slp20_m ppt8_yr m_2
30 | ppt_sum_yr m_1 | cancov_con_ 2017 | vpdmax5 yr m_1 | slope_pct taudem | vpdmax8 yr m_1
31 | d_slp30_m aspect_cos tmax8_yr_ m_0 NLCD5 ppt_ratio_aug_yr
32 | vpdmax8_yr_m_2 | tp_dissection2 vpdmax8_yr_m_2 | plan_curve tphh_ge_3 2017
33 | ppt8_nrml Lith_Prov tmax8_yr m_2 elev_rescale ppt_sum_yr m_1
34 | tmax8_yr_m_1 vpdmax8_yr_ m_1 | vpdmax5_yr_m_0 | aspect_trasp aspect_trasp
35| ppt5_yr_ m_0O ppt5_yr m_0O Lith_Prov3 ppt_ratio_aug_yr | d_slp20_m
36 | d_slp20_m SPI H TWI Tmin_Aug
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37 | tmax8_yr_m_2 C% Lith_Prov2 Lith_Prov5 tp_slpposidx
38 | tmin8_yr m_1 landsteward Lith_Prov5 curve ppt_nrml_sum
39 | tmax5_yr m_0 vpdmax8 yr m_2 | tp_vrm aspect_sin d_slp30_m

40 | tphc_ge 3 2017 d_slp20_m aspect_cos ppt8_yr m_0 tmin8_yr m_2
41 | tmax5_yr_m_2 DA tmax5_yr_m_2 tph_ge 3 2017 tmax5_yr_m_0
42 | tp_rough_ratio tp_roughness cancov_hdw_2017 | NLCD10 H

43 | vpdmax5_yr_ m_0 | Bedrock Depth_fix | ppt5_yr m_1 ppt5_ yr m_1 hload

44 | tmax5_yr_m_1 TMin_May-1 aspect_sin d_slp30_m pptpropnrml
45 | ppt8_yr m_0 tp_rough_ratio cancov_con_2017 | tp_roughness2 tph_ge 3 2017
46 | tmin8_yr_m_2 plan_curve Bedrock_Depth_fix | cancov_con_2017 | cancov_hdw_2017
47 | tmax8_yr_ m_0 tp_slpposidx2 tmax5_yr_m_1 Bedrock_Depth_fix | tp_sarelratio
48 | tphh_ge 3 2017 ppt5_yr m_2 Lith_Prov7 NLCD6 tp_dissection

49

vpdmax5_yr_m_1

vpdmax5_yr_m_2

tmin5_yr_m_2

vpdmax8_yr_m_1

tphc_ge 3 2017

50 | tp_vrm NLCD10 SlpDrainDens prof_curve tp_rough_ratio
51 | cancov_con_2017 | Water_Depth_fix d_slp30_m tp_rough_ratio tp_slppos_ratio
52 | tp_sarelratio2 ppt8_yr m_1 TPI_50 m tp_roughness TPI_500_m

53 | aspect_trasp pptpropnrml tph_ge 3 2017 NLCD7 tp_dissection2

54 | hload tphh_ge 3 2017 tmin8 yr m_2 ppt8_nrml plan_curve

55 | tp_roughness NLCD2 C% tmax5_yr_m_1 tp_diss_ratio

56 | tph_ge_3 2017 Lith_Prov7 SPI hload NLCD6

57 | TPI_5000_m NLCD7 Water_Depth_fix tp_dissection tmax8 yr m_2
58 | tp_sarelratio cancov_hdw_2017 | TMin_May-1 ppt5_yr m_0 slope_pct_taudem
59 | slope_pct_taudem | d_slp30_m tp_sarelratio2 vpdmax5_yr m_1 | TWI

60 | ppt8_yr_ m_2 NLCD5 tmin8_yr_m_1 vpdmax8_yr_m_0 | Wstorage

61 | Bedrock_Depth_fix | TPI_5000_m plan_curve tp_dissection2 tp_slpposidx2

62 | HAND_1 tmax5_yr_m_1 NLCD6 vpdmax5_yr m_2 | HAND_1

63 | tp_dissection tmax5_yr_m_2 tphh_ge 3 2017 ppt5_yr m_2 Bedrock_Depth_fix
64 | tp_dissection2 Lith_Prov2 tp_dissection pptpropnrml ProfCurve

65 | aspect_cos Lith_Provl d_slp20_m tp_diss_ratio tp_sarelratio2

66 | aspect_sin G50m TPI_5000_m tphc_ge 3 2017 tmin5_yr m_1

67 | TPI_50_m Lith_Prov4 TWI SPI Lith_Prov5

68 | tp_diss_ratio tmax8_yr_m_2 tp_rough_ratio ppt_sum_yr m_2 tp_vrm

69 | tp_roughness2 NLCD6 d_slp100_m cancov_hdw_2017 | TPI_50_m

70 | tp_slppos_ratio Lith_Prov3 Lith_Prov4 tmax8_yr m_2 tmax8 _yr_ m_0

71 | tp_slpposidx2 tp_sarelratio G50m tp_slpposidx C%

72 | tp_slpposidx ppt_sum_yr_m_1 | tp_dissection2 Lith_Prov3 SlpDrainDens

73 | plan_curve tp_vrm landsteward ppt_sum_yr_m_1 | aspect_sin

74 | TPI_500_m aspect_trasp prof_curve Lith_Prov tmin8_yr_m_1

75 | SPI LChannel L3region landsteward TPI_5000_m

76 | curve PYear TPI_500_m vpdmax8_yr_m_2 | cancov_con_2017
77 | ProfCurve ppt8_yr m_2 tp_sarelratio tp_slpposidx2 Lith_Prov3

78 | NLCD6 tmax8 yr m 0 HAND_1 tmax5_yr m 0 Water_Depth_fix
79 | C% slope_pct_taudem | Lith_Prov1l tmax5_yr m_2 aspect_cos
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80 | TWI tmax8_yr_m_1 DA tmax8_yr_m_1 tp_roughness
81 | Lith_Prov2 L3region tp_roughness2 ProfCurve Lith_Prov2

82 | prof_curve tp_sarelratio2 curve TPI_500_m Lith_Prov7
83 | Water_Depth_fix G1km ProfCurve NLCD4 prof_curve
84 | Lith_Prov4 ProfCurve tp_slpposidx2 ppt_nrml_sum tp_roughness2
85 | Lith_Prov7 Lith_Prov5 Lchannel tp_sarelratio NLCD5

86 | NLCD5 HAND_1 G1km ppt8_yr_m_2 SPI

87 | Lith_Prov3 E tp_slppos_ratio vpdmax5_yr_m_0 | Lith_Prov4
88 | Lith_Prov5 ppt_sum_yr m_2 | tp_roughness C% NLCD10

89 | Lith_Provl TWI tp_diss_ratio NLCD2 landsteward
90 | Lith_Prov ppt_nrml_sum NLCD10 L3region Lith_Prov

91 | NLCD10 tp_slpposidx Lhillslope Lith_Prov7 curve

92 | NLCD7 pptdiffnrml tp_slpposidx tmax8_yr_m_0 NLCD7

93 | NLCD4 aspect_sin NLCD2 tp_slppos_ratio L3region

94 | landsteward Enormalized NLCD4 Lith_Prov1l Lith_Prov1l

95 | L3region Lhillslope NLCD5 Lith_Prov2 NLCD4

96 | NLCD2 tp_diss_ratio NLCD7 Lith_Prov4 NLCD2
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Figure S7.1. Distribution of values of 13 covariates included in the final model for training data
and a subset of predictions sub-reaches in the model domain that includes the maximum and
minimum values in the sub-reaches.
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Figure S7.2. Out-Of-Bag streamflow permanence probabilities for training data that include Wet
and Dry observations and a subset of Wet and Dry observations where annual precipitation
(P_Annual) is more than 3,000mm.
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Figure S7.3. Distribution of streamflow permanence probability (SPP) and Ambiguous, Dry, and
Wet classifications for subset prediction sub-reaches for years 2019, 2020, and 2021.
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