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in ecosystems including (1) harboring biodiversity, (2) influencing light and car-
bon fluxes to aquatic food webs, (3) maintaining water quality and streamflow,
(4) enhancing aquatic habitat, (5) influencing greenhouse gas production, and (6)
sequestering carbon. Defining what qualifies as a riparian zone is a first step to
delineation. Many definitions of riparian boundaries focus on static attributes or a
subset of potential functions without recognizing that they are spatially continuous,
temporally dynamic, and multi-dimensional. We emphasize that definitions should

consider multiple ecological and biogeochemical functions and physical gradients,
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and explore how this approach influences spatial characterization of riparian zones.
One or more of the following properties can guide riparian delineation: (1) distinct
species, elevated biodiversity, or species with specific adaptations to flooding and
inundation near streams relative to nearby upland areas; (2) unique vegetation struc-
ture directly influencing irradiance or organic material inputs to aquatic ecosystems;
(3) hydrologic and geomorphic features or processes maintaining floodplains; (4)
hydric soil properties that differ from the uplands; and/or (5) elevated retention of
dissolved and suspended materials relative to adjacent uplands. Considering these
properties for an operational and dynamic definition of riparian zones recognizes that
riparian boundaries vary in space (e.g., variation of riparian corridor widths within
or among watersheds) and time (e.g., responses to hydrological variance and climate
change). Inclusive definitions addressing multiple riparian functions could facilitate

attainment of research and management goals by linking properties of interest to

specific outcomes.

1 | INTRODUCTION

Defining riparian zones is required for effective and durable
protection of these valuable ecosystems (Riis et al., 2020).
Riparian zones comprise a control point (Bernhardt et al.,
2017) of material fluxes and are disproportionately important
to interactions between land and freshwaters, and ultimately
hydrological and material transport from freshwaters to
oceans. Riparian protection will help ensure the provision of
key ecosystem functions that provide or support important
services, including harboring biodiversity, maintaining water
quality, and decreasing erosion and other flood disturbance.

Managing riparian habitats and understanding their ecolog-
ical importance requires an objective definition that links to
specific ecosystem functions of interest and that links dis-
parate approaches and goals globally (Rodriguez-Gonzalez
et al., 2022). Yet, defining the riparian zone as a single cat-
egory distinct from the uplands or adjacent stream is difficult
because these ecotones span gradients of spatiotemporally
variable physical, chemical, and ecological characteristics
at the interface between terrestrial and aquatic ecosystems
(Naiman & Décamps, 1997) and those gradients influence
different functions in various ways.

Spatial and temporal heterogeneity in physical and ecolog-
ical features within riparian zones and corridors complicates
the delineation of riparian boundaries. The properties that dis-
tinguish riparian zones from adjacent uplands and streams
often result from wetter conditions nearer to streams that
interact with terrestrial vegetation and soils differently than
in the drier uplands nearby. The spatial distribution of shal-
low groundwater and saturated soils in riparian zones is
determined by the interactions of geology and hydrogeomor-
phology (Gurnell et al., 2016). Geomorphological processes

influencing riparian zones include river erosion, deposition,
lateral channel movement (Bendix & Hupp, 2000; Gregory
et al., 1991), movement of sediment and particulate organic
matter by currents and waves, and interception of surface
and subsurface hydrological flow paths. These processes
result from catchment configuration such as the coales-
cence of small streams into large rivers downstream (Benda
et al., 2004). Hydrological influences on riparian processes
include spatial extent of flooding, groundwater interactions
with terrestrial vegetation and nearby freshwater (e.g., evap-
otranspiration), and bidirectional movement of water across
aquatic-terrestrial boundaries via surface, shallow subsurface,
and deeper groundwater flowpaths.

Riparian zones are variously defined by a suite of
ecological attributes, including species composition and
structure of riparian vegetation (herbs, lianas, shrubs, and
trees), organic matter contribution to streams, biodiversity,
and material retention. The heterogeneity of these zones
arises from the aforementioned factors and the bidirectional
resource exchange with adjacent streams (Bartels et al., 2012;
Schindler & Smits, 2017). This exchange, modulated by ripar-
ian width and proximity to the channel, affects the movement
of matter and energy (Muehlbauer et al., 2014). Addition-
ally, riparian-terrestrial interactions, such as stream shading
by vegetation, regulate solar radiation and energy fluxes into
aquatic habitats. These dynamics also foster environmental
conditions conducive to the establishment of unique riparian
species, thereby influencing local and regional biodiversity
(Sabo et al., 2005).

Multiple gradients (ecological and physical) within ripar-
ian zones regulate the riparian functions that are often targets
for conservation and management. A multi-gradient approach
could align definitions of riparian boundaries with these
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targets, as demonstrated empirically by Sweeney and New-
bold (2014) and Lind et al. (2019). Here, we highlight the
nested nature of riparian functions and how they might align
with each other. This could allow managers or policymakers
an avenue to prioritize various functions and consider actions
that could accrue benefits from multiple functions. Given the
diversity of potential riparian functions, we summarize histor-
ical and current definitions of riparian zones and identify how
a multi-gradient viewpoint could facilitate new insights into
relationships between riparian structure and function. Where
possible, we identify measurable parameters that can be used
to delineate riparian zones and attain management goals that
are specific to the function of interest (Kuglerova et al., 2024).

2 | PRIOR DEFINITIONS OF RIPARIAN
ZONES

The scientific definition of riparian zones has varied, and
the attributes or components studied have shifted as inter-
ests in functions and regulatory objectives have changed (see
Table 1 for representative definitions). Riparian zones were
initially defined as integral parts of freshwater ecosystems
(e.g., Hynes, 1975) or as ecotones occupying the transition
between terrestrial and freshwater ecosystems (e.g., Gregory
etal., 1991; Holland & Risser, 1991). Definitions recognizing
riparian zones as interfaces have focused on their transitional
nature and emphasized gradients in physical and biological
structure (National Research Council, 2002).

Gregory et al. (1991) defined riparian zones by focusing
on flood extent, vegetative structure, and the implications
for specific ecosystem processes such as material retention.
This definition recognizes that riparian structure and function
vary over space and time with changing external drivers (i.e.,
climate and the intensity and frequency of extreme hydro-
logical events) and internal features (i.e., topography and
geomorphology). Subsequently, Naiman and Décamps (1997)
emphasized that the diversity of geomorphic and hydrological
features within riparian zones supports a varied set of func-
tions and suggested that the physical boundaries of riparian
zones extended from the edge of the stream at low water lev-
els out to the extent of elevated water table or hydric soils.
The National Research Council (2002) of the United States
defined riparian zones by their influences on aquatic habitats,
highlighting them as interfaces between terrestrial and aquatic
environments with emphasis on management implications
and disproportional importance with respect to ecosystem
functions per unit area.

Research on riparian zones has proliferated since the late
20th century, characterizing numerous riparian processes sup-
porting water quality and aquatic habitat. These included the
capacity to remove nutrients and sediments from runoff, par-
ticularly in agricultural lands. Early studies (Lowrance et al.,

Core Ideas

* Functional properties determine effective riparian
widths.

* Multiple physical gradients independently affect
functional properties.

e Sharp and heterogeneous physical gradients near
streams dictate variable widths.

* A multi-function approach will better inform ripar-
ian science and management.

1984; Peterjohn & Correll, 1984) spurred interest and future
progress in this area (Mayer et al., 2007; Sweeney & New-
bold, 2014). Studies also documented the role of riparian
vegetation in regulating stream temperature (Brown & Kry-
gier, 1970; T. M. Burton & Likens, 1973) and providing
large woody material as aquatic habitat (Pusey & Arthing-
ton, 2003). As the field of riparian science developed, federal
and local (state, provincial, tribal, conservational, etc.) enti-
ties in North America, Brazil, Europe, and elsewhere began
to implement policies to protect and restore riparian zones.
These policies required defining riparian zones with easily
applied spatial criteria; consequently, regulatory definitions
tended to identify specific widths required to perform desired
functions or were based on obvious observable features such
as type of vegetation or presence of hydric soils (Table 1).
However, a patchwork of definitions has been employed by
different agencies within regions, across states or other juris-
dictions, which will be discussed here and in more detail in
Section 5.

Fixed-width buffers, adopted by many regulatory agencies,
are conceptually simple, easily implemented, and can pro-
tect specific riparian functions. The ease of identification and
implementation across broad landscapes has been an attrac-
tive feature of fixed-width regulatory buffers, with widths
prescribed relative to stream size and varying with land cover
(Boisjolie et al., 2019). The Brazilian Forest Code prescribed
nationwide protection of riparian zones within boundaries
based on stream channel widths. Under this policy, stream
channels less than 10 m wide should have a 30-m buffer on
each bank, and channels greater than 600 m wide would have
a 500-m buffer on each side (da Silva et al., 2017). However,
modifications of the code allow agriculture within 8§ m of
streams (Guidotti et al., 2020) and enforcement of the code
is inconsistent.

Width-based definitions of riparian zones often focus on
single functions in contrast with those that emphasize spatial
heterogeneity, environmental gradients, and multiple func-
tions (e.g., [lhardt et al., 2000). Assigning a specific width can
be problematic because riparian zones are characterized by

35US0D |17 SUOLLILIOD dAITERID 3|eol(dde ay3 Aq peutenob are sapoiiie YO ‘asn J0 SanJ 4o} Akeiq1auluQ AS|IMN UO (SUOIIPUOD-pUe-SWLIBILIoD A3 | IM" ARe.q U UO//:SdNL) SUOIPUOD pUe SWB | U1 39S *[G202/60/ST] Uo AkiqiTauluQ AS|IM ‘0800L 2ba1/200T 0T/I0p/Wo A8 1M Aleiq U U0 SSasIe//:sdny WoJy papeo|umoq ‘0 ‘2EG2/EST



4 Journal of Environmental Quality

DODDS ET AL.

TABLE 1 Representative definitions of riparian zones

Defining features

Aquatic-terrestrial
interaction
Aquatic-terrestrial
interaction;
hydrology

Aquatic-terrestrial
interaction;
hydrology

Hydrology

Hydrology

Aquatic- terrestrial

interaction;
hydrology;
geomorphology

Hydrology;
vegetation; soil
properties
Hydrologys;
vegetation

Definition of riparian zone

Three-dimensional zones of direct interaction between terrestrial and aquatic ecosystems

Assemblage of plants and other organisms in an environment adjacent to water

Without definite boundaries, may include streambanks, floodplain, and wetlands, [...] forming
a transitional zone between upland and aquatic habitat

Characterized by laterally flowing water that rises and falls at least once within a growing
season

Transitional between terrestrial and aquatic ecosystems distinguished by gradients in
biophysical conditions, ecological processes, and biota

Areas through which surface and subsurface hydrology connect streams with their adjacent
upland

Portions of terrestrial ecosystems that significantly influence exchanges of energy and matter
with aquatic ecosystems

Stream channel between the low and high-water marks and that portion of the terrestrial
landscape from the high water mark toward the uplands where vegetation may be influenced
by elevated water tables or flooding and by the ability of the soils to hold water

A vegetated ecosystem along a water body through which energy, materials, and water pass.
Characteristic shallow water table and subject to periodic flooding and influence from the
adjacent water body

Three-dimensional space of interaction that includes terrestrial and aquatic ecosystems that
extend down into the groundwater, up above the canopy, outward across the floodplain, up the
near-slopes that drain to the water, laterally into the terrestrial ecosystem, and along the water
course at a variable width

Width of the valley (its flood prone area width) plus 30 m on each side to encompass the
important adjacent riparian functions, and 15 m around obvious landslides

Ecotones that occur along watercourses or streams

Distinctly different from the surrounding lands because of unique soil and vegetation
characteristics that are strongly influenced by free or unbound water in the soil

Wetland transition between permanently saturated wetlands and upland areas

Vegetation or physical characteristics reflective of permanent surface or subsurface water
influence

Lands along, adjacent to, or contiguous with perennially and intermittently flowing rivers and

Citation

Gregory et al., 1991

Lowrance et al., 1984

National Research
Council, 2002

Naiman & Decamps,
1997

US Environmental
Protection Agency,
2005

(Ilhardt et al., 2000;
Verry et al., 2004)

US Department of
Agriculture, 2010

US Bureau of Land
Management, 2017

streams, glacial potholes, and the shores of lakes and reservoirs with stable water levels
* Excludes ephemeral streams or washes that do not exhibit the presence of vegetation

dependent upon free water in the soil.

Vegetation * Plant communities contiguous to and affected by surface and subsurface hydrological features
of perennial or intermittent lotic and lentic streams (rivers, streams, lakes, or drainage ways)

US Fish and Wildlife
Service, 2023

¢ Transitional between wetland and upland with one or both of the following characteristics:

(1) Distinctly different vegetative species than adjacent areas.
(2) Species similar to adjacent areas but exhibiting more vigorous or robust growth forms.

habitat transitions (ecotonal) and physical or ecological gra-
dients, rather than sharp boundaries (Muehlbauer et al., 2014;
Richardson et al., 2012). Furthermore, the width required
to support one or several functions can vary based on the
catchment setting (e.g., constrained versus open valleys, small
versus large streams) and specific conditions that change over
time (e.g., changing vegetation with climate change or stream-
flow patterns with seasonal to decadal climate oscillations).
While fixed-width definitions based on single functions can
be simple to apply and enforce, they can be potentially
ineffective for some management objectives.

The complex spatial and temporal gradients comprising
riparian zones suggest that definitions of riparian zones
should be flexible and accommodate the specific characteris-
tics or processes of interest. For example, based on a literature
review, Sweeney and Newbold (2014) defined riparian width
from multiple functions: (1) nitrate removal, (2) sediment
trapping, (3) stream channel width, (4) geomorphological sta-
bility, (5) stream temperature protection, (6) input of large
wood, and (7) protection of habitat for fish and invertebrates.
They concluded that 30 m wide buffers would largely pro-
tect many of these functions. A more recent meta-analysis
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Quantifiable riparian properties Riparian width and trend with Key ecosystem functions
Ecological distance from water
Similarity to upland vegetation ‘ Conserving biodiversity
Carbon input, shading, large wood input .
Carbon influx to aquatic
Flood/ high moisture adapted plant species ‘ system
Riparian —dependent animals -
) o ‘ Light input to aquatic system
Reliance on surface precipitation (heating and primary production)
Physical and biogeochemical
Water quality and streamflow
Flooding influence on vegetation .
Dissolved and particulate material retention - Greenhouse gas production
Hydric soils - and carbon sequestration
FIGURE 1 Some quantifiable riparian properties that can delineate riparian areas, their generalized changes with distance from a stream, and

key ecosystem functions that can be influenced by the riparian properties. The taller edge of the wedges indicates where the properties are

maximized, and the relative widths are signified by the length of the wedges based on arguments in text and data from Lind et al. (2019). The text

and Tables 2 and 3 expand on quantifiable properties and links to ecosystem functions. The ecosystem functions in column 3 can depend upon

multiple aspects listed in column 1.

recommended criteria defining “ecologically functional ripar-
ian zones” in agricultural landscapes that might differ in
width due to the biological or physical attribute of interest
(Lind et al., 2019). Data summarized by Lind et al. (2019)
indicated that riparian widths designed to support conser-
vation of terrestrial vertebrates tended to be three to five
times wider than those required for other biota or for nutrient
retention functions. This approach was parallel to that pro-
posed by Nelson et al. (2024), who suggest that including
multiple functions of river corridors (defined by the chan-
nel migration zone and including riparian habitat) could help
managers simultaneously protect key functions while plan-
ning for desired floodplain rejuvenation, with the potential to
lead to restoration of natural channel morphology and natural
habitat heterogeneity near rivers.

Recent advances in applying remote sensing tools com-
bined with modeling and other methods to delineate riparian
zones (e.g., C. A. McMahon et al., 2024; Rusnék et al.,
2022) suggest a more flexible approach to delineation could
be implemented in some cases based on existing technology.
For example, these methods have helped in defining variable
width riparian zones based on unevenness in valley topogra-
phy, as suggested by Ilhardt et al. (2000). Remote sensing can
also support multi-dimensional definition of riparian zones
by integrating across multiple data layers and data products
to identify riparian zones based on their primary function or
dominant feature extrapolating from finer grained ground sur-
veys. Such an approach is exemplified in several inventories
and models across the European Union (e.g., Clerici et al.,
2011).

Here, we review how riparian boundaries can be defined
by various ecological and physical properties, and how these
properties support important riparian ecosystem functions

(Figure 1, Table 2). We have grouped the riparian properties as
ecological, biogeochemical, and physical. We take the explicit
view that riparian zones are ecotones encompassing multiple
gradients. Describing attributes of the spatial and temporal
gradients that influence riparian functions will provide con-
text for delineating riparian zones by scientists, managers, or
policymakers.

3 | PROPERTIES THAT CAN BE USED
TO DELINEATE RIPARIAN ZONES

3.1 | Vegetation structure

Definitions of riparian zones often distinguish them from
uplands based on species composition or structure of veg-
etation (Naiman et al., 2005) because of sharp transitions
between upland plants and species adapted to wetter condi-
tions. Flood-resistant species or those that require or tolerate
continuous inundation of roots near a stream would clearly
be considered riparian species. In more arid regions, trees or
shrubs might only occur near streams, or plants may be larger
or denser in the riparian zone, and sequester greater amounts
of carbon compared to upland ecosystems (Dybala et al.,
2019; Matzek et al., 2018). Leaf traits of riparian vegetation
can also differentiate riparian zones from uplands, because
relatively nutrient-rich, wet soils in riparian zones result
in tradeoffs between resource use-efficiency and primary
productivity (i.e., supporting highly productive vegetation
that uses large amounts of water and nutrients; Paiva et al.,
2015). These traits may be distinguishable via remote sensing
(Ladd et al., 2013, 2014; Mello et al., 2023). Therefore, the
width of the riparian zone could be defined based on the
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TABLE 2
riparian width.

Property

[1] Vegetation structure

[2] Vegetation structure
influencing primary
production in stream
[3] Vegetation structure
influencing aquatic
habitat temperature

[4] Vegetation structure
influencing carbon export
to stream

[5] Vegetation structure
influencing channel
geomorphology

[6] Riparian-adapted
species

[7] Riparian-dependent
species

DODDS ET AL.

Quantitative criteria that could be
used as targets and metrics of success
for management goals

Vegetation height and density

Light (photosynthetically active
radiation [PAR]) reaching stream

Physical characteristics influencing
influx rates of PAR and near-infrared
radiation (NIR) inputs

Particulate carbon flux to stream

Influx rates of large wood; bank
stabilization by plant roots

Species composition matching native
riparian vegetation assemblage; specific
riparian-related traits

Vertebrate species such as birds,
amphibians, and reptiles strongly
depending on riparian habitats

Area or width
determination

Area where vegetation
structure is distinct from
uplands

Width supporting terrestrial
vegetation shading (reducing
PAR) the adjacent stream

Width supporting terrestrial
vegetation that reduces PAR
and NIR entering the
adjacent stream

Width from within which
most of the terrestrial
detritus entering the adjacent
stream originates

Distance within which most
large wood found in a stream
originates; horizontal
distance of plant rooting

Area inhabited by species
unique to the
aquatic-terrestrial interface
or water saturated soils

Area inhabited by
endangered and unique
animals linked to the
aquatic-terrestrial interface

Abbreviations: GIS, Geographic Information System; LiDAR, Light Detection and Ranging.

Ecological properties that could be used to delineate the spatial extent of the riparian zone and associated approaches to measuring

Potential methodological
approaches

LiDAR, satellite or aerial imagery
with ground truthing (Bertoldi
etal., 2011)

Stream width and tree height
(LiDAR and other remote sensing
tools) (Katuza et al., 2020)

Water body width and tree height
(LiDAR and other remote sensing
and Geographic Information
System (GIS) tools) (Dugdale

et al., 2020)

Similar methods as [2] and [3]
plus direct field measurements of
all other plant parts and sediment
input in representative areas

Remote sensing or LiDAR for
vegetation height combined with
GIS analysis and modeling
(MacNally et al., 2002; J. M.
McMahon et al., 2020; Meleason
et al., 2003) and functional plant
databases

Ground-based vegetation surveys;
remote sensing using phenology
differences to find unique species
(Jayasuriya et al., 2021; C. A.
McMahon et al., 2024)

Ground-based surveys of animal
diversity and plant composition

(Hagar et al., 2012; Olson et al.,
2007)

spatial distributions of plant communities established near
the stream (Table 2 [1,6,7]). However, riparian areas in wetter
climates may not have unique species compositions (Baker
et al., 2007).

The physical structure of riparian plant communities con-
tributes to many functions of riparian zones. These include
influences on habitat structure and ecosystem processes in
adjacent streams. For example, riparian vegetation height
influences solar radiation entering streams (Caissie, 2006),
though the magnitude of shading depends on the type of radi-
ation and the physical structure of the vegetation (Boisjolie
et al., 2019). Plant leaves efficiently intercept photosyntheti-
cally active radiation (PAR, 400-700 nm) and riparian forests
can strongly reduce the PAR available to aquatic primary pro-
ducers as well as intercept radiation of other wavelengths such
as near infrared (Davies-Colley & Payne, 2023). The influ-

ence of riparian vegetation on light and temperature in aquatic
ecosystems will depend on the height and density of the ripar-
ian canopy, local topography, and the width of the stream. If
management is focused on water temperature or aquatic pri-
mary production, riparian zones could be defined based on
the distance from the stream over which terrestrial vegetation
significantly reduces irradiance input into the stream (Table 2
[2,3D.

Light inputs together with terrestrial detritus reach-
ing streams are also essential to energy flow and pro-
ductivity in aquatic food webs. Specifically, the propor-
tion of terrestrial carbon inputs determines whether exter-
nal sources (allochthonous) or aquatic primary production
(autochthonous) predominate as a carbon source (Fisher &
Likens, 1973). Thus, riparian width could be defined by the
average distance over which vegetation influences light input
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into the stream (Kiffney et al., 2004). Likewise, the influence
of riparian vegetation on coarse organic matter inputs into
the stream could be determined from litter deposition rates
from various riparian species and estimates of lateral input
distance (see Section 3.3.3, Table 2 [4]). In addition, where
there are distinct riparian plant species, identity of undecom-
posed leaves could be used to assess the degree of influence
of various riparian species.

Finally, large wood and plant roots can form habitat for
aquatic biota (Fritz & Feminella, 2011) and influence charac-
teristics of riparian functions (Dodds et al., 2017; Treadwell
etal., 1999). Large wood and roots shape channel, floodplain,
and shoreline morphology (Ardén et al., 2021; Czarnecka,
2016; Hawley & MacMannis, 2019; Kramer & Wohl, 2015;
Wohl, 2017), thereby influencing riparian width and estab-
lishing physical gradients within riparian zones. The presence
of trees, their size, floodplain forest age, and other factors such
as slope moving from the uplands to the stream all influence
the rates of input of large wood (J. I. Burton et al., 2016; Stella
et al., 2021). Therefore, the width of the riparian zone could
be defined as the area from within which some proportion
of large wood in the channel originates or where the roots of
riparian vegetation can establish in the stream (Table 2 [5]).
Generally, maximal lateral rooting distances are around 15 m
(Schwarz et al., 2010), and remote sensing (e.g., aerial pho-
tography and imagery from drones) can be used to estimate
rates of large wood accumulation within the stream (MacNally
et al., 2002; C. A. McMabhon et al., 2024).

3.2 | Species adaptations and biodiversity
Contrasts in the physicochemical attributes of riparian zones
relative to adjacent uplands and streams can contribute to
distinct biotic assemblages in riparian zones that augment
regional species diversity (Sabo et al., 2005). General ecolog-
ical synthesis suggests that species diversity is often, though
not always, greater in ecotones than in the areas they connect
(Kark, 2013). Relative to uplands, riparian zones are gener-
ally characterized by wetter conditions, frequent exposure to
floods, greater potential for seasonal waterlogging, reduced
temporal variance in microclimate, and greater accumulation
of organic matter and nutrients (Lopez et al., 2023). Spa-
tial patterns in species composition of riparian zones might
therefore correspond with environmental gradients estab-
lished by hydrological conditions, microclimate, or resource
availability. These gradients could lead to quantifiable diver-
sity differences among riparian zones, uplands, and streams
(Corenblit et al., 2009; Polvi, 2009).

As an example of riparian conditions contributing to dis-
tinct species assemblages of plants, waterlogging and flooding
can restrict plant species present in riparian zones to those that
can establish in such conditions (Catford & Jansson, 2014;
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that could drive distribution of plant species adaptations across a

Functional characteristics of vegetation (blue lines)

gradient of flood influence and moisture availability in a mesic
environment moving from waterbody to uplands with a moderate slope.
Plant species composition has often been used to define riparian width,
and the relative influence of a nearby water body can vary depending
upon context. Upland species far from groundwater rely only on
precipitation, but those that can use groundwater have deeper roots for
dry periods and shallow roots for wetter conditions. Characterizing
diversity across the ecotone could provide insight into unique
conditions and habitats associated with a riparian area that differ from
surrounding areas. Plant trait categories based on Fan et al. (2017).

Cronk & Fennessy, 2016). Adaptations to hydrological con-
ditions can establish gradients in plant communities across
riparian zones from species adapted to conditions that are (1)
always waterlogged, near the stream; (2) seasonally water-
logged; (3) not water-limited (roots can access groundwater);
(4) seasonally variable in water source (surface soil water vs.
groundwater); or (5) limited to surface soil water (Figure 2).
For example, distance to groundwater can rapidly increase
with distance from the stream in mountainous areas, leading
to very narrow riparian zones with saturated soils that are sub-
ject to intense seasonal flooding, and potentially unique plant
species adapted to these conditions that are rare or absent
in uplands. In some deserts, the riparian zone can support
different plant species than the uplands (Sabo et al., 2005)
because of unique environmental conditions near stream
channels such as flooding, wetter conditions, and anoxic
soils.

Maximum vascular plant diversity could occur somewhere
along the riparian gradient from the stream to the uplands
if plants respond to the interplay between flooding effects
and moisture gradients, as well as nutrient and light avail-
ability. In regions with substantial precipitation, for instance,
diversity may be lower in areas that are periodically flooded,
but the lack of water limitation of upland species means that
diversity may not decrease with increasing distance from the
stream (Baker et al., 2007; Clinton et al., 2010). In small
streams of wetter temperate habitats where flooding effects
are not intense, understory diversity can be greater immedi-
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ately next to the stream where light availability may be highest
(Dieterich & Anderson, 1998; Jayasuriya et al., 202 1), but tree
diversity may not differ from uplands (Hagan et al., 2006). In
dry biomes, where waterlogged conditions are infrequent and
water strongly limits species diversity, maximum diversity
could occur immediately adjacent to the stream (Stromberg
et al., 2017). Distribution patterns of species can provide one
type of gradient across which a riparian zone could be delin-
eated, particularly if unique species in need of conservation
occur only within riparian zones, offering yet another target
for managers of riparian zones.

The influence of abiotic gradients also manifests in the
inter- and intraspecific variation in species traits as well as
evolutionary adaptations of individual congeneric species.
For example, members of the same genus adapted to either
riparian forests or adjacent savannas display distinct func-
tional traits such as morphology and phenology. For example,
riparian species typically exhibit greater specific leaf area
than vegetation in the uplands, which enhances light capture
and photosynthetic efficiency and in turn is negatively corre-
lated with water- and nutrient-use efficiency (Hoffmann et al.,
2005). Increased resolution and frequency of remotely sensed
imagery allows clearer and broader scale identification of dif-
ferences in riparian areas from uplands based on differing
phenology. This phenology approach distinguished decidu-
ous riparian vegetation in three California watersheds (C. A.
McMahon et al., 2024). In regions disturbed by fire, riparian
plants often have thinner bark than upland species due to the
lesser need for protective structures in less fire-prone, moist
environments (Hoffmann et al., 2012). Spatial distribution
of physiological and morphological traits (Silva & Lambers,
2021) could be used to delineate the width of riparian zones
and distinguish them from nearby uplands. Practically, man-
agers would need a list of common plant species and their
functional characteristics and could use trait distribution to
establish the extent of the riparian zone. This approach is
embedded in the approach most commonly used to delineate
jurisdictional wetlands in the United States (US Army Corps
of Engineers, 1987), but could be expanded for regionally
specific use in riparian zones.

Species composition can also influence the functions of
riparian zones. For example, greater functional and phylo-
genetic diversity of riparian trees can increase overall leaf
litter decomposition rates (e.g., Zhou et al., 2020). Although
restoration activities often target reforestation with a limited
subset of species (Gonzlez et al., 2015), functions such as
decomposition and energy fluxes might be best supported
by considering relationships between biodiversity and key
functions. In particular, ecosystem processes mediated by
soil microbes might follow similar spatial patterns to plant
species distributions because microbial communities respond
to plant functional traits and host-specific symbioses that in
turn vary with soil age and nutrient availability (Silva & Lam-

bers, 2021). For example, Veach et al. (2016) demonstrated
decreasing soil bacterial evenness and species richness mov-
ing from upland grasslands to intermittent stream channels,
but patterns of fungal diversity were not as strong. In con-
trast, edaphic parameters, ecosystem productivity, and water
availability can be more important predictors of saprotrophic
fungi, while plant species composition is the most important
predictor of distributions of mycorrhizal fungi (Mikryukov
et al., 2023). Thus, species composition of plants as well as
other associated organisms could be used to delineate riparian
zones.

Regional animal diversity can also be highly dependent
upon riparian habitat. Naiman et al. (2000) estimated that
30% of wildlife species in the US Pacific Coast Ecoregion
require riparian habitat. Olson et al. (2007) noted that 32% of
amphibian populations in the same ecoregion require riparian
habitat, and the remaining species are facultatively associ-
ated with riparian zones due to cooler and wetter conditions
compared to uplands. Wetter conditions in riparian zones are
essential for amphibians and reptiles (Semlitsch & Bodie,
2003), especially in agricultural landscapes and dry lands,
and thus, the home range of these species could be used to
delineated the width of riparian zones (Table 2 [7]). Olson
et al. (2007) also found amphibians have high reliance on
headwater habitats. Thus, effective management plans could
consider accounting for heterogeneity within riparian zones,
particularly contrasting first-order streams to larger down-
stream rivers and conditions specific to the smaller streams
(e.g., presence or absence of fish).

Streams can be important sources of food for animals,
enhancing occasional or obligate use of riparian zones by
large carnivores foraging on fish and birds, and predators of
emerging aquatic insects (e.g., Gray, 1993; Sabo & Power,
2002; Sanzone et al., 2003). The width of suitable habitat
for animals foraging in riparian zones would then be defined
by the distance over which aquatic resources (e.g., stream-
derived nitrogen; Helfield & Naiman, 2001) are dispersed
into adjacent terrestrial ecosystems. In river networks, trans-
port distances of these aquatic-terrestrial fluxes are influenced
by network structure, watershed slope, and channel shape in
addition to dispersal attributes of aquatic organisms (Sabo &
Hagen, 2012). In drylands or during episodic dry periods,
elevated primary production in riparian zones compared to
adjacent uplands can provide food sources that sustain popula-
tions of consumers (Sabo et al., 2008; Soykan & Sabo, 2009).
In addition to riparian specialists, riparian zones are corridors
for animals, especially in areas where humans have frag-
mented natural upland vegetation and in dry climates (Gillies
& St. Clair, 2008; Naiman et al., 1993).

Summarizing, organismal abundance or diversity can
be used to define riparian width in support of manag-
ing biodiversity. This approach would encompass the area
required to maintain reference conditions or achieve targets
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in species richness or community composition. Such goals
might address plants, animals, and even microbes. As each
group of organisms has different ranges of adaptations and
mobility, the width of the riparian zone is expected to vary
depending upon organismal attributes (Marczak et al., 2010).
Mobile animals such as reptiles and birds are expected to
need wide riparian zones (e.g., greater than 100 m) because
they have large home ranges (Lind et al., 2019; Semlitsch &
Bodie, 2003). Thus, width definition based on animal diver-
sity could yield greater widths than other approaches such as
interception of sediments and nutrients (Lind et al., 2019).

3.3 | Hydrological and geomorphological
gradients

Hydrology and geology interact to form much of the basis of
riparian structure and function as they determine aboveground
and belowground vegetation characteristics and the degree of
groundwater—surface water interactions near streams. Thus,
defining riparian zones requires consideration of hydrology
shaped by geology and geomorphology. Here, we include
the relationship of riparian structure and function with (1)
flooding, (2) groundwater depth, (3) material transport and
retention, and (4) bank stability.

3.3.1 | Flooding

Riparian zones can be delineated by the maximum area of
flooding based on the geomorphic features (Polvi et al., 2011;
Verry et al., 2004). Definitive delineation is, however, diffi-
cult unless geological features constrain the elevation with
steep valleys such that even very large floods influence only
a specific distance from the water’s edge. Furthermore, some
aquatic habitats (e.g., spring-fed streams and sand-dominated
rivers) rarely flood or have relatively stable banks. Here,
we specifically concentrate on areas influenced by flooding
without geological constraints such as steep valleys.

The probability of hydrological effects, in the form of inun-
dation, decreases as elevation rises moving away from the
aquatic habitat such that only the largest floods will reach
greater elevations. The basic principles discussed here have
been used to create detailed flood maps for large areas. For
example, the US Federal Emergency Management Agency
has high-resolution maps for many areas in the United States
based on hydrological models and topographic mapping.
For flowing waters, maximum discharge plotted against time
between floods (recurrence interval) roughly follows a log-
arithmic decay relationship approximated by the following
equation:

0 =cxTF, (D)

where Q is the maximum discharge, c is a constant, T is the
1/recurrence interval, and k is the expected probability of a
flood of a certain size during each year. The form of this equa-
tion describes an exponential decay in the probability of flood
magnitude. A modified logarithmic decay equation (log Pear-
son Type III) is used by the United States Geological Survey
and many hydrologists because it accounts for skew in Equa-
tion (1) (England et al., 2018), which can vary regionally.
This relationship could also roughly delineate the gradient
of hydrological influence on the width of flood influence if
the elevational cross section of the area abutting the ripar-
ian zone is known. However, these elevational gradients near
streams can vary over small distances, especially in mountain-
ous areas, and can change substantially during a single large
flood that creates extensive erosion and deposition across the
river corridor.

A strong determinant of riparian width depends on
site-specific factors such as valley-floor geometry and sur-
face and subsurface hydrological regimes. Ilhardt et al.
(2000) suggested broadly that the floodplain correspond-
ing to a flood return interval of 50 years corresponds
to riparian width, but given differences in geomorphol-
ogy and flooding characteristics, these recommendations
could vary widely. Fortunately, modern workflows with
increasingly precise, high-resolution remote-sensed imagery
(e.g., LiDAR [Light Detection and Ranging]) now produce
high-resolution maps of flood-prone areas (Zheng et al.,
2018). Such mapping could be used to delineate riparian
zones when combined with hydrological flood return data
(Table 3 [8]).

3.3.2 | Groundwater depth

The average depth to groundwater is crucial relative to the
rooting depth of vegetation, particularly in drier habitats.
Assuming an approximately constant water table elevation
near a permanent stream, the water table depth is determined
by the elevational cross-section. By combining this depth with
the elevation above the capillary zone (the soil immediately
above the water table where capillary forces operate), the
maximum riparian zone width where plants can be expected
to access groundwater can be estimated from well depth data
and extrapolated from the well to the stream (Table 3 [9]). This
width, W, in a simple generalized form, can be calculated as
follows:

D

Sland - Scap

w , @

where D is the maximum depth to the capillary zone that the
plants with the deepest roots can reach, Sj,,4 is the slope of

the land surface, and S, is the slope of the capillary zone
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TABLE 3
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Physical and biogeochemical properties that could be used to delineate the spatial extent of the riparian zone and associated

approaches to measuring riparian width. Note that the numeration of properties continues that in Table 2.

Property

[8] Episodic
inundation

[9] Vegetative
interaction with
groundwater

[10] Retention of
dissolved materials

[11] Retention of
particulate materials

[12] Hydric soils

Quantitative criteria that could be
used as targets and metrics of success
for management goals

Flood recurrence interval,
geomorphological features,
flood-adapted vegetation, high water line

Depth of the groundwater table and
capillary zone, and maximum depth of
the root system

Uptake capacity of plants and soil during
periods of overland flow, overbank flow,
or elevated groundwater table

Retention of materials in surface flow
during periods of overland flow,
overbank flow

Presence of dark colored soils, organic
matter accumulation, anaerobic
metabolism, sulfide generation, negative
redox potential

Abbreviation: LiDAR, Light Detection and Ranging.

FIGURE 3

maximum rooting depth (D) and its slope (S

Area or width
determination

Width of active floodplain
defined by thresholds of
flood recurrence

Width over which capillary
fringe is root-accessible for
most of the year

Distance over which a
proportion of the load of a
dissolved compound
delivered to the riparian zone
is removed or retained

Distance within which a
proportion of the load of
particulate materials
delivered to the riparian zone
is removed or retained

Area encompassing
periodically or permanently
saturated soils and reducing
conditions

Potential methodological approaches
LiDAR during flooding (Zheng et al., 2018)

Models incorporating remote sensing,
ground-truthing with observations from
wells (Rohde et al., 2021)

Measured rates of material retention
(Sweeney & Newbold, 2014); remote
sensing to find areas of groundwater input
and establish variable width areas for
protection (Kuglerova et al., 2014);
hydrological and nitrogen tracer
experiments (Dodds et al., 2022)

Remote sensing of bare soil areas; modeling
surface flowpaths (Vastilda & Jarveld, 2018)

Ground-based survey of soil properties;
ground-truthed remote sensing of soil
properties (Mello et al., 2023).

Elevation

Near waterbody

Riparian area width (W)

Upland

Distance from water body

cap

Land surface

Maximum depth
of rooting zone (D)

Capillary zone

Groundwater

Conceptual diagram depicting how the riparian width (W) can be delineated based on the depth of the capillary zone as defined by
) in relation to the land surface slope (S,,,4) as described by Equation (2). This approach can be used at

each transect where an upland well gives known depth to water table and soil is relatively homogeneous. Multiple transects can inform local models.

(Figure 3). The value for S,

cap

homogeneous substrata.

could be more difficult to deter-
mine than the depth to the water table because it can change
depending on the porosity of the soil matrix, but the slope of
the capillary zone and the water table should be similar within

D depends on the species of vegetation present and the aver-
age depth at which they still can sustain growth if they mostly
depend upon groundwater for their survival. While roots can
be up to 70-m deep, maximum rooting depths for riparian

woody plants are generally around 10 m (Fan et al., 2017)
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with substantial variation among species. Equation (2) also
assumes that depth to water table and capillary rise is approxi-
mately linear. Accordingly, S, is negative for a losing stream
and positive in a gaining stream. Thus, for a similar land sur-
face slope and depth of the root system, the riparian width
W influencing the groundwater table will be shorter in losing
streams.

Variations in surface slopes and water table depths neces-
sitate estimation of average or median depths using mul-
tiple measurements from streamside and upslope wells to
establish hydrological gradients. Remote sensing, including
gravitational and altimetry data, can facilitate mapping of
groundwater depth over broader scales than empirical obser-
vations alone (Bastow et al., 2002). Such multi-parameter
spatial models have been applied to generate a global
map of groundwater-dependent ecosystems (Rohde, Albano,
et al. [2024]). Maps of groundwater depth based on wells
and regional groundwater-dependent ecosystems paired with
remotely sensed greenness (normalized difference vegetation
index) observations have also been applied to delineate ripar-
ian vegetation and the influence of streamflow modification
on vegetation across the state of California (Rohde et al.,
2021; Rohde, Stella, et al., 2024). Machine-learning meth-
ods such as random forest models can also be used to infer
riparian groundwater levels. For instance, Cummings et al.
(2023) applied this type of approach to detailed geomorpho-
logic, hydrologic, and snowpack data from 11,000 wetlands
and meadows to predict approximately three times as many
potential additional occurrences. Coupling such approaches
with estimates of maximum rooting depths and seasonal
variations in groundwater tables, which can be considerable
in intermittent streams, could distinguish riparian zones of
hydrologically gaining and losing reaches.

3.3.3 | Material transport and retention
The retention of materials in riparian zones depends on
the interaction between their physical movement as deter-
mined by hydrology and biological activity. Aboveground and
belowground transport can be important, and the movement
of materials associated with flow of water toward streams can
be divided into two categories: (1) movement of dissolved
materials in groundwater and (2) movement of dissolved and
particulate matter very near the soil surface and by sheet flow
across the surface. The materials being moved can be cat-
egorized as biologically refractory (e.g., salts and dissolved
organic materials that plants or microbes cannot assimi-
late or bioconcentrate) or biologically active (e.g., materials
that plants or soil microbes can take up, transform, or
transport).

We link formal, unidirectional equations used to charac-
terize biologically active and refractory solute movement in

streams (Stream Solute Workshop, 1990) with retention in
riparian zones after adapting some of the parameters to ripar-
ian features. This follows the framework of Sweeney and
Newbold (2014) for nitrate removal by riparian zones as a
function of riparian width. While the approach has mostly
been used for biotic uptake in stream channels (e.g., Mul-
holland et al., 2009), it has also been used to characterize
movement of inert materials, such as plastic, in flowing waters
(Hoellein et al., 2017, 2019) and could be applied in riparian
zones as well.

Material retention depends on the time water spends in the
riparian zone, physical processes retaining the material, and
the bioreactivity of the matrix that the water travels through
(whether groundwater is in contact with shallow organic lay-
ers, for instance). The first parameter of interest is the uptake
(retention) length of a given material (S,,), which can be
thought of as the average distance a molecule or particle trav-
els through the riparian zone before uptake or processing by
biota or retention by abiotic processes. This distance is related
to the specific uptake rate coefficient of each compound (k,.,
the average amount of time it spends in the water) and the
water velocity (u):

S, =u/k,. A3)

This equation can be related to the average uptake veloc-
ity, vy, of the material into a given uptake compartment (e.g.,
soil microbes or riparian vegetation) after considering the
hydrological depth (h):

In riparian zones, & could be the vertical depth of ground-
water flowing toward the stream that intersects the roots and
the rhizosphere or, in the case of lateral overland flow (sheet
flow and flow through shallow soils), the depth of water mov-
ing across the surface. Then vy is a “velocity” of retention out
of the groundwater (uptake, adsorption, or deposition) or the
velocity of materials moving out of the surface flow toward
the land surface. From Vi, We can then calculate U, this is the
flux of material taken up per unit area per unit time:

U=uv,xC, ©)

where C is the average concentration of the material retained
as it flows through the riparian zone.

Note that these interrelated parameters can be calculated
from each other depending upon which parameters can be
measured directly. The S, is the most appropriate parameter
to calculate since we are interested in defining the width of the
riparian zone as a function of the retention distance. There are
several ways to estimate S,, from direct and indirect measure-
ments. Average velocity of water within the riparian zone, u,
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can be estimated from tracer releases or by estimating mean
water residence time from changes in groundwater level and
average hydraulic conductivity. In its turn, U for biologically
active materials can be estimated from biomass accumulation
in riparian plants and microbes and elemental analysis of plant
tissues and soil. Concentration values, C, can be measured
directly in shallow and deep groundwater.

Determining the width of the riparian zone could then be
linked to §,, for the solute of interest. For example, Sweeney
and Newbold (2014) estimated S, as an average of 46 m for
the riparian zone in the Chesapeake Bay watershed. This value
resulted in a predicted nitrate removal of 35% for a 20 m wide
buffer, 48% for 30 m wide buffers, and 90% for 100 m wide
buffers. Lindt et al. (2019) found that, on average, a smaller
width (<30 m) is sufficient for retaining more than 75% of
nutrients and sediments entering the riparian zone. Together,
these studies provide general ranges of expected values of
riparian width that can be used as a reference for delineating
an effective width of the riparian zone for material retention
(Table 3 [10]). Note that the application of these equations
in specific locations needs to be combined with local data
and published nitrate removal experiments or measurements
to successfully infer S,,.

The application of this approach requires additional con-
siderations. First, the values of solute uptake by biota are
influenced by microbial kinetics with saturation of nutrient
uptake with increasing concentration (Dodds et al., 2002;
Payn et al., 2005; Stream Solute Workshop, 1990). Second,
for inorganic solutes such as nutrients, the export toward the
stream will be ultimately determined by the balance between
biological uptake and remineralization (Dodds, 2003; von
Schiller et al., 2011). Moreover, there might be additional
losses to the atmosphere (e.g., CO, from respiration and other
carbon oxidations, N, from denitrification). Perhaps most
importantly, solute uptake will be influenced by the hetero-
geneity of hydrological flow paths within the riparian zones,
and thus, the partitioning between surface, shallow soil water,
and groundwater flow can be important, especially during
storms or in riparian zones with perched water tables. While
these hydrological pathways and S,, might be difficult to
characterize and generalize across spatially and temporally
variable conditions, the approach allows specific measure-
ment of material retention and net effects of biogeochemical
activity in the riparian zone.

The mechanical retention distance of fine and coarse par-
ticles (e.g., sediments, organic materials such as leaves, or
recalcitrant organic matter) with overland flow also could
delineate the functional width of the riparian zone (Table 3
[11]). For example, the relationship of vegetation cover to sed-
iment transport can be modeled (Vistild & Jarveld, 2018).
The retention length for sediments has also been the sub-
ject of several reviews and has been placed in a similar
framework to ours by Sweeney and Newbold (2014). While

the parameter S,, and the associated proportion of material
removal per unit width of the riparian zone can be related
to total width of the riparian zone, longer term storage is
more difficult to determine and not amenable to the relation-
ships previously discussed. For example, the riparian zone
could transitorily retain sediments, but large floods could
either mobilize the sediment back into the channel via bank
erosion or deposit sediments from upstream zones into the
riparian zone. Such processes then would link to whether the
floodplain is depositional or erosional.

Field measurements of material retention could be linked
to larger scale patterns in the effectiveness of riparian areas
as buffers. For example, Kuglerova et al. (2014) used dig-
ital elevation models to identify areas most likely to be
groundwater pathways through the riparian zone and to
the stream and to identify potential hotspots of nutrient
inputs where riparian protection or restoration could be
most effective. This approach could be useful to scale up
empirical estimates of riparian nutrient retention to larger
areas.

3.3.4 | Bank stability

Stream and riverbank failure and erosion depend upon sedi-
ment characteristics, soil moisture, and cohesion provided by
roots of riparian vegetation (Zhao et al., 2022). Here we focus
on the influence of riparian vegetation on bank stability. Con-
sequently, stream channels tend to be wider in forested areas
compared to nearby deforested areas (particularly agricultural
land) because deforested areas are more susceptible to sed-
iment accumulation resulting from slope failure and erosion
during floods (Micheli et al., 2004; Sweeney et al., 2004).
However, different dynamics can occur in drylands where
flow stabilization can lead to narrowing of stream channels by
vegetation (W. C. Johnson et al., 1995; Kui et al., 2017; Ligon
et al.,, 1995), or following floods upon riparian vegetation
re-establishment (Répple et al., 2017).

In addition, vegetation intercepts water that infiltrates
banks and their evapotranspiration further reduces moisture.
This is important because moisture in stream banks can
increase the probability of slope failure. Slope failure and ero-
sion at the base of the slope can influence both terrestrial
stability of land as well as inputs of sediment into water. Dif-
ferent species of vegetation stabilize banks to various degrees
based on properties of their roots (Polvi et al., 2014). Grasses
have more roots, but those roots are shallower and finer rel-
ative to trees. Trees have different depth distributions and
tensile root strengths (Simon & Collison, 2002). Thus, the
width of the riparian zone that most efficiently stabilizes
banks and shorelines is based on specific vegetation types.
In general, living vegetation stabilizes riparian soils over rel-
atively small distances from the aquatic habitat and may be
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one of the ecosystem functions that is most effective along
narrow channels.

The effects of inputs of dead riparian wood on hydro-
geomorphology and habitat heterogeneity are large and can
extend across the entire floodplain (Collins et al., 2012). Large
wood can shape river morphology, and the accumulation of
dead wood can have contrasting roles depending on whether
rivers are small, single thread, larger, braided and wandering,
or steep, and boulder-rich (Faustini & Jones, 2003; Piegay &
Gurnell, 1997). Wood may have only modest influences on
rivers in highly modified ecosystems because of its removal
and the hydraulic effects of infrastructure and channel modifi-
cation (Blauch & Jefferson, 2019; Czarnecka, 2016). Overall,
average riparian tree height can be used as a gauge to infer the
riparian width that is most effective at providing large logs to
aquatic ecosystems via individual or mass tree mortality on
site. The approach to using regionally dominant tree height
to infer riparian width has been employed previously (Ilhardt
et al., 2000; Jayasuriya et al., 2022).

3.4 | Soil properties and associated
biogeochemical activity

Riparian soils differ from upland soils because water and
imported materials strongly influence soil formation (Naiman
et al., 2005). Wetland soil attributes have long been used to
define the spatial extent of wetlands (Faulkner & Richardson,
2020), and this approach could be extended to define stream
riparian zones. Due to low landscape position, allochthonous
organic matter inputs from uplands or streams are often
retained within riparian zones, increasing their organic car-
bon content (Barros et al., 2022). However, alluvial materials
deposited by flooding close to the river margin could lead
to areas that are lower in organic carbon content relative
to older soils further from the water body. Allochthonous
inputs of nutrients and access to shallow groundwater can
support greater and more stable primary production than
adjacent upland or aquatic ecosystems, increasing stocks of
soil organic matter. However, local hydrological variation,
such as contrasts in water table depth along hydrologically
gaining compared to losing reaches, can modify patterns of
organic matter inputs and nutrient processing (Harms et al.,
2009). Therefore, when soil organic matter content is used
to define riparian width, multiple criteria might be required,
even within the same basin.

The parent material in riparian zones often originates in
part as alluvium (i.e., stream-deposited materials), creating
stratified vertical bands and greater vertical and horizontal
heterogeneity than upland soils. This spatial heterogeneity
intersects with temporal variation in soil moisture conditions
to establish fluctuating redox conditions. Resulting redoxi-
morphic features are more common in riparian than upland

soils (Naiman et al., 2005). Extended anoxia due to inunda-
tion by shallow groundwater or overbank floods results in
patches or strata of gleying, defined by gray soils contain-
ing the reduced form of iron (Fe?*) that visually distinguish
hydric soils. Such soils may contain relatively higher con-
tent of reduced forms of organic carbon that decompose more
readily. However, fluctuating redox conditions can promote
complexing of dissolved organic carbon by iron, contribut-
ing to accumulation of carbon in riparian soils (Bhattacharyya
et al., 2018; Duchaufour, 1982; Rossatto et al., 2014; Silva
etal., 2013).

The hydrological and chemical attributes of riparian soils
have implications for biogeochemical processes. Fluctuat-
ing soil redox regimes in riparian zones can facilitate the
co-occurrence of microbial communities that are responsi-
ble for carbon and nutrient transformations with significantly
different sensitivities to soil O, availability. Enhanced micro-
bial activity in wet, organic-rich soils and associated low
redox conditions can result in significant emissions of trace
and greenhouse gases (e.g., CO,, N,O, NO, and CH,). For
example, inundation of soil organic layers by groundwater
or rewetting of soils by overbank floodwaters drives produc-
tion of greenhouse gases (e.g., Harms & Grimm, 2012; Pinay
et al., 2000), and indicates that microbial communities are
adapted to temporally variable hydrology. Land management,
including forest harvest, can reshape the dynamics of micro-
bial processes and trace gas emissions from riparian soils
(e.g., Silverthorn & Richardson, 2021; Vidon et al., 2015). For
example, removing woody vegetation encroaching on grass-
land riparian zones led to increased rates of denitrification
relative to intact forested areas or areas with native grasses
(Reisinger et al., 2013).

Thus, management of riparian zones for biogeochemical
functions such as nitrogen removal could consider riparian
width defined by soil hydrology and organic matter, which
support these functions (Table 3 [12]). The hydric state of
riparian soils is difficult to characterize without direct mea-
surements of soil chemistry, but remote sensing methods to
detect methane sources (which indicate saturated anoxic soils)
could help to identify saturated riparian zones, particularly
surrounding large rivers (Melack et al., 2004). Mello et al.
(2023) also used remote sensing of agricultural areas to detect
hydric soils, which could aid in detecting former margins of
riparian areas.

4 | SPATIAL AND TEMPORAL SCALES
AND RIPARIAN DELINEATION

Spatial and temporal heterogeneity characteristics of riparian
zones dictate that their boundaries will shift in time and space.
Accounting for such heterogeneity could assist in creation
of flexible definitions of riparian width that accommodate
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multiple functions by considering multi-dimensional gradi-
ents and changing delineation over time. We therefore briefly
summarize spatial variation (Section 4.1) and temporal trends
(Section 4.2) that could influence our definitions.

4.1 | Spatial patterns

Riparian zones can vary spatially over small scales as a
function of geology, position in catchment, stream size,
groundwater depth, and slope. Indeed, the entire evaluation
of riparian zone width is an exercise in environmental clas-
sification at these site scales. However, management and
cross-system comparisons commonly occur over larger scales,
such as among positions within catchments or across regional
to continental scales (e.g., Dodds et al., 2021; Heffernan et al.,
2014). In practical terms, the scale of comparisons can be
important to consider when determining the characteristic
width and the variance in the widths of riparian zones along
the length of the interface between a stream and terrestrial
habitat. The objective of this section is to provide examples to
illustrate broader patterns influencing delineation of riparian
zones, rather than a comprehensive assessment of all possible
factors contributing to variation in the width of the riparian
zone.

Topography affects the width of riparian zones across
watersheds. Shallow topography suggests that distance to the
water table increases slowly with distance from the stream,
while steeper topography suggests a sharper decline in depth
to the water table with distance from the stream. Therefore,
the width of the riparian zone tends to correlate with stream
size because smaller streams often form in areas with steeper
topography, while wider streams are usually found in lower
elevation areas.

While wider streams may be flanked by wider riparian
zones, the proportional influence of riparian zones on aquatic
ecosystems may lessen as the aquatic body gets larger. Wide
rivers will have the most open water that is far from ripar-
ian zones, receive more light, and have less influence from
shoreline vegetation (e.g., particulate carbon inputs). How-
ever, riparian-aquatic interactions can extend far from the
river in floodplains and low-gradient networks. For example,
the Amazon floodplain width can be over 60 km (Trigg et al.,
2012). River meandering leads to complex patterns in ripar-
ian zones consisting of wetlands, swales, oxbows, or ridges
that can change with large floods and support riparian ecosys-
tems that are disconnected from the main channel (Cooper
et al., 2003; Stella et al., 2011). The meandering of very large
rivers forms wide floodplains, and because meander shape
is roughly scale invariant (Leopold, 1994), larger rivers will
have larger meanders, leading to broader zones of influence
of riparian zones on the rivers. Channel avulsion and forma-
tion of an anastomosing planform (Makaske, 2001) can also

create broader zones of influence, as can the development of
a braided planform (Stecca et al., 2019).

The spatial arrangement of riparian zones at the water-
shed level can also influence riparian functions. Longitudinal
continuity of undisturbed riparian corridors protects animals
adapted to the wetter conditions and associated vegetation
found near streams and facilitates movement along streams
and rivers (Hobbs, 1992; Knopf et al., 1988). Because ripar-
ian habitats are small relative to upland habitats, long stretches
may need to be protected to ensure the survival of depen-
dent species. In addition, riparian corridors can provide
important connectivity to larger patches of suitable habi-
tat, allowing stabilization of populations found in the larger
connected habitats (Beier & Noss, 1998). Therefore, the
most appropriate width when restoring a riparian zone will
vary depending on the shape of catchment, connectivity
within that catchment, and the location of the well-preserved
and restored reaches within the river network (Rutherford
et al., 2023).

Finally, we note that riparian zones of small intermittent
streams can be important for nutrient retention and as habitat
and refuge for animals even during times when the border-
ing streams do not flow. For example, natural riparian cover
along small upstream intermittent reaches had a positive influ-
ence on the water quality of downstream perennial reaches
(Dodds & Oakes, 2006). This finding presents a challenge
for management in regions with many intermittent headwa-
ter streams or where intermittency is increasing (Zipper et al.,
2021) because it is more difficult to justify the conservation of
riparian zones adjacent to non-flowing waters. Messager et al.
(2021) documented that over half the global stream reaches
are intermittent, and Brinkerhoff et al. (2024) found that 61%
of stream discharge originates from intermittent streams. This
is particularly problematic in the United States following the
Rapanos and Sackett decisions by the US Supreme Court,
which ruled that intermittent streams are not considered con-
nected to streams they feed into (Greenhill et al., 2024) and
leaves many waterbodies of the United States unprotected
based on “wetness” (Gold, 2024).

4.2 | Temporal patterns

Temporal scales relevant to defining riparian width vary with
the process of interest. Geological features that shape ripar-
ian zones develop over millennia, some geomorphic processes
and biological speciation that might define riparian zones
occur at decadal time scales, and erosion and deposition
processes occur on the timescale of individual floods. Accord-
ingly, riparian delineation should focus on the timing of the
maximum potential influence of the phenomenon in ques-
tion. For example, if the dominant pollutant transfer to aquatic
systems is governed by intense rainstorms, then managers
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may want to protect riparian vegetation buffers up to a width
that intercepts a large portion of the pollutant during intense
events.

Seasonal changes in the availability of water, stream dis-
charge, and plant phenology could result in variable definition
of the extent of riparian zones. For example, the activity
of riparian vegetation decreases during dormancy, especially
in cold habitats or during non-leaf periods for caducifo-
lious species. In temperate, subtropical, and seasonal tropical
forest regions, riparian detrital inputs concentrate following
senescence, and this strongly influences soil processes and
stream functioning (Acufia et al., 2007; Naiman et al., 2005).
In dry regions, riparian functions such as material retention
and processing in soils may be most important during wet sea-
sons. Seasonal flooding will also influence storage of organic
matter and the timing of transport of materials between the
riparian zone and stream (e.g., Acufia et al., 2007; S. L.
Johnson et al., 2000).

Global change will have multi-decadal influences on ripar-
ian zone functions (Larsen et al., 2016; Stella & Bendix,
2019), affecting many of the features that define riparian
width. For example, climate change is expected to alter flood
frequency and drying in many areas of the world, with some
areas increasing (Southeast Asia, the Indian Peninsula, east-
ern Africa, and the northern Andes) and others decreasing
(Hirabayashi et al., 2013). Areas with increased flooding fre-
quency could experience larger events for a given recurrence
interval, increasing the extent of inundated areas. In con-
trast, increasing frequency and intensity of drought in arid
lands can result in mortality of groundwater-dependent ripar-
ian vegetation (Kibler et al., 2021), effectively narrowing the
riparian zone as defined by vegetation cover and species com-
position. Restorations of rivers will require consideration of
global change and local anthropogenic effects on riparian
river interactions (Palmer & Ruhi, 2019).

Anthropogenic activities and climate change threaten
groundwater resources (Condon & Maxwell, 2019; Jasechko
& Perrone, 2021) as well as surface waters. We are facing
increasing threats from pollutants including nutrients, road
salt, and per- and polyfluoroalkyl substances. In groundwater-
dependent ecosystems, such as riparian zones, changes in
climate could therefore lead to tipping points that drive
ecosystems into alternative trajectories (Condon et al., 2020;
Gleeson et al., 2019). Changes in the delivery of groundwa-
ter to streams may shift them from perennial to intermittent
or even ephemeral under severe declines in the groundwater
table (Carlson et al., 2024). For example, study of streams
across the United States showed that no-flow periods have
increased in intermittent streams since 1980 (Zipper et al.,
2021), potentially indicating transition to an alternative stable
state (Zipper et al., 2022). This alternative state could strongly
influence the functioning of the riparian zone as declines in
the water table could lead to shifts in primary productiv-
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ity, community composition of riparian vegetation, and soil
moisture patterns that influence fluxes of greenhouse gases
(Hefting et al., 2004).

Species invasions are also altering riparian functions world-
wide, and this process often occurs over decades or more.
Thus, there is a directional temporal component to ripar-
ian function that can be altered by species invasions. These
invasions increase as humans transport species more rapidly.
Such invasions include Acacia mearnsii or Eucalyptus dry-
ing rivers in South Africa and monospecific Tamarix stands
in the Southwest United States that dry streams, salinize
soils, and homogenize riparian habitat (Richardson et al.,
2007; Stromberg et al., 2007). Similarly, reduced flooding
related to river damming in the Southwest United States
led to narrowing of stream channels, particularly related to
establishment and expansion of non-native tamarisk (Kui
et al.,, 2017). Meta-analysis of riparian invasive species
revealed that these species altered temporal patterns of
input of allochthonous organic matter inputs, decomposi-
tion rates of coarse organic matter in bordering streams,
nutrient cycling, and shifts in nearby aquatic communi-
ties (Robertson & Coll, 2019). Species invasions could
therefore change the assigned width of riparian zones over
time.

S | IMPLICATIONS

Implementing a dynamic definition of riparian zones requires
determining the distance from the stream that provides suf-
ficient area to allow for ecosystem properties that support
the preservation, modification, conservation, or restoration
of the functions of interest. Similarly, specific criteria dif-
ferentiating the riparian zone from the uplands will vary
depending on functions of interest. For functions dependent
on multiple properties, the function that requires the great-
est buffer width could take greatest precedence, as it would
potentially maintain other ecosystem functions that regulate
additional ecosystem properties. For example, if preservation
of an animal species requires maintaining a riparian zone
with appropriate vegetation structure, the vegetation could
also intercept nutrients, provide large wood to the stream, and
stabilize the banks abutting the water.

Spatial and temporal considerations will be important
at larger scales amenable to management and relevant to
watershed-scale properties. Additionally, many of the prop-
erties and functions that define riparian zones are changing
along temporal climate trajectories that can be rapid relative
to past human experience and may not be easily reversible
(Dodds et al., 2023; Williams & Jackson, 2007). These
changes could lead to shifts in climate, hydrology, biomes,
and other properties. Spatial and temporal variation there-
fore demand a flexible definition of riparian zones. Temporal
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variation could require revisiting riparian functions over time
and necessitate a non-static, multidimensional definition of
riparian zones.

A refined and unified view of riparian zones defined by
function could inform existing regulatory approaches to man-
agement. The European Union Water Framework Directive
does not explicitly mention riparian protection. However, def-
initions based on specific functions that allow for variable
riparian widths have been used in the European Union (EU)
for a variety of purposes (Clerici et al., 2011, 2013; Piede-
lobo et al., 2019; Weissteiner et al., 2016), but there is no
consistent overarching EU policy that coordinates protection
(Urbanic et al., 2022). Notwithstanding, methods have been
devised to map riparian zones across the entire EU as a first
step of coordination protections (Weissteiner et al., 2016).

A method based on defining riparian functions spatially
over longitudinal, lateral, and vertical dimensions as proposed
by the Region 9 United States Forest Service (Ilhardt et al.,
2000) was compared to methods adopted by 17 states (Jaya-
suriya et al., 2022). Most of the state methods were based on
fixed widths, and they were generally narrower than the vari-
able width method based on functional attributes. This lack
of alignment could be in part because states must respond to
many different types of land ownership and agency control.
For example, Section 404 of the Clean Water Act, adminis-
tered by the US Environmental Protection Agency and the US
Army Corps of Engineers, provides a framework for wetland
delineation (an important component of many riparian areas)
that has been adopted in many areas. This framework relies
upon the US Army Corps of Engineers Wetland Delineation
Manual (US Army Corps of Engineers, 1987), which uses
soils, hydrology, and vegetation as indicators of the presence
of wetlands (Gage et al., 2020). Given the spatial and temporal
variation of riparian zones and multiple ecosystem services
they provide, a more nuanced functional view is probably
warranted.

Remote sensing and advanced analytical tools have helped
in delineation of variable width riparian zones over wide spa-
tial areas that are typically the scales at which management
and regulation are applied. Achieving characterization and
protection of riparian zones, as well as their ongoing man-
agement, will require bringing together diverse disciplines,
developing consistent and well-designed regulatory frame-
works (Hering et al., 2010), and acknowledgement of socio-
ecological and environmental settings (Rodriguez-Gonzélez
et al., 2022).

Given the multiple functions and potential benefits of ripar-
ian zones, creating a regulatory framework for protection
and restoration is complex. Each desired function of ripar-
ian zones could be scored with a relative benefit or value
(e.g., Brander et al., 2013) as the start of the process of deter-
mining actions to take, and the total benefit balanced against
the costs of taking those actions. One scheme of assigning

benefit and harm to freshwater systems has been based on
economic valuation (Dodds et al., 2013), but economic ben-
efit is not the only consideration in many cases such as those
where cultural and ecological benefits are important. While
this approach may add complexity to the process and would
be contingent upon the region of interest and the goals of reg-
ulation, it could also help buttress efforts for conservation or
restoration as protecting riparian areas could accrue multiple
benefits in addition to those with the highest priority. Thus,
the idea of multiple beneficial functions of riparian zones
could help strengthen arguments for legislation to protect spe-
cific riparian functions. At the same time, a flexible-width
approach could avoid perceptions of overreach to avoid cases
that include areas that are clearly irrelevant to specific ripar-
ian functions. Such an approach could be tailored to specific
regions. For example, protection of salmonid habitat may be
a priority in one region, and abatement of agricultural pol-
lution the top priority in another region. This approach also
suggests that more site-specific analyses of riparian functions
are warranted.

6 | CONCLUSIONS

We review various avenues for objectively delineating ripar-
ian zones based on properties of interest to researchers and
managers (Tables 2 and 3). We define riparian zones as
occurring across ecotonal gradients at the terrestrial-aquatic
interface with the upland boundary varying depending upon
the ecosystem properties of interest, while recognizing gener-
ality may not cover all local contingencies. When delineating
riparian zones, we encourage approaches that consider mul-
tiple riparian ecosystem functions that include (1) increasing
biodiversity, (2) supplying carbon to aquatic food webs, (3)
influencing water quality and quantity, and (4) modifying
greenhouse gas flux to and from the atmosphere and sup-
porting carbon sequestration. The width of riparian zones can
then be defined multidimensionally (across multiple physi-
cal and biological gradients as well as at different temporal
scales) by properties that influence these functions. The width
is not necessarily fixed (as flood zones are delineated) to
account for the highly heterogeneous nature of riparian sys-
tems. In general, those responsible for delineation of riparian
zones would include ranking of ecological and biogeochem-
ical functions that are critical for that biome and regionally
important. This would need to include the recognition that
some approaches that protect one function may not equally
protect all others before identifying boundaries that protect
the greatest proportion of key functions.
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