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Abstract
This chapter provides an overview and comparisons of  the precipitation intensity–duration–frequency (PIDF) 
and flood (FFRQ) and low-flow (LFRQ) frequencies for return intervals of  25 years or more at ten relatively undis-
turbed reference watersheds in the US Forest Service Experimental Forest (EF) network. We demonstrate potential 
effects of  recent climate change on the PIDFs, FFRQ and LFRQ developed with high-resolution temporal data at 
these ten sites with widely contrasting hydrogeological, topographical, climatic and ecological characteristics. 
Similarly, we evaluate the on-site-based FFRQ and LFRQ with those published by the US Geological Survey for 
the regions including our EF sites. This evaluation enables us to better predict PIDFs and FFRQs, frequently used 
by forest managers/engineers but relatively less studied in forest hydrology, and to prepare for future forest and 
water management in response to further environmental change.
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5.1  Introduction

There is growing evidence globally that climate 
change and associated extreme conditions will 
impact the intensity and frequency of  precipita-
tion and hydrological responses (Mukherjee 
et  al., 2023). This response is particularly true 
in regions with high moisture availability and in 
wet months causing more frequent and severe 
flooding (Gimeno et al., 2022). For example, Gu 
et al. (2017) found that alterations in precipita-
tion seasonality based on distributions across 
728 stations in China were likely being driven by 
changes in the pathways of  seasonal vapor flux 
and tropical cyclones.

There is an undisputed relationship 
between precipitation and flooding, with flood-
ing events following extreme precipitation being 
reported all over the world (Papalexiou and 
Montanari, 2019). For example, Jalowska et al. 
(2021) documented an increasing trend in the 
frequency and intensity of  extreme precipita-
tion events and associated flooding within the 
south-eastern USA using historical climate 
records. Studies also describe dramatic ecosys-
tem responses to extreme precipitation events 
with plausible regime shifts in the intensity 
and quantity of  runoff  within some ecosystems 
(Jayakaran et  al., 2014; Amatya et  al., 2016a; 
Jalowska et al., 2021; Campbell et al., 2022; Sun 
et  al., 2023). Similarly, streamflow response to 
increasing precipitation was shown to be altered 
by forest management (Kelly et  al., 2016). 
Extreme precipitation and floods have attracted 
a great deal of  scientific interest globally due 
to the particular threat to human activities 
(Gimeno et al., 2022).

Although trends in precipitation extremes 
have not yet translated into observable increases 
in flood risks, except for cyclones as noted by 
Jalowska et al. (2021), a recent study by Wright 
et al. (2019) nevertheless highlights the need for 
prompt updating of  hydrological design stand-
ards, taking into consideration recent changes 
in extreme precipitation properties. Increased 
extreme rainfall alone does not necessarily lead 
to increased flooding (Blöschl et  al., 2019). 
There are many factors that affect flood response 
in addition to precipitation intensity (PI), includ-
ing the duration and extent of  precipitation 
events, antecedent soil moisture conditions, 

catchment size, vegetation cover, catchment 
imperviousness and roughness (Sharma et  al., 
2018; Yochum et  al., 2019) and channel mor-
phology (Wondzell and Swanson, 1999). The 
drivers of  streamflow timing (e.g.response time 
of  streamflow) depend on the magnitude of  the 
event. Lesser extreme flood event timings tend to 
correspond with antecedent soil moisture, while 
more extreme flood timings depend more on 
rainfall timing (Wasko et al., 2020).

Precipitation intensity–duration–frequency 
(PIDF) analysis based on long-term historical 
data is frequently used to describe the extreme 
PI, temporal distribution and frequency of  such 
intensities for decision making by water manag-
ers (Srivastava et al., 2019; Amatya et al., 2021; 
Nerantzaki and Papalexiou, 2022; Mukherjee 
et al., 2023, 2024), and to estimate design flood 
magnitudes in ungauged watersheds (Eisenbies 
et al., 2007). Mukherjee et al. (2023) noted that 
the need for updated PIDF estimations using the 
most recent data has grown significantly due 
to recent increases in intense precipitation and 
the associated impacts on transportation and 
infrastructure.

The assumption of  stationarity has long 
served as the basis for the statistical analysis of  
hazards and the design of  engineering struc-
tures, by defining the magnitude of  events with 
a given frequency of  occurrence, such as the 
stationary 100-year design flood (Salas et  al., 
2018). However, with climate change, the valid-
ity of  stationarity in water-resource planning is 
being questioned (Milly et al., 2008); thus, it is 
critical to evaluate the stationarity of  climate 
variables, especially precipitation (Wang and 
Sun, 2020). Using long-term high-resolution 
historical data, Amatya et  al. (2021) tested for 
stationarity in annual maximum PIs at multiple 
rain gauges within three US Department of  
Agriculture (USDA) Forest Service experimen-
tal forest (USFS-EF) sites (Fig.  5.1), finding 
increasing trends in peak rainfall intensities 
at the Santee (SAN) and Coweeta (CHL) sites, 
but not Alum Creek in Arkansas (not shown), 
comparable to previous findings of  increased 
frequency of  intense precipitation, especially 
for fall months (Laseter et al., 2012; Burt et al., 
2018). Accordingly, Amatya et  al. (2021) used 
the assumption of  stationarity in their estimates 
of  the PIDF, consistent with de Luca and Galasso 
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(2018), who argued that it is not essential to 
adopt non-stationary models. The results of  de 
Luca and Galasso (2018) emphasized the impor-
tance of  the observations of  the past for improv-
ing the knowledge of  hydrological processes 
under future climate change. Mukherjee et  al. 
(2023) tested for non-stationarity of  extreme PIs 
of  multiple durations at three additional USFS-
EFs (Hubbard Brook, Fraser and HJ Andrews 
(HJA)) and the three sites used by Amatya et al. 
(2021), but using data extended through 2021.

National Oceanic and Atmospheric 
Administration (NOAA)’s Atlas 14-based 
gridded PIDF values based on regional frequency 
analysis of  precipitation recorded at various 
locations (Bonnin et al., 2006; Perica et al., 2013) 
are commonly used for design applications to 
determine the PIDF and associated confidence 
limits. However, for some durations and frequen-
cies, significant differences between the NOAA 
and on-site-derived PIs were reported at USFS-
EF gauge sites resulting in recommendations 

for use of  the NOAA PIDF values for 1 hour 
duration and the on-site-derived values for 
longer durations (Amatya et al., 2021) for con-
servative design applications. Mukherjee et  al. 
(2023) applied this comparative approach to 
further improve PIDF estimates used for culvert 
sizing and other engineering and ecological 
applications in six small, ungauged forested 
watersheds. The results showed considerable 
differences between the on-site and NOAA Atlas 
14 PIDFs at these six EFs relating to storm dura-
tions and gauge elevations, particularly at the 
steeper HJA and CHL sites. Expanding further 
on these results, Mukherjee et al. (2023) evalu-
ated normalized peak design discharges (Qp) for 
1387 hydrological unit code 16–20 watersheds 
in the White Mountain National Forest (New 
Hampshire) and in the six EFs. Consistent with 
earlier findings by Amatya et  al. (2021), the 
authors concluded that the rational method 
outperformed the US Geological Survey (USGS) 
regional regression equations (USGS, 1982) 

Fig. 5.1.  USDA Forest Service experimental forests evaluated in this and previous studies.
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in predicting Qp in three small, high-relief  
forest headwater watersheds (both gauged and 
ungauged), and the USGS regional regression 
equations performed better than the rational 
method for larger watersheds. These results have 
important implications for road crossings and 
culvert design and maintenance, particularly in 
high-gradient, high-sediment transport systems 
characteristic of  steep forested landscapes, 
where enhanced resiliency to extreme precipita-
tion and flood risk induced by spatial heteroge-
neity (Preece et  al., 2021) and climate change 
is needed. Development of  more accurate 
duration–frequency analyses for EF headwater 
watersheds is crucial for informed management 
of  roads – approximately 600,000 km with at 
least 40,000 stream crossings – in our national 
forests (Heredia et al., 2016).

This chapter provides an overview and 
comparisons of  the PIDF and flood (FFRQ) and 
low-flow (LFRQ) frequencies for 25-, 50- and 
100-year return intervals at ten relatively 
undisturbed reference watersheds in the 
USFS-EF network (Fig.  5.1, Table  5.1). We 
demonstrate potential effects of  recent climate 
change on the PIDFs, FFRQ and LFRQ in these 
ten reference watersheds with widely contrast-
ing hydrogeological, topographical, climatic and 
ecological characteristics. Similarly, we evaluate 
the on-site-based FFRQ and LFRQ with those 
published by the USGS for the regions including 
our EF sites. This evaluation will enable us to 
better predict PIDFs and FFRQs and prepare for 
future management in response to further envi-
ronmental change (Wright et al., 2019; Amatya 
et al., 2021; Mukherjee et al., 2023).

While Amatya et  al. (2016b) evaluated 
the response of  streamflow to variation in 
annual precipitation magnitude, form and 
seasonality, and evapotranspiration at multiple 
EFs, this cross-site comparison study used high-
resolution data from headwater forested catch-
ments for statistical analysis and risk assessment 
of  climate and land-use change on ecosystem 
functions.

5.2  Site Description

Full descriptions of  the ten reference watersheds 
have been given previously in the first edition of  

this book (Amatya et al., 2016b). The key char-
acteristics and acronyms are shown in Table 5.1.

5.3  Data and Methods

Data record periods, gauge IDs, and the temporal 
scales of  precipitation and streamflow measure-
ments are presented in Table 5.1.

First, trends in annual maximum PI and 
streamflow were assessed for significance 
(α = 0.05) using Sen’s slope estimator (Sen, 
1968) and the modified Mann–Kendall (M-K) 
trend test (Mann, 1945; Kendall, 1975). 
Secondly, extreme value analysis was performed 
as follows.

5.3.1  PIDF estimation

The generalized extreme value (GEV) distribu-
tion (Coles et al., 2001) was used for frequency 
analysis of  extreme PI. The GEV distribution is a 
flexible statistical framework to effectively model 
upper tail behavior of  extreme events, making it 
well suited for characterizing the frequency and 
magnitude of  rare rainfall events.

The block maxima method (Coles et  al., 
2001) was utilized to extract the yearly 
maximum values of  1 and 24 hour PI estimates. 
This method is widely used in extreme value 
analysis to capture characteristics of  the upper 
tail of  climate data.

The choice of  the GEV distribution over 
other extreme value modeling approaches 
is consistent with the methodology adopted 
in NOAA’s Atlas 14 (Perica et  al., 2018). By 
employing the same GEV framework, our results 
are comparable with the standards of  the NOAA.

The GEV is a three-parameter distribution 
comprising location (XII), scale (σ) and shape 
(XIV) parameters (Coles et  al., 2001). These 
parameters specify the center of  the distribution, 
the deviation around XII and the tail behavior of  
the distribution, influencing the frequency and 
magnitude of  extreme events. The theoretical 
cumulative distribution function of  a real-
valued random variable, x, following the GEV 
distribution can be expressed as:
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Table 5.1.  Comparative characteristics of the ten selected reference watersheds (with their acronyms)  
from the USFS Long-term Experimental Forests network.

Watershed 
characteristics

Caribou-Poker 
(CPCR), Alaska

Caspar Creek (CCEW), 
California Coweeta (CHL), North Carolina

Fernow (FERN), West 
Virginia

Fraser (FRS), 
Colorado

HJ Andrews (HJA), 
Oregon

Hubbard Brook (HBR), 
New Hampshire

Marcell (MARC), 
Minnesota

San Dimas (SDEF), 
California

Santee (SAN), South 
Carolina

Physiographical region 
as per classification by 
Fenneman

Yukon–Tanana 
Northern Plateaus 
Province, 12

Pacific Mountain System, 
23f, Pacific Boarder 
Province

Appalachian Highlands, 5b, Blue 
Ridge Province

Appalachian Highlands, 
8c, Appalachian Plateau

Rocky Mountain 
Systems, 15, 
Southern Rocky 
Mountain

Pacific Mountain 
System,22b, Sierra- 
Cascade Mountain

Appalachian Highlands, 
9b, New England 
Province

12b, Interior Plain, 
Central Lowland

Pacific Mountain 
System, 23g, Pacific 
Boarder Province

Atlantic Plain Coastal 
Plain

Climatic region as 
per classification by 
Köppen (Peel et al., 
2007)

Dfc, continental 
subarctic or boreal 
taiga

Csb, temperate/
mesothermal, 
Mediterranean

Cfb, marine temperate Dfb, continental warm 
summer

Dsc, continental 
cold winter and cool, 
short, dry summer

Csb, temperate/
mesothermal dry 
summer

Dfb, continental warm 
summer

Dfb, continental 
warm summer

Csa, Mediterranean hot 
summer

Cfa, temperate humid 
subtropical

Watershed #/ year 
gauging started

CPCRW –C2, 1969 North Fork, 1962 WS18, 1936 WS4, 1951 East St. Louis, 1943 WS2, 1952 WS 3, 1957 S2, 1960 Bell 3, 1938 (WS80) 1968

Latitude/longitude 65.17°N, 147.50°W 39.36°N, 123.74°W 35.05°N, 83.43°W 39.03°N, 79.67°W 39.89°N, 105.88°W 44.21°N, 122.23°W, 44.0°N, 71.7°W 47.514°N, 
93.473°W

34.20°N, 117.78°W 33.17°N, 79.77°W

Elevation (m a.m.s.l.)a 210–826 40–330 726–993 670–866 2907–3719 572–1079 527–732 420–430 755–1080 3.7–10

Average slope (%) 31 49 52 20 16 41 21 3 34 <3

Drainage area (ha) 520 479 12.5 38.7 803 60 42.4 9.7 25 160

Vegetation type/
average leaf area index 
(LAI) (m2/m2)

Boreal Forest/
LAI = 4.1

Second-growth coast 
redwood/Douglas fir 
forest/LAI = 11.7

Mixed deciduous forest/LAI = 6.2 Mixed deciduous 
hardwoods/LAI = 4.5

Mixed spruce/fire 
and pine/ LAI = 3.44

Conifer primarily 
Douglas fir and 
western hemlock/ 
LAI = 12

Northern hardwood/
LAI = 6.3

Deciduous 
uplands; black 
spruce-Sphagnum 
bog/LAI = N/A

Mixed chaparral/
LAI = 2.2

Pine mixed hardwood/
LAI = 2.8

Dominant geology/
aquifer

Yukon–Tanana 
metamorphic 
complex/
discontinuous 
permafrost

Marine shales and 
sandstones, Coastal 
Belt of the Franciscan 
Complex

Quartz dioritic gneiss predominant, 
Coweeta Group

Sedimentary; Hampshire 
formation sandstone 
and shales

Gneiss and schist, 
glacial till

Volcanic tuffs and 
breccias covered 
with andesite 
colluvium

Metasedimentary/mica 
schist, calc-silicate 
granulite, Silurian 
Rangeley formation

Glacial till overlying 
deep outwash 
sands above pre-
Cambrian bedrock

Pre-Cambrian 
metamorphics and 
Mesozoic granitics

Sedimentary/Santee 
limestone

Dominant soil type/
depth (m)

Olnes Silt Loam – 
Typic Cryorthents; 
Fairplay Silt Loam 
– Fluvaquentic 
Endoaquolls; Ester 
Silt Loam – Typic 
Histoturbels0.2–
0.5m

Vandame Series 
Ultisols (Typic 
Haplohumults)1–1.5 m

Coweeta–Evard–Saunook complex 
(fine loamy, mixed, Mesic and 
Humic Hapludults); >1.5 m

Loamy-skeletal, 
mixed mesic Typic 
Dystrudepts1 m

Leighcan Series, 
loamy-skeletal, Typic 
Dystrocyepts <1.5 m

50% andesite 
colluvium (unnamed 
soil series), 20% 
Limberlost series, 
loam to green 
brecciaUp to 1.2 m

Lyman-Tunbridge–
Becket series, Typic 
HaplorthodsC horizon 
depth 0–9 m

Warba Series fine 
loamy, mixed, 
superactive, frigid 
haplic Glossudalfs 
(0.5 m); Loxely 
peat Dysic, frigid 
Typic Haplosaprists 
(≤7 m)

Trigo–Exchequer 
series loamy, mixed, 
thermic, shallow, Typic 
Xerorthents0.1–0.5 m

Wahee Series clayey, 
mixed, thermic Aeric 
Ochraquults1.5 m

Long-term mean 
precipitation (mm)

262 1146 20102 1458 750 2300 1350 780 715 1388

Precipitation period 
(gauge –timescale) 
used in this study

1993–2021 (CPEAK 
– hourly)

1985–2021 (NFC620 – 
hourly)

1976–2021 (RG41 –hourly) 1951–2022 (S4 – daily) 2004–2021 (HQTRS 
– hourly)

1979–2018 (PRIMET 
– hourly)

1977–2021 (RG1 – 
hourly)

1962–2022 (MEF 
South – daily)

1977–2015 (Bell 3 – 
hourly)

1977–2021 (Met25 – 
hourly)

Long-term mean 
temperature (°C)

–3.0 10.7 12.9b 9.3 1.0 8.4 5.9 3.4 14.4 18.5

Long-term mean 
potential evapotrans-
piration (PET) (mm)

466c 660c 1013b,d 560d 383c 546c 550c 552 753c 1149 (Hargreaves-
Samani)c

Dryness index 1.13 0.50 0.50 0.38 0.51 0.24 0.41 0.71 1.05 0.71

Long-term mean 
streamflow (mm)

80 621 997 640 337 1321 860 171 84 290

Period of streamflow 
record

1969–present 1962–present 1936–present 1951–present 1943–present November 1952–
present

1957–present 1961–2017 1938–1960; 1964–
2001; 2013–present

1969–1981, 1989–1999, 
2003-–present

Streamflow period 
(gauge –timescale) 
used in this study

1969–2021 (C2 – 
instant)

1985–2017 (NF – instant) 1938–2015 (WS14 – instant) 1980–2015 (WS4 – 
instant)

1943–2021 (ELOUI – 
instant)

1952–2018 (WS2 – 
instant)

1957–2021 (WS3 – 
instant)

1962–2017 (S2 WS 
– instant)

1939–2001 (Bell3 -–
instant)

1965–2020 (WS80 –
instant)

Surface runoff/flow 
generation

Saturation excess 
flow

Infiltration excess 
overland flow limited to 
compacted surfaces

Rare surface runoff, direct channel 
and fast shallow subsurface flow 
from variable source area

Minimal surface runoff Rare, only during 
snowmelt

Minimal surface 
runoff – high 
porosity

Minimal surface runoff Infiltration excess 
over frozen and 
saturation excess 
flow over unfrozen 
soils

Rare hillslope flow 
except after fire when 
infiltration excess flow

Saturation excess flow

Continued
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Table 5.1.  Comparative characteristics of the ten selected reference watersheds (with their acronyms)  
from the USFS Long-term Experimental Forests network.

Watershed 
characteristics

Caribou-Poker 
(CPCR), Alaska

Caspar Creek (CCEW), 
California Coweeta (CHL), North Carolina

Fernow (FERN), West 
Virginia

Fraser (FRS), 
Colorado

HJ Andrews (HJA), 
Oregon

Hubbard Brook (HBR), 
New Hampshire

Marcell (MARC), 
Minnesota

San Dimas (SDEF), 
California

Santee (SAN), South 
Carolina

Physiographical region 
as per classification by 
Fenneman

Yukon–Tanana 
Northern Plateaus 
Province, 12

Pacific Mountain System, 
23f, Pacific Boarder 
Province

Appalachian Highlands, 5b, Blue 
Ridge Province

Appalachian Highlands, 
8c, Appalachian Plateau

Rocky Mountain 
Systems, 15, 
Southern Rocky 
Mountain

Pacific Mountain 
System,22b, Sierra- 
Cascade Mountain

Appalachian Highlands, 
9b, New England 
Province

12b, Interior Plain, 
Central Lowland

Pacific Mountain 
System, 23g, Pacific 
Boarder Province

Atlantic Plain Coastal 
Plain

Climatic region as 
per classification by 
Köppen (Peel et al., 
2007)

Dfc, continental 
subarctic or boreal 
taiga

Csb, temperate/
mesothermal, 
Mediterranean

Cfb, marine temperate Dfb, continental warm 
summer

Dsc, continental 
cold winter and cool, 
short, dry summer

Csb, temperate/
mesothermal dry 
summer

Dfb, continental warm 
summer

Dfb, continental 
warm summer

Csa, Mediterranean hot 
summer

Cfa, temperate humid 
subtropical

Watershed #/ year 
gauging started

CPCRW –C2, 1969 North Fork, 1962 WS18, 1936 WS4, 1951 East St. Louis, 1943 WS2, 1952 WS 3, 1957 S2, 1960 Bell 3, 1938 (WS80) 1968

Latitude/longitude 65.17°N, 147.50°W 39.36°N, 123.74°W 35.05°N, 83.43°W 39.03°N, 79.67°W 39.89°N, 105.88°W 44.21°N, 122.23°W, 44.0°N, 71.7°W 47.514°N, 
93.473°W

34.20°N, 117.78°W 33.17°N, 79.77°W

Elevation (m a.m.s.l.)a 210–826 40–330 726–993 670–866 2907–3719 572–1079 527–732 420–430 755–1080 3.7–10

Average slope (%) 31 49 52 20 16 41 21 3 34 <3

Drainage area (ha) 520 479 12.5 38.7 803 60 42.4 9.7 25 160

Vegetation type/
average leaf area index 
(LAI) (m2/m2)

Boreal Forest/
LAI = 4.1

Second-growth coast 
redwood/Douglas fir 
forest/LAI = 11.7

Mixed deciduous forest/LAI = 6.2 Mixed deciduous 
hardwoods/LAI = 4.5

Mixed spruce/fire 
and pine/ LAI = 3.44

Conifer primarily 
Douglas fir and 
western hemlock/ 
LAI = 12

Northern hardwood/
LAI = 6.3

Deciduous 
uplands; black 
spruce-Sphagnum 
bog/LAI = N/A

Mixed chaparral/
LAI = 2.2

Pine mixed hardwood/
LAI = 2.8

Dominant geology/
aquifer

Yukon–Tanana 
metamorphic 
complex/
discontinuous 
permafrost

Marine shales and 
sandstones, Coastal 
Belt of the Franciscan 
Complex

Quartz dioritic gneiss predominant, 
Coweeta Group

Sedimentary; Hampshire 
formation sandstone 
and shales

Gneiss and schist, 
glacial till

Volcanic tuffs and 
breccias covered 
with andesite 
colluvium

Metasedimentary/mica 
schist, calc-silicate 
granulite, Silurian 
Rangeley formation

Glacial till overlying 
deep outwash 
sands above pre-
Cambrian bedrock

Pre-Cambrian 
metamorphics and 
Mesozoic granitics

Sedimentary/Santee 
limestone

Dominant soil type/
depth (m)

Olnes Silt Loam – 
Typic Cryorthents; 
Fairplay Silt Loam 
– Fluvaquentic 
Endoaquolls; Ester 
Silt Loam – Typic 
Histoturbels0.2–
0.5m

Vandame Series 
Ultisols (Typic 
Haplohumults)1–1.5 m

Coweeta–Evard–Saunook complex 
(fine loamy, mixed, Mesic and 
Humic Hapludults); >1.5 m

Loamy-skeletal, 
mixed mesic Typic 
Dystrudepts1 m

Leighcan Series, 
loamy-skeletal, Typic 
Dystrocyepts <1.5 m

50% andesite 
colluvium (unnamed 
soil series), 20% 
Limberlost series, 
loam to green 
brecciaUp to 1.2 m

Lyman-Tunbridge–
Becket series, Typic 
HaplorthodsC horizon 
depth 0–9 m

Warba Series fine 
loamy, mixed, 
superactive, frigid 
haplic Glossudalfs 
(0.5 m); Loxely 
peat Dysic, frigid 
Typic Haplosaprists 
(≤7 m)

Trigo–Exchequer 
series loamy, mixed, 
thermic, shallow, Typic 
Xerorthents0.1–0.5 m

Wahee Series clayey, 
mixed, thermic Aeric 
Ochraquults1.5 m

Long-term mean 
precipitation (mm)

262 1146 20102 1458 750 2300 1350 780 715 1388

Precipitation period 
(gauge –timescale) 
used in this study

1993–2021 (CPEAK 
– hourly)

1985–2021 (NFC620 – 
hourly)

1976–2021 (RG41 –hourly) 1951–2022 (S4 – daily) 2004–2021 (HQTRS 
– hourly)

1979–2018 (PRIMET 
– hourly)

1977–2021 (RG1 – 
hourly)

1962–2022 (MEF 
South – daily)

1977–2015 (Bell 3 – 
hourly)

1977–2021 (Met25 – 
hourly)

Long-term mean 
temperature (°C)

–3.0 10.7 12.9b 9.3 1.0 8.4 5.9 3.4 14.4 18.5

Long-term mean 
potential evapotrans-
piration (PET) (mm)

466c 660c 1013b,d 560d 383c 546c 550c 552 753c 1149 (Hargreaves-
Samani)c

Dryness index 1.13 0.50 0.50 0.38 0.51 0.24 0.41 0.71 1.05 0.71

Long-term mean 
streamflow (mm)

80 621 997 640 337 1321 860 171 84 290

Period of streamflow 
record

1969–present 1962–present 1936–present 1951–present 1943–present November 1952–
present

1957–present 1961–2017 1938–1960; 1964–
2001; 2013–present

1969–1981, 1989–1999, 
2003-–present

Streamflow period 
(gauge –timescale) 
used in this study

1969–2021 (C2 – 
instant)

1985–2017 (NF – instant) 1938–2015 (WS14 – instant) 1980–2015 (WS4 – 
instant)

1943–2021 (ELOUI – 
instant)

1952–2018 (WS2 – 
instant)

1957–2021 (WS3 – 
instant)

1962–2017 (S2 WS 
– instant)

1939–2001 (Bell3 -–
instant)

1965–2020 (WS80 –
instant)

Surface runoff/flow 
generation

Saturation excess 
flow

Infiltration excess 
overland flow limited to 
compacted surfaces

Rare surface runoff, direct channel 
and fast shallow subsurface flow 
from variable source area

Minimal surface runoff Rare, only during 
snowmelt

Minimal surface 
runoff – high 
porosity

Minimal surface runoff Infiltration excess 
over frozen and 
saturation excess 
flow over unfrozen 
soils

Rare hillslope flow 
except after fire when 
infiltration excess flow

Saturation excess flow

Table 5.1.  Continued

Continued
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‍

FGEV
(
κ | µ,σ, ε

)
= exp

[
−
(
1 + ε

σ (x− µ)−1/ε
)]

,

µ ∈ R,σ > 0, ε ̸= 0 ‍� (5.1)

Parameter estimation for the GEV distri-
bution was carried out using the maximum 
likelihood estimation (MLE) method with both 
stationary and non-stationary assumptions for 
the location and scale parameters (Martins and 
Stedinger, 2000; Coles et  al., 2001). MLE is a 
widely used statistical technique that is used 
to find parameter values that maximize the 
likelihood of  the observed data. In the context 
of  the GEV distribution, MLE involves finding 
the values of  XII, σ and XIV that maximize the 
likelihood function.

To account for potential non-stationarities 
due to climate change in PIs, we employed a 
time-varying approach, allowing the location 
parameter to change over time (Perica et  al., 
2018), an approach particularly relevant for 

extreme value analysis where characteristics 
of  extreme events vary with time (Cheng and 
AghaKouchak, 2014).

Specifically, we adopted a time-varying 
model for the location parameter:

	﻿‍ µ
(
t
)
= µ0 + µ1t‍� (5.2)

where, μ0 is the initial location parameter at 
time t = 0, and μ1 is the rate of  change of  the 
location parameter.

By incorporating time-varying models, we 
can capture potential changes in the frequency 
and magnitude of  extreme rainfall events over 
time. The p-quantile of  the GEV distribution was 
then estimated as,

‍

qp =
[(

− 1
ln
(
1−p

)
)ε

− 1
]
× σ

ε + µ,
(
ε ̸= 0

)
‍

 � (5.3)

Watershed 
characteristics

Caribou-Poker 
(CPCR), Alaska

Caspar Creek (CCEW), 
California Coweeta (CHL), North Carolina

Fernow (FERN), West 
Virginia

Fraser (FRS), 
Colorado

HJ Andrews (HJA), 
Oregon

Hubbard Brook (HBR), 
New Hampshire

Marcell (MARC), 
Minnesota

San Dimas (SDEF), 
California

Santee (SAN), South 
Carolina

Subsurface flow/
drainage

Shallow subsurface 
flow

Transient subsurface 
stormflow and soil pipe 
preferential flow

Shallow lateral flow via soils with 
high conductivity

Lateral subsurface flow 
to channel

Shallow subsurface 
(macropores, 
coarse soils) and 
groundwater

Shallow subsurface 
lateral flow

Lateral subsurface flow Shallow subsurface 
with some seepage 
to an underlying 
groundwater aquifer

Groundwater 
flow unknown but 
presumably high rate of 
shallow lateral flow

Shallow lateral 
subsurface flow with 
negligible deep seepage

Average water table 
dynamics/depth (m)

Unknown 1–8 m >1.5m except near stream Unknown Unknown Unknown Variable water table 
depth

~0.3m in the bog; 
0.5m in uplands

Unknown; potentially 
very deep

Shallow, ~1.0m

Riparian areas for 
hydrology

None Limited due to steep 
topography

Limited due to steep topography Limited due to steep 
topography

Limited to valleys, 
fens and bogs

Limited Limited due to steep 
topography

33% of area is a 
peatland

~2% 15%

Major or extreme 
natural disturbance

1967 Fairbanks 
Flood

Windstorm (1995); 
landslide (2006); drought 
(2020–2021)

Chestnut blight (1920s-1930s), 
drought, hurricanes, hemlock wooly 
adelgid (2003–present)

Chestnut blight;
hurricanes (windstorms; 
SuperStorm Sandy 
(2012)

Pine bark beetle 
epidemic

None in reference Hurricane (1938); ice 
storm (1998)

Peatland wildfire 
(1864); potential for 
derecho, tornados 
and wildfires

Wildfire (Meixner and 
Wohlgemuth, 2003)

Hurricane Hugo (1989);
indirect effects of 
Hurricane Joaquin (2015)

Other specific 
hydrological features

3% permafrost 
underlain

Fog input – – Snowmelt-
dominated 
hydrological regime

– Discontinuous dense pan 
C horizon

Drainage from 
bog dome and 
uplands; some 
deep seepage to 
the aquifer

Extremely high levels of 
nitrate from chronic air 
pollution

Compared with pre-
Hugo, flow reversal in 
paired watersheds after 
Hugo extreme discharge 
topping the rating 
curve and site flooding 
(Joaquin)

Key publication(s) 
on extreme climatic 
events or related to 
extreme events

Bolton et al. (2004); 
Jones and Rinehart 
(2010); van Cleve 
et al. (2023)

Cafferata and Reid (2013); 
Richardson et al. (2021)

Laseter et al. (2012); Burt et al. 
(2018); Mukherjee et al. (2023)

Adams et al. (1994) Mukherjee et al. 
(2023)

Rothacher et al. 
(1967); Daly et al. 
(2019); Johnson 
et al. (2021, 2023); 
Mukherjee et al. 
(2023)

Campbell et al. (2011); 
Mukherjee et al. (2023)

Sebestyen et al. 
(2011, 2021); Verry 
et al. (2011)

Dunn et al. (1988); 
Wohlgemuth (2016)

Hook et al. (1991); 
Jayakaran et al. (2014); 
Amatya et al. (2016b, 
2021); Mukherjee et al. 
(2023)

Forest experimental 
watershed contact

Jamie Hollingsworth: 
jhollingsworth@
alaska.edu

Joe Wagenbrenner: 
joseph.wagenbrenner@
usda.gov

Peter Caldwell: peter.v.caldwell@
usda.gov

Benjamin Rau: benjamin.
rau@usda.gov

Kelly Elder: kevin.
elder@usda.gov

Sherri Johnson: 
sherri.johnson2@
usda,gov

John Campbell: john.
campbell2@usda.gov

Stephen Sebestyen: 
stephen.
sebestyen@usda.
gov

Pete Wohlgemuth: 
peter.wohlgemuth@
usda.gov (retired)

Devendra Amatya: 
devendra.m.amatya@
usda.gov

Experimental forest 
website

www.lter.uaf.edu/
bnz_cpcrw.cfm

www.fs.usda.gov/
research/psw/
forestsandranges/
locations/casparcreek

www.srs.fs.usda.gov/coweeta/ www.nrs.fs.fed.us/ef/
locatios/wv/fernow

www.fs.usda.gov/
efr/fraser

http://
andrewsforest.
oregonstate.edu

www.hubbardbrook.org www.nrs.fs.fed.us/
ef/marcell/

www.fs.fed.us/psw/ef/
san_dimas

www.fs.usda.
gov/research/srs/
forestsandranges/
locations/santee

Table 5.1.  Continued

www.lter.uaf.edu/bnz_cpcrw.cfm
www.lter.uaf.edu/bnz_cpcrw.cfm
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www.fs.usda.gov/research/psw/forestsandranges/locations/casparcreek
www.fs.usda.gov/research/psw/forestsandranges/locations/casparcreek
www.fs.usda.gov/research/psw/forestsandranges/locations/casparcreek
www.srs.fs.usda.gov/coweeta/
www.nrs.fs.fed.us/ef/locatios/wv/fernow
www.nrs.fs.fed.us/ef/locatios/wv/fernow
www.fs.usda.gov/efr/fraser
www.fs.usda.gov/efr/fraser
http://andrewsforest.oregonstate.edu
http://andrewsforest.oregonstate.edu
http://andrewsforest.oregonstate.edu
www.hubbardbrook.org
www.nrs.fs.fed.us/ef/marcell/
www.nrs.fs.fed.us/ef/marcell/
www.fs.fed.us/psw/ef/san_dimas
www.fs.fed.us/psw/ef/san_dimas
www.fs.usda.gov/research/srs/forestsandranges/locations/santee
www.fs.usda.gov/research/srs/forestsandranges/locations/santee
www.fs.usda.gov/research/srs/forestsandranges/locations/santee
www.fs.usda.gov/research/srs/forestsandranges/locations/santee
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Watershed 
characteristics

Caribou-Poker 
(CPCR), Alaska

Caspar Creek (CCEW), 
California Coweeta (CHL), North Carolina

Fernow (FERN), West 
Virginia

Fraser (FRS), 
Colorado

HJ Andrews (HJA), 
Oregon

Hubbard Brook (HBR), 
New Hampshire

Marcell (MARC), 
Minnesota

San Dimas (SDEF), 
California

Santee (SAN), South 
Carolina

Subsurface flow/
drainage

Shallow subsurface 
flow

Transient subsurface 
stormflow and soil pipe 
preferential flow

Shallow lateral flow via soils with 
high conductivity

Lateral subsurface flow 
to channel

Shallow subsurface 
(macropores, 
coarse soils) and 
groundwater

Shallow subsurface 
lateral flow

Lateral subsurface flow Shallow subsurface 
with some seepage 
to an underlying 
groundwater aquifer

Groundwater 
flow unknown but 
presumably high rate of 
shallow lateral flow

Shallow lateral 
subsurface flow with 
negligible deep seepage

Average water table 
dynamics/depth (m)

Unknown 1–8 m >1.5m except near stream Unknown Unknown Unknown Variable water table 
depth

~0.3m in the bog; 
0.5m in uplands

Unknown; potentially 
very deep

Shallow, ~1.0m

Riparian areas for 
hydrology

None Limited due to steep 
topography

Limited due to steep topography Limited due to steep 
topography

Limited to valleys, 
fens and bogs

Limited Limited due to steep 
topography

33% of area is a 
peatland

~2% 15%

Major or extreme 
natural disturbance

1967 Fairbanks 
Flood

Windstorm (1995); 
landslide (2006); drought 
(2020–2021)

Chestnut blight (1920s-1930s), 
drought, hurricanes, hemlock wooly 
adelgid (2003–present)

Chestnut blight;
hurricanes (windstorms; 
SuperStorm Sandy 
(2012)

Pine bark beetle 
epidemic

None in reference Hurricane (1938); ice 
storm (1998)

Peatland wildfire 
(1864); potential for 
derecho, tornados 
and wildfires

Wildfire (Meixner and 
Wohlgemuth, 2003)

Hurricane Hugo (1989);
indirect effects of 
Hurricane Joaquin (2015)

Other specific 
hydrological features

3% permafrost 
underlain

Fog input – – Snowmelt-
dominated 
hydrological regime

– Discontinuous dense pan 
C horizon

Drainage from 
bog dome and 
uplands; some 
deep seepage to 
the aquifer

Extremely high levels of 
nitrate from chronic air 
pollution

Compared with pre-
Hugo, flow reversal in 
paired watersheds after 
Hugo extreme discharge 
topping the rating 
curve and site flooding 
(Joaquin)

Key publication(s) 
on extreme climatic 
events or related to 
extreme events

Bolton et al. (2004); 
Jones and Rinehart 
(2010); van Cleve 
et al. (2023)

Cafferata and Reid (2013); 
Richardson et al. (2021)

Laseter et al. (2012); Burt et al. 
(2018); Mukherjee et al. (2023)

Adams et al. (1994) Mukherjee et al. 
(2023)

Rothacher et al. 
(1967); Daly et al. 
(2019); Johnson 
et al. (2021, 2023); 
Mukherjee et al. 
(2023)

Campbell et al. (2011); 
Mukherjee et al. (2023)

Sebestyen et al. 
(2011, 2021); Verry 
et al. (2011)

Dunn et al. (1988); 
Wohlgemuth (2016)

Hook et al. (1991); 
Jayakaran et al. (2014); 
Amatya et al. (2016b, 
2021); Mukherjee et al. 
(2023)

Forest experimental 
watershed contact

Jamie Hollingsworth: 
jhollingsworth@
alaska.edu

Joe Wagenbrenner: 
joseph.wagenbrenner@
usda.gov

Peter Caldwell: peter.v.caldwell@
usda.gov

Benjamin Rau: benjamin.
rau@usda.gov

Kelly Elder: kevin.
elder@usda.gov

Sherri Johnson: 
sherri.johnson2@
usda,gov

John Campbell: john.
campbell2@usda.gov

Stephen Sebestyen: 
stephen.
sebestyen@usda.
gov

Pete Wohlgemuth: 
peter.wohlgemuth@
usda.gov (retired)

Devendra Amatya: 
devendra.m.amatya@
usda.gov

Experimental forest 
website

www.lter.uaf.edu/
bnz_cpcrw.cfm

www.fs.usda.gov/
research/psw/
forestsandranges/
locations/casparcreek

www.srs.fs.usda.gov/coweeta/ www.nrs.fs.fed.us/ef/
locatios/wv/fernow

www.fs.usda.gov/
efr/fraser

http://
andrewsforest.
oregonstate.edu

www.hubbardbrook.org www.nrs.fs.fed.us/
ef/marcell/

www.fs.fed.us/psw/ef/
san_dimas

www.fs.usda.
gov/research/srs/
forestsandranges/
locations/santee

Table 5.1.  Continued

where (1 – p) is the non-exceedance 
probability.

The non-stationary assumptions were 
employed to identify the best GEV model follow-
ing the Akaike information criteria, Bayesian 
information criterion and the likelihood ratio 
test (Ansa et  al., 2021; Kim et  al., 2017). 
Non-stationarity was confirmed only if  all 
these criteria were fulfilled. The uncertainties 
associated with the estimation of  PI quantiles 
were quantified based on the 90% confidence 
intervals (CI)s using the delta method (Cox, 
1990).

5.3.2  High- and low-flow frequency 
analysis

Availability of  long-term streamflow data 
including for both extreme high- and low-flow 
periods is crucial for the efficient management 
of  water resources and infrastructure. The 
USGS requires 30 years of  streamflow data to 
designate long-term stream gauges (Jian et  al., 
2015). We conducted the high- and low-flow 
frequency analysis only for the sites that have at 
least 30 years of  annual maximum and annual 
minimum flows after eliminating the outliers 

Table 5.1.  Continued

N/A, not applicable.
aa.m.s.l., above mean sea level.
bWater years 1938–2013. Water year taken as starting in May and ending in April.
cPET estimated from Thornthwaite (1948) method for all, except for the Santee (SAN) site from the Hargreaves–Samani method (Hargreaves and Samani, 1982).
dPET estimated from an evaporation pan (Patric and Goswami, 1968).
ePET estimated from Hamon (1963) method with corrections.
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www.fs.usda.gov/research/psw/forestsandranges/locations/casparcreek
www.fs.usda.gov/research/psw/forestsandranges/locations/casparcreek
www.fs.usda.gov/research/psw/forestsandranges/locations/casparcreek
www.fs.usda.gov/research/psw/forestsandranges/locations/casparcreek
www.srs.fs.usda.gov/coweeta/
www.nrs.fs.fed.us/ef/locatios/wv/fernow
www.nrs.fs.fed.us/ef/locatios/wv/fernow
www.fs.usda.gov/efr/fraser
www.fs.usda.gov/efr/fraser
http://andrewsforest.oregonstate.edu
http://andrewsforest.oregonstate.edu
http://andrewsforest.oregonstate.edu
www.hubbardbrook.org
www.nrs.fs.fed.us/ef/marcell/
www.nrs.fs.fed.us/ef/marcell/
www.fs.fed.us/psw/ef/san_dimas
www.fs.fed.us/psw/ef/san_dimas
www.fs.usda.gov/research/srs/forestsandranges/locations/santee
www.fs.usda.gov/research/srs/forestsandranges/locations/santee
www.fs.usda.gov/research/srs/forestsandranges/locations/santee
www.fs.usda.gov/research/srs/forestsandranges/locations/santee
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and zero flows. Additionally, our analysis only 
included the sites at which the number of  outli-
ers and zero flows do not exceed 25% of  the total 
number of  data years.

Observations that deviate significantly 
from the overall data trend are potentially 
influential ‘outliers.’ In the context of  annual 
peak flows, low outliers may represent floods 
generated by processes distinct from those of  
larger floods (National Research Council, 1988, 
1995). Due to their atypical nature, the inclu-
sion of  these zero flows values (common in dry 
areas) and outliers can significantly impact the 
statistical parameters derived from the data, 
particularly for small samples. The low and high 
outliers were identified based on the threshold 
estimation guidelines recommended by the 
Interagency Advisory Committee on Water 
Data (1982).

High-flow frequency analysis was con-
ducted on long-term streamflow data sets by 
fitting annual maxima to the log-Pearson type 
III (LPIII) distribution, a widely established sta-
tistical method for predicting flood frequency. 
The LPIII distribution is endorsed by US federal 
agencies and many flood frequency analysts 
(England et  al., 2019), and is used in USGS 
PEAKFQW version 5.2.0 (Feaster et al., 2009). 
A key advantage of  this method is effective 
extrapolation of  event data for return periods 
exceeding the range of  observed flood events.

Low-flow statistics quantify the magnitude 
and frequency of  low-flow conditions as the 
minimum average streamflow over a specified 
time period. Low-flow frequencies are calculated 
by fitting an annual minima series of  N days 
average streamflow to a known statistical distri-
bution, where N can range from 1 to 365 days 
(Feaster and Guimaraes, 2014). The 10 year 
recurrence interval of  the annual minimum 
7 day average (7Q10) is commonly used 
(Feaster and Guimaraes, 2014). In probabilistic 
terms, the estimated 7Q10 value represents 
the 10% probability that the annual minimum 
7 day average streamflow of  any given year 
will be equal to or lower than this value (Riggs, 
1985). We estimated 7Q10 by fitting the loga-
rithms (base 10) of  the annual minimum 7 day 
average streamflow (ANMIN7Q) to the LPIII 
distribution.

The goodness of  LPIII fit was tested using 
the Anderson–Darling test (Laio, 2004). To fit 
LPIII distribution, the mean, standard deviation 
and skew coefficient of  the logarithms of  the 
streamflow were calculated. Estimates of  the 
non-exceedance flows for a specified recurrence 
interval T were calculated using the following 
equation:

	﻿‍ log
(
QT

)
= X + K× S‍� (5.4)

where Q
T
 is the annual maximum flow 

(ANMAXQ) for high-flow analysis or ANMIN7Q 
for low-flow analysis (l/s), T is the return interval 
(years), X is the mean of  the logarithms of  the 
annual flow values (ANMAXQ or ANMIN7Q), 
K is a frequency factor that is a function of  the 
return interval and the weighted coefficient 
of  skew, and S is the standard deviation of  the 
logarithms of  the annual flow values (ANMAXQ 
or ANMIN7Q). The weighted skew coefficient 
and frequency factor were estimated (Haan 
et  al., 1994). The uncertainty associated with 
the estimation of  the non-exceedance flows 
was quantified through the calculation of  the 
standard error via a resampling approach. This 
involved generating 10,000 random samples 
from the LPIII distribution using the estimated 
model parameters.

5.4  Results and Discussion

5.4.1  Characteristics of precipitation 
extremes

The mean and variability of  annual maximum 
PIs (ANMAXPI) for all sites are shown in Fig. 5.2 
for the 1 and 24 h-duration storms. We focused 
on the ANMAXPI values for each site because 
of  the high probability of  extreme precipitation 
events translating into floods (Amatya et  al., 
2021). The rain gauge at SAN and CHL recorded 
the highest mean 1 hour ANMAXPI magnitude 
of  4.8 cm/h and 3.4 cm/h, respectively, over a 
long-term period of  more than 40 years. The 
annual variability of  1 hour ANMAXPI was 
found to be relatively higher at CHL, CPCR 
and SAN. The mean 24 hour ANMAXPI 
magnitude was relatively similar across all 
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the sites investigated, except for the very low 
mean 24 hour ANMAXPI magnitude of  0.1 
cm/h at FRS. The annual variability of  24 hour 
ANMAXPI was found to be relatively higher in 
CPCR and SAN. Overall, for both 1 hour and 
24 hour storms, the mean ANMAXPI magni-
tude was found to be similar at SAN and CHL, 
the two south-eastern sites.

The results of  trend analysis for the 1 and 
24 hour ANMAXPI are shown in Supplementary 
Figs S5.1 and S5.2 and Tables  5.2 and 5.3. A 
long-term decline in 1 hour PI was most pro-
nounced and significant at the CPCR site. Only 
the CHL site exhibited a pronounced statistically 
significant increasing long-term trend in 24 hour 
PI (Fig.S5.2, Table 5.3). These findings highlight 
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Fig. 5.2.  Mean (box plots) and variability (1 sd, shown by whiskers) of annual maximum precipitation 
intensities (ANMAXPI, cm/h) for all sites for the 1 hour (a) and 24 hour (b) duration storms. PI, 
precipitation intensity. See Table 5.1 for site abbreviations.
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the complex temporal dynamics underlying the 
1 and 24 hour PI. Further investigation into the 
specific factors driving these diverse long-term 
and recent trends is warranted to elucidate 
the underlying mechanisms and inform future 
management strategies.

5.4.2  High-flow characteristics

The mean and variability of  annual maximum 
streamflow per unit drainage area (ANMAXQ) 

for all sites are shown in Fig. 5.3 and Table 5.4. 
The SAN and HBR EF gauging stations recorded 
extremely high mean ANMAXQ magnitudes of  
11.8 and 15.5 l/s/ha, respectively. The annual 
variability of  ANMAXQ was large for the HBR 
EF (9 l/s/ha) and even larger for the SAN EF (20 
l/s/ha). The CCEW, CHL, FERN and HJA sites 
showed moderately high mean ANMAXQ values 
of  7, 5, 5 and 7 l/s/ha, respectively, while the 
CPCR, FRS, MARC and SDEF sites showed very 
low values for mean ANMAXQ of  about 0.65, 
1.1, 2.4 and 3.5 l/s/ha, respectively.

Table 5.2.  Results of trend analysis of annual maximum 1 h precipitation intensity including τ and P 
values.

Site Start year End year No. of 
years

M-K trend 
(τ)

M-K trend 
(P value)

M-K trend (τ 
for recent 20 
years)

M-K 
trend (P 
value for 
recent 
20 years)

CCEW 1985 2022 38 –0.02 0.85 –0.12 0.48

CHL 1976 2021 46 0.13 0.21 0.21 0.20

CPCR 1993 2021 29 –0.27 0.04 0.05 0.80

FRS 2004 2021 19 –0.19 0.28 –0.19 0.28

HBR 1956 2021 66 0.04 0.62 0.05 0.77

HJA 1957 2018 62 0.08 0.36 0.02 0.92

SAN 1977 2021 45 0.03 0.80 –0.09 0.58

SDEF 1975 2015 36 0.18 0.12 –0.20 0.23

Table 5.3.  Results of trend analysis of annual maximum 24 h precipitation intensity including τ and P 
values.

Site Start year End year No. of 
years

M-K trend  
(τ)

M-K trend 
(P value)

M-K trend 
(τ for recent 
20 years)

M-K trend 
(P value 
for recent 
20 years)

CCEW 1985 2022 38 0.03 0.81 0.11 0.54

CHL 1976 2021 46 0.26 0.01 0.16 0.35

CPCR 1993 2021 29 –0.24 0.07 0.22 0.18

FERN 1951 2022 72 0.03 0.67 –0.03 0.90

FRS 2004 2021 18 –0.06 0.76 –0.06 0.76

HBR 1956 2021 66 0.12 0.14 –0.02 0.92

HJA 1957 2018 62 –0.064 0.46 –0.28 0.08

MARC 1961 2022 62 –0.01 0.90 –0.20 0.23

SAN 1977 2021 45 0.13 0.22 0.08 0.63

SDEF 1975 2015 36 0.06 0.62 –0.11 0.52
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The long-term trend analysis of  ANMAXQ 
revealed a decline across most of  the sites, except 
for the CHL and HBR sites, which exhibited 
increasing trends (Fig. S5.3). Notably, for the 
HBR site, ANMAXQ showed a statistically signif-
icant (P<0.05) upward trajectory. None of  the 
sites showed a statistically significant trend in 
ANMAXQ for the recent 20 year period, despite 
a suggested downward trend for most sites and 
an upward trend for CHL, FRS, HBR, and SAN 
(Table 5.4).

5.4.3  Low-flow characteristics

The mean and variability of  annual minimum 
7-day average flow per unit drainage area 
(ANMIN7Q) for all sites are shown in Fig.  5.4. 
The SDEF, HBR and CCEW gauging stations 
recorded the lowest mean ANMIN7Q magni-
tudes of  0.0016, 0.002 and 0.004 l/s/ha. The 
annual variability of  ANMIN7Q was relatively 
larger for the CHL and CPCR EFs. Trend analysis 
of  long-term ANMIN7Q revealed a significant 
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Fig. 5.3.  Mean (box plots) and variability (1 sd, shown by whiskers) of annual maximum specific 
discharge (ANMAXQ, l/s/ha) for the selected study sites.

Table 5.4.  Results of trend analysis of ANMAXQ including τ and P values.

Site Start year End year No. of 
years

M-K trend 
(τ)

M-K trend 
(P value)

M-K trend  
(τ for recent 
20 years)

M-K trend  
(P value for 
recent 20 years)

CCEW 1985 2017 33 –0.02 0.90 –0.18 0.28

CHL 1976 2020 45 0.06 0.58 0.00 1.00

CPCR 1969 2022 52 –0.05 0.61 –0.13 0.46

FERN 1951 2023 73 –0.13 0.10 –0.13 0.45

FRS 1943 2021 78 –0.03 0.73 0.34 0.04

HBR 1958 2021 64 0.28 0.00 0.04 0.82

HJA 1952 2019 68 –0.08 0.34 –0.03 0.87

MARC 1962 2017 56 –0.07 0.45 –0.29 0.08

SAN 1969 2016 31 –0.03 0.81 0.15 0.38

SDEF 1938 2001 57 –0.05 0.62 –0.17 0.30
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increase in the HBR and SDEF sites, and a 
significant decline at the FRS site (Fig. S5.4, 
and Table  5.5). During the last two decades, a 
significant positive trend was evident at the CHL 
and CPCR sites. The CCEW and HJA sites showed 
a non-significant negative trend and positive 
trend, respectively, in the most recent decades, 
as well as over the long-term period.

Overall, the results of  the trend analysis 
of  climatic extremes for both the peak and low-
flow extremes revealed mixed patterns across 
the sites in varying climatic zones (Table  5.1). 

These findings suggest that the response of  peak 
streamflow to PIs induced by climate change 
are complex and are influenced by site-specific 
factors, such as climate, land use and land cover 
changes, as well as watershed characteristics 
including storage dynamics (Berghuijs et  al., 
2016; Wasko et  al., 2020). The trend analysis 
highlights the importance of  considering pre-
cipitation and streamflow when assessing water 
resources in the context of  climate change. While 
increasing precipitation may lead to increased 
water availability in some areas, it may also lead 
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to more frequent and intense flooding events. 
Understanding the trends in both precipitation 
and streamflow is crucial for developing effective 
water-management strategies that can adapt to 
changing climate, conditions. Understanding of  
the response of  streams to precipitation inputs 
is still limited especially in northern headwater 
catchments (Tetzlaff  et  al., 2013). Ali et  al. 
(2015) published runoff  initiation thresholds 
and effective precipitation input thresholds for 
rainfall- and snowmelt-driven events for nine 
northern forested catchments that included 
HBR and HJA.

5.4.4  PIDF

The results of  the frequency analysis of  1 and 
24 hour PI for the selected sites are shown in 
Fig. 5.5 and Table S5.1. The results indicated that 
there was considerable variation in the magni-
tude and uncertainty of  1 and 24 hour PI values 
across different locations and return intervals. 
The mean 24 hour PI estimates for the 25-, 50- 
and 100 year return intervals ranged from 0.164 
to 0.972 cm/h, 0.182 to 1.181 cm/h and 0.201 
to 1.425 cm/h, respectively. SAN and CHL had 
the highest PI estimates for both durations and all 
return intervals, indicating that they experienced 
the most intense rainfall events. For example, 
the mean PI estimate for the 100 year return 
interval for SAN was 0.972 cm/h for the 24 hour 
PI and 9.492 cm/h for the 1 hour PI, which were 
more than four times higher than the FRS mean 
PI estimates of  0.201 cm/h and 2.939 cm/h, 

respectively. However, they also had the widest 
CIs, suggesting that there was a high degree of  
uncertainty in the PI estimates for these sites. The 
95% CIs for the 100 year return interval for SAN 
were 0.680–2.169 and 7.115–11.868 cm/h for 
the 24 and 1 hour PI, respectively.

In contrast, the FRS and CCEW sites had 
the lowest PI estimates for both durations and 
all return intervals, indicating that they had 
the least intense rainfall events. They also had 
the narrowest CIs, suggesting that there was a 
low degree of  uncertainty in the PI estimates 
for these sites. The 95% CIs for the 100 year 
return interval for FRS were 0.080–0.323 and 
1.705–4.173 cm/h for the 24 and 1 hour PI, 
respectively. This low degree of  uncertainty 
could be due to the availability of  data, the 
homogeneity of  the terrain, or the stability of  
the climatic and hydrological conditions. The 
other sites (CPCR, HBR, HJA and SDEF) had 
intermediate PI estimates and CIs.

These results are consistent with previous 
findings (Amatya et al., 2021; Mukherjee et al., 
2023) and provide important information for 
the design and management of  water resources 
and infrastructure, as well as for the assessment 
and mitigation of  flood risks. The PI estimates 
and CIs can be used to estimate the design storm 
for each site, which is the rainfall event with a 
specified return interval that is used as the basis 
for hydrological and hydraulic calculations. The 
design storm can help determine the capacity 
and performance of  drainage systems, culverts 
and other road–stream crossing structures 
(Rosenzweig et  al., 2019). The results can also 
help identify the areas that are more prone to 

Table 5.5.  Results of trend analysis of ANMIN7Q including τ and P values.

Site Start year End year No. of 
years

M-K  
trend (τ)

M-K trend 
(P value)

M-K trend  
(τ for recent 
20 years)

M-K trend  
(P value for recent  
20 years)

CCEW 1985 2017 33 –0.16 0.18 –0.30 0.06

CHL 1936 2021 86 –0.04 0.60 0.41 0.01

CPCR 2012 2022 43 0.17 0.12 0.45 0.01

FRS 1943 2021 78 –0.25 0.00 –0.13 0.44

HBR 1957 2022 66 0.21 0.01 –0.02 0.95

HJA 1959 2019 68 0.14 0.09 –0.01 0.97

SDEF 1938 2001 57 0.31 0.00 –0.21 0.21
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flooding and the factors that contribute to the 
uncertainty of  the PI estimates. These results 
can inform the development of  adaptation and 
resilience strategies to cope with the potential 
impacts of  extreme rainfall events.

5.4.5  High-flow quantiles

The mean estimates of  25-, 50- and 100-year 
return intervals of  annual maximum peak flow 
(ANMAXQ) per unit area along with their 95% 
upper and lower bounds, as a measure of  the 
uncertainties for each of  the sites, are shown in 
Fig.  5.6 and Table S5.2. The results suggested 
that the sites have different values of  high-
flow-specific discharges and different degrees of  
uncertainty.

The SAN site had the highest mean estimate 
of  ANMAXQ for all the return intervals, indicat-
ing that it is prone to more severe floods than the 
other sites. For the 100-year return interval, the 
mean estimate was 107.2 l/s/ha, with a lower 
bound of  101.3 l/s/ha and an upper bound of  
113.0 l/s/ha. SDEF had the widest CI for all the 
return intervals, indicating that it has the most 

uncertainty in the estimation of  ANMAXQ. For 
the 100-year return interval, the mean estimate 
was 115.8 l/s/ha, with a lower bound of  97.7 
l/s/ha and an upper bound of  133.8 l/s/ha. This 
means that the true value of  ANMAXQ could 
be anywhere between 97.7 and 133.8 l/s/ha, 
which is a large range of  variation. The FRS site 
had the lowest mean estimate of  ANMAXQ and 
the narrowest CIs, indicating that it has the least 
risk of  flooding and the most reliable estimation 
of  ANMAXQ. For the 100-year return interval, 
the mean estimate was 2.2 l/s/ha, with a lower 
bound of  2.0 l/s/ha and an upper bound of  2.3 
l/s/ha. The HBR site had a mean estimate of  
ANMAXQ for all the return intervals, indicating 
that it also has a high risk of  flooding. For the 
100-year return interval, the mean estimate 
was 66.5 l/s/ha, with a lower bound of  65.3 l/s/
ha and an upper bound of  67.7 l/s/ha.

The HJA site had a relatively lower mean 
estimate of  ANMAXQ compared with the HBR, 
SAN and SDEF sites, indicating that it also has 
a moderate risk of  flooding and a reliable esti-
mation of  ANMAXQ. For the 100-year return 
interval, the mean estimate was 36.2 l/s/ha, 
with a lower bound of  36.0 l/s/ha and an upper 
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bound of  36.4 l/s/ha. CCEW had a similar 
mean estimate of  ANMAXQ for all the return 
intervals, indicating that it has a moderate risk 
of  flooding. For the 100-year return interval, 
the mean estimate was 22.3 l/s/ha, with a lower 
bound of  21.9 l/s/ha and an upper bound of  
22.8 l/s/ha. At the CHL site, the mean estimate 
of  the 100-year return interval was 13.9 l/s/ha, 
with a lower bound of  13.6 l/s/ha and an upper 
bound of  14.2 l/s/ha.

Both the MARC and FERN sites had a low 
to moderate risk of  flooding and fairly reliable 
estimations of  ANMAXQ with quite similar 
mean estimates of  9.0 l/s/ha and 9.6 l/s/ha, 
respectively, for the 100-year return interval, 
with a slightly wider range of  bounds for MARC 
than for FERN. The CPCR site, with a mean esti-
mate is 3.6 l/s/ha, a lower bound of  3.5 l/s/ha 
and an upper bound of  3.8 l/s/ha for the 100-
year return interval has a low risk of  flooding 
but a very uncertain estimation of  ANMAXQ.

The lower and upper bounds of  the 95% 
CIs provide valuable information about the 
uncertainty associated with the estimated peak 
flow discharges. These intervals indicate a range 
within which the true discharge values are likely 
to fall, with 95% confidence. Sites like FERN, 
MARC and CHL exhibited relatively narrow CIs 
across all return periods, suggesting higher con-
fidence in their discharge estimations. However, 
sites like SAN, CCEW and HBR had wider CIs, 
indicating greater uncertainty in their discharge 
estimations.

Overall, the results are consistent 
with previous studies (Amatya et  al., 2021; 
Mukherjee et  al., 2024) and can be used in 
forest road-culvert design to prevent failures 
caused by flooding. The high-flow quantiles 
can be used by engineers and land managers 
to reduce both economic and societal burdens 
through decreased failure rates, minimized 
maintenance costs and preserved ecological 
values within forested watersheds. However, 
meticulous selection of  the most suitable design 
strategy remains paramount for both new and 
renovated road-crossing structures, including 
site inspections associated with identifying 
the geomorphological and post-wildfire flood 
vulnerabilities. Equally crucial is meticulous 
installation procedures, including alignment 
checks, stream dimension verification and 

thorough substrate composition assessment 
(Hansen et al., 2009). Finally, implementation 
of  effective monitoring protocols and strategies 
for the drainage culverts will ensure sustained 
flood resilience throughout their lifespan. In 
addition, the high flood quantiles can also have 
impacts on the carrying capacities of  long-
term gauging stations. For example, Amatya 
et al. (2016a) found some of  the SAN gauging 
stations inundated with flows exceeding the 
established rating curve after the extreme 
rainfall of  Hurricane Joaquin (3–4 October 
2015) when over 590 mm of  precipitation 
fell in 48 hour (Figs 5.2, 5.3 and 5.6) causing 
sustained ponding.

5.4.6  Low-flow quantiles

The results in Table  5.6 and Fig.  5.7 show the 
low-flow quantiles in L/s, with 95% confidence 
bounds, estimated using the annual minimum 
of  7-day average streamflow data for the six 
sites.

7Q10 varied across the sites, highlighting 
the heterogeneity of  low-flow conditions in 
forested watersheds due to climate and precipi-
tation patterns. The low-flow estimates at the 
SDEF site across all return intervals ranged from 
0.0032 l/s/ha (5th percentile) to 0.0036 l/s/ha 
(95th percentile) for a 25-year return interval 
and from 0.1044 l/s/ha (5th percentile) to 
0.1308 l/s/ha (95th percentile) for a 100-year 
return interval, reflecting the relatively stable 
precipitation pattern of  this site. Similar to 
SDEF, the HJA site exhibited a stable low-flow 
uncertainty.

Among our ten sites, CHL and CPCR dem-
onstrated the highest 10-year low flow of  0.127 
and 0.124 l/s/ha, respectively (Table  5.6). 
This low 7Q10 suggests a low susceptibility to 
drought and minimal ecological stress during 
low-flow periods. CCEW exhibited moderately 
low 7Q10 magnitudes (Table  5.6) with a 
10-year low flow of  0.18 l/s/ha. This value 
indicates a less-permanent flow regime, where 
the stream may become discontinuous during 
drought periods, as was observed in 2021 
(Keppeler et al., 2024). Typical of  California, the 
CCEW aquatic ecosystem experiences seasonal 
drought, and stream organisms are adapted 
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Table 5.6.  Minimum 7-day flow (ANMIN7Q) for 2-, 5-, 10-, 25-, 50- and 100-year return intervals (RIs) 
with lower and upper 95% confidence intervals (bounds) (l/s/ha).

Site RI (years) Non-exceedance probability Estimates Lower bound Upper bound

CCEW 2 0.5 0.10 0.10 0.10

5 0.8 0.15 0.15 0.15

10 0.9 0.18 0.18 0.18

25 0.96 0.23 0.23 0.23

50 0.98 0.26 0.26 0.267

100 0.99 0.30 0.29 0.31

CHL 2 0.5 0.066 0.066 0.066

5 0.8 0.102 0.102 0.102

10 0.9 0.128 0.127 0.129

25 0.96 0.164 0.162 0.166

50 0.98 0.193 0.191 0.194

100 0.99 0.223 0.221 0.226

CPCR 2 0.5 0.053 0.052 0.054

5 0.8 0.093 0.092 0.094

10 0.9 0.126 0.124 0.128

25 0.96 0.175 0.171 0.178

50 0.98 0.217 0.212 0.221

100 0.99 0.264 0.257 0.271

FRS 2 0.5 0.028 0.028 0.028

5 0.8 0.045 0.044 0.045

10 0.9 0.057 0.057 0.057

25 0.96 0.075 0.075 0.076

50 0.98 0.090 0.089 0.091

100 0.99 0.106 0.105 0.108

HBR 2 0.5 0.0012 0.0012 0.0014

5 0.8 0.0028 0.0028 0.0028

10 0.9 0.0042 0.0042 0.0042

25 0.96 0.0064 0.0064 0.0064

50 0.98 0.0083 0.0080 0.0083

100 0.99 0.0101 0.0099 0.0104

HJA 2 0.5 0.0010 0.0010 0.0010

5 0.8 0.0023 0.0022 0.0023

10 0.9 0.0033 0.0033 0.0033

25 0.96 0.0048 0.0047 0.0048

50 0.98 0.0060 0.0060 0.0062

100 0.99 0.0073 0.0072 0.0075

SDEF 2 0.5 0.0000 0.0000 0.0000

5 0.8 0.0012 0.0008 0.0012

Continued
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to more limited summer habitats. Water-
resource managers regulate withdrawal and 
consumptive use during the low-flow season. 
Overall, this analysis highlights the diverse 
flow characteristics across the ten sites. While 
some sites exhibited consistent and predictable 
flow regimes, others presented more complex 
patterns requiring further investigation, 
particularly SDEF’s potential transition from 
intermittent to perennial flow. By analyzing 
low-flow statistics, ecologists can quantify the 
potential impacts of  low-flow events on forest 

health and productivity. For example, declining 
fall precipitation has reduced fall flows, thereby 
impeding salmonid spawning migration in 
northern California (Keppeler et  al., 2024). 
This information enables the development of  
data-driven management strategies to mitigate 
low-flow stress on ecosystems and prioritize 
conservation efforts for vulnerable watersheds. 
Ultimately, this approach ensures the sustain-
able management and conservation of  forested 
landscapes in the face of  changing climatic 
conditions.

Site RI (years) Non-exceedance probability Estimates Lower bound Upper bound

10 0.9 0.0032 0.0032 0.0036

25 0.96 0.0140 0.0128 0.0152

50 0.98 0.0408 0.0368 0.0452

100 0.99 0.1176 0.1044 0.1308

Table 5.6.  Continued
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5.5  Conclusions

This study was conducted using long-term meas-
ured high-resolution annual maximum PIs and 
extreme high and low streamflow rates from ten 
USDA Forest Service EFs. We first evaluated the 
long-term temporal characteristics and trends of  
hydrometeorological variables, assuming their 
stationarity, followed by a cross-site comparison 
of  the extreme (≥25 year return interval) PIDF 
and high (≥25 years) and low (≥10 years) flow 
frequencies of  discharges. Frequencies of  25 
years or more are commonly used in design of  
road cross-drainage and stormwater manage-
ment structures and other similar ecological 
applications. Similarly, 10 year frequency low-
flow quantiles are generally used in assessing 
environmental flows for aquatic ecosystems.

The results suggested that the SAN, CHL 
and HBR sites had the highest mean values and 
variability of  1 and 24 hour annual maximum 
PIs (ANMAXPI), while the FRS and CPCR sites 
had the lowest. Trend analysis suggested a sig-
nificant (α = 0.05) long-term decrease in 1 hour 
PI at the CPCR site and an increase in 24 hour 
PI at the CHL site. These results are consistent 
with the results of  the PIDF analysis yielding 
the highest and most uncertain PIs for the 25-, 
50- and 100 year return intervals at the CHL 
(for 1 hour) and SAN (for 24 hour) sites. The 
extreme high-flow characteristics and trend 
analysis indicated a similar complex spatiotem-
poral pattern across the sites, with the highest 
mean annual maximum specific discharge 
(ANMAXQ) at the low-gradient SAN site and the 
high-gradient HBR site, both on the east coast. A 
significant positive long-term trend of  ANMAX 
was also found at the HBR site. A relatively high 
interannual variability of  ANMAXQ at the SAN, 
HBR and SDEF sites is also consistent with their 
higher 25-, 50- and 100 year ANMAXQ values 
than all other sites. In contrast, FRS and CPCR 
yielded the lowest risk of  flooding based on their 
low 100 year ANMAXQ values. The other sites 
had intermediate values and uncertainties. 
Similarly, the assessment of  extreme low-flow 
characteristics revealed that SDEF, HBR and 
CCEW had the lowest mean and variability of  
ANMIN7Q. Trend analysis revealed diverse 

temporal patterns of  ANMIN7Q, with some 
sites showing long-term and recent temporal 
increases, some showing the opposite, and 
others showing divergent trends in the recent 
20 year period. The extreme low-flow frequency 
analysis indicated the highest ANMIN7Q values 
of  0.127 and 0.124 l/s/ha at the CHL and CPCR 
sites, respectively, suggesting a low susceptibility 
to drought and minimal ecological stress during 
low-flow periods at these sites. In contrast, 
SDEF, situated in the dry chaparral of  southern 
California, exhibited the lowest flow magnitude 
among all sites, with a 10 year low flow of  
0.0016 l/s/ha.

Overall, the findings showed sites with dif-
ferent impacts of  climate change and variability 
on streamflow regimes, and that site-specific 
factors, such as climate, land use and land cover 
changes, and watershed characteristics, play 
a role in determining the response of  streams 
to precipitation inputs. Consistent with Wright 
et  al. (2019), we believe that, although trends 
in rainfall extremes may not have necessarily 
translated into observable increases in flood 
risks, these results on extreme precipitation and 
flood frequencies none the less would be of  use 
in hydrological design applications, taking into 
consideration recent changes in extreme rainfall 
properties at the USFS FE watersheds (Amatya 
et  al., 2016a; Amatya et  al., 2021; Mukherjee 
et  al., 2023; Mukherjee et  al., 2024). In addi-
tion, the derived flood frequencies from these 
reference watersheds may serve the purpose 
of  comparing them with those from the paired 
treatment watersheds at these EFs to correctly 
evaluate the treatment effects as opposed to a 
chronologically paired approach, as argued by 
Alila et al. (2009).

Although this study has provided valu-
able insights into the trends and variability 
of  hydrometeorological variables across ten 
USDA Forest Service EFs, and their implications 
for flood risk, water availability and ecological 
health, there are still some limitations and 
challenges that need to be addressed in future 
research. First, the assumption of  stationarity 
may not be valid for some sites, especially under 
the influence of  climate change and human 
activities. Therefore, alternative methods 
that account for non-stationarity (Cheng and 
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AghaKouchak, 2014) may be more suitable for 
detecting and quantifying changes in hydro-
meteorological variables. Second, the data 
record availability and quality may result in 
high uncertainty, warranting a need for more 
data collection and quality control to improve 
the robustness of  the results and reduce 
uncertainties. Third, the spatial and temporal 
scales of  the analysis may influence the inter-
pretation and application of  the findings. For 
instance, the annual and seasonal trends may 
not capture the subseasonal or daily variations 
that are important for hydrological design and 
management, particularly the timing of  occur-
rence of  annual peak discharge relative to the 
timing of  the precipitation intensities in these 
small headwater forest watersheds. Similarly, 
the site-specific factors may not reflect the 

regional or global patterns of  climate change 
and variability. Even where data are available 
for relatively long periods (20–50 years) and the 
distribution of  discharge is fairly well known, 
there is little confidence in estimates of  high-
flow discharges for return periods of  over 50 
years (Eisenbies et al., 2007). Therefore, more 
comprehensive and multi-site and multi-scale 
analyses globally are needed to better under-
stand the hydrometeorological processes and 
their interactive effects, as a result of  climate 
change, on forest management of  streamflow, 
particularly during extreme events, as was 
shown for the Coweeta watersheds (Kelly et al., 
2016), and the effects of  extreme precipita-
tion on hydrological behavior transformation 
in watersheds, as shown by Jayakaran et  al. 
(2014).
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