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ABSTRACT 
THE LOCAL NEIGHBORHOOD INTERACTIONS SHAPING TREE COMMUNITIES 

THROUGH ECOLOGICAL DISTURBANCE AND ENVIRONMENTAL CHANGE  
 
 

Cole J. Doolittle, B.Sc. 
 

Marquette University, 2025 
 

My dissertation consists of four chapters focused on understanding the factors 
maintaining local species diversity, addressing a central goal of ecology increasingly critical for 
preserving ecosystem services and human well-being in the face of climate change. Specifically, 
I investigate how local neighborhoods – that is, the spatial arrangement, density, and identity of 
nearby competitors – contribute to patterns of growth and survival along gradients of ecological 
disturbance and environmental change using forest tree communities as a study system.  

 
In my first chapter, I develop a conceptual framework that synthesizes why we may 

expect local neighborhood interactions to weaken under ecological disturbances that primarily 
affect competitive densities or nutrient availability. This framework provides a foundation for 
understanding how disturbance-altered neighborhood interactions may influence forest recovery 
trajectories and community assembly. 

 
For my second and third chapters, I focus on examining neighborhood interactions of two 

dominant conifer species in Pacific Northwest: P. menziesii (Douglas-fir) and T. heterophylla 
(Western hemlock) across life-stage and environmental condition. First, I examine how wildfires 
influence local neighborhood interactions between seedlings and surviving adults, revealing how 
wildfire disrupts neighborhood interactions that are otherwise thought to stabilize local 
populations in undisturbed ecosystems. Then, I use dendrochronological techniques to analyze 
how neighborhood interactions influence 60 years of climate-growth relationships in large, 
established adult trees. I demonstrate that interannual climate variability alters the strength and 
direction of neighborhood interactions, with species-specific responses to temperature and 
precipitation that may shift competitive dynamics under future climate scenarios. 

 
Finally, my fourth chapter investigates an important underlying driver of neighborhood 

interactions: the soil microbiome. I demonstrate that pathogenic fungi are more associated with 
tree community composition at low elevations, which have stronger stabilizing neighborhood 
interactions, whereas ectomycorrhizal fungi are more associated with tree community 
composition at high elevations, which have weaker stabilizing neighborhood interactions.  

 
Collectively, this dissertation advances our understanding of how stressors associated 

with environmental change and ecological disturbance alter the local interactions thought to 
contribute to maintaining diverse communities, with implications for predicting forest 
community responses to climate change and climate-altered disturbance regimes.  
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INTRODUCTION 
Ecology, the study of interactions among organisms and their environment, represents a 

cornerstone of contemporary biological understanding with applications in resource management, 

conservation, and global sustainability. While the roots of ecology can be traced back to the early 

naturalists and philosophers (Egerton, 2001), its modern study has developed into a robust 

scientific discipline with specialized subfields examining certain aspects of ecological phenomena. 

One important subdivision is community ecology, a primary goal of which is to integrate the 

factors, relationships, and processes that govern species diversity into a synthetic understanding of 

life’s variety on Earth (Elton, 1927). Community ecology investigates how species interactions 

including competition, predation, parasitism, mutualism, and commensalism shape community 

properties including diversity and stability within their abiotic context.  

Several theoretical paradigms have advanced our understanding of the maintenance of 

species diversity over the past century. Early ecologists focused predominantly on abiotic factors 

and deterministic succession (Clements, 1916; Cowles, 1899; Egler, 1954), which gradually led to 

the incorporation of abiotic preferences, niche differentiation, and competitive exclusion (Hardin, 

1960; Hutchinson, 1957; Tilman, 1982), stochastic and emergent properties (Hubbell, 2001; Levin, 

1992), and metacommunity dynamics (Leibold et al., 2004). Broadly, the breadth of ecological 

principles developed over the last century to explain ecological communities can be organized into 

4 categories, each echoed in evolutionary biology: speciation, dispersal, drift, and selection 

(Vellend, 2010). Speciation and dispersal represent the creation and dispersal of species by which 

ecological community diversity increases. Drift refers to stochastic changes in species abundance 

resulting from random demographic processes. Lastly, selection encompasses deterministic 

differences in fitness among species that arise from environmental factors and species interactions. 

This conceptual framework provides an elegant lens for organizing the factors influencing 
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community diversity in recognition that both deterministic and stochastic processes structure 

ecological systems across scales. 

Within this broader context, my dissertation focuses on selection processes operating at the 

local neighborhood scale, where differences in the effects of conspecific neighbors (same-species) 

relative to heterospecific neighbors (different-species) mediate individual performance and 

population growth (Broekman et al., 2019; Chesson, 2000; LaManna et al., 2024; Wright, 2002). 

First formalized as the Janzen-Connell hypothesis in the early 1970s, the idea that conspecific 

neighbors are a detriment to individual growth, survival, and reproductive rates (performance) was 

primarily driven by observations that natural enemies aggregate around their preferred hosts 

(Janzen, 1970; Connell, 1971). Since that time, ecologists have expanded this hypothesis to 

incorporate other forms of neighborhood interactions differing between conspecifics and 

heterospecifics including direct intraspecific competition (e.g., Adler et al., 2018), relatively host-

specific mutualists (e.g., Bachelot et al., 2015; Delavaux et al., 2023; Kandlikar et al., 2019; Liang 

et al., 2015), and drivers across spatial and temporal scales (e.g., Swenson et al., 2023). 

Collectively, this broad group of factors contributing to ecological selection at local scales 

is referred to as local conspecific density dependence (CDD; Hülsmann et al., 2021; LaManna et 

al., 2024). In the Plant Kingdom, local CDD is most often negative, meaning that individual 

performance is disadvantaged in conspecific neighborhoods relative to heterospecific 

neighborhoods (Bagchi et al., 2014; Comita et al., 2014). All else being equal, negative local CDD 

(also known as CNDD) should stabilize local populations by disadvantaging dense conspecific 

neighborhoods and contributing to a rare species advantage (Chesson, 2000; Connell et al., 1984; 

LaManna et al., 2016; Smith, 2022; Wright, 2002). Alternatively, while less frequently observed, 

positive local CDD (also known as reverse Janzen-Connell effects; Zahra et al., 2021) should 
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destabilize local populations by advantaging conspecific aggregation and causing competitive 

exclusion (Bachelot et al., 2015; Chesson, 2000; Delavaux et al., 2023). In this dissertation, I refer 

to local CDD as stabilizing or destabilizing to refer to the prediction that local-scale differences 

between conspecific and heterospecific neighborhood effects scale up to cause community 

stabilization or destabilization, and not as an explicit prediction of coexistence (Hülsmann et al., 

2024; LaManna et al., 2024).  

Empirically, the magnitude and even direction of local CDD is increasingly attributed to 

abiotic factors, generally becoming less stabilizing (less negative) as environmental conditions 

become more stressful, such as with increasing drought-stress or declining nutrient availability 

(Johnson et al., 2017; LaManna et al., 2016; Lebrija-Trejos et al., 2023; Liu & He, 2021; Milici et 

al., 2025; Song et al., 2018; Uriarte et al., 2018). Still, our understanding of how local CDD is 

altered by changing environmental conditions remains largely restricted to early life-stage plants 

and lacks a central framework for examining its underlying drivers. Moreover, our understanding 

of local CDD along environmental gradients is largely derived from relatively mild abiotic 

changes, and the applicability of these findings to ecological communities experiencing dramatic 

abiotic changes, such as ecological disturbances, remains uncertain. These limitations represent a 

fundamental gap in knowledge critical to understanding ecological communities that are 

increasingly subjected to changing environmental conditions under climate change.  

My dissertation investigates how local CDD measured in individual growth and survival 

responds to broad environmental gradients and ecological disturbances in forest systems. 

Specifically, I employ complementary empirical approaches to assessing local CDD across life-

stage in the temperate rainforests of the Pacific Northwest with the goal of understanding how 

changing regimes of climate and ecological disturbance are affecting these important 
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neighborhood interactions. My methodological toolkit includes a theoretical synthesis, an 

observational study of seedling demography, dendrochronological analyses, and characterizing 

tree-associated fungal communities. This multifaceted approach allows me to investigate local 

CDD across different spatial scales, life stages, and environmental contexts. 

In Chapter 1, I develop a conceptual framework synthesizing how ecological disturbances 

may influence the strength and direction of local CDD. I categorize disturbances based on their 

primary effects on forest structure—distinguishing between those that primarily affect resource 

availability (interference disturbances), competitive densities (destruction disturbances), or both 

simultaneously (combined disturbances). For each category, I predict how disturbances might alter 

the underlying mechanisms generating local CDD and discuss implications for forest recovery and 

community assembly. This theoretical contribution provides a foundation for predicting 

disturbance effects on stabilizing neighborhood interactions. 

Chapter 2 presents an empirical investigation of how wildfire affects local CDD in tree 

seedlings. By comparing seedling mortality between burned and unburned forests experiencing 

varying degrees of heat stress, I demonstrate that wildfire fundamentally disrupts the stabilizing 

density feedbacks that otherwise promote diversity in undisturbed forests. My findings reveal that 

under the combined stressors of fire and extreme heat, local CDD in seedling survival becomes 

neutral, not contributing to patterns of individual performance. These results have important 

implications for understanding post-disturbance forest recovery in a warming climate. 

In Chapter 3, I focus on large adult trees, using dendrochronological techniques to analyze 

how neighborhood interactions alter climate-growth patterns in two dominant conifer species that 

represent the majority of aboveground biomass in the Pacific Northwest. Across an elevation 

gradient, I demonstrate that local neighborhoods are important modifiers of tree growth under 



 14 

abnormal climate conditions. Specifically, I find that local CDD in Douglas-fir (Pseudotsuga 

menziesii) growth becomes increasingly destabilizing in cooler years, while Western hemlock 

(Tsuga heterophylla) exhibits stronger stabilizing local CDD in wetter years. These species-

specific responses to climate fluctuations reveal an underappreciated temporal dimension of 

neighborhood interactions that will become increasingly important to predicting the future of forest 

systems under climate change.  

Finally, Chapter 4 investigates a key underlying mechanism driving patterns of local CDD 

across environmental gradients: shifts in the composition and spatial aggregation of soil fungal 

communities. By pairing soil microbiome analyses with forest inventory data, I test the "Stress 

Gradient Feedback Hypothesis," which posits that relatively host-specific antagonistic interactions 

(e.g., with pathogenic fungi) are more abundant and important in benign environments, while 

relatively host-specific mutualistic interactions (e.g., with mycorrhizal fungi) become increasingly 

important under stressful conditions. My results demonstrate that site-to-site differences in tree 

community composition are more strongly associated with differences in pathogenic fungal 

communities at lower elevations, but more strongly associated with ectomycorrhizal fungal 

communities at higher elevations, thereby providing a mechanistic explanation for changing 

patterns of local CDD across environmental stress gradients. 

Collectively, this research advances ecological theory by integrating concepts from 

community ecology, disturbance ecology, and microbial ecology to better understand the factors 

thought to contribute to species diversity in changing environments. My findings have important 

implications for predicting how forest communities will respond to increasing disturbance 

frequency and severity under climate change and contribute to addressing the primary goals of 

community ecology.  



 15 

References 
Adler, P. B., Smull, D., Beard, K. H., Choi, R. T., Furniss, T., Kulmatiski, A., Meiners, J. M., 

Tredennick, A. T., & Veblen, K. E. (2018). Competition and coexistence in plant 
communities: Intraspecific competition is stronger than interspecific competition. 
Ecology Letters, 21(9), 1319–1329. https://doi.org/10.1111/ele.13098 

Bachelot, B., Uriarte, M., & McGuire, K. (2015). Interactions among mutualism, competition, 
and predation foster species coexistence in diverse communities. Theoretical Ecology, 
8(3), 297–312. https://doi.org/10.1007/s12080-015-0251-2 

Bagchi, R., Gallery, R. E., Gripenberg, S., Gurr, S. J., Narayan, L., Addis, C. E., Freckleton, R. 
P., & Lewis, O. T. (2014). Pathogens and insect herbivores drive rainforest plant 
diversity and composition. Nature, 506(7486), 85–88. 
https://doi.org/10.1038/nature12911 

Broekman, M. J. E., Muller‐Landau, H. C., Visser, M. D., Jongejans, E., Wright, S. J., & Kroon, 
H. (2019). Signs of stabilisation and stable coexistence. Ecology Letters, 22(11), 1957–
1975. https://doi.org/10.1111/ele.13349 

Chesson, P. (2000). Mechanisms of Maintenance of Species Diversity. Annual Review of 
Ecology and Systematics, 31(1), 343–366. 
https://doi.org/10.1146/annurev.ecolsys.31.1.343 

Clements, F. E. (1916). Plant Succession: An Analysis of the Development of Vegetation. 
Carnegie Institution of Washington. 

Comita, L. S., Queenborough, S. A., Murphy, S. J., Eck, J. L., Xu, K., Krishnadas, M., Beckman, 
N., & Zhu, Y. (2014). Testing predictions of the J anzen– C onnell hypothesis: A meta‐
analysis of experimental evidence for distance‐ and density‐dependent seed and seedling 
survival. Journal of Ecology, 102(4), 845–856. https://doi.org/10.1111/1365-2745.12232 

Connell, J. H., Tracey, J. G., & Webb, L. J. (1984). Compensatory Recruitment, Growth, and 
Mortality as Factors Maintaining Rain Forest Tree Diversity. Ecological Monographs, 
54(2), 141–164. https://doi.org/10.2307/1942659 

Cowles, H. C. (1899). The Ecological Relations of the Vegetation on the Sand Dunes of Lake 
Michigan. Part I.-Geographical Relations of the Dune Floras. Botanical Gazette, 27(2), 
95–117. https://doi.org/10.1086/327796 

Delavaux, C. S., LaManna, J. A., Myers, J. A., Phillips, R. P., Aguilar, S., Allen, D., Alonso, A., 
Anderson-Teixeira, K. J., Baker, M. E., Baltzer, J. L., Bissiengou, P., Bonfim, M., Bourg, 
N. A., Brockelman, W. Y., Burslem, D. F. R. P., Chang, L.-W., Chen, Y., Chiang, J.-M., 
Chu, C., … Averill, C. (2023). Mycorrhizal feedbacks influence global forest structure 
and diversity. Communications Biology, 6(1), 1–11. https://doi.org/10.1038/s42003-023-
05410-z 

Egerton, F. N. (2001). A History of the Ecological Sciences, Part 2: Aristotle and Theophrastos. 
Bulletin of the Ecological Society of America, 82(2), 149–152. 

Egler, F. E. (1954). Vegetation science concepts I. Initial floristic composition, a factor in old-
field vegetation development with 2 figs. Vegetatio, 4(6), 412–417. 
https://doi.org/10.1007/BF00275587 

Elton, C. S. (1927). Animal Ecology. University of Chicago Press. 
Hardin, G. (1960). The competitive exclusion principle: an idea that took a century to be born 

has implications in ecology, economics, and genetics. science, 131(3409), 1292-1297. 
https://doi.org/10.1126/science.131.3409.1292 



 16 

Hubbell, S. P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton 
University Press. https://doi.org/10.1515/9781400837526 

Hülsmann, L., Chisholm, R. A., Comita, L., Visser, M. D., de Souza Leite, M., Aguilar, S., 
Anderson-Teixeira, K. J., Bourg, N. A., Brockelman, W. Y., Bunyavejchewin, S., 
Castaño, N., Chang-Yang, C.-H., Chuyong, G. B., Clay, K., Davies, S. J., Duque, A., 
Ediriweera, S., Ewango, C., Gilbert, G. S., … Hartig, F. (2024). Latitudinal patterns in 
stabilizing density dependence of forest communities. Nature, 627(8004), 564–571. 
https://doi.org/10.1038/s41586-024-07118-4 

Hülsmann, L., Chisholm, R. A., & Hartig, F. (2021). Is Variation in Conspecific Negative 
Density Dependence Driving Tree Diversity Patterns at Large Scales? Trends in Ecology 
& Evolution, 36(2), 151–163. https://doi.org/10.1016/j.tree.2020.10.003 

Hutchinson, G. E. (1957). Concluding Remarks. Cold Spring Harbor Symposia on Quantitative 
Biology, 22(0), 415–427. https://doi.org/10.1101/SQB.1957.022.01.039 

Janzen, D. H. (1970). Herbivores and the Number of Tree Species in Tropical Forests. The 
American Naturalist, 104(940), 501–528. https://doi.org/10.1086/282687 

Connell (1971). On the role of natural enemies in preventing competitive exclusion in some 
marine animals and in rain forest trees. Dynamics of Populations, 298, 312. Advanced 
Study Institute on Dynamics of Numbers in Populations. 

Johnson, D. J., Condit, R., Hubbell, S. P., & Comita, L. S. (2017). Abiotic niche partitioning and 
negative density dependence drive tree seedling survival in a tropical forest. Proceedings 
of the Royal Society B: Biological Sciences, 284(1869), 20172210. 
https://doi.org/10.1098/rspb.2017.2210 

Kandlikar, G. S., Johnson, C. A., Yan, X., Kraft, N. J. B., & Levine, J. M. (2019). Winning and 
losing with microbes: How microbially mediated fitness differences influence plant 
diversity. Ecology Letters, ele.13280. https://doi.org/10.1111/ele.13280 

LaManna, J. A., Hartig, F., Myers, J. A., Freckleton, R. P., Detto, M., Surendra, A., Doolittle, C. 
J., Bachelot, B., Bagchi, R., Comita, L. S., DeFilippis, D. M., Huanca‐Nunez, N., 
Hülsmann, L., Jevon, F. V., Johnson, D. J., Krishnadas, M., Magee, L. J., Mangan, S. A., 
Milici, V. R., … Delavaux, C. S. (2024). Consequences of Local Conspecific Density 
Effects for Plant Diversity and Community Dynamics. Ecology Letters, 27(9), e14506. 
https://doi.org/10.1111/ele.14506 

LaManna, J. A., Walton, M. L., Turner, B. L., & Myers, J. A. (2016). Negative density 
dependence is stronger in resource-rich environments and diversifies communities when 
stronger for common but not rare species. Ecology Letters, 19(6), 657–667. 
https://doi.org/10.1111/ele.12603 

Lebrija-Trejos, E., Hernández, A., & Wright, S. J. (2023). Effects of moisture and density-
dependent interactions on tropical tree diversity. Nature, 615(7950), 100–104. 
https://doi.org/10.1038/s41586-023-05717-1 

Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., Holt, 
R. D., Shurin, J. B., Law, R., Tilman, D., Loreau, M., & Gonzalez, A. (2004). The 
metacommunity concept: A framework for multi-scale community ecology. Ecology 
Letters, 7(7), 601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x 

Levin, S. A. (1992). The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur 
Award Lecture. Ecology, 73(6), 1943–1967. https://doi.org/10.2307/1941447 



 17 

Liang, M., Liu, X., Etienne, R. S., Huang, F., Wang, Y., & Yu, S. (2015). Arbuscular 
mycorrhizal fungi counteract the Janzen-Connell effect of soil pathogens. Ecology, 96(2), 
562–574. https://doi.org/10.1890/14-0871.1 

Liu, Y., & He, F. (2021). Warming intensifies soil pathogen negative feedback on a temperate 
tree. New Phytologist, 231(6), 2297–2307. https://doi.org/10.1111/nph.17409 

Milici, V. R., Ballesteros, J., & Bagchi, R. (2025). High soil moisture triggers negative plant–soil 
feedbacks in a tropical forest. Functional Ecology. https://doi.org/10.1111/1365-
2435.70007 

Smith, D. J. B. (2022). The functional form of specialised predation affects whether Janzen–
Connell effects can prevent competitive exclusion. Ecology Letters, ele.14014. 
https://doi.org/10.1111/ele.14014 

Song, X., Johnson, D. J., Cao, M., Umaña, M. N., Deng, X., Yang, X., Zhang, W., & Yang, J. 
(2018). The strength of density-dependent mortality is contingent on climate and seedling 
size. Journal of Vegetation Science, 29(4), 662–670. https://doi.org/10.1111/jvs.12645 

Swenson, N. G., Zambrano, J., Howe, R., & Wolf, A. (2023). Biogeographic context is related to 
local scale tree demography, co-occurrence and functional differentiation. Ecology 
Letters, 26(7), 1212–1222. https://doi.org/10.1111/ele.14233 

Tilman, D. (1982). Resource Competition and Community Structure. Princeton University Press. 
Uriarte, M., Muscarella, R., & Zimmerman, J. K. (2018). Environmental heterogeneity and biotic 

interactions mediate climate impacts on tropical forest regeneration. Global Change 
Biology, 24(2). https://doi.org/10.1111/gcb.14000 

Vellend, M. (2010). Conceptual Synthesis in Community Ecology. The Quarterly Review of 
Biology, 85(2), 183–206. https://doi.org/10.1086/652373 

Wright, J. S. (2002). Plant diversity in tropical forests: A review of mechanisms of species 
coexistence. Oecologia, 130(1), 1–14. https://doi.org/10.1007/s004420100809 

Zahra, S., Novotny, V., & Fayle, T. M. (2021). Do Reverse Janzen-Connell Effects Reduce 
Species Diversity? Trends in Ecology & Evolution, 36(5), 387–390. 
https://doi.org/10.1016/j.tree.2021.02.002 

 

 

  



 18 

Chapter 1 | Local stabilizing density effects in the context of ecological 
disturbance and community assembly 

 
Authors:  
Cole J. Doolittle1*, Joseph A. LaManna1 
 
Affiliations:  
1Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, 53201, USA 
*Corresponding Author. Email: cole.doolittle7@gmail.com 
 
Abstract 

The maintenance of species diversity in ecological communities has many promising 

explanations, including certain types of local biotic interactions that generate differential effects 

on the performance of conspecific and heterospecific individuals. To date, most studies of these 

local biotic interactions have focused on relatively stable systems, such as mature forests or 

undisturbed grasslands. However, many ecosystems are far from a stable state, especially under 

accelerating global climate change. Here, we present a synthesis of local differences between 

conspecific and heterospecific interactions following disturbances – and how disturbances may 

alter the strength and scaling of these effects to population growth and species diversity. First, we 

clarify terminology and categorize disturbances based on their primary mode of impact on species 

interactions. Second, we leverage existing literature to develop a framework for understanding of 

how disturbances may alter the strength and role of local biotic interactions in regenerating 

communities. Third, we use prominent examples of disturbance: drought, windthrow, and wildfire, 

to highlight remaining gaps in knowledge. Finally, we discuss implications for future populations 

and communities in unstable states. We emphasize the need for empirical studies to further 

integrate disturbance and local conspecific density effects within broader ecological models of 

community assembly and functioning 
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1. Introduction 

Ecosystems that generate global cultural and economic wellbeing are increasingly 

threatened by anthropogenic climate change and climate-related changes to natural patterns of 

ecological disturbance. Today, ecologists are concerned that unpredictable patterns and severity 

of disturbance events will erode key ecosystem services and diversity in future ecological systems 

(Lindenmayer et al. 2019, Seidl et al. 2017, Swanson et al. 2011). In part, this concern reflects 

uncertainty about how disturbance events alter the underlying processes generating and 

maintaining species diversity in regenerating ecosystems (Seidl & Turner 2022). To address this 

uncertainty, the need exists for synthesis of literature on ecological disturbance and the processes 

that affect species diversity. Here, we synthesize recent advances on interactions between 

ecological disturbances and one such process that can affect species diversity: local density-

dependent species interactions. 

Ecologists have a longstanding interest in determining relationships between ecological 

disturbances and species diversity (Clements 1916, King 1685, Turner 2010), which has often 

manifested in identifying the “winners and losers” of abiotic change based on functional traits and 

life-history strategies (Keith et al. 2007, McKinney & Lockwood 1999, Noble & Slatyer 1980, see 

Tabarelli et al. 2012). The “winner and losers” paradigm suggests that disturbances alter species 

composition and diversity by changing the availability and heterogeneity of both resources and 

competitors, which either stochastically (i.e., random dispersal, priority effects; Egler 1954, Horn 

1975) or deterministically (i.e., succession trajectories, CSR theory; Fox 1982, Grime 1977, Peet 

& Christensen 1987) promote assemblages of species with disturbance-adapted strategies 

(reviewed by Pulsford et al. 2016). However, disturbances may also alter the occurrence and 

outcome of density-dependent mutualistic, antagonistic, and resource interactions - a nuance that 
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has rarely been integrated with the “winners and losers” paradigm (Anderson 2018, Gasith & Resh 

1999, Post 2013). Given evidence for the prevalence of density-dependent interactions (Comita et 

al. 2014, Song et al. 2021) and their potential to affect local species diversity (Bagchi et al. 2014, 

Brown et al. 2020, LaManna et al. 2017, LaManna et al. 2022, Mitchell et al. 2006), incorporating 

density-dependent interactions into frameworks of community regeneration and recovery 

following disturbance presents a key opportunity to bridge the gap between community and 

disturbance ecology.  

One important conceptual area examining how density-dependent interactions influence 

species diversity is the study of local conspecific density dependence (CDD). Local CDD is 

defined as the relative influence of local conspecific densities on individual performance (i.e. 

growth, survival, reproductive rates) arising primarily from intraspecific competition and 

interactions with shared antagonists and/or mutualists (LaManna et al. 2024). To distinguish from 

single-species concepts of density-dependent population regulation, we adopt the term local 

“stabilizing” CDD to describe local density-dependent effects that may stabilize population growth 

and influence species diversity in the context of a multi-species community. For example, 

population growth may be stabilized by local CDD that generates a negative relationship between 

conspecific densities and individual performance relative to heterospecific densities (i.e., stronger 

negative effect of conspecifics than heterospecifics; Hülsmann et al. 2024). Alternatively, local 

CDD can also destabilize population growth under certain conditions where the relationship 

between conspecific densities and individual performance is positive relative to heterospecific 

densities (i.e., stronger negative effect of heterospecifics than conspecifics; Hülsmann et al. 2024). 

Local stabilizing CDD is hypothesized to promote or stabilize local species diversity under certain 

conditions (Broekman et al. 2019, LaManna et al. 2017, Wright 2002), while local destabilizing 
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CDD is hypothesized to destabilize or erode local species diversity under certain conditions 

(Delavaux et al. 2023, Zahra et al. 2021). Hereafter, we use the term “stabilizing CDD” to refer to 

local conspecific density effects on individual performance that could scale to affect population 

growth and species diversity under certain conditions, regardless of whether the net effect is 

stabilizing or destabilizing. When discussing directional predictions for local CDD in the context 

of ecological disturbance (e.g., becoming more or less stabilizing), we explicitly state the direction 

of change. 

Ecological disturbances, which disrupt local abiotic properties and/or the density of 

organisms, likely alter the role of stabilizing CDD in affecting individual performance and shaping 

local species diversity. However, the strength, directionality, and effects of stabilizing CDD in 

disturbed environments remains critically unexplored (Comita & Stump 2020, LaManna et al. 

2024). In part, this knowledge gap persists due to a lack of underlying predictions for 

understanding how the drivers of local stabilizing CDD may be altered in disturbed environments. 

Moreover, studies integrating local stabilizing CDD and disturbance are hampered by: 1) complex 

interactions between the underlying drivers of local stabilizing CDD; 2) variability of disturbance 

effects due to system-specific resilience and susceptibility to rapid change; and 3) context-

dependent factors affecting the outcome of interactions between individuals including 

phylogenetic relatedness, resource requirements, and functional traits.   

 

Here, we begin to bridge the gap between disturbance ecology and the study of local 

stabilizing CDD using tree communities as a focal study system. First, we review recent 

observational and experimental studies of stabilizing CDD along abiotic gradients. Next, we 

develop a conceptual framework for exploring how disturbances might impact the local drivers of 
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stabilizing CDD and how differences between conspecific and heterospecific effects may scale up 

to affect community assembly and diversity. Finally, we present critical gaps in knowledge and 

future directions for ecologists interested in integrating density-dependent interactions into 

frameworks of recovery and succession following disturbance.  

2. Evaluating the Drivers of Local Stabilizing CDD in a Changing World 

Over half a century has passed since Janzen (1970) and Connell (1971) first hypothesized 

that species diversity may be maintained by local, density-dependent interactions between 

relatively host-specific natural enemies (i.e., pathogens, herbivores, etc.) and their hosts. Since that 

time, ecologists have expanded this hypothesis to incorporate direct intraspecific competition (e.g., 

Adler et al. 2018), relatively host-specific mutualists (e.g., Bachelot et al. 2015, Delavaux et al. 

2023, Kandlikar et al. 2019), and drivers that generate stabilizing CDD across spatial and temporal 

scales (e.g., Swenson et al. 2023). Today, there is broad support for the ability of 

disproportionately strong or weak conspecific interactions within a local neighborhood context to 

mediate performance, particularly among early life-stage plants (Comita et al. 2014; Hülsmann et 

al. 2021; Song et al. 2021). Debate continues to surround the ability of these local interactions to 

scale up and generate stabilizing CDD in population growth rates at the community and regional 

scales, a requirement for local interactions to affect species diversity (Chesson 2012, Hubbell 

2001, Hülsmann et al. 2021, Hülsmann et al. 2024, LaManna et al. 2021, LaManna et al. 2024). 

However, theory and simulation studies suggest that under certain scenarios stabilizing CDD 

within local neighborhoods should contribute to community composition, diversity, and function 

(Chesson 2000, Levi et al. 2019, Smith 2022).  

To distinguish between the types of local interactions capable of generating stabilizing 

CDD in individual performance, we place each driver into one of three categories: apparent, 
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allelopathic, and resource interactions (Box 1-1, Figure 1-1). Each driver is hypothesized to 

generate either a negative (stabilizing) or positive (destabilizing) effect on conspecific relative to 

heterospecific performance. We highlight that each driver must be relatively host-specific, 

meaning it causes disproportionate effects on the performance of conspecific individuals relative 

to heterospecific individuals. For these purposes, host-specificity does not necessarily represent 

host-adaptation or preference (Bever et al. 2002). Additionally, functional or relative host-

specificity, as opposed to absolute host-specificity, is sufficient to generate differential effects 

across hosts and therefore contribute to local stabilizing CDD (Spear & Broders 2021).  

Ecologists are increasingly interested in how abiotic gradients affect the relative 

importance and strength of drivers that generate local stabilizing CDD (Comita & Stump 2020, 

LaManna et al. 2024). In general, local CDD appears to become more stabilizing in areas with low 

light, high soil moisture, and aseasonal climates (Table 1-1; Augspurger & Kelly 1984, Brown et 

al. 2021, LaManna et al. 2016, Lebrija-Trejos et al. 2023, Lin et al. 2012, Milici et al. 2020, Song 

et al. 2018). On broader spatial scales, local stabilizing CDD also appears to weaken with 

increasing elevation and latitude (Fibich et al. 2021, Hülsmann et al. 2024, LaManna et al. 2017, 

LaManna et al. 2021, LaManna et al. 2022). Together, these studies indicate that local CDD may 

vary predictably along abiotic gradients, suggesting common mechanisms contributing to patterns 

of plant performance. 

Assigning mechanism to correlations between local stabilizing CDD and abiotic gradients 

is challenging. For example, abundant shade, humidity, and resources may generate stronger local 

stabilizing CDD by increasing host-specific antagonist loads (Inman-Narahari et al. 2016, Kobe 

& Vriesendorp 2011), or by altering spatial heterogeneity of resources (Johnson et al. 2017). 

Similarly, gradients of local stabilizing CDD may result from increased relatively host-specific 
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facilitation under abiotic stress, such as interactions between plants and mycorrhizal fungi 

(Delavaux et al. 2023, Fajardo & McIntire 2011, Maestre et al. 2009). Finally, gradients of local 

stabilizing CDD may result from stress-mediated allelopathic or resource interactions, although 

these possibilities remain less explored (Devaney et al. 2018, Record et al. 2016). Given increasing 

uncertainty over the future of abiotic conditions and stressors (Seidl & Turner 2022), 

understanding the mechanisms underlying central ecological processes such as local stabilizing 

CDD will be important for predicting the effects of future disturbance patterns under climate 

change.  

3. Categorizing Disturbances by Primary Effects on Forest Structure 

Ecological disturbances have long been understood to influence community structure and 

dynamics across spatial and temporal scales (Cooper 1926, Pickett & White 1985, White 1979). 

However, developing inclusive definitions of disturbance that integrate a variety of causes, scales, 

and consequences for community structure and diversity remains a prominent challenge. Over the 

past century, the term “disturbance” has often been used to generally describe an event that disrupts 

any ecological level, environmental component, or the organizational status of organisms (Pickett 

1989). Alternatively, disturbance can be defined as external events that influence ecosystem 

processes such as energy cycling, biomass accumulation, and hydrological patterns (Sousa et al. 

1984, Swanson et al. 2011). More recently, explicit definitions of disturbances based on their 

spatial scale and/or level of ecological organization they affect have been proposed (i.e., local vs. 

regional disturbances; Battisti et al. 2016, Levin 2000). We acknowledge that clearly defining 

disturbance is central to understanding disturbance effects on local stabilizing CDD. Towards that 

goal, we present generalizable categories of ecological disturbance tailored to exploring their 

potential impacts on the interactions that generate local stabilizing CDD in forest ecosystems.  
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The function and structure of forest ecosystems are defined by the spatial composition and 

age distribution of trees (Ammer 2019). It is no surprise, therefore, that ecological disturbances in 

forests are often defined by their primary mode of influence on trees – either directly causing tree 

mortality or indirectly altering compositions through rapid changes to resources, habitats, and/or 

competitive environments. Forests experience a wide spectrum of naturally occurring disturbance 

events, including drought, windthrow, wildfire, and insect outbreaks, among others. Here, we 

group these individual disturbance types into three categories based on their primary mode of 

influence on trees: interference, destruction, and combined disturbances (Box 1-2). Interference 

disturbances, such as nutrient depletion, initially impact the availability of resources such as 

nutrients, light, and space while leaving competitive densities relatively un-disturbed in the short-

term. Destruction disturbances, such as windthrow, initially impact tree abundance, density, and/or 

health while leaving resource availability relatively un-disturbed in the short-term. Finally, 

combined disturbances, such as wildfires, have initial impacts on both aboveground tree structures 

and resource environments in the short term.  

While the initial effects of interference, destruction, and combined disturbances differ, each 

triggers a complex recovery timeline with cascading consequences for both the availability of 

nutrients and competitive densities. Here, we focus explicitly on predicting local stabilizing CDD 

through initial and late recovery phases following disturbance. We define initial recovery as the 

period immediately following disturbance, characterized by rapid changes in community 

composition and ecosystem processes as organisms respond to altered abiotic conditions. Late 

recovery is defined as the subsequent period when community composition begins to stabilize, 

characterized by slower rates of change and increasing functional redundancy (Chang & Turner 

2019). We acknowledge two important caveats to this approach. First, not all disturbances fall 
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cleanly into any one category (Box 1-2). Second, recovery phases are complex, and our predictions 

may need future refinement to account for system-specific successional trajectories. We highlight 

that most literature on local CDD along abiotic gradients focuses on one component of abiotic 

change (Table 1-1), and therefore categorizing disturbances by their initial abiotic effects 

represents a natural first step towards a more inclusive understanding of disturbance-CDD 

dynamics.  

4. How Disturbances May Affect Local CDD in Individuals, Populations, and Communities  

4.1: Primary Effects of Disturbance on Apparent, Allelopathic, and Resource Interactions 

The primary mechanism by which disturbances might alter local stabilizing CDD is by 

strengthening or weakening the effects from its underlying drivers. Apparent, resource, and 

allelopathic interactions (Box 1-1, Figure 1-1) may all be altered by disturbance, which may 

increase or decrease the difference between local conspecific and heterospecific effects on 

performance depending on the primary effects of disturbance (Figure 1-2A). For example, 

combustion from wildfires reduces the abundance and colonization rates of many tree-associated 

mycorrhizal fungi (DeVan et al. 2023, Dove & Hart 2017). Reduced facilitation from mycorrhizal 

fungi following wildfire may cause stronger local stabilizing CDD because relatively host-specific 

benefits from mycorrhizal fungi should otherwise counteract stabilizing effects from shared 

pathogens. Alternatively, if wildfire were to disproportionately reduce the abundance of host-

specific pathogens relative to host-specific mutualists, then wildfire may weaken local stabilizing 

CDD, even to the point of generating local destabilizing CDD (Hewitt et al. 2023). Understanding 

how the underlying drivers of local stabilizing CDD respond to different categories of disturbance 

across time is key to estimating the relative differences between conspecific and heterospecific 

effects on individual performance.  
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A central challenge with generalizing the primary effects of disturbance on local 

interactions is that species do not monolithically respond to disturbance. Instead, individual 

performance in disturbed environments differs on life-history, stress tolerance, and functional trait 

axes (Lavorel et al. 1997), which together alter the apparent, allelopathic, and resource interactions 

generating local stabilizing CDD in recovering communities (Brown et al. 2020, Pu et al. 2020, 

Zhang et al. 2021). For example, fast growing tree species benefit from increased light (Seidl et 

al. 2014) but are often more susceptible to natural enemies due to reduced investment in physical 

and chemical defenses compared to slow-growing tree species (McCarthy-Neumann & Kobe 

2008, Zhu et al. 2018, Zang et al. 2021). The strength of apparent, allelopathic, and resource 

interactions of fast-growing and slow-growing tree species may therefore vary with life-history 

strategies and functional traits through community assembly and recovery.  

4.2: Primary Effects of Disturbance on Local Stabilizing CDD in Populations and Communities 

While not central to our synthesis, we highlight that disturbances may also alter the effect 

of local stabilizing CDD at the population and community scales by altering fitness hierarchies, 

selecting for closely-related species, and limiting conspecific densities (Fig 2B-C).  Such factors 

at higher levels of ecological organization likely influence the extent to which local stabilizing 

CDD scales up to impact populations and communities, and we highlight Scale Transition Theory 

as a potentially useful framework for understanding the scaling of local CDD effects (Chesson 

2012). Given that disturbances occur along variable spatial and temporal scales, creating complex 

feedbacks between individual-level processes and population-level outcomes, these factors are 

important considerations for future studies. 

Local stabilizing CDD is thought to stabilize populations that otherwise would not coexist 

due to intrinsic fitness differences, disadvantaging performance of otherwise dominant species and 
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maintaining local diversity (Adler et al. 2007, Chesson 2000). As disturbances alter the availability 

of space and resources (nutrients, light, space, etc.), they likely confer competitive advantages to 

species with disturbance-adapted traits - thereby generating novel fitness hierarchies in multi-

species communities (Figure 1-2B, Loehle 2000). The performance of disturbance-adapted species 

may be released from otherwise strong local stabilizing CDD if disturbances accentuate intrinsic 

fitness differences.  

Additionally, disturbed environments favor species that share similar adaptations – 

potentially increasing phylogenetic relatedness among recovering communities (Burns & Strauss 

2011). Increased relatedness may affect the degree to which heterospecific apparent, allelopathic, 

and resource interactions influence conspecifics, and vice versa. For example, many tree-

associated taxa (i.e., herbivores, mycorrhizal fungi, etc.) are clade or genera-specific (Novotny et 

al. 2002, Gilbert & Webb 2007), which can lead to stabilizing density effects at higher taxonomic 

levels (e.g., con-mycorrhizal density dependence; Averill et al. 2022, Delavaux et al. 2023, Zhu 

et al. 2015). Generally, we expect that increased relatedness could strengthen local stabilizing 

CDD by intensifying competitive interactions among related species – unless functional traits are 

uncorrelated with phylogeny (Bunker & Carson 2005, Mayfield & Levine 2010, Kraft et al. 2015).  

Finally, disturbance-altered local stabilizing CDD may have limited effects on community 

dynamics due to lower local densities following disturbances (Figure 1-2C, Kobe & Vriessendorp 

2011). For example, strong local stabilizing CDD may fail to influence populations or communities 

if disturbed conditions limit conspecific densities or interactions. Limited conspecific densities 

may have long-term consequences for community assembly driven by declines in relative host-

specificity among interactions. Altered fitness hierarchies, phylogenetic relatedness, and limited 

conspecific densities are important considerations for examining local CDD at the population and 
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community scales – but fall outside the scope of our synthesis which is primarily focused on the 

underlying interactions generating local stabilizing CDD in individual performance.  

5. Disturbance Severity and Biological Legacies  

The effects of disturbance on ecological communities depends on the severity as well as 

the spatial and temporal regime of disturbance (Figure 1-3, Turner 2010). Disturbances range from 

spatially and temporally discrete (e.g., wildfire, hurricanes) to spatially and temporally ambiguous, 

often overlapping in time and space (e.g., nutrient deposition, extreme heat events, drought; 

Graham et al. 2021, Reyer et al. 2015). These spatial and temporal disturbance regimes likely have 

long-term consequences for local conspecific and heterospecific densities as well as fitness 

hierarchies defining the effects of local CDD on community structure (Comita & Stump 2020). 

Generally, we predict that high frequencies or severities of disturbance are expected to limit 

conspecific densities and select for stress-tolerant species that generate less stabilizing conspecific 

density effects, thereby reducing the overall effect of local CDD on community assembly (Fig 3A-

B, Vasquez & Simberloff 2002). Still, severity and frequency are not sufficient to explain 

variations of local CDD along abiotic gradients, as the category of disturbance (i.e., interference, 

destruction, combined) plays a significant role in determining community dynamics through 

recovery (Box 1-2).  

Recovery and successional trajectories are frequently mediated by persisting abiotic 

properties, species compositions, and disturbance refugia – a phenomenon known as biological 

legacies or legacy effects (Bowd et al. 2021, Cuddington 2011, Jacquet & Altermatt 2020). 

Biological legacies are a primary pathway by which local stabilizing CDD may persist following 

disturbance. For example, root structures of damaged or dead trees may provide important refugia 

for host-associated natural enemies and mutualists (Mayer et al. 2022), which remain able to 
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influence performance among neighboring conspecific individuals (Magee et al. 2024). Similarly, 

legacies of resource and allelopathic interactions may persist through disturbance and alter the 

recovery of both conspecific and heterospecific individuals. Thus, legacy effects are an important 

consideration for predicting local stabilizing CDD through initial and late recovery.  

In the following sections we discuss the implications of the three disturbance categories, 

interference, destruction, and combined, for local stabilizing CDD (Figure 1-4). In each 

disturbance category we 1) synthesize studies of local CDD along observational or experimental 

abiotic gradients, 2) predict the generalizable effects of disturbance on local stabilizing CDD, and 

3) present a prominent disturbance example to explore CDD-disturbance relationships in more 

detail. In each example we further specify the implications of local stabilizing CDD through initial 

and late recovery – highlighting gaps in knowledge and generating predictions where possible.  

6. Effects of Interference Disturbance on Local Stabilizing CDD 

Interference disturbances, which primarily alter abiotic conditions without immediately 

impacting tree species composition, are common and expected to increase in frequency and 

intensity over the next century (Box 1-2, Cook et al. 2018, Seidl et al. 2017). Initially, interference 

alters the availability and spatial heterogeneity of key limiting resources, such as water, nutrients, 

and light. Classic examples of interference include organic matter depletion (Federer et al. 1989), 

nitrogen deposition (Janssens et al. 2010), extreme rain events (Margrove et al. 2015), and drought. 

Given that many mechanisms driving local stabilizing CDD are directly related to resource 

availability or are impacted by resource-related stress, we emphasize that interference may have 

strong cascading effects on local stabilizing CDD in forest systems. To synthesize and highlight 

knowledge gaps, we focus on the primary effects and implications for recovery of a prominent 

natural interference disturbance: drought.  
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6.1. Initial Effects of Drought on Local Stabilizing CDD  

The initial mechanism by which drought alters local interactions is by reducing water 

availability, which likely affects the negative apparent interactions driving local stabilizing CDD. 

Moisture is a central requirement for the germination and dispersal of many pathogenic host-

associated taxa (fungi, bacteria, oomycetes, etc.), and reduced moisture is associated with reduced 

pathogen loads and pathogen spread between conspecifics (Milici et al. 2020, Boczoń et al. 2021). 

However, pathogenic host-associated taxa and herbivores also induce mortality at higher rates in 

drought-stressed adult trees compared to controls (Anderegg et al. 2015, Bell et al. 2020, Caldeira 

2019, Gely et al. 2020, Oliva et al. 2014). To date, most relevant studies of local stabilizing CDD 

have focused on small observational or experimental reductions in precipitation, finding that local 

stabilizing CDD weakens, even to the point of becoming destabilizing, with decreasing 

precipitation (Figure 1-4A; Bachelot et al. 2020, Jiang et al. 2024, Lebrija-Trejos et al. 2023, 

Milici et al. 2025, Ramage et al. 2023, Song et al. 2020, Song et al. 2024, Uriarte et al. 2018). 

There remain uncertainties over the degree to which this trend is generalizable across functional 

traits and life histories, and how drought severity and recovery timelines impact local stabilizing 

CDD (Bachelot et al. 2015, Milici et al. 2020). 

Key to understanding drought effects on local stabilizing CDD is the relative impact of 

reduced water availability on the abundance of host-specific natural enemies relative to generalists. 

Certain tree-associated pathogenic microorganisms are more protected from drought, including 

endophytic pathogens which colonize intercellular apoplastic spaces. Other pathogenic 

microorganisms, such as externally attached epiphytic pathogens, are likely more drought sensitive 

(Sohrabi et al. 2023). Little is known of the relative host-specificity of epiphytic and endophytic 

pathogens associated with tree roots (Barrett & Heil 2012), and our understanding is complicated 
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by microorganisms that switch from pathogenic to mutualistic, and endophytic to epiphytic, over 

life stages (Redman et al. 2001).  

General support for weakened local stabilizing CDD, or even local destabilizing CDD, 

under drought conditions may be caused by increasing effects of mutualistic interactions paired 

with declines in pathogen spread between conspecifics (Milici et al. 2020). For example, 

mycorrhizal fungi and leaf endophytes both confer drought tolerance by providing physical 

protections against water loss and pathogen infection as well as upregulating exchange of mineral 

ions and water (Augé et al. 2015, Püschel et al. 2021). Strong destabilizing apparent interactions 

with mutualists may therefore contribute to weaker local stabilizing CDD immediately following 

drought (Figure 1-4A, Bachelot et al. 2015, de Vries et al. 2023). Additionally, relative differences 

in host-specificity among mycorrhizal fungal types and leaf endophytes, along with functional trait 

variety in tree hosts, may underly species-specificity in initial drought effects on local stabilizing 

CDD (Lebrija-Trejos et al. 2023, Liu & He 2022, Ramage et al. 2023, Song et al. 2021, Uriarte et 

al. 2018). 

For example, the contribution of mycorrhizal fungi to local stabilizing CDD under drought 

likely varies between dominant eco-physiological types: ectomycorrhizal (EcM) and arbuscular 

mycorrhizal (AM; de Vries et al. 2023). AM fungi form arbuscules within root cell walls and 

therefore are thought to be more drought resistant than EcM fungi, which form sheaths around root 

structures and between root cells (Osonubi et al. 1991, Wu & Zou 2017, Kilpeläinen et al. 2017). 

AM fungi are also thought to be less relatively host-specific than EcM fungi therefore contribute 

less to local stabilizing CDD (Laliberté et al. 2015). Local stabilizing CDD may be 

disproportionately weakened in EcM trees relative to AM trees under drought, although the degree 

to which mycorrhizal type alters drought tolerance and recovery timelines remains uncertain. 
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Along with apparent interactions, the ratio of intraspecific to interspecific competition 

under drought appears to vary, likely contributing to local destabilizing CDD in some cases (Gazol 

& Camarero 2016, Lin et al. 2012), and local stabilizing CDD in others (O’Brien et al. 2017, 

Jourdan et al. 2020). These context dependencies are likely a product of novel fitness hierarchies 

under drought (Castagneri et al. 2022, Hommel et al. 2016). For example, species with 

disturbance-adapted traits may experience stronger stabilizing effects as spatially aggregated 

conspecifics compete for increasingly limited water and mobile soil nutrients. Future studies 

should consider interactions between intraspecific competition, functional traits, and the 

implications of reduced plant defenses under drought conditions as factors affecting the strength 

and directionality of local stabilizing CDD.   

6.2. Effects of Drought on Local Stabilizing CDD through Late Recovery 

As forest communities recover from drought, increased adult mortality rates open forests 

canopies and reduce microclimatic buffering – increasing sub-canopy temperatures and incident 

radiation levels (Hanson & Weltzin 2000). Increased temperatures may be particularly relevant for 

early ontogenetic stages such as seedlings, where local stabilizing CDD effects on performance 

are generally strongest (Comita et al. 2014, Song et al. 2021). Among seedlings, there appears to 

be no generalizable effects of warming on local stabilizing CDD (Table 1-1, Bachelot et al. 2020, 

Germain & Lutz 2022, Liu & He 2021, Song et al. 2018). Disparity among prior studies may point 

to nonlinear functional responses to drought depending on the intensity of warming. For example, 

Bachelot et al. (2020) find evidence for increased survival for conspecific seedlings under strong 

warming (4°C) while Liu & He (2021) find decreased survival for conspecific seedlings under 

weaker warming conditions (1.2 ± 0.5°C). There also appears to be a role for functional traits 
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(Song et al. 2021) and tolerance among host-associated taxa (Liu & He 2022) in mediating 

warming effects on local CDD.  

Beyond warming effects, the relative strength of apparent, allelopathic, and resource 

interactions through late recovery remains largely underexplored. Uriarte et al. (2018) found 

evidence for stabilizing local CDD in dry tropical sites, but not for wet tropical sites under drought 

conditions, which may indicate that short- and long-term drought have different implications for 

community assembly. Reduced plant defenses under drought may persist through late recovery 

(Xu et al. 2010), increasing the stabilizing effect of antagonists. Reduced defenses may also 

contribute to increased stabilizing apparent interactions through the proliferation of secondary 

antagonists that specifically target weak, stressed trees (Jactel et al. 2012). However, decreased 

defenses may not always translate to stronger stabilizing effects, such as when reduced production 

of negative allelopathic compounds weakens local stabilizing CDD in regenerating seedlings 

(Hasanuzzaman et al. 2013). Moreover, the implications of weakened tree defenses and additional 

secondary antagonists for local stabilizing CDD may or may not be additive and may vary between 

leaf and root structures where drought severity and recovery timelines also vary (Milici et al. 2020, 

de Vries et al. 2023). We highlight interactions between reduced defenses, reduced allelopathy, 

and increased virulence of primary and secondary antagonists as important considerations for 

future studies assessing local stabilizing CDD under drought.  

6.3. Predictions and Gaps for Local Stabilizing CDD and Interference Disturbances 

Interference disturbances are thought to have wide ranging implications on the underlying 

apparent, allelopathic, and resource interactions driving local stabilizing CDD. We predict that 

local CDD becomes generally destabilizing following interference and returns to stabilizing as 

recovery progresses (Figure 1-4A). There are several important limitations to our predictions. First, 
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most studies of local CDD under interference rely on short-term variations or seasonal differences 

of precipitation, nutrients, and temperature and disproportionately examine seedling mortality in 

tropical systems (Table 1-1). Interference effects may be limited among seedlings when nearby 

canopy adults buffer against macroclimatic extremes (de Frenne et al. 2021), an effect which may 

only erode under severe interference (Davis et al. 2019). Studies of interference under buffered 

canopies may miss critical interactions with light availability, warming, and seedling performance 

that only emerge when disturbance is severe or prolonged. Second, recovery from interference 

involves factors that may not be present following short-term interference, including secondary 

antagonists and compound disturbance events (e.g., insect outbreaks following wildfire; Gely et 

al. 2020, Littell et al. 2016). Additionally, functional trait and life history variety among 

individuals in local communities is likely to modulate the effects of interference on local 

stabilizing CDD, although this has received relatively little attention in the literature. We 

emphasize the need for observational and experimental studies of population dynamics under 

severe and long-term interference to increase our confidence in predicting future community 

responses to drought and other interference disturbances.  

7. Effects of Destruction Disturbance on Local Stabilizing CDD 

Destruction disturbances primarily alter plant competitive densities, compositions, and 

condition, while having limited initial effects on nutrient and chemical properties (Box 1-2). 

Destruction disturbances are highly variable in spatial scale, ranging from local windfall events or 

pathogen infections that create patches of downed trees to landscape-scale destructive disturbances 

such as hurricanes or massive pathogen outbreaks. Destructions disturbances are often associated 

with biological legacies in the form of remnant trees, residual organisms (e.g., microbes, 

herbivores), propagules, and abiotic conditions (e.g., allelopathy, spatial resource patterns) 
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influenced by previous plant compositions (Johnstone et al. 2016). To date, the degree to which 

destruction and biological legacies interact to influence local stabilizing CDD remains largely 

unstudied. Chan et al. (2023) simulate that local stabilizing CDD may be relatively unaffected by 

destruction disturbance if legacies of conspecific density are strong. Magee et al. (2024) 

corroborate this prediction, finding that local stabilizing CDD among adult trees remains strong, 

and even becomes more stabilizing, when individual mortality events are considered. Still, others 

find that biological legacies may erode quickly after destruction disturbances – or even flip from 

stabilizing to destabilizing (Figure 1-4B, Brown et al. 2021, Esch & Kobe 2021). To synthesize 

and highlight knowledge gaps, we focus on how local stabilizing CDD responds both in initial and 

late recovery from a prominent destruction disturbance: windthrow. 

7.1. Initial Effects of Windthrow on Local Stabilizing CDD 

Windthrow generates canopy gaps and structural heterogeneity, reducing host availability 

and indirectly altering resource environments (Ulanova 2000). To date, few studies have focused 

explicitly on local stabilizing CDD in gaps despite their ubiquity and potential to affect forest 

structure (but see Brown et al. 2021, Wulantuya et al. 2020). For species with root functional traits 

conferring resistance to wind-damage, such as deep root systems or roots that spread laterally into 

regions of dense soil (Dupuy et al. 2005, Ray & Nicoll 1998), windthrow may increase the ratio 

of intraspecific resource competition relative to interspecific competition. Shared functional traits 

and life history strategies among wind-resistant trees may translate to increased intraspecific 

competition for limiting resources – although these effects may be muted by an overall release 

from competitive interactions.  

We predict that windthrow effects on local stabilizing CDD through initial recovery largely 

depend on the spatial patterns and scale of disturbance. Small windthrow events, where 
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atmospheric and light conditions remain relatively unchanged, likely maintain stronger biological 

legacies (Sicoe et al. 2023). In contrast, larger events may create edge-like conditions where local 

stabilizing CDD is typically weaker (Krishnadas et al. 2018). Patch connectivity further influences 

these dynamics – larger and more connected patches maintain more diverse communities of host-

specific organisms (Johnsone et al. 2016), while the arrangement of fallen trees can create 

corridors or barriers affecting organism movement between patches (Franklin et al. 2000). In areas 

with numerous canopy gaps, Brown et al. (2021) found that local CDD varied from stabilizing to 

neutral to destabilizing among sapling species – potentially pointing to the importance of 

functional traits in determining disturbances responses. Wulantuya et al. (2020) found similar 

functional variety, with shade-tolerant trees experiencing more stabilizing local CDD in gaps 

relative to shade intolerant species. We expect small-scale windthrow disturbances to have limited 

initial effects on the apparent and allelopathic interactions contributing to local CDD. Allelopathic 

compounds likely persist in relatively unaltered soils, particularly where fallen trees create dense 

patches of woody debris. Similarly, apparent drivers of local stabilizing CDD, such as microbial 

communities and herbivores, likely persist in undisturbed soils and gap refugia (Seidl et al. 2014).  

7.2. Effects of Windthrow on Local Stabilizing CDD through Late Recovery 

The persistence of biological legacies of local stabilizing CDD through recovery likely 

depends on system-specific decomposition and nutrient cycling rates (Johnstone et al. 2016, Ke & 

Levine 2021). For example, microbial compositions appear to quickly to match pre-disturbance 

compositions in some systems (Mayer et al. 2022), and follow priority effects towards alternative 

stable states in others (Jacquet & Altermatt 2020, Miller et al. 2021). Rapid turnover may 

contribute to findings that legacies of local stabilizing CDD in seedling mortality erodes rapidly 

following destruction (Esch & Kobe 2021). However, legacies of local stabilizing CDD may 
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persist longer in adults, particularly after small-scale individual mortality events (Magee et al. 

2024). Since successional stages are correlated with distinct microbial compositions (Liang et al. 

2022), future studies of local stabilizing CDD following destruction disturbance should consider 

life and successional stages, microbial priority effects, and system-specific turnover rates.  

 

Late recovery following windthrow disturbance is characterized by increased light 

availability and radiation and decreased moisture and microclimatic buffering (Mitchell 2013), 

which likely reduces the abundance and spread of natural enemies – and may amplify the effects 

of mutualists on individual performance (Wulantuya et al. 2020). Locally dry and hot conditions, 

coupled with mechanical damage, likely increases the susceptibility of trees to secondary 

antagonists (Bouget & Duelli 2004), which could strengthen local stabilizing CDD. Ultimately, 

we expect that correlated changes to abiotic conditions and apparent interactions will have 

significant implications for remnant tree health and local stabilizing CDD through recovery. 

During long trajectories of recovery, repeated windthrow events can promote structural 

complexity, which may have emergent effects on local stabilizing CDD at both individual and 

community scales. Windthrow-generated structural heterogeneity can persist for extended periods 

(Ulanova 2000, Marra et al. 2014), creating diverse microhabitats that promote local diversity and 

could contribute to stronger local stabilizing CDD. However, repeated windthrow events may also 

limit conspecific densities and reduce the effects of local CDD on community dynamics (Kobe & 

Vriesendorp 2011). We emphasize that structural heterogeneity, biological legacies, and 

microclimatic conditions generated by windthrow are all important factors to consider when 

assessing local stabilizing CDD in destruction-disturbed forests.   
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7.3. Predictions and Gaps for Local Stabilizing CDD and Destruction Disturbances 

Destruction disturbances present interesting opportunities for studying how biological 

legacies and spatially heterogenous disturbance patterns affect local stabilizing CDD. We predict 

that local CDD may initially remain strongly stabilizing following destruction disturbances, 

especially if injured trees enhance the stabilizing effect of antagonists and intraspecific 

competition (Figure 1-4B). As recovery progresses, we predict that strong legacies of local CDD 

may slowly weaken as abiotic conditions become less favorable to tree-associated microbiomes 

and new spatial patterns of tree hosts emerge. Several important knowledge gaps remain. First, the 

relative importance of biological legacies versus remnant-tree populations in maintaining local 

stabilizing CDD following destruction is poorly understood. Second, the spatial scale at which 

destruction affects local stabilizing CDD requires further study, particularly how the size and 

distribution of gaps influences apparent interactions (Brown et al. 2021). Finally, the interaction 

between destruction and other disturbances (e.g., insect outbreaks triggered by damaged trees) may 

have complex effects on local stabilizing CDD that warrant investigation. To address these gaps, 

we highlight the need for long-term studies and experimental manipulations of the interactions 

between gap size, biological legacies, and local stabilizing CDD following destruction disturbance. 

8. Effects of Combined Disturbance on Local Stabilizing CDD 

Combined disturbances are defined as ecological disturbances with initial effects on abiotic 

conditions as well as plant densities, compositions, and/or mean plant condition (Box 1-2). In 

forests, combined disturbances alter the physical structure and composition of trees, soil properties, 

and the nutrient-cycling processes that define community structure and function (Huston 2014). 

Many combined disturbance events, such as wildfires, are increasing in frequency, extent, and 

intensity with climate change (Ellis et al. 2022). To date, little is known about how combined 
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disturbances interact with local stabilizing CDD. The prevailing paradigm is that combined 

disturbances decrease the relative importance of biotic interactions relative to functional traits and 

abiotic conditions (Hollingsworth et al. 2013). In the following section, we highlight how this 

paradigm may be useful – and yet insufficient – to explain conspecific density effects in combined 

disturbance settings using a prominent example: wildfire.  

8.1. Initial Effects of Wildfire on Local Stabilizing CDD 

Wildfires initially induce tree mortality through combustion and lethal tissue temperatures, 

reducing conspecific densities and surging nutrient availability, particularly in the form of 

pyrogenic carbon (Bodi et al. 2014). Reduced conspecific densities, altered nutrient availability, 

and mortality among organisms generating stabilizing or destabilizing apparent interactions 

appears to generally neutralize local stabilizing CDD (HDD = CDD; Figure 1-4C; Senior et al. 

2018, Warneke et al. 2023). Influxes of pyrogenic carbon associated with wildfires can also 

neutralize allelopathic compounds (Zackrisson et al. 1996), potential reducing the stabilizing effect 

of negative allelopathy on local CDD. However, species-specific susceptibility to wildfire and the 

conditions created by the post-fire environment challenge generalizations (Furniss et al. 2022, 

Tamjidi & Lutz 2020). For example, wildfire likely reduces stabilizing resource interactions by 

increasing resource availability, which may advantage performance of fire-adapted species (such 

as those with functional advantages to survival in high-light, low moisture environments) over 

fire-susceptible species (Andreu et al. 2001, Burkle et al. 2015, Spasojevic et al. 2016). However, 

relative intraspecific competition among fire-adapted species, and increased phylogenetic 

relatedness in the post-fire environment, may intensify local stabilizing CDD through initial 

recovery. 
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Along with altered abiotic conditions and spatial patterns of nutrient availability, wildfires 

also have primary effects on belowground microbial communities of natural enemies and 

mutualists that drive apparent interactions between conspecific individuals. Increased nutrient 

availability and decreased allelopathic chemical concentrations following wildfire generally result 

in saprotroph-dominated fungal communities (Hewitt et al. 2023, Rodriguez-Ramos et al. 2021). 

Much remains uncertain surrounding the effects of wildfire on soil microbial communities that 

influence plant performance, including the degree to which wildfires impact host-specific 

antagonists relative to generalist antagonists and whether dead, remnant wood (e.g. debris and 

standing snags) provide refugia for host-specific antagonists (Senior et al. 2018. Warneke et al. 

2023). Among mutualists, ectomycorrhizal fungi are thought to be disproportionately susceptible 

to wildfire-induced mortality due to external root sheathing (Dove & Hart 2017, Mizraei et al. 

2023). Therefore, ectomycorrhizal trees may experience more stabilizing local CDD than pre-fire 

conditions – although these effects would be muted in community assembly if coupled with 

dramatic reductions in conspecific densities (Figure 1-3B, 1-4C).   

8.2. Effects of Wildfire on Local Stabilizing CDD through Late Recovery 

Limited studies indicate that the effects of conspecific adult density on community 

assembly through recovery are species- and context-specific (Furniss et al. 2020, Larson & 

Franklin 2005). Context-specificity may arise due to system-specific soil compositional changes, 

such as erosion, compaction, and changing nutrient abundances along with biological legacies 

(Bowd et al. 2021). Additionally, wildfire-produced charcoal from different tree species can have 

unique structural and chemical traits (Pluchon et al. 2015) that may have consequences for spatial 

relationships between conspecific densities and nutrient availability through recovery. Moreover, 

context-specific nutrient availability likely mediates novel spatial patterns of host-specific 
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antagonists and mutualists (Hewitt et al. 2023, Pulido-Chavez et al. 2021) in ways that may alter 

local stabilizing CDD (Furniss et al. 2022).  

We predict that some species-specificity in local stabilizing CDD through long-term 

recovery from wildfire arises from emergent effects of phylogenetic relatedness and shared tree-

associated taxa. For example, ectomycorrhizal fungi are more likely to disperse, establish, and 

thrive in burned areas relative to other tree-associated fungi that lack the ability to decompose 

organic matter (Day et al. 2020). If post-fire communities are closely phylogenetically-related and 

associate with ectomycorrhizal fungi, then local stabilizing CDD may be weak or destabilizing 

through recovery. To date, studies of microbial function and compositional changes following 

wildfire indicate a wide spectrum of resiliency among functions of the microbiome (e.g., nutrient 

cycling), and long-lasting priority effects on microbial community structure (Hewitt et al. 2023, 

Pérez-Valera et al. 2020). We emphasize that understanding changes to the tree-associated 

microbiome through late recovery is essential to estimating the strength and role of local stabilizing 

CDD.  

8.3. Predictions and Gaps for Local Stabilizing CDD and Combined Disturbances 

Combined disturbances present unique challenges for understanding local stabilizing CDD 

due to their simultaneous effects on conspecific densities and abiotic conditions. We predict that 

local stabilizing CDD is initially neutralized following most combined disturbances, which reduce 

conspecific densities and remove biological legacies (Furniss et al. 2022, Tamjidi & Lutz 2020, 

Senior et al. 2018, Warneke et al. 2023). Through late recovery, the strength and direction of local 

stabilizing CDD likely depends on interactions between pyrogenic carbon, disturbance refugia, 

and the success of antagonists relative to mutualists in colonizing disturbed sites (Furniss et al. 

2020, Larson & Franklin 2005). Several critical knowledge gaps remain. First, the relative host-
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specificity of early-colonizing microbes following combined disturbances, and their effects on 

remnant tree hosts, requires further study (Nelson et al. 2022). Second, the degree to which novel 

nutrient compositions alter apparent and allelopathic interactions through initial and later recovery 

remains poorly understood. Finally, the severity and spatial heterogeneity of combined disturbance 

may create complex mosaics of local stabilizing CDD with unpredictable or emergent effects at 

population and community scales. We emphasize that research should focus on long-term studies 

across gradients of severity and incorporate the effects of refugia and successional trajectories on 

local stabilizing CDD.  

9. Special Considerations for CDD-Disturbance Dynamics 

9.1. Biological Invasion 

A related conservation concern associated with ecological disturbances is the establishment 

and proliferation of naturalized taxa. Ecological disturbances open niche space and alter fitness 

hierarchies, priming disturbed areas for invasion (Hobbs & Huenneke 1992, Lembrechts et al. 

2016). This is reflected in the life-histories and functional traits of many prominent naturalized 

plants, which thrive in high-light, low-nutrient disturbed environments. The potential effects of 

invasion on local stabilizing CDD have received relatively more attention in the literature than the 

drivers of ecological disturbance discussed here (see Klironomos 2002, Mitchell et al. 2006, 

Reinhart & Callaway 2006, Sullivan et al. 2017, Taylor & Hasting 2005). Much like interference 

disturbances, biological invasions alter interactions between trees and their surrounding 

environment. Invading taxa are often released from natural enemies, negative resource 

interactions, and negative allelopathic interactions, and therefore are expected to exhibit 

destabilizing CDD (enemy-release hypothesis; Williamson 1996, Williams & Levine 2018). 

However, enemy release likely correlates with mutualist release, a potential limit to local diversity 
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(Delavaux et al. 2024). Future studies of the enemy-release hypothesis in the context of local 

stabilizing CDD could shed light on the degree to which invasion success is mediated by the 

underlying drivers of local CDD and the role of functional similarity or phylogenetic relatedness 

in driving invasion patterns.  

9.2. Temporal Variation and Climate Change: A Split Perspective 

We know little about how novel disturbance regimes under climate change may affect the 

strength and role of local stabilizing CDD. Warming and novel disturbance regimes are likely to 

increase average physiological stress and phenological mismatches (Keeler et al. 2021), potentially 

weakening the underlying drivers of local stabilizing CDD and generating cascading negative 

impacts on species diversity, productivity, and carbon storage (Broekman et al. 2019, Germain & 

Lutz 2022). Additionally, increasing interannual climate variability may weaken local stabilizing 

CDD by exposing individuals to novel and extreme abiotic conditions (Germain & Lutz 2020). 

However, there remains the possibility that warming and altered climatic regimes may benefit 

pathogens driving local stabilizing CDD (Delgado-Baquerizo et al. 2020, Pugnaire et al. 2019), as 

well as the possibility that species with similar functional traits (i.e., “winners” of climate change) 

may contribute to communities where intraspecific competition is disproportionately strong (de 

Bello et al. 2021). Predictions of forest composition and diversity under future climate scenarios 

should consider how stabilizing factors like local CDD may mediate community responses to a 

rapidly changing world. 

10. Conclusions 

Understanding how ecological disturbances influence the organisms that interact to 

generate local stabilizing CDD is critical to understanding individual performance, population 

growth, and local diversity across spatial and temporal scales. Our synthesis reveals that different 



 45 

categories of disturbance—interference, destruction, and combined—have distinct implications 

for the underlying drivers of local stabilizing CDD and their ability to influence community 

assembly. While interference disturbances weaken local stabilizing CDD and even generate 

destabilizing CDD, destruction disturbances may maintain stronger biological legacies of local 

stabilizing CDD, and combined disturbances often neutralize local stabilizing CDD entirely. 

Moving forward, empirical studies that integrate local stabilizing CDD within broader ecological 

frameworks of disturbance and recovery will be essential for predicting community responses to 

novel disturbance regimes. Particular attention should be paid to species-specific responses, spatial 

heterogeneity of disturbance effects, and the persistence of biological legacies through recovery - 

all of which may fundamentally alter how local biotic interactions contribute to maintaining 

species diversity in an era of accelerating global change. 
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Boxes, Figures and Tables 

Box 1-1: Defining the Drivers Causing Local Conspecific Density Dependence (CDD) to be 
stronger than Local Heterospecific Density Dependence (HDD)  
Hülsmann et al. (2021) categorize the mechanisms capable of generating local stabilizing CDD 
(also negative CDD; CNDD) into three separate groups: 1) host-specific enemies, 2) abiotic niche 
differentiation, and 3) autotoxicity. Here, we additionally integrate the drivers capable of 
generating destabilizing CDD including host-specific mutualists, strong interspecific competition, 
and allelopathy (Figure 1-1). We generalize these new categories to 1) apparent interactions, 2) 
resource interactions, and 3) allelopathic interactions. Importantly, stabilizing and destabilizing 
CDD are defined in relation to heterospecific densities, or the measurement of conspecific effects 
after accounting for the effects of heterospecifics (Hülsmann et al. 2024, LaManna et al. 2024).  
 
Apparent Interactions 
Local CDD in trees is most often stabilizing and largely thought to be generated by negative 
apparent interactions with host-specific taxa in the phyllosphere and rhizosphere; including 
herbivores, root and leaf-associated fungi, and other microscopic organisms (apparent 
competition; Bagchi et al. 2010, Bachelot et al. 2020, Chen et al. 2019, Desprez-Loustau et al. 
2006, Holt 1977, Liu et al. 2022, Mangan. et al. 2010, Packer & Clay 2000, Song et al. 2018). 
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However, local CDD can also be destabilizing, driven by positive apparent interactions with 
mycorrhizal fungi and mutualistic foliar endophytes (apparent facilitation; Bachelot et al. 2015, 
Delavaux et al. 2023, Pu et al. 2022, Zahra et al. 2021). Together, antagonistic and mutualistic 
apparent interactions contribute to the net stabilizing or destabilizing effects of local CDD (Bever 
et al. 1997, Jiang et al. 2020) 
 
Resource Interactions 
Local stabilizing CDD in trees can also be generated by strong intraspecific relative to interspecific 
competition. For example, many tree species exploit resources or habitat spaces in a manner that 
reduces the survival and growth of other nearby conspecific individuals, thereby generating local 
stabilizing CDD (Comita et al. 2014, Johnson et al. 2017). Resource interactions often contribute 
to local stabilizing CDD at both individual (Umaña et al. 2018) and population scales (Wiegand 
et al. 2021). While less common, resource interactions can also generate local destabilizing CDD 
through stronger interspecific competition than intraspecific competition, which advantages 
demographic rates of clustered conspecifics relative to those near heterospecific individuals (e.g., 
resource facilitation such as hydraulic lift of limiting resources; Armas et al. 2010).  
 
Allelopathic* Interactions 
Less frequently invoked as a driver of local CDD are allelopathic compounds produced by trees. 
These compounds can generate locally stabilizing or destabilizing CDD by disproportionately 
impacting the growth and survival of conspecific individuals relative to heterospecific individuals 
(Mazzoleni et al. 2015, Hierro & Callaway 2021, Yuan & van Kleunen 2022). Allelopathic 
interactions are thought to be most often stabilizing, such as chemical production that inhibits 
conspecific relative to heterospecific demographic rates. However, allelopathic interactions can 
also be destabilizing when allelopathy benefits conspecific demographic rates relative to 
heterospecifics (e.g., pathogen suppression).  
 
*In 1937, Molisch first presented the term allelopathy with the publication of The influence of one plant on another: 
allelopathy (Molisch 1937 [2001]). Although our modern use of pathy often exclusively refers to harmful, negative 
effects, Molisch’s original definition sought to incorporate both positive and negative chemical interactions among 
plants. Here, we use the original meaning of Molisch’s term allelopathy, and distinguish directionality with “positive”, 
“negative”, or “neutral” (as described by Hierro & Callaway 2021). 

Box 1-2: Defining Categories of Ecological Disturbance for Understanding Disturbance Effects 
on CDD 
In 1985, Edward Rykiel proposed four categories for ecological disturbances: interference, 
destruction, decomposition, and suppression (Rykiel 1985). Here, we adapt these categories to 
delineate how different disturbances may have differing effects on the underling apparent, 
allelopathic, and resource interactions generating local stabilizing CDD in forests.    
 
Interference  
- Rykiel 1985 Definition: Matter/energy/information exchange processes are inhibited. 
- Working Definition: An event or agent that primarily alters nutrient availability or chemical 

properties in the system while leaving plant competitive densities and compositions relatively 
intact.  

- Examples: In trees this category of disturbance most often influences soil nutrient, water, and 
light availability. Prominent examples of interference include drought, nutrient depletion, and 
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nutrient decomposition – all of which primarily act by altering the availability and 
compositional heterogeneity of resources.  

Destruction 
- Rykiel 1985 Definition: Existing biomass is reduced in quantity (see also Grime 1979). 
- Working Definition: An event or agent that dramatically alters plant competitive densities and 

compositions, or lowers mean plant health, while leaving nutrient and chemical properties 
largely intact. 

- Examples: Prominent examples of plant disturbances include logging, windthrow (treefall), 
and epidemics caused by disease or herbivory – all of which primarily act by altering 
aboveground tree structures.  

Combined (Discomposition) 
- Rykiel 1985 Definition: Particular populations are selectively eliminated, reduced, added, or 

expanded. 
- Working Definition: An event or agent that comprehensively alters plant composition, nutrient 

availability, and mean plant health.  
- Examples: Prominent examples of combined disturbances include wildfire and geologic 

disturbances that initiate primary succession. These disturbances act by altering nutrients, 
habitat availability, and pre-disturbance tree composition. 

While useful for understanding locally mediated biotic interactions, we acknowledge that many 
ecological disturbances do not cleanly fall into interference or destruction disturbance categories. 
Many disturbances, including windthrow and drought, have secondary implications for both 
nutrient availability and aboveground tree structures. We emphasize that categories are based on 
their primary mode of impact on forests – which has consequences for community assembly, 
successional trajectories, and the net effect of disturbance on local biotic interactions through 
recovery. 
 
Table 1-1: Empirical Studies of Local CDD Along Abiotic Gradients (Selected Publications) 

Paper System Life Stage  Study 
Type 

Interactions Between 
Environmental Variable 
and Conspecific Density 

Effects 
(M = mortality, G = growth) 

Light 
Augspurger & Kelly 
1984 

Tropical Forest Seedlings Obs. Weakens local stabilizing 
CDD (M) 

Holík et al. 2021 Temperate Forest Seedlings Obs. Weakens local stabilizing 
CDD (M) 

Inman-Nahari et al. 
2016 

Tropical Forest Seedlings Obs. Weakens local stabilizing 
CDD (M) 

Kobe & Vriesendorp 
2011 

Tropical Forest Seedlings Obs. Weakens local stabilizing 
CDD (M) 

McCarthy-Neumann & 
Ibanez 2013 

Tropical Forest Seedlings Exp. Weakens local stabilizing 
CDD (M) 

Record et al. 2016 Tropical Forest Seedlings Obs. Weakens local stabilizing 
CDD (M) 
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Brown et al. 2021 Temperate Forest Saplings  
(2-12.7-cm DBH) 

Obs. Weakens local stabilizing 
CDD (G) 

Song et al. 2021 Tropical Forest Seedlings Obs. Weakens local stabilizing 
CDD (G) 

Soil Nutrients  
Brown et al. 2021 Temperate Forest Saplings  

(2-12.7-cm DBH) 
Obs. Weakens local stabilizing 

CDD (G) 
LaManna et al. 2016 Temperate Forest Seedlings & 

Saplings  
(<10-cm DBH) 

Obs. Strengthens local stabilizing 
CDD (M) 

Record et al. 2016 Tropical Forest Seedlings Obs. Weakens local stabilizing 
CDD (M) 

Zhang et al. 2021 Tropical Forest Adults (≥1-cm 
DBH) 

Obs. Strengthens local stabilizing 
CDD (M) 

Moisture/Precipitation 
Bachelot et al. 2020 Tropical Forest Seedlings Obs. No distinct effect on local 

stabilizing CDD (G & M) 

Lebrija-Trejos et al. 
2023 

Tropical Forest Seedlings Exp. Strengthens local stabilizing 
CDD (M) 

Lin et al. 2012 Tropical Forest Seedlings Obs. No distinct effect on local 
stabilizing CDD (G & M) 

Milici et al. 2025 Tropical Forest Seedlings Exp. Strengthens local stabilizing 
CDD (G & M) 

O’Brien et al. 2017 Tropical Forest Seedlings Exp. Strengthens local stabilizing 
CDD (G) 

Song et al. 2020 Tropical Forest Seedlings Obs. Strengthens local stabilizing 
CDD (M) 

Song et al. 2024 Tropical Forest Seedlings Obs. Strengthens local stabilizing 
CDD (M) 

Uriarte et al. 2018 Tropical Forest Seedlings Obs. Strengthens local stabilizing 
CDD (M) 

Temperature/Warming 
Bachelot et al. 2020 Tropical Forest Seedlings Exp. Weakens local stabilizing 

CDD in M but strengthens 
local stabilizing CDD in G 

Germain & Lutz 2022 Temperate Forest Adults (≥ 1-cm 
DBH) 

Obs. Weakens local stabilizing 
CDD (M) 

Liu & He 2021 Temperate Forest Seedlings Exp. Strengthens local stabilizing 
CDD (M) 

Liu & He 2022 Tropical Forest Seedlings Exp. Weakens local stabilizing 
CDD (M) for one of two focal 
species 

Song et al. 2018 Tropical Forest Seedlings Obs. Strengthens local stabilizing 
CDD (M) 

Elevation 
Fibich et al. 2021 Temperate Forest Saplings (<15-cm 

DBH) 
Obs. Weakens local stabilizing 

CDD (M) 
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LaManna et al. 2022 Temperate Forest Adults (≥ 5-cm 
DBH) 

Obs. Weakens local stabilizing 
CDD (M), particularly for 5 
to 15-cm DBH class) 

Xu & Yu 2014 Subtropical Forest Seedlings Obs. Weakens local stabilizing CDD 
(M) 

 

 
Figure 1-1: Contribution of apparent, allelopathic, and resource interactions to stabilizing or 
destabilizing local CDD. The drivers of local CDD can be divided into three categories: apparent, 
allelopathic, and resource interactions. Each of these interaction types may have positive 
(destabilizing) density effects on conspecific performance (circles, blue areas) or negative 
(stabilizing) density effects on conspecific performance (circles, pink areas). The net strength of 
stabilizing or destabilizing CDD, therefore, corresponds to the net strength and directionality of 
each interaction category. Importantly, local CDD is measured in reference to heterospecific 
densities. Heterospecific neighbors are represented as triangles. While the functional result of all 
drivers of local CDD remains constant (i.e, suppression or bolstering of local conspecific 
performance) the spatial patterns of these effects may vary with category. For instance, in forests 
trees draw down resources from their surrounding areas – often extending beyond root area via 
mycorrhizal networks. Allelopathic interactions, however, are almost always restricted to canopy 
crown area. This figure illustrates the similarities between apparent, allelopathic, and resource 
interactions, as well as how they may differ in spatial effects and contribution to net local CDD. 
For examples of each, refer to Box 1. Created in BioRender. Doolittle, C. (2025) 
https://BioRender.com/3x24can 
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Figure 1-2: Effects of disturbance on local stabilizing CDD. Local stabilizing CDD, arising from 
relatively host-specific interactions (Figure 1-1), is depicted here as the slope of the relationship 
between local population growth rate and local conspecific density (blue line). While not always 
negative (CDD < HDD), local stabilizing CDD is often hypothesized to maintain species diversity 
by maintaining species abundances at equilibrium where sloped growth-density lines cross zero. 
We acknowledge that these slopes may be positive (CDD < HDD) but simplify to negative effects 
here for brevity. Disturbances may affect the relationship between conspecific density and 
population growth (A) by altering the relatively host-specific interactions generating local 
stabilizing CDD. These may be small perturbations, or large to the point where population growth 
is no longer limited by density (no equilibrium abundance, red-dotted line). Disturbance-altered 
local CDD may be further affected by novel intrinsic fitness differences (B). Novel patterns of 
resource availability (light, space, nutrients, etc.) confer advantages to disturbance-adapted species 
and disadvantages for disturbance-sensitive species along functional trait and life history axes. 
Depicted is an average decline in fitness (population growth when conspecific density = 0, which 
decreases equilibrium abundance). Finally, repeat disturbance events or dramatic abiotic changes 
may reduce the effects of disturbance-altered local CDD on community dynamics by limiting 
conspecific densities (C; solid red line). Even if local stabilizing CDD is strong, severely limited 
conspecific densities would reduce the effects of local CDD on recovery. Here, we focus on the 
effects of disturbance on the underlying drivers of local CDD (A), but acknowledge that 
disturbances may alter the intercept and population growth equilibriums while not interfering with 
the underlying relationship between conspecific density and population growth (B-C). Created in 
BioRender. Doolittle, C. (2025) https://BioRender.com/zyo3735 
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Figure 1-3: Heatmaps of predicted impacts of disturbance regimes on the relative stabilizing 
strength of local CDD, as well as the contribution of local CDD to patterns of community 
assembly. Disturbance regimes, defined as patterns of disturbance severity and frequency, are 
expected to generally reduce the stabilizing effect of local CDD in individual performance as well 
as the contribution of local CDD to community structure and assembly (A). We predict that local 
stabilizing CDD will generally decrease in strength (become less stabilizing, green to white) with 
increasing disturbance severity and frequency. Along with disturbance effects on the stabilizing 
strength of local CDD, we predict that increases to disturbance frequency and severity decrease 
the potential for local CDD to affect community structure and assembly (B). In red regions, we 
predict that local CDD is unlikely to overcome novel fitness hierarchies and/or local conspecific 
density limits. Created in BioRender. Doolittle, C. (2025) https://BioRender.com/b969tv3 
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Figure 1-4: Predicted primary effects of (A) interference, (B) destruction, and (C) combined 
disturbances on local stabilizing CDD, and implications through short and long-term recovery. 
Disturbances have category-specific effects on the underlying drivers of local stabilizing CDD: 
apparent, allelopathic, and resource interactions, which may lead to category-specific strength and 
directionality of local stabilizing CDD through various stages of recovery. For each disturbance 
category, the black line represents our predictions for the relative strength and directionality of 
local CDD through disturbance and recovery. Grey shaded areas correspond to our relative 
confidence in predicted effects and highlight areas where more study is warranted. To formulate 
these predictions (and confidence intervals) we rely on selected studies of disturbance and 



 68 

environmental change across plant-soil feedback, conspecific density dependence, and frequency 
dependence literature. Letters correspond to specific studies on the right of each panel and are 
offset from one another for visual clarity – not to indicate relative differences in study timeline. 
When few empirical studies were available, we relied on related studies of conspecific density 
effects across changing environmental conditions to generate our predictions. These relevant non-
disturbance studies are outlined in a dashed-line circle instead of a solid-line circle. If the selected 
study found evidence for both positive and negative (destabilizing and stabilizing) effects, we 
included a red confidence interval to highlight uncertainty. Uriarte et al. (2018) find weakened 
conspecific density effects in dry years (Panel A, study D) and enhanced conspecific density 
effects at dry sites (Panel A, study D*). Additionally, our predictions were informed by several 
meta-analyses and syntheses which we include on the right side of each panel. We acknowledge 
that in certain systems local CDD begins as destabilizing but opt to begin our predictions at the 
most common observation: strong stabilizing CDD (CDD < HDD). Created in BioRender. 
Doolittle, C. (2025) https://BioRender.com/6iw6u8y 
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Abstract 

The frequency of both wildfires and extreme heat events is increasing with climate change, 

yet their combined effects on the composition and diversity of recovering forest ecosystems 

remains unclear. One way that disturbances may influence forest recovery is by altering 

neighborhood interactions between trees and relatively host-specific natural enemies and 

mutualists, which can contribute to the maintenance of local diversity by differentially affecting 

individual performance in conspecific relative to heterospecific neighborhoods. We investigated 

how wildfire and extreme heat influence such conspecific feedback by monitoring seedling 

mortality following a mixed-severity fire in the old-growth conifer forests of the Pacific 

Northwest. Because wildfires are known to reduce abundances of relatively host-specific natural 

enemies and mutualisms, we hypothesized that wildfire results in more equivalent performance in 

conspecific and heterospecific neighborhoods, thus neutralizing conspecific feedback. We tested 

this hypothesis using data on Douglas-fir (Pseudotsuga menziesii) and Western hemlock (Tsuga 

heterophylla) seedling mortality from 80 burned 1-m2 plots across a burn-severity gradient. We 

found that wildfire neutralized conspecific feedback in seedling survival regardless of the extent 

of heat exposure whereas conspecific feedback in seedling survival responded strongly to heat 

exposure in nearby unburned forest. These findings suggest that wildfire disrupts key 
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neighborhood interactions between trees and their natural enemies and mutualists that are thought 

to generate conspecific feedback and thereby contribute to forest structure. Increased mortality in 

burned areas was higher for shade-tolerant T. heterophylla relative to shade-intolerant P. menziesii. 

As climate change increases the co-occurrence of wildfire and heat extremes, the reduced 

contribution of neighborhood interactions to forest structure may erode tree species diversity and 

accelerate shifts toward fire-adapted species, with consequences for ecosystem resilience to future 

disturbance events.  

Introduction 

Ecologists have a longstanding interest in determining relationships between ecological 

disturbances and species diversity, which has grown increasingly critical to understanding the 

potential impacts of climate change on the structure and function of ecosystems (Clements, 1916; 

King, 1685; Lindenmayer et al., 2019; Turner, 2010). Disturbances are often thought to alter local 

diversity by influencing local abiotic conditions – effectively selecting “winners and losers” along 

functional traits and life-history strategies axes (Keith et al., 2007; McKinney & Lockwood, 1999; 

Noble & Slatyer, 1980; Tabarelli et al., 2012). However, the template upon which the structure, 

function, and diversity of post-disturbance communities is defined is not purely abiotic. 

Disturbances also alter the spatial arrangement, density, and identity of local competitors and other 

associates like natural enemies and mutualists, generating novel neighborhoods which may have 

cascading consequences for the function, diversity, and structure of subsequent communities 

(Doolittle & LaManna, 2025; Gasith & Resh, 1999; Post, 2013; van der Putten et al., 2013). Here, 

we use patterns of seedling regeneration following wildfire to assess the role of neighborhood 

interactions on the recovery of an old-growth forest community. 
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Neighborhood interactions are thought to contribute to the composition and diversity of 

local communities when conspecific neighborhoods have stronger or weaker effects on individual 

performance relative to heterospecific neighborhoods, a phenomenon known as local conspecific 

density dependence (local CDD; Smith 2022, Broekman et al. 2019, LaManna et al. 2024). Among 

early-life stage plants, local CDD is most often negative, meaning that seedlings in conspecific 

neighborhoods are disadvantaged (e.g., lower growth, higher mortality) relative to seedlings in 

heterospecific neighborhoods. This relationship between conspecific density and individual 

performance is thought to contribute to contribute to a rare-species advantage and stabilize 

populations under certain conditions (Broekman et al., 2019; Smith, 2022). Negative local CDD 

(also known as CNDD) has many potential causes, including strong intraspecific competition and 

relatively host-specific natural enemies that accumulate in conspecific neighborhoods (Comita et 

al., 2014; Janzen, 1970; Connell, 1971). While less prevalent, local CDD can also be positive, 

which has the potential to destabilize populations by advantaging conspecific aggregation and 

competitive exclusion due to mechanisms including strong interspecific competition and the 

accumulation of relatively host-specific mutualists in conspecific neighborhoods (Chesson, 2000; 

Delavaux et al., 2023; Jiang et al., 2021; Liang et al., 2021). Here we refer to local CDD as 

‘stabilizing’ or ‘destabilizing’ to refer to local conspecific density effects on individual 

performance that have the theoretical potential to affect population growth and species diversity 

under certain conditions (Broekman et al., 2019; Delavaux et al., 2023; LaManna et al., 2024; 

Wright, 2002; Zahra et al., 2021), and not as an explicit prediction of coexistence.  

Wildfire is an important disturbance that can restructure ecological communities, creating 

a complex mosaic of novel abiotic conditions and surviving competitors influential on subsequent 

patterns of recovery (Andrus et al., 2022; Bowd et al., 2021). Typically, fire effects in forest 
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communities are viewed through the lens of direct relationships between fire and plants (i.e., fire 

tolerance) and how fire modifies competitive relationships between plants. Yet, many factors 

contributing to individual plant performance, including local CDD, are driven by fire-prone 

apparent interactions between plants and host-associated enemies and mutualists (Hewitt et al., 

2023; Kardol et al., 2023). Accumulating evidence highlights the susceptibility of apparent 

interactions and local CDD to changing environmental conditions (Brown et al., 2021; LaManna 

et al., 2022; Liu & He, 2021, 2022; Song et al., 2018; Uriarte et al., 2018). A natural extension to 

this literature is to investigate the role that ecological disturbances, which dramatically and 

comprehensively changes environmental conditions, alter the contribution of local CDD to 

subsequent patterns of recovery (Doolittle & LaManna, 2025). 

One primary way that wildfire may alter local CDD is by altering the contribution of 

microbial natural enemies and mutualists to individual performance. For instance, fire often causes 

widespread mortality among ectomycorrhizal fungi (Cairney & Bastias, 2007; Taudière et al., 

2017), eliminating mutualists that would otherwise facilitate resource acquisition and pathogen 

defense among aggregated conspecifics (DeVan et al., 2023; Kardol et al., 2023). Along with 

ectomycorrhizal fungi, wildfires can reduce the abundance of microbial natural enemies, 

potentially reducing their contribution to local stabilizing CDD through early regeneration. 

(Nelson et al., 2022; Rodriguez-Ramos et al., 2021). Recent evidence from unburned forests 

indicate that ectomycorrhizal fungi and other relatively host-specific mutualists become 

increasingly influential to structuring plant communities in stressful environments, contributing to 

less stabilizing, or even destabilizing, local CDD under stress by bolstering growth and survival 

of nearby conspecifics (LaManna et al. in prep, Doolittle et al. in prep). However, since wildfires 

reduce abundances of the microbial natural enemies and mutualisms largely generating local CDD, 
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we may expect neutral local CDD and poor performance in post-fire environments regardless of 

environmental stress (Doolittle & LaManna, 2025). In other words, we predict that differences in 

seedling performance between conspecific and heterospecific neighborhoods evident in unburned 

forests are neutralized in recently burned forests and decoupled from environmental stress. 

Climate change is not only expected to increase the frequency and range of wildfire 

disturbances (Halofsky et al., 2020) but also the frequency and intensity of extreme heat events 

(McKinnon & Simpson, 2022). To the extent that these disturbances overlap, they may have 

unexpected and extreme effects on seedling performance with cascading consequences for the 

stability and functioning of future forest systems (Andrus et al., 2022; Furniss et al., 2020; A. L. 

Smith et al., 2014). Recent evidence suggests that local CDD is affected by temperature. Relatively 

small increases in temperature appear to benefit natural enemies (herbivores, fungal pathogens, 

etc.; Delgado-Baquerizo et al., 2020) and strengthen local stabilizing CDD (LaManna et al., 2022; 

Liu & He, 2021, Doolittle et al. in prep). However, extreme increases in temperature have been 

associated with less stabilizing local CDD (Bachelot et al., 2020; Germain & Lutz, 2022), 

potentially related to physiological thresholds for plants and/or associated natural enemies.  

In our study system, a recent study in unburned forests found that local CDD in seedlings 

becomes less stabilizing with increasing abiotic stress (nutrient limitation) along an elevation 

gradient (LaManna et al. in prep). However, this study also found that local CDD flips from 

stabilizing (less than zero) to destabilizing (greater than zero) at low elevations under increased 

exposure to extreme heat (LaManna et al. in prep). Extreme heat events (temperatures above 38° 

C) are through to cause local CDD to become more destabilizing because these temperatures are 

beyond thermal physiological limits of seedlings (Marias et al., 2017), increasing the value to 

plants of interactions with relatively host-specific mutualists such as mycorrhizae or foliar 
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mutualists that might help the plant maintain critical functions in extreme heat (Beniwal et al., 

2010; Lau et al., 2017). When combined with fire disturbance, we expect extreme heat events to 

have less of an impact on local CDD due to greatly reduced natural enemies and mutualists in the 

post-fire environment. In other words, we expect that fire erodes the relationship between local 

CDD and extreme heat events by reducing performance differences between seedlings in 

conspecific and heterospecific neighborhoods. Over longer periods of succession, understanding 

these interactive disturbance events becomes important to predicting recovery trajectories and the 

composition of early- to mid-seral forests (Anyomi et al., 2022; Tepley et al., 2014; Turner et al., 

1998). 

We aimed to gain a mechanistic understanding of how extreme heat and wildfire interact 

with neighborhood-scale biotic interactions to influence forest recovery from wildfire. We 

conducted an observational study of early post-fire seedling mortality following a large mixed-

severity fire and across multiple extreme heat events in the central Cascade Range of Oregon, 

USA. Seasonal rainforests in the Pacific Northwest, such as those in the central Cascade Mountain 

range, are characterized by old-growth forests where patterns of local CDD are well documented 

(LaManna et al. 2022, LaManna et al. in prep). Our study focused on two dominant conifer species 

that account for the majority of basal area in forests of the Pacific northwest of North America: 

Pseudotsuga menziesii (Douglas-fir) and Tsuga heterophylla (Western hemlock). We paired 

seedling demography surveys with post-fire forest inventory datasets to disentangle the relative 

importance of neighborhood effects and climatic extremes on seedling survival in the post-fire 

environment. We predicted that stabilizing and destabilizing local CDD observed in nearby 

unburned forests (LaManna et al. in prep) would instead be neutralized in burned forests (i.e., 

neither stabilizing or destabilizing, indicating roughly equivalent mortality rates between seedlings 
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growing under conspecific and heterospecific adult trees). Additionally, we predicted that local 

CDD would not vary under extreme heat due to the loss of natural enemies and mutualists in the 

post-fire environment. Our prediction differs from findings in unburned forests, where local CDD 

trends from stabilizing to destabilizing under extreme heat (LaManna et al. in prep). Understanding 

these mechanisms is crucial for predicting forest recovery patterns in an era where climate change 

is simultaneously altering fire regimes and increasing the frequency of extreme heat events across 

historically fire-infrequent forest ecosystems. 

Methods 

Site description 

This study took place at the Andrews Experimental Forest LTER near Blue River, Oregon. 

The tree communities at the Andrews LTER are characteristic of old-growth Pacific Northwest 

temperate rainforests, home to some of the tallest trees and largest above-ground biomass in forests 

globally. Canopies of these temperate rainforests are dominated by Douglas-fir (Pseudotsuga 

menziesii), Western red-cedar (Thuja plicata), Western hemlock (Tsuga heterophylla), and a 

variety of Abies species including Silver fir (Abies amabilis) and Noble fir (Abies procera). Many 

other broadleaf and conifer species are common in mid-canopy and understory canopy layers, 

including Big-leaf maple (Acer macrophyllum) and Pacific dogwood (Cornus nuttallii). At lower 

elevations, where our study took place, moderate temperatures and higher moisture provide a long 

growing season for evergreen plant species, even through mild conditions in winter (Waring & 

Franklin 1979). 

Establishing burned understory demography plots 

In 2020, the lower watersheds of the Andrews Forest experienced a mixed-severity wildfire 

as part of the Holiday Farm Fire, one of the largest wildfires in Oregon's history and part of the 
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historic Labor Day Fires (Reilly et al., 2022). To monitor the abiotic and biotic factors determining 

seedling survival following this fire, we established 80 1-m² understory demography plots in June 

and July of 2021 across a fire severity gradient within the old-growth Andrews Forest watersheds 

affected by the Holiday Farm Fire (WS02, WS09). We selected these specific watersheds because 

they contained long-term forest inventory plots (either 18-m diameter circles or 25-m2 squares) 

with available pre- and post-fire measurements as part of the Permanent Sample Plot (PSP) 

Program jointly run by Oregon State University and the USDA Forest Service Northwest Station 

(Franklin et al., 2024).  

We placed two 1-m2 demography plots within each PSP plot stratified under different focal 

adults and across fire severity. To minimize edge effects and ensure spatial independence, each 

demography plot was positioned at least 5-meters from the inventory plot boundary and at least 

10-meters from other demography plots. Since we were specifically interested in measuring 

pairwise feedbacks between conspecifics and heterospecifics, we placed each plot within 3-meters 

(mean = 1.83-m) of the base of a living adult focal tree (> 15-cm DBH, mean = 56.2-cm; Figure 

S2-2). Our focal trees were one of two species, Pseudotsuga menziesii (Douglas-fir) and Tsuga 

heterophylla (Western hemlock). In the lower watersheds of the Andrews, canopies are often 

dominated by P. menziesii, which limited our ability to place understory demography plots under 

dominant T. heterophylla adults. Our 80 plots were distributed between our focal species with 50 

understory demography plots under P. menziesii adults and 30 understory demography plots under 

T. heterophylla adults. In addition to being placed under living adults of our focal species, plots 

were also stratified along a fire severity gradient measured as percent basal area mortality of adult 

trees > 5-cm DBH in each PSP plot, surveyed in the summer (June – July) of 2021. Since we were 

interested in the effect of nearby living adults on seedling mortality, our range of fire severity was 
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constrained (0.1% - 75% basal area mortality; Figure S2-3). When possible, within the constraints 

of plot size and focal tree availability, plot location and azimuth to focal tree was randomized. 

Comparison to unburned understory demography plots 

Our 80 1-m2 understory demography plots were designed explicitly to match to those 

established in 2019 by LaManna et al. (in prep). Namely, seedling plots in both datasets were 

located within three meters of a focal adult and co-located with long-term forest inventory plots. 

Since LaManna et al. (in prep) utilize more focal species than available within our burned plots, 

we extracted seedling demography data for only low-elevation understory plots associated with 

either P. menziesii or T. heterophylla adults (55 total plots, 26 plots paired with P. menziesii, 29 

plots paired with T. heterophylla). This unburned seedling demography dataset used here to 

compare mortality between burned and unburned forest incorporated 922 total seedling 

observations; 76 P. menziesii seedlings under P. menziesii adults, 400 T. heterophylla seedlings 

under T. heterophylla adults, 83 P. menziesii seedlings under T. heterophylla adults, and 433 T. 

heterophylla seedlings under P. menziesii adults. Seedling mortality rates were estimated the same 

way for unburned and burned datasets (see analysis section below).  

Surveying burned understory demography plots 

We surveyed each understory demography plot annually during the summer growing 

season (June to October) from 2021 through 2024. Surveys were conducted by trained field 

technicians who received standardized training to ensure consistency in data collection protocols. 

For woody plants, we individually tagged each stem to track growth and mortality over time, 

measured height, and documented any visible injuries or diseases. We additionally measured plot-

level abiotic characteristics including light availability using a handheld mirror densiometer 

(Spherical Crown Densiometer, Concave Model C, Forestry Suppliers, Jackson, MS), plot char 
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cover, and any notable site conditions that might influence vegetation dynamics. We observed 

1207 seedlings in burned understory plots across 3 intervals from 2021 to 2024 (330 P. menziesii 

seedlings and 887 T. heterophylla seedlings; Table S2-2).  

At the beginning of our study (2021), all focal adults were living. However, by the end of 

our study (2024), 5 adults in the highest severity sites had experienced delayed mortality common 

to the post-fire environment (2 P. menziesii, 3 T. heterophylla adults; Brown et al., 2013). We 

accounted for delayed mortality by comparing our analysis to a secondary analysis excluding 

adults that experienced mortality, which had no impact on our inferences (Figure S2-4).  

Measuring the occurrence and intensity of extreme heat events 

Since our hypotheses of seedling performance were centered on the combined influence of 

neighborhood interactions and extreme heat events, we calculated the number of degree-hours that 

each seedling experienced above 38oC through each survey interval (Figure S2-1). 38o C was 

chosen a priori based on prior studies that indicate that key physiological processes involved with 

nutrient acquisition and photosynthesis in seedlings break down at temperatures exceeding 38o C 

(Marias et al., 2017). We included a categorical fixed effect in our models where each seedling 

experienced different levels of extreme heat being either ‘low’ degree-hours of extreme heat (less 

than 3 DH), ‘moderate’ degree-hours of extreme heat (3-10 DH) or ‘high’ degree-hours of extreme 

heat (greater than 10 DH; Table S2-1; Figure S2-3).  

Bayesian hierarchical models 

To evaluate the contribution of local neighborhoods and extreme heat events to annual 

seedling mortality in burned forest plots, we developed hierarchical Bayesian generalized additive 

mixed models (GAMMs). Our Bayesian GAMM approach is similar in design and execution to 
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the approach used in LaManna et al. (in prep). This approach generates posterior distributions (as 

opposed to point estimates) which were advantageous for the propagation of error through pairwise 

feedback calculation steps (addition and subtraction of posteriors). We used Bayesian GAMMs 

instead of generalized linear mixed models (GLMMs) because we hypothesized that responses to 

fire severity, seedling height, and seedling density may be non-linear across predictor ranges and 

between focal species (Hülsmann et al., 2024). All analyses were conducted in R, version R 4.2.1 

(R Core Team, 2021) using the ‘tidyverse’ packages (Wickham & RStudio, 2023) for preparation 

and visualization along with ‘brms’ (Bürkner et al., 2024) and ‘tidybayes’ (Kay, 2024) for 

hypothesis testing.  

We fit a series of flexible models to burned forest plots with a response variable for binary 

seedling mortality (hazard), where one indicated death and zero indicated survival across a single 

interval of annual surveys following a Bernoulli error distribution modeled through a logit link 

function. For each model, we began with a maximal random effect structure to fully account for 

spatial hierarchy and allow flexibility of hazard estimates across surveys. We selected the optimal 

random effect structure for each model using Leave-One-Out (LOO) cross-validation, EPLD 

scores, and LOO information criterion along with posterior predictive checks (Table S2-3; Barr et 

al., 2013). We tested the contribution of random intercepts for seedling survey interval, cohort, 

year of initial measurement, species, and neighborhood effects, as well as four spatial hierarchical 

levels which include individual understory demography plots, PSP quadrat or plot (within which 

two understory plots are located), reference stand (within which a set of PSP quadrats are located), 

and watershed (two levels referring to the different slopes that plots were located on; see Table 

S2-1). We additionally tested for two-way, three-way, and four-way interactions between species, 
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watershed, neighborhood effects, and year to capture any potential spatial or temporal divergences 

in effects through our study period.  

We included smooth functions to model the continuous contribution of seedling height, 

conspecific and total seedling density, and basal area mortality to seedling hazard (Pedersen et al., 

2019). We compared two approaches to letting each of these continuous predictors vary by species. 

First, we fit models with global thin-plane regression splines and species-specific factor-smooth 

interactions, which constrains the slope of response similarly between species. Next, we fit models 

with no global effect and separate thin-plane regression splines for each species, which allows 

complete independence in response of each species to the predictor. Using cross-validation we 

determined the second option, where separate thin-plane regression splines are fit to each species, 

to be a better fit to our data. Seedling height, conspecific and total seedling density, and basal area 

mortality smooth terms used 15 basis functions (k) to allow for complex non-linear relationships. 

Estimating pairwise feedbacks and watershed-level estimates 

To estimate relative differences between seedling mortality in conspecific and 

heterospecific adult neighborhoods, we quantified species-level and neighborhood-level mortality 

for our focal species and compared them using pairwise feedbacks (Bever, 2003; Bever et al., 

1997). Since our estimates are in terms of seedling mortality (as opposed to its inverse, survival), 

pairwise feedbacks 𝐼!	were calculated as:  

 

𝐼!!,#,$,% = 𝐴"!,#,$,% − 	𝐴#!,#,$,%	 −	𝐵#!,#,$,% 	+ 	𝐵"!,#,$,% 

where 𝐴#!,#,$,% and 𝐵#!,#,$,%	 represent the posterior distribution of mortality risk of T. heterophylla 

and P. menziesii under a conspecific adult for a given heat level ℎ, watershed 𝑤, interval 𝑖, and 
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cohort 𝑐, and 𝐴"!,#,$,% and 𝐵"!,#,$,%	 represent the posterior distribution of mortality risk of T. 

heterophylla and P. menziesii under a heterospecific adult in each parameter combination. We 

determined that fire severity (basal area mortality) had an insignificant effect on estimates and 

opted to average across the observed fire severity combinations (Figure S2-5).  

To have robust estimates of conspecific feedback in each condition, we estimated pairwise 

feedback 𝐼! as computed posterior draws from the expected value of the posterior predictive 

distribution nested within each level of extreme heat, watershed, interval, and cohort. Therefore, 

we only calculated feedbacks for only parameter combinations for which we observed seedlings 

in each of 𝐴#!,#,$,%, 𝐵#!,#,$,%	, 𝐴"!,#,$,%, and 𝐵"!,#,$,%	. In the case of low heat (less than 3 degree-

hours), we were unable to calculate posterior draws from the expected value of the posterior 

predictive distribution for 𝐴"!,#,$,% given data limitations (Table S2-1) and instead used our model 

to simulate the posterior predictive distribution for a new level for this one case. We caution that 

the estimate for 𝐴"!,#,$,% in low heat was not derived from seedlings observed in that exact 

parameter combination, but instead predicted from model fit borrowing information from 𝐴" under 

different combinations of h, w, i, and c. For all resulting posterior distributions for 𝐼!&,#,$,% we then 

averaged across intervals and cohorts to get a watershed-level mean feedback posterior. 

We then used Bayesian bootstrapping (Rubin, 1981) to make inferences on the posterior 

distributions of species-level and neighborhood-level mortality and feedback posteriors across 

watersheds. Our application of the Bayesian bootstrap accounts for the fact that the watersheds 

used in this study were a subsample of the broader population of forest watersheds affected by 

wildfire. We weighted each watershed by its area and iterated over randomly determined Dirichlet 

weights at each posterior sample to achieve a mean posterior across watersheds. We tested our 

hypotheses relating to the impact of wildfire on mortality and local CDD by comparing our 
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posteriors to those of LaManna et al. in prep (which used identical methods and analytical 

approaches). To aid in interpretation, we denote contrasts for which the 95% credible interval did 

not overlap 0 as significant.   

Results 

Drivers of Seedling Mortality 

Our analysis revealed that wildfire increased average mortality rates (Figure 2-1A), largely 

driven by increases to T. heterophylla mortality across heat levels: low (mean difference = 0.409, 

95% CI [0.146, 0.648]), mid (mean difference = 0.280, 95% CI [0.117, 0.498]), and high (mean 

difference = 0.258, 95% CI [0.112, 0.473]). P. menziesii seedling mortality rates increased less 

dramatically, only significantly higher across intervals with high levels of extreme heat (> 10 

degree-hours; Fig 1B). Species contrasts within heat levels indicate that in burned plots, T. 

heterophylla experienced significantly higher mortality than P. menziesii at both low (mean 

difference = 0.143, 95% CI [0.020, 0.305]) and moderate levels of extreme heat (mean difference 

= 0.115, 95% CI [0.009, 0.241]), while no significant species-level differences were observed 

under high levels of extreme heat (Table S2-4). Of all factors examined between unburned and 

burned models, burn condition (i.e., burned or unburned) had the strongest overall effect (average 

effect size = 0.316), followed by extreme heat events (0.184) and species identity (0.129). Pairwise 

contrasts for all species-level contrasts are presented in Table S2-4.  

Pairwise Feedbacks 

Mortality under conspecifics and heterospecifics was consistently higher in burned plots 

relative to unburned plots (Fig 2 A, B). As in LaManna et al. (in prep), we find that heterospecifics 

mortality significantly increases between low and moderate levels of extreme heat. Pairwise 
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feedbacks between our focal species trended towards negative in unburned demography plots at 

low levels of extreme heat (mean = -0.14; 95% CI [-0.38, 0.10]) and positive in unburned 

demography plots at high levels of extreme heat (mean = 0.159, 95% CI [0.390,-0.0658]). Burned 

feedbacks, however, did not vary with level of extreme heat. Still, burned feedbacks were 

marginally less than unburned feedbacks high levels of extreme heat (difference mean = -0.19, 

90% CI [-0.38 – 0.002]). Pairwise contrasts for all feedback estimates are available in Table S2-5.  

Discussion 

Our findings provide evidence that wildfires neutralize local CDD and the effects of 

extreme heat on patterns of seedling mortality. We find that mortality in burned plots is 

consistently higher than unburned plots under both conspecific and heterospecific adults across 

levels of extreme heat (Figure 2), contributing to broadly neutral conspecific feedbacks between 

our focal species (Figure 2-2C). This result contrasts with the findings of LaManna et al. (in prep), 

where pairwise feedbacks between P. menziesii and T. heterophylla become increasingly positive 

(destabilizing) with increasing levels of extreme heat exposure. Finally, we find general increases 

to average mortality across our species, most prominently reflected in T. heterophylla at low and 

moderate heat levels, highlighting the importance of integrating life-history into frameworks of 

recovery (Fig 1A, B). Our findings add to a small but growing body of literature finding neutral 

feedbacks in burned forests (Senior et al., 2018; Warneke et al., 2023), and pointing to extreme 

heat events as mediators of conspecific feedback (Bachelot et al., 2020; Germain & Lutz, 2022). 

Together, our findings highlight the importance of considering the combined effects of multiple 

stressors when considering the maintenance of species diversity in disturbed forests.   

Wildfire neutralizes differences between seedling mortality in environments dominated by 

conspecific and heterospecific adult trees in our system with important implications for forest 
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composition and recovery. We caution that our interpretation of pairwise feedbacks in burned plots 

experiencing low levels of extreme heat is based on a relatively small sample size (Table S2-1). 

However, we also highlight that our findings are consistent other studies have found similar 

patterns in systems with frequent fire return intervals (Senior et al., 2018; Warneke et al., 2023). 

Importantly, our study is the first to our knowledge to demonstrate neutral pairwise feedbacks in 

fire-disturbed old-growth Pacific Northwestern rainforests where return intervals for high-severity 

fire are measured in centuries (Reilly et al., 2017). The consistency of our findings with literature 

from other forest systems suggest a generalizable mechanism by which wildfires reduce the 

contribution of conspecific feedback and neighborhood interactions to community assembly 

through early recovery. 

The erosion of pairwise feedbacks in burned forests likely reflects fire-induced changes to 

soil microbial communities that mediate local neighborhood interactions. Fire can dramatically 

alter soil biota through direct heat mortality and changes to soil physicochemical properties 

(DeVan et al., 2023; Nelson et al., 2022). In the Pacific Northwest, the majority of dominant 

conifer species associate with ectomycorrhizal fungal networks which are sensitive to fire due to 

their position in organic soil and litter layers (Cairney & Bastias, 2007; Taudière et al., 2017). 

Moreover, loss of soil to combustion predisposes the early post-fire environment to erosion and 

overland flows (Nave et al., 2022; Wondzell & King, 2003) that likely further reduce communities 

of tree-associated microbes. When establishing our study, we noticed exposed roots due to soil 

and litter loss even in areas with low basal area mortality. With reduced fungal networks, 

ectomycorrhizal-associated trees including P. menziesii and T. heterophylla are likely less capable 

of tolerating drought-like conditions  (Kilpeläinen et al., 2017; Lehto & Zwiazek, 2011). 

Simultaneously, wildfires impact populations and diversity of host-specific soil pathogens that 
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normally contribute to negative feedbacks (Nelson et al., 2022; Rodriguez-Ramos et al., 2021). 

We found that pairwise feedbacks did not vary with fire severity (Figure S2-5), suggesting that 

even low mixed-severity wildfires in our system are reducing soil microbiota and altering 

neighborhood effects. The sensitivity of pairwise feedbacks to even low-severity fire suggests that 

more frequent and extensive fires predicted for the Pacific Northwest under climate change 

(Halofsky et al., 2020) could reduce the contribution of neighborhood effects to patterns of local 

diversity.  

We find neutral feedbacks across survey intervals regardless of heat level in contrast to 

LaManna et al. (in prep) who find negative feedbacks in years with less extreme heat, and positive 

feedbacks with more extreme heat in unburned forests (Figure 2-1). This contrast suggests that 

wildfire disrupts the mechanisms by which extreme heat interacts with local CDD. In unburned 

forests, findings of stabilizing feedback switching to destabilizing in extreme heat were associated 

with much larger increases in seedling mortality in neighborhoods dominated by heterospecific 

relative to conspecific adults (Figure 2-1B; LaManna et al. in prep). These findings in unburned 

forests suggest that physiological stress caused by extreme heat increases the need for seedlings to 

rely on partnerships with mutualists to survive those extreme conditions (LaManna et al. in prep; 

David et al., 2020; Usman et al., 2021; Doolittle et al. in prep). In burned forests, however, 

significant reductions in abundances of ectomycorrhizal communities likely limit the extent to 

which those mutualists can benefit seedlings by ameliorating heat stress. Additionally, post-fire 

changes to soil structure, organic matter content, and nutrient availability may override or mask 

the effects of extreme heat on seedling performance (Nolan et al., 2021). The resulting neutral 

conspecific feedback we observe in burned forests across heat levels suggest that wildfire creates 

a simplified competitive environment where abiotic filtering and direct physiological stress 
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become more important determinants of seedling survival than specialized or relatively specialized 

apparent interactions, at least during initial post-disturbance recovery phases. 

Early-successional burned forests are productive, diverse ecosystems influential on the 

composition of later successional stages (Swanson et al., 2011; Tepley et al., 2014). Our findings 

suggest that early-successional burned forests may benefit from the decoupling of local CDD from 

environmental stressors. In unburned forests, local CDD becomes increasingly destabilizing under 

stressful environmental conditions, which is thought to erode local diversity (Fibich et al., 2021; 

LaManna et al., 2022; Liu & He, 2021, 2022; Uriarte et al., 2018). Given that the post-fire 

environment can be physiologically stressful even for disturbance-adapted species, the neutral 

local CDD we observe may paradoxically support broader regeneration by preventing the 

competitive exclusion that would otherwise occur via destabilizing CDD. However, it is worth 

noting that stabilizing CDD would be optimal for maintaining diversity in the post-fire 

environment – which LaManna et al. (in prep) find is most prevalent in unburned forests under 

low heat stress. If local CDD became destabilizing in burned areas under heat stress, post-fire 

succession might favor only the most stress-tolerant species through positive feedback, potentially 

leading to more homogeneous early seral communities dominated by disturbance specialists. We 

caution that our inference is based on early recovery, the long-term dynamics of which are likely 

to vary from their initial state. Nevertheless, the disruption of local CDD by fire may be an 

important pathway by which fire promotes diversity in early-successional forests, though its 

persistent effects through later successional stages require additional study. 

Differing mortality rates between our focal species provides important insights into how 

wildfire and extreme heat may jointly reshape forest composition under future climate scenarios. 

T. heterophylla, a shade-tolerant species, experienced higher mortality in burned plots compared 
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to P. menziesii, a relatively shade-intolerant species, with the difference being most pronounced 

across intervals with low to moderate levels of extreme heat (Figure 2-2). We hypothesize that 

these differences reflect differences in thermotolerance between our focal species. with P. 

menziesii exhibiting greater physiological resilience to heat stress (Marias et al., 2017; Still et al., 

2023). For both species, wildfire and extreme heat have non-additive effects on seedling mortality 

when occurring simultaneously (Figure 2-1), which supports the hypothesis that initial stressors 

make individuals less responsive to additional stressors (Stevens-Rumann & Morgan, 2019). 

Increasing frequencies and intensities of wildfire and extreme heat, therefore, may advantage P. 

menziesii in both burned and unburned Pacific Northwestern forests, following the trend of 

widespread structural shifts in western North American forests towards fire- and drought-adapted 

species (Hagmann et al., 2021).  

Conclusions 

Our study demonstrates that wildfires and extreme heat events have similar but distinct 

effects on the contribution of neighborhood interactions to patterns of seedling mortality. We find 

support for species-specific differences in mortality following wildfire and heat stress, which 

neutralized pairwise feedback following wildfire. As wildfire frequency and extreme heat events 

increase across the globe, these altered neighborhood interactions may accelerate compositional 

shifts beginning at the regeneration stage, potentially leading to simplified forest communities 

dominated by disturbance-adapted species like P. menziesii. The consequences extend beyond 

simple changes in species abundance to potentially affect fundamental ecosystem processes, 

diversity, and resilience to future disturbances. By revealing how combined stressors disrupt the 

fine-scale neighborhood interactions that are thought to structure forest communities, our findings 

highlight the need to incorporate species interactions into predictions of forest response to climate 
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change. Understanding these dynamics will be critical for developing management strategies that 

maintain diverse, functioning forest ecosystems in an era of unprecedented environmental change. 
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Figures and Tables 

 
Figure 2-1: Average and species-specific mortality rates in unburned and burned understory plots 
across intervals with differing intensities of extreme heat events. Seedling mortality posteriors for 
each species in each category were estimated from hierarchical Bayesian GAMM fits conditioned 
on all population-level random effects. Results are split into average mortality rates across both 
focal species (A), and species level mortality rates (B) stratified along categorical levels of extreme 
heat measured as degree-hours (DH), reflecting the relative intensity of extreme heat over each 
survey interval. Black dots represent medians and lines represent 95% credible intervals. Pink 
depicts average seedling mortality posterior distribution of P. menziesii under both conspecific 
and heterospecific adults. Blue depicts average seedling mortality posterior distribution of T. 
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heterophylla under both conspecific and heterospecific adults. Since posteriors for unburned and 
burned mortality are derived from separate models, we assigned significance to contrasts for which 
the difference between the burned and unburned posteriors excluded 0 in either the 90%  (*) or 
95% (**) credible interval. Here, we only visualize the significance of contrasts between unburned 
results from LaManna et al. (in prep) and our analysis. For pairwise comparisons within burn 
category (i.e., burned or unburned) see Table S2-4.  

 

 
Figure 2-2: Conspecific mortality rates, heterospecific mortality rates, and pairwise feedback in 
unburned and burned understory plots across intervals with differing intensities of extreme heat 
events. We find generally higher average mortality rates for focal species in burned plots under 
conspecific and heterospecifics (A, B). Whereas LaManna et al. (in prep) find that pairwise 
feedback increases with increasing levels of extreme heat, we find generally neutral pairwise 
feedback across heat levels (C). Black dots indicate medians, and black lines depict 95% credible 
interval of estimates. Colored shapes depict posterior distributions of unburned (blue) and burned 
(red) model estimates. Results are split by degree-hours (DH), reflecting the relative intensity of 
extreme heat over each survey interval. Since posteriors for unburned and burned mortality are 
derived from separate models, we assigned significance to contrasts for which the difference 
between the burned and unburned posteriors excluded zero in 95% credible interval (Table S2-4).  
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(A) Average conspecific mortality across unburned and burned plots under differing intensities of 
extreme heat events. (B) Average heterospecific mortality across unburned and burned plots under 
differing intensities of extreme heat events. (C) Pairwise feedbacks where values less than zero 
indicate that individual performance (survival) is higher in heterospecific environments relative to 
conspecific environments. Pairwise feedbacks greater than zero indicate that individual 
performance is higher in conspecific environments relative to heterospecific environments. Here, 
we only visualize the significance of contrasts between unburned results from LaManna et al. (in 
prep) and our analysis. For pairwise comparisons within burn category (i.e., burned or unburned) 
see Table S2-5. 

Supplemental Tables and Figures 
 
Table S2-1: Distribution of extreme heat levels across survey intervals in burned plots. Over the 
3 seedling intervals between 2021 and 2024 burned understory demography plots experienced 
multiple extreme heat events. Since 38oC is a critical threshold for seedling physiology, we 
calculated degree hours (DH) above 38oC using Andrews Forest primary meteorological station 
(PRIMET) aspirated air temperature data at a resolution of 15 minutes (Figure S2-1). We split DH 
into 3 categories (less than 3 DH, 3 – 10 DH, and greater than 10 DH). 

 Survey Interval 
 2021-2022 2022-2023 2023-2024 
High (> 10 DH) 405 0 0 
Mid (3 – 10 DH) 427 139 214 
Low (<3 DH) 0 0 22 

 

Table S2-2: Burned seedling observations by watershed and adult species. We fit our models with 
a total of 1207 observations (seedling intervals). These observations were split between 5 locations 
in the lower watersheds of the Andrews Experimental Forest and across two focal species (PSME 
= P. menziesii, TSHE = T. heterophylla). We omitted RS08 from subsequent analyses given that 
only 1 TSHE seedling was observed across our study period. 

 PSME TSHE Location Totals 
WS09 - Upper 148 147 295   
WS09 – RS08 31 1 32   
WS09 - RS01 126 55 181   
WS02 - Upper 21 443 464    
WS02 – RS15 4 231 235 

Species Totals 330 877 Grand Total: 1207 
 
Table S2-3: Bayesian Model Selection LOOIC. We ran a series of Bayesian GAMMs with 
different model structures to identify the model best fit to our data. We began with a maximal 
random effect structure including year-varying effects of extreme heat (Ex. H.), separate 
smoothing parameters for conspecific and total seedling density, different smoothing parameters 
for height by species, multiple hierarchical spatial levels representing the spatial arrangement of 
our plots, and two different link functions common to discrete survival analyses (cloglog, logit). 
Model results are sorted by LOOIC. While the cloglog-link model had the best LOOIC score we 
considered this to be an overfit due to the number of Pareto-K values greater than 0.7, which 
represents potentially overly influential data points. We selected the model in bold due to the 
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combination of low LOOIC (within 2 LOOIC of next highest model) and superior number of 
problematic Pareto-K values (5 compared to 17). 

Seedling 
Density 
Params 

Smooth 
Function 

Ex. 
Heat 
Levels 

Year-
varying  
Ex. H. 

Hierarchical 
Spatial 
Levels 

Link 
Function 

LOOIC LOO 
SE 

Problematic 
Pareto-K 
values 

Con + 
Total 

Global + 
FS 

3 Yes 4 cloglog 718.22 40.4 197 

Con + 
Total 

Global + 
FS 

3 Yes 4 logit 725.58 41.01 17 

Con + 
Total 

Separate 
TP 

3 Yes 4 logit 727.56 42.72 5 

Con Global + 
FS 

3 Yes 4 logit 727.91 42.19 13 

Con + 
Total 

Global + 
FS 

2 Yes 4 logit 730.2 41.61 5 

Total Global + 
FS 

2 Yes 4 logit 770.1 40.43 0 

Total Separate 
TP 

2 Yes 3 logit 770.3 41.33 8 

Total Separate 
TP 

2 Yes 4 logit 770.38 41.22 5 

Total Global 2 Yes 4 logit 772.38 40.89 1 
Total Separate 

TP 
2 Yes 2 logit 773.76 41.32 7 

Total Separate 
TP 

2 Yes 2 logit 774.1 41.2 8 

Con + 
Total 

Global + 
FS 

2 No 4 logit 776 41.25 2 

Total Global 2 Yes 2 logit 780.32 40.76 1 
Total Global 2 Yes 3 logit 780.71 40.75 1 
Con + 
Total 

Separate 
TP 

2 Yes 3 logit 780.83 41.98 6 

Total Global 3 Yes 3 logit 783.89 40.82 2 
Con + 
Total 

Global + 
FS 

3 No 3 logit 789.23 40.3 0 

Con Global + 
FS 

3 Yes 4 logit 805.16 39.99 0 

Con Global 2 No 4 logit 806.97 41.18 2 
Con + 
Total 

Global + 
FS 

2 No 4 logit 807.83 40.45 0 

Con Global + 
FS 

2 No 4 logit 809.01 40.26 0 

 
 
Table S2-4: Species-level pairwise contrasts. This table presents pairwise contrasts between levels 
of extreme heat (Low, Mid, High), burn status (Burned, Unburned), and species (PSME = P. 
menziesii, TSHE = T. heterophylla). Mean differences are shown with 95% confidence intervals. 
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Contrasts for which the 95% credible interval does not overlap zero are bolded an annotated (**) 
along with comparisons for which the 90% credible interval does not overlap zero (*).   

Heat Level Comp. Burn Status Comp.  Species Comp. Mean diff Lower CI Upper CI 
Lo Mid Burned Burned PSME PSME -0.0635 -0.323 0.113 
Lo High Burned Burned PSME PSME -0.115 -0.389 0.0806 
Lo Lo Burned Unburned PSME PSME 0.132 -0.194 0.416 
Lo Mid Burned Unburned PSME PSME -0.016 -0.321 0.225 
Lo High Burned Unburned PSME PSME 0.0118 -0.297 0.267 
Lo Lo Burned Burned PSME TSHE -0.135** -0.307 -0.0171 
Lo Mid Burned Burned PSME TSHE -0.168* -0.452 0.023 
Lo High Burned Burned PSME TSHE -0.199** -0.483 -0.00682 
Lo Lo Burned Unburned PSME TSHE 0.298* -0.0217 0.57 
Lo Mid Burned Unburned PSME TSHE 0.135 -0.183 0.414 
Lo High Burned Unburned PSME TSHE 0.0787 -0.23 0.354 
Mid High Burned Burned PSME PSME -0.0511 -0.165 0.0621 
Mid Lo Burned Unburned PSME PSME 0.194** 0.00597 0.425 
Mid Mid Burned Unburned PSME PSME 0.0464 -0.112 0.226 
Mid High Burned Unburned PSME PSME 0.0742 -0.099 0.267 
Mid Lo Burned Burned PSME TSHE -0.072 -0.23 0.134 
Mid Mid Burned Burned PSME TSHE -0.105** -0.226 -0.0072 
Mid High Burned Burned PSME TSHE -0.135** -0.263 -0.0304 
Mid Lo Burned Unburned PSME TSHE 0.36** 0.154 0.578 
Mid Mid Burned Unburned PSME TSHE 0.198** 0.0109 0.423 
Mid High Burned Unburned PSME TSHE 0.141 -0.0336 0.363 
High Lo Burned Unburned PSME PSME 0.244** 0.0524 0.479 
High Mid Burned Unburned PSME PSME 0.0968 -0.0611 0.281 
High High Burned Unburned PSME PSME 0.125 -0.0517 0.32 
High Lo Burned Burned PSME TSHE -0.0208 -0.188 0.197 
High Mid Burned Burned PSME TSHE -0.0536 -0.187 0.0615 
High High Burned Burned PSME TSHE -0.0843* -0.195 0.00374 
High Lo Burned Unburned PSME TSHE 0.411** 0.202 0.634 
High Mid Burned Unburned PSME TSHE 0.248** 0.0579 0.48 
High High Burned Unburned PSME TSHE 0.191** 0.0148 0.417 
Lo Mid Unburned Unburned PSME PSME -0.148** -0.308 -0.0151 
Lo High Unburned Unburned PSME PSME -0.12 -0.29 0.028 
Lo Lo Unburned Burned PSME TSHE -0.266** -0.521 -0.0205 
Lo Mid Unburned Burned PSME TSHE -0.298** -0.522 -0.139 
Lo High Unburned Burned PSME TSHE -0.329** -0.552 -0.169 
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Lo Lo Unburned Unburned PSME TSHE 0.166* -0.0063 0.328 
Lo Mid Unburned Unburned PSME TSHE 0.00353 -0.185 0.19 
Lo High Unburned Unburned PSME TSHE -0.0529 -0.226 0.111 
Mid High Unburned Unburned PSME PSME 0.0278 -0.114 0.17 
Mid Lo Unburned Burned PSME TSHE -0.119 -0.322 0.112 
Mid Mid Unburned Burned PSME TSHE -0.151** -0.318 -0.0266 
Mid High Unburned Burned PSME TSHE -0.181** -0.347 -0.0595 
Mid Lo Unburned Unburned PSME TSHE 0.314** 0.143 0.484 
Mid Mid Unburned Unburned PSME TSHE 0.151* -0.00567 0.335 
Mid High Unburned Unburned PSME TSHE 0.0947 -0.0582 0.265 
High Lo Unburned Burned PSME TSHE -0.147 -0.361 0.0899 
High Mid Unburned Burned PSME TSHE -0.178** -0.359 -0.0314 
High High Unburned Burned PSME TSHE -0.209** -0.387 -0.0627 
High Lo Unburned Unburned PSME TSHE 0.286** 0.11 0.46 
High Mid Unburned Unburned PSME TSHE 0.123 -0.0514 0.317 
High High Unburned Unburned PSME TSHE 0.0669 -0.0916 0.239 
Lo Mid Burned Burned TSHE TSHE -0.0327 -0.23 0.0859 
Lo High Burned Burned TSHE TSHE -0.0635 -0.27 0.0601 
Lo Lo Burned Unburned TSHE TSHE 0.433** 0.178 0.67 
Lo Mid Burned Unburned TSHE TSHE 0.27** 0.029 0.515 
Lo High Burned Unburned TSHE TSHE 0.214* -0.0232 0.454 
Mid High Burned Burned TSHE TSHE -0.0307 -0.101 0.0355 
Mid Lo Burned Unburned TSHE TSHE 0.465** 0.279 0.671 
Mid Mid Burned Unburned TSHE TSHE 0.302** 0.139 0.52 
Mid High Burned Unburned TSHE TSHE 0.245** 0.103 0.459 
High Lo Burned Unburned TSHE TSHE 0.495** 0.31 0.702 
High Mid Burned Unburned TSHE TSHE 0.332** 0.171 0.552 
High High Burned Unburned TSHE TSHE 0.276** 0.134 0.49 
Lo Mid Unburned Unburned TSHE TSHE -0.163* -0.327 0.00324 
Lo High Unburned Unburned TSHE TSHE -0.219** -0.362 -0.0712 
Mid High Unburned Unburned TSHE TSHE -0.0564 -0.223 0.11 
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Table S2-5: Pairwise contrasts of feedback estimates. This table presents pairwise contrasts 
between levels of extreme heat (Low, Mid, High), and burn status (Burned, Unburned). Mean 
differences are shown with 95% confidence intervals. Contrasts are considered significant when 
the credible interval does not include zero. Contrasts for which the 95% credible interval does not 
overlap zero are bolded an annotated (**) along with comparisons for which the 90% credible 
interval does not overlap zero (*). Here, no contrasts fell outside the 95% credible interval, but the 
high unburned feedback was marginally different than the low unburned feedback and the high 
burned feedback (outside 90% credible interval).  

Heat Level Comp. Burn Status Comp.  Mean Diff Lower CI Upper CI 
Lo Mid Burned Burned -0.0112 -0.123 0.0622 
Lo High Burned Burned -0.0228 -0.162 0.0595 
Lo Lo Burned Unburned 0.0929 -0.209 0.374 
Lo Mid Burned Unburned -0.125 -0.419 0.126 
Lo High Burned Unburned -0.204 -0.499 0.0716 
Mid High Burned Burned -0.0116 -0.0724 0.0331 
Mid Lo Burned Unburned 0.104 -0.166 0.374 
Mid Mid Burned Unburned -0.114 -0.364 0.121 
Mid High Burned Unburned -0.193 -0.459 0.0656 
High Lo Burned Unburned 0.116 -0.142 0.377 
High Mid Burned Unburned -0.103 -0.344 0.122 
High High Burned Unburned -0.182* -0.437 0.0635 
Lo Mid Unburned Unburned -0.218 -0.525 0.0698 
Lo High Unburned Unburned -0.297* -0.617 0.0126 
Mid High Unburned Unburned -0.0789 -0.37 0.223 
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Figure S2-1: Maximum daily temperature (oC) in years from 2019-2023 measured from the 
primary meterological station (PRIMET) at Andrews Forest. Since 38o C is a critical threshold for 
seedling physiology (Marias et al, 2017), we calculated degree hours above 38o C using aspirated 
air temperature data at a resolution of 15 minutes (Daly & McKee 2019). Seasonal maximums 
occur in the summer (June – September) months in the Pacific Northwest. We highlight that the 
largest extreme heat event occurred in late June 2021, but other years included in our study also 
crossed our temperature threshold.  
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Figure S2-2: Distribution of focal adult DBH. The diameter of each focal adult was measured at 
breast height in centimeters (height of measurement: 1.37-m, DBH) which was incorporated as a 
fixed effect in our Bayesian GAMMs. We preferentially selected larger adults when available 
based on knowledge of their outsized contribution to structuring local environments (Lutz et al. 
2018). Mean DBH is depicted as a solid red line (mean = 58.2 cm).  

 

 
Figure S2-3: Distribution of adult focal trees across focal species and basal area mortality. Basal 
area mortality measured as the fraction of total neighborhood tree basal area (> 5-cm DBH) that 
experienced fire-induced mortality. Since we chose to avoid the potentially confounding effect of 
including adults that experienced mortality, our study was constrained to living adults and is 
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disproportionately distributed towards the lower bounds of basal area mortality. Basal area 
mortality was estimated within each PSP plot, being either an 18-m diameter circle or a 25-m2 
square.  

 
Figure S2-4: Mortality and feedback estimates excluding dead focal adults. Over the course of our 
study 5 adult trees died, 2 P. menziesii adults and 3 T. heterophylla adults. Here we present 
identical analyses to those in the main manuscript with these 5 individuals removed. This reduced 
our seedling sample size from 1207 observations to 1117 observations. While loss of these adults 
reduces the confidence of our conspecific and heterospecific mortality estimates at low levels of 
extreme heat (< 3 DH), inference remains the same. Black dots indicate medians, and black lines 
depict 95% credible interval of estimates. Colored shapes depict posterior distributions of 
unburned (blue) and burned (red) model estimates. Results are split by degree-hours (DH), 
reflecting the relative intensity of extreme heat over each survey interval. Since posteriors for 
unburned and burned mortality are derived from separate models, we assigned significance to 
contrasts for which the difference between the burned and unburned posteriors excluded zero in 
95% credible interval (Table S2-2).  (A) Average conspecific mortality across unburned and 
burned plots under differing intensities of extreme heat events. (B) Average heterospecific 
mortality across unburned and burned plots under differing intensities of extreme heat events. (C) 
Pairwise feedbacks where values less than zero indicate that individual performance (survival) is 
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higher in heterospecific environments relative to conspecific environments. Pairwise feedbacks 
greater than zero indicate that individual performance is higher in conspecific environments 
relative to heterospecific environments. 

 

 
Figure S2-5: Pairwise feedbacks across heat levels as estimated at distinct fire severity quantiles. 
Fire severity was estimated using the percentage of basal area mortality within the PSP long-term 
forest inventory plot that each understory demography plot was co-located with. We predicted 
feedbacks (see methods) at three different basal area mortality levels corresponding to fire severity 
(Lo = 0.25, Mod = 0.5, High = 0.75). Panels represent categories of extreme heat, separated into 
“Mid” (3-10 degree hours) and “High” (> 10 degree hours). Here we exclude the “Low” degree 
hour category presented in the main manuscript due to the challenges associated with extrapolating 
our relatively small sample size to increasingly fine-scale predictors (see methods). Dots represent 
median of the feedback posterior, and error bars represent the 95% credible interval. Fire severity 
as measured by basal area mortality was not a significant factor and averaged across for our final 
analyses.   
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Abstract 
Neighborhood interactions, arising from the spatial arrangement, density, and identity of 

nearby competitors, are increasingly thought to contribute to the maintenance of species diversity 

across taxa and scale. Recent evidence indicates that the local effects of neighborhood interactions 

may be exacerbated or ameliorated in response to changing climates, with cascading implications 

for the diversity and stability of future ecosystems. In forests, the study of climate-altered 

neighborhood interactions has primarily focused on seedlings, despite adult trees 

disproportionately contributing to carbon storage and nutrient cycling. Interactions between 

neighboring adult trees may respond differently than seedlings to changing climatic conditions due 

to increased canopy exposure and increased physiological reserves. Here, we investigated how 

climate alters the neighborhood interactions thought to contribute to local diversity in two conifer 

species that dominate the old-growth temperate rainforests of the Pacific Northwest: Pseudotsuga 

menziesii (Douglas-fir) and Tsuga heterophylla (Western hemlock). Combining 

dendrochronological data from 1960 to 2019 with forest inventory measurements across an 

elevational gradient in Oregon's Cascade Range, we assessed how changing patterns of 

temperature, precipitation, and vapor pressure deficit interact with conspecific neighborhood 

density to affect annual basal area growth. Growth patterns in both species exhibited interactions 
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between climate and conspecific neighborhood density. For P. menziesii, conspecific 

neighborhood interactions became increasingly destabilizing (positive) in cooler years. For T. 

heterophylla, conspecific neighborhood density effects became increasingly stabilizing (negative) 

in wetter years. Differing sensitivities to climate variables between these two conifer species 

potentially reflects differences of life history strategies and canopy position. Pairwise feedback 

between focal species became significantly positive in cooler years, indicating that temperature 

fluctuations temporarily alter competitive hierarchies to advantage growth in conspecific 

neighborhoods relative to heterospecific neighborhoods. Our findings demonstrate that interannual 

climate variability can alter the outcome of neighborhood interactions among established adults, 

with implications for forest dynamics and community structure under changing climate regimes. 

These results highlight the importance of considering both climate and neighborhood context when 

predicting forest responses to climate change, particularly for carbon-rich old-growth forests 

dominated by long-lived species. 

Introduction 

Uncovering the factors that sustain diverse ecosystems across different spatial and temporal 

scales is a central goal of ecology (Brown, 1984; Holdridge, 1967). This goal is critically important 

because species diversity is an essential component of ecosystem health and a strong predictor of 

the ecological services provided to humans (Cardinale et al., 2012; Chen et al., 2023). Over the 

last 50 years, ecologists have grown increasingly interested in how local interactions between 

neighboring individuals contribute to patterns of species diversity – finding strong associations 

between neighborhood interactions and species diversity at local, regional and global scales 

(Delavaux et al., 2023; Hülsmann et al., 2024; Johnson et al., 2012; LaManna et al., 2017, 2022). 

More recently, interest has shifted towards understanding how local neighborhood interactions 
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confer resiliency to, or exacerbate the effects of, changing climates (e.g. (Bell et al., 2020; De 

Frenne et al., 2021; Grossiord, 2020; Luo et al., 2024). Despite these advances, our understanding 

of how climate variables alter neighborhood interactions and subsequent patterns of local species 

diversity remains reliant on short-term studies that disproportionately focus on early life stage 

plants. Here, we investigate the degree to which climate alters neighborhood interactions in large, 

established adult trees to improve our understanding of the impacts of climate on the ecological 

processes defining local productivity and diversity. 

A useful framework for understanding how neighborhood interactions might influence 

species diversity under changing climates is local conspecific density dependence (CDD). 

Originating with the Janzen-Connell hypothesis, local CDD describes density-dependent patterns 

of individual growth, survival, and reproduction (e.g., individual performance) arising in multi-

species communities from differences in the effects of local interactions between conspecific 

(same-species) and heterospecific (different-species) individuals (Chesson, 2000; Comita et al., 

2014; Hülsmann et al., 2024; Janzen, 1970; Connell, 1971; LaManna et al., 2024). Local CDD is 

thought to stabilize community structure and diversity when conspecific effects are 

disproportionately negative relative to heterospecific effects (Broekman et al., 2019; Wright, 

2002). Such differences can be caused by, for example, strong intraspecific competition or 

interactions with relatively host-specific natural enemies (Adler et al., 2018; Song et al., 2021). 

Alternatively, local CDD is thought to erode local diversity when conspecific effects are 

disproportionately positive relative to heterospecific effects, which could be caused by weak 

intraspecific competition or interactions with relatively host-specific mutualists (Delavaux et al., 

2023; Ke & Wan, 2020; Zahra et al., 2021). We emphasize that references to “stabilizing” or 

“destabilizing” local CDD refer to the potential for local conspecific density effects to affect 
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community diversity and composition and is not an explicit prediction of coexistence. Hereafter, 

we use the term “local CDD” to refer to local stabilizing or destabilizing CDD (i.e., relative 

differences in conspecific and heterospecific density effects).  

Widespread evidence supports the hypothesis that the strength and directionality of local 

CDD (i.e., stabilizing or destabilizing) varies with environmental conditions, including seasonal 

and regional climate patterns (Comita et al., 2014; Milici et al., 2020, Doolittle & LaManna 2025). 

To date, empirical studies have focused on early-life stage plants, finding that local CDD generally 

becomes more stabilizing in humid, warm, aseasonal climates (e.g. Bachelot et al., 2015, 2020; 

Brown et al., 2021; Lebrija-Trejos et al., 2023; Liu & He, 2021; Milici et al., 2025; Song et al., 

2018; Uriarte et al., 2018). In adults, local CDD is predicted to be generally weaker since 

established adults are more resilient to externalities including antagonisms and short-term climate 

stressors (Comita et al., 2007; Pu & Jin, 2018; Zhu et al., 2015). Nevertheless, assessing 

neighborhood interactions in adult trees is a critical step in understanding the factors that structure 

and maintain local diversity, as the total effect of these interactions throughout the lifespan of an 

individual ultimately determines fitness. Moreover, large adults disproportionately contribute to 

carbon storage and nutrient cycling rates (Lutz et al., 2018), and long-term temporal shifts in local 

CDD with climate could reveal community-level vulnerabilities to climate change that remain 

undetected in seedling focused studies. In forests dominated by long-lived species, accurately 

representing forest dynamics requires understanding how large, established trees respond to their 

local climatic and neighborhood context.  

Dendrochronology and studies of tree rings provide a long-term record of annual growth 

increments for temperate tree species that is invaluable for understanding the lives of adult trees 

and their contribution to forest dynamics (Amoroso et al., 2017; Fritts & Swetnam, 1989). These 
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natural archives aggregate the effects of interannual climate variations and the outcomes of 

density-dependent species interactions, which can be disentangled to examine the effects of 

climate variability from other ecological processes (Fritts, 2012). By associating tree-rings with 

climate variables and indices of neighborhood contexts, we can reveal how climate sensitivity 

varies with tree size and neighborhood, providing important insights into the mechanisms 

underlying forest responses to climate change. Furthermore, dendrochronological approaches 

enable high-resolution reconstruction of historical growth patterns and their relationship to climate 

variables across multiple decades, offering a temporal perspective that is difficult to achieve 

through other methods such as forest inventories.  

Here, we combine dendrochronological approaches with long-term forest inventory data to 

examine how neighborhood context influences climate sensitivity in two dominant conifer species 

that account for the majority of basal area in forests of the Pacific northwest of North America: 

Pseudotsuga menziesii (Douglas-fir) and Tsuga heterophylla (Western hemlock). First, we 

compare 60 years of tree growth along an elevational gradient in Oregon's central Cascade Range 

to examine historical patterns of growth for each focal species. Then, we test the hypothesis that 

warmer and dryer years weaken local CDD in growth of large diameter trees. A growing body of 

literature indicates that local competitive environments can ameliorate or intensify the sensitivity 

of tree growth to climate (Buechling et al., 2017; Ford et al., 2017; Kunstler et al., 2011; Zhang et 

al., 2015). Since the effects of competition and host-associated natural enemies and mutualists vary 

between conspecific and heterospecific individuals, we hypothesized that conspecific 

neighborhoods would have disproportionately strong effects on climate-growth sensitivity than 

heterospecific neighborhoods. Specifically, we predicted that local CDD would become more 

destabilizing (i.e., more positive effect of conspecific neighborhoods) under climatic conditions 
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that increase physiological stress (i.e., abnormally warm, dry years); which has found recent 

support in seedling-focused studies (Bachelot et al., 2020; Milici et al., 2025; Song et al., 2018; 

Uriarte et al., 2018, LaManna et al. in prep). By assessing the interactions between climate and 

local neighborhoods, we improve our understanding of how climate-altered species interactions 

contribute to functioning and diversity in current and future forest communities.  

Methods 

Data sources and preparation 

We analyzed tree-ring data collected in two summer seasons (2003 and 2022) from the 

Andrews Experimental Forest in Blue River, Oregon. The Andrews is situated on an old-growth 

temperate rainforest elevational gradient (410-meters to 1590-meters), where temperature (range 

= 7.4°C to 10.3°C) and precipitation (range = 2,040 mm/yr to 2,354 mm/yr; Wang et al., 2016) 

vary. At lower elevations, moderate temperatures and high moisture provide a long growing season 

for evergreen plant species, even during favorable conditions in winter (Waring & Franklin, 1979). 

At higher elevations, a short pulse of water from snowmelt in spring/early summer, a dry summer 

and freezing temperatures throughout the wet season shorten the growing season. Pacific 

Northwestern temperate rainforests are home to some of the tallest trees and largest above-ground 

biomass in forests globally. Canopies of the Andrews Forest are dominated by Douglas-fir 

(Pseudotsuga menziesii), Western red-cedar (Thuja plicata), Western hemlock (Tsuga 

heterophylla), and a variety of Abies species including Silver fir (Abies amabilis) and Noble fir 

(Abies procera). Many other broadleaf and conifer species are common, including Big-leaf maple 

(Acer macrophyllum) and Pacific dogwood (Cornus nuttallii).  

We utilized 612 tree cores collected from 306 adult trees within the long-term forest 

inventory plots at Andrews Forest (Figure 3-1, Table 3-1). Cores for 171 trees were collected 
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sampled from 4 forest inventory plots in 2003 for previous studies (Harmon & Woolley, 2013) 

and downloaded from the Andrews Forest Data Portal in August 2023. To supplement these cores, 

we collected cores from an additional 135 trees in June and July of 2022 from 2 additional forest 

inventory plots and 1 forest inventory plot overlapping with the 2003 core dataset. All cores were 

cross-dated and measured by the original researchers using standard dendrochronological practices 

(Stokes & Smiley, 1996). 

To remove sources of error, we excluded cores for which we detected technical or sampling 

errors (e.g., broken cores, unreconcilable dating errors). Additionally, we excluded cores for which 

we detected abnormal growth patterns relating to sudden competitive release (gap creation), 

mechanical damage, cores for which tree diameter at breast height (DBH) at time of latest 

measurement was less than 30-cm, or other external factors that may mask growth-sensitivity to 

climate (Anderson-Teixeira et al., 2022). We defined the threshold for core removal to be growth 

for which absolute growth across 3 consecutive years exceeding 1 standard deviation in core 

growth. In total, we included 498 cores from 249 trees distributed across 6 forest stands (Table 3-

1). Examples of the core selection process can be found in Figure S3-1. Distribution of selected 

adult tree DBH can be found in Figure S3-2. Data preparation and validation were all performed 

in R 4.2.1 (R Core Team 2022) using the dplR (Bunn et al. 2024) and tidyverse packages 

(Wickham et al. 2019).  

Converting ring-width to basal area increments 

We utilized basal area increments (BAI) in lieu of ring-width (RW) measurements as BAI 

provides a more biologically meaningful representation of tree growth compared to raw RW and 

directly relates to carbon storage. BAI accounts for the geometric constraint that requires a tree to 

produce more wood to maintain the same ring width as it gets larger. This approach has been 
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widely adopted in dendrochronological studies examining tree growth responses to environmental 

changes and forest dynamics (Biondi & Qeadan, 2008; Duchesne et al., 2019). To calculate BAI, 

we first reconstructed yearly DBH from RW based on the most-recent forest inventory survey 

before the sampling of each core. When forest inventory surveys occurred in years preceding core 

sampling, we removed RW of years after the forest inventory survey. To reconstruct yearly DBH, 

we first applied allometric equations for each of our two focal species to estimate bark thickness 

and subtracted this from the forest inventory survey DBH (Table S3-1; Miles & Smith, 2009). We 

then sequentially removed twice the ring widths to reconstruct DBH, accounting for changing bark 

thickness. Reconstructed DBH values were then transformed into BAI using the following 

equation, where t is the current year, and t-1 is the previous year:  

 

BAI% = π0
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BAI values included in downstream models were first transformed using the natural 

logarithm, which addressed heteroscedasticity and approximated a normal distribution of residuals 

(Wykoff, 1990). We note that recent debate has emphasized the value of applying square-root 

transformations to BAI to improve estimation of growth in small trees (Zell, 2018). We opted to 

use the traditional natural logarithm transformation since our analysis is restricted to large trees 

greater than 30-cm DBH.  

Estimating neighborhood density 

To estimate neighborhood density, we calculated indices of conspecific density and 

total density for each tree. Trees that are larger and nearer are expected to have greater 
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competitive influence (Canham et al., 2004). Therefore, we used a size-dependent and 

distance-weighted formula to calculate the local neighborhood density index (LDI) within a 

10-meter radius of each focal individual (as in LaManna et al., 2022; Magee et al., 2024). 
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Where j = 1, 2, …, ni neighboring trees within a specified radius; DBHj is the DBH of the 

jth neighbor; distanceij is the distance from the ith tree to the jth neighbor; and 𝑎, 𝑏, and d are 

nonlinear scaling coefficients fit from the data (Canham et al., 2006; Uriarte et al., 2004). Based 

on previous work at this site, we used a neighborhood radius of 10-m (LaManna et al., 2022). 

Instead of omitting focal stems that were near the plot boundary, we opted to apply an edge 

correction factor to account for any portion of the 10-m neighborhood radius falling outside of the 

forest inventory survey area. These corrections were applied to 56 out of 249 trees (mean 

correction factor = 1.22, SD = 0.08).  

We limited neighborhoods of 10-meter radii to adult trees greater than or equal to 15-cm 

DBH. In Pacific Northwestern old-growth forests, individual trees of our focal species can take 40 

to 80 years to reach the 15-cm DBH class (Ruth, 1964). Therefore, by limiting our neighborhoods 

to 15-cm DBH, we account for the growth of neighbors over time and remove trees that were 

unlikely to contribute to neighborhood dynamics dating back to 1960. We validated our approach 

against duplicate analyses with more restrictive cutoff dates (Figure S3-5).  

To evaluate the functional form of the relationship between neighborhoods and annual 

growth, we conducted a grid search on a, b, and d as suggested by Smith (2022) and performed by 
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LaManna et al. (2022) and Magee et al. (2024). Our grid search used linear mixed effect models 

in the nlme package (Pinheiro et al., 2025) with the following formula:  

 

𝑙𝑜𝑔(𝐵𝐴𝐼) = 𝛽0 + 𝛽(𝐷𝐵𝐻 + 𝛽&𝐿𝐷𝐼12- + 𝛽3𝐿𝐷𝐼%2%+4 + 𝑢) + 𝑣)* + 𝜖)*% 

 

Where 𝐿𝐷𝐼12- is the conspecific local density index, 𝐿𝐷𝐼%2%+4 is the total local density 

index, u is the random effect for forest stand i, v is the tree-level random effect of individual j in 

stand i, and 𝜖)*% follows a continuous t time autoregressive process CAR(1) within each i,j 

combination (Pinheiro & Bates, 2000). We used the same 𝑎, 𝑏, and	𝑑 coefficients for both 

conspecific and total density neighborhoods. Importantly, we scaled and mean-centered each 

conspecific and total LDI together to retain the relationship between conspecific density and total 

density. We included the continuous time autoregressive correlation structure to account for the 

biological artifact that rings closer in time are typically more strongly correlated than those taken 

further apart, which could otherwise lead to biased parameter estimates and incorrect inference. 

Our grid search models selected a = 0, b = 1, and d = 1 for T. heterophylla (Western hemlock; 

TSHE) and a = 0, b = 1.4, and d = 2 for P. menziesii (Douglas-fir; PSME; Figure S3-3). 

Climate data sources & preparation 

To integrate climate into our downstream analyses we downloaded monthly climate data 

from 1960 – 2019 obtained from the satellite-derived PRISM 4km grid dataset (PRISM Climate 

Group, Oregon State University) and validated against local high-resolution climate records (Daly 

et al. 2019). We focused on monthly mean temperature (Tmean), total precipitation (PPT), and 

monthly maximum monthly vapor pressure deficit (VPD). VPD is a key driver of tree 

physiological stress that combines the effects of temperature and atmospheric moisture demand, 
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making it a more mechanistic predictor of tree growth than temperature or precipitation alone 

(Williams et al., 2010). We included temperature and precipitation as alternatives to account for 

the possibility that neighborhood density effects may be altered by climate variables affecting the 

underlying antagonists and mutualists driving local CDD – which may be more responsive to 

temperature or precipitation at the forest floor relative to atmospheric VPD.  

To select time periods for which tree BAI growth was most associated with climate, we 

adapted a climate-window approach similar to the ‘slidingwin’ function from the climwin package 

(Anderson-Teixeira et al., 2022; van de Pol & Bailey, 2020). We ran separate, parallel climate-

growth models for each combination of species and climate variable using the nlme package. We 

fixed effects for tree size (DBH) and linear and quadratic terms for climate with random intercepts 

for individual trees and a continuous autoregressive term to account for temporal autocorrelation. 

These models were iteratively fit to different monthly period means ranging from 2 – 8 months in 

length. We selected the model for each climate variable for which log-likelihood was the highest. 

This climate-window approach yielded 3 new climate window variables included in downstream 

analyses (VPDclimwin, Tmeanclimwin, and PPTclimwin). We considered this data-driven to be more 

robust than arbitrary window selection (i.e., average spring or summer conditions), but present the 

alternative with identical seasonal windows across species and elevation in Figure S3-4.  

Along with PRISM climate data, we tested the inclusion of meteorological data from the 

Andrews Forest which demonstrate that low-elevation valleys generally have higher mean-spring 

temperatures and lower mean-summer temperatures than higher elevation ridgelines (Frey et al., 

2016). These cold air drainages represent climate variability that is not well captured at the 4km 

grid PRISM scale. Our full models included a principal component axis (PCspatial) orthogonal built 

from mean spring temperature, mean summer temperature, and orthogonal to elevation. In other 
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words, we tested the inclusion of a variable derived from local temperature sensors to account for 

site-specific variations from macroclimatic temperature trends resulting from local topography. 

Estimating long-term growth patterns  

To assess long-term growth trends at the forest plot level, we fit species-level general 

additive models (GAMs) using the ‘mgcv’ package (Wood, 2025). We modeled natural log-

transformed BAI with predictor for the global effect of year using a thin-plane regression spline, 

plot-level thin-plane regression splines for individual plots, and a tree-level random spline (akin 

to a random intercept in linear model framework; Pedersen et al., 2019). GAMs were selected for 

this analysis to capture non-linear relationships between tree growth and time without imposing 

rigid assumptions about the shape of these relationships.  

Bayesian hierarchical models and hypothesis testing 

Our analytical pipeline for assessing growth-climate sensitivity is generally similar to that 

of Anderson-Teixeira et al. (2022), where analyses consisted of two main steps: 1) identifying the 

primary climate drivers (i.e., variables and seasonal windows over which they are most influential 

on tree growth) and 2) combining climate variables, BAI, and local density indices into a 

multivariate hypothesis testing model (Fig 1). Our approach differs in the estimation of 

neighborhood density and interactions of density effects with climate factors, as well as the 

implementation of Bayesian hierarchical models as opposed to a frequentist modeling approach.  

To test for the interactive effects of climate and density on growth, we fit separate Bayesian 

generalized linear mixed models (GLMMs) with autoregressive processes for each tree to account 

for temporal autocorrelation using the brms package (Bürkner et al., 2024). We selected Bayesian 

GLMMs over GAMs for hypothesis testing of climate-density interactions because we anticipated 

a high degree of correlated error between estimates and had a priori assumptions that the 
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interactions between climate and competition should approximate a quadratic function (Anderson-

Teixeira et al., 2022; Ford et al., 2017; Williams et al., 2010). Functionally, this approach is like 

other mixed-modeling approaches but differs in the use of posterior distributions for downstream 

analyses and the specification of an autocorrelation structure within the error term. For each 

species, we fit separate models to explore linear fixed effects between each of our temporal climate 

variables (VPDclimwin, Tmeanclimwin, and PPTclimwin) and log-transformed BAI and elevation, 

PCspatial, LDIcon, and LDItotal. We included linear and quadratic fixed effects for DBH and temporal 

climate, and interactions between linear and quadratic combinations of LDIcon and LDItotal with 

both PCspatial and temporal climate. We opted to use the brms default uninformative priors. Through 

initial model testing we determined that our dataset deviated from normality and best approximated 

a Student’s t distribution, meaning that our dataset of tree BAI growth exhibited more outliers than 

expected by a normal distribution. Each Bayesian GLMM model accounted for the spatial non-

independence of data and repeated measurements through random intercepts for forest plot and 

individual trees, along with a first-order autoregressive correlation structure.  

We systematically compared models with different combinations of predictor variables and 

their interactions, as well as different combinations of random effects that allowed the effects of 

conspecific and total density to vary with forest stand while maintaining the autoregressive 

correlation structure to determine the best model structure. Since our hypothesis explicitly focuses 

on the interaction between climate and density, we forced all model comparisons to include the 

selected climate variable and the linear interaction between the selected climate variable and both 

LDIcon and LDItotal. For each species, we ranked candidate models according to their Leave-One-

Out cross validation score (LOO) and considered models with increases in expected log predictive 

density (ELPD) exceeding twice the ELPD standard deviation to be supported by our data. Final 
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model selection based on our constrained model selection approach accounts for variables 

necessary to test our hypotheses and the biological interpretability of parameter estimates. 

Posterior predictive checks and residual plots were used to check model fits using the DHARMa 

(Hartig, 2022) and brms  (Bürkner et al., 2024) packages (Fig S9-S14).  

Quantifying local conspecific density dependence 

To quantify how a change in conspecific density affects annual growth, we calculated 

relative and absolute average marginal effects (AMEs) of adding one conspecific adult (15-cm 

DBH, minimum size included in our forest inventory datasets) 1-meter from the focal tree 

assuming an otherwise heterospecific local neighborhood. Relative and absolute AMEs were 

calculated with the following equations: 

 

rAME = 	
(𝑃),678%'()* −	𝑃),678%'(+,)

𝑃),678%'(+,
 

 

aAME = 	𝑃),678%'()* −	𝑃),678%'(+, 

 

Where 𝑃),678%'(+, represents the model-predicted growth for an individual i assuming an 

entirely heterospecific neighborhood where conspecific density is zero, and  𝑃),678%'(+, represents 

the model-predicted growth when a 15-cm DBH conspecific adult is added 1-meter from the focal 

tree. For both rAME and aAME, model predictions were derived while leaving all other 

confounders (i.e., DBH, total density, etc.) at their observed values. The relative AME (rAME) 

can be interpreted as relative change in growth (%) caused by the increase in conspecific density 

(Hülsmann et al., 2024). Here, we focus our results and discussion on CDD as estimated by rAME 
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because we consider relative changes in growth to be more ecologically relevant than absolute 

changes. As an alternative to estimating rAME as a standardized increase in conspecific density 

from an otherwise entirely heterospecific neighborhood, we additionally estimated rAME as a 

standardized addition observed conspecific densities. This alternative rAME, along with results 

for aAME, are presented in Figure S3-6 and Figure S3-7, respectively.  

Estimating pairwise feedback between focal species 

To understand the community implications of climate-mediated density effects, we 

quantified pairwise feedback strength between our focal species. While conspecific density effects 

describe how individuals respond to neighbors of their own species, pairwise feedback provides 

insight into the reciprocal effects that two species have on each other's performance, which can 

indicate whether their interaction tends to promote coexistence or competitive exclusion (Bever, 

2003; Bever et al., 1997). This approach is particularly relevant in forest ecosystems where trees 

modify their local environment through allelopathy and associations with microbial communities, 

creating legacy effects that influence subsequent performance (Bennett et al., 2017). 

We quantified pairwise feedback strength (Is) between our focal species following the approach 

outlined in Bever et al. (1997). Pairwise feedback was calculated as: 

𝐼! = 𝐴678%'()* − 𝐵678%'(+, − 𝐴678%'(+, + 𝐵678%'()* 

where 𝐴678%'()* and 𝐵678%'()*represent the growth of T. heterophylla  and P. menziesii in 

neighborhoods where one 15-cm DBH conspecific tree has been added and one 15-cm DBH 

heterospecific tree has been removed, and 𝐴678%'(+, and 𝐵678%'(+, represent their growth in entirely 

heterospecific neighborhoods. Positive 𝐼! values indicate that species perform better in conspecific 

soil (positive feedback), while negative values indicate improved performance in heterospecific 
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soil (negative feedback). We calculated 𝐼! at 5 evenly spaced quantiles (10% to 90%) for each 

climate variable and considered those for which 95% of the posterior distribution fell above or 

below zero to be significant.  

Results 

Growth trends for focal species 

The GAM fit to long-term growth patterns of P. menziesii revealed a significant overall 

temporal trend (Figure 3-2, Table S3-2, F = 7.939, p < 0.001), indicating substantial year-to-year 

variation in growth across all stands. Additionally, all stand-specific smooth terms were highly 

significant (p < 0.001), demonstrating that each stand exhibited unique growth trajectories over 

time. In particular, stands RS02, RS31, and RS22 (which are low, mid, and high elevation, 

respectively; Table 3-1) showed the strongest deviations from the overall temporal pattern (F = 

9.67, 11.445, and 10.795). 

For T. heterophylla, the GAM fit to long-term growth patterns revealed no overall temporal 

trend (Figure 3-2, Table S3-3, F = 0.990, p = 0.486), but strong stand-specific trends. Stand-

specific temporal patterns were significant for all stands, with stand RS22 showing the strongest 

effect (F = 68.540, p < 0.001), followed by RS34 (F = 39.524, p < 0.001). The remaining stands 

(RS02, RS31) showed significant but less pronounced effects (p < 0.05). 

The random effects term for individual trees was highly significant in both models (p < 

0.001). P. menziesii exhibited relatively consistent growth trajectories across stands until 

approximately 1990, after which the stands diverged considerably. In contrast, T. heterophylla 

showed greater stand-level differentiation throughout the entire sample period, with stand RS22 

demonstrating particularly distinctive growth patterns characterized by higher growth rates – 

especially in recent decades.  
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Climate-growth sensitivity of T. heterophylla (Western hemlock) 

Across all T. heterophylla climate-growth sensitivity models, DBH consistently showed a 

positive relationship with basal area increment (BAI; Figure 3-3; Table S3-4; β = 0.64, 95% CI 

[0.55, 0.73]), with a significant negative quadratic component (β = -0.14, 95% CI [-0.18, -0.10]), 

indicating that growth increases with diameter but at a diminishing rate in larger trees. Climate 

variables displayed distinct patterns of influence on growth. Temperature had no significant linear 

effect (β = 0.00, 95% CI [-0.01, 0.01]) or quadratic effect (β = -0.00, 95% CI [-0.01, 0.01]). Vapor 

pressure deficit (VPD) exhibited a weak negative linear relationship (β = -0.01, 95% CI [-0.02, -

0.00]) with a more pronounced negative quadratic response (β = -0.01, 95% CI [-0.02, -0.01]), 

indicating reduced growth under both very high and very low VPD conditions. Precipitation was 

a significant positive linear influence (β = 0.03, 95% CI [0.02, 0.04]) with a negative quadratic 

relationship (β = -0.02, 95% CI [-0.02, -0.01]), suggesting optimal growth at moderate to high 

precipitation levels with slight declines under extreme precipitation. 

Neighborhood density estimates were insignificant for T. heterophylla, and interactions 

between neighborhood density estimates were also insignificant with the exception of a negative 

interaction between conspecific density and the quadratic precipitation term (Fig 4B, β = -0.02, 

95% CI [-0.03, -0.00]), and an interaction between total density and VPD (Fig 3; β = -0.01, 95% 

CI [-0.02, -0.00]). Substantial tree-level and stand-level variation was detected across models. 

Temporal autocorrelation in growth was consistently strong (φ = 0.84, 95% CI [0.82, 0.87]), 

indicating high year-to-year consistency in individual tree growth patterns. The Student's t 

distribution shape parameters (ν = 7.56, 95% CI [6.20, 9.33]) suggested moderate deviations from 

normality in residual errors. All models demonstrated good convergence with R̂ values of 1.00 and 

adequate effective sample sizes for parameter estimation. 
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Climate-growth sensitivity of P. menziesii (Douglas-fir) 

Like T. heterophylla, P. menziesii showed strong positive relationships between DBH and 

growth (Figure 3-3; Table S3-4; β = 0.53, 95% CI [0.37, 0.67]), and a significant negative quadratic 

term (β = -0.13, 95% CI [-0.23, -0.03]), indicating growth increases with size but plateaus in larger 

individuals. Climate variables exhibited distinct effects on Douglas-fir growth. VPD was a 

significant negative linear influence (β = -0.04, 95% CI [-0.04, -0.03]) with no significant quadratic 

component (β = 0.00, 95% CI [-0.00, 0.01]), suggesting that growth consistently decreases with 

atmospheric dryness. Temperature showed no significant linear effect (β = 0.01, 95% CI [-0.01, 

0.03]) but displayed a significant positive quadratic relationship (β = 0.03, 95% CI [0.02, 0.04]), 

indicating potentially increased growth at both low and high temperature extremes. Precipitation 

exhibited a positive linear effect (β = 0.02, 95% CI [0.01, 0.02]) with no significant quadratic 

component (β = -0.00, 95% CI [-0.01, 0.00]), suggesting generally improved growth with 

increasing precipitation. 

Neighborhood density effects varied across models. Total neighborhood density showed a 

consistently negative influence approaching significance (β = -0.11, 95% CI [-0.21, 0.01]). 

Conspecific neighborhood density demonstrated no significant direct effect (β = 0.03, 95% CI [-

0.12, 0.20]) but showed complex interactions with climate variables. Notably, there were 

significant interactions between conspecific density and temperature, with negative linear (β = -

0.06, 95% CI [-0.08, -0.04]) and positive quadratic (β = 0.02, 95% CI [0.01, 0.03]) interactions 

(Figure 3-4B). For VPD, there was a significant negative linear interaction with conspecific density 

(β = -0.03, 95% CI [-0.04, -0.02]). Precipitation models showed significant positive linear 

interactions with conspecific density (β = 0.03, 95% CI [0.03, 0.04]) and negative quadratic 

interactions (β = -0.01, 95% CI [-0.01, -0.00]). Substantial variation in growth was observed at 
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both tree and stand levels. Growth patterns showed high temporal autocorrelation within individual 

trees (φ = 0.78, 95% CI [0.76, 0.80]). Student's t distribution shape parameters (ν = 9.34, 95% CI 

[7.59, 11.67]) indicated moderate departures from normality in residual errors. All models 

demonstrated good convergence with R̂ values of 1.00 and adequate effective sample sizes for 

parameter estimation. 

Pairwise Feedback (Is) 

Pairwise feedbacks as estimated through 𝐼! between T. heterophylla and P.  menziesii, were 

neutral for both precipitation and VPD (Figure 3-4C). 𝐼! became significantly positive only at 

extreme low temperatures (10% temperature quantile, 97.7% of posterior distribution above zero) 

but was otherwise neutral across the rest of the temperature range. Changes to pairwise feedbacks 

were largely driven by changes to BAI growth in relatively conspecific neighborhoods compared 

to heterospecific neighborhoods across focal species (Figure S3-8).  

Discussion 

Our results reveal that climate alters conspecific neighborhood density effects on the 

growth patterns of large, established trees with important implications for forest dynamics under 

climate change. Two key findings emerge. First, local CDD becomes more destabilizing in cooler 

years for P. menziesii, and more stabilizing in wetter years for T. heterophylla (Figure 3-4B). 

Second, pairwise feedback between these dominant conifer species becomes positive in cool years, 

suggesting that climate fluctuations can temporarily alter neighborhood interactions to advantage 

each species in relatively conspecific neighborhoods (Figure 3-4C). A growing body of literature 

indicates that climatic extremes are likely to affect neighborhood interactions and local CDD 

(Crawford et al., 2019; Pugnaire et al., 2019). Our findings expand upon recent seedling-based 



 124 

studies by demonstrating that local CDD in adult trees can similarly become more stabilizing in 

wetter (e.g. Milici et al., 2025; O’Brien et al., 2017; Song et al., 2020) and hotter (e.g. Liu & He, 

2021, 2022; Song et al., 2018) years, with important species-level differences highlighting the 

complex ways that interannual climatic variability influences old-growth forest dynamics. 

A key finding is that local CDD is associated with different climate variables, and in 

different directions, for each of our focal species (Figure 3-4B). For P. menziesii, local CDD 

becomes increasingly destabilizing (positive) in cooler years, indicating that colder temperatures 

advantage P. menziesii growth in conspecific neighborhoods relative to heterospecific 

neighborhoods (Figure 3-4B; 2.9% - 54.8% increase as estimated using rAME, see Figure S3-6 

for aAME estimates). In contrast to P. menziesii, local CDD in T. heterophylla growth became 

increasingly stabilizing in wetter years despite not varying with temperature. Wet years translated 

to a 0.3% - 15.6% decrease in T. heterophylla BAI growth in conspecific neighborhoods relative 

to heterospecific neighborhoods (Figure 3-4B; estimated using rAME, for Figure S3-7 for aAME 

estimates). Extending beyond local CDD to pairwise feedbacks between these two dominant 

conifer species, we find that conspecific environments are preferred for both P. menziesii and T. 

heterophylla in cool years (positive feedback) but no changes to feedback strength with 

precipitation (Fig 4C). Our findings highlight that both precipitation and temperature alter the 

effects of local neighborhoods with consequences for growth rates and subsequent carbon storage 

under changing climates. 

Differences in climate-mediated shifts in local CDD between our focal species may arise 

from several non-exclusive mechanisms, including differences in life-history strategies, forest 

structure, and microbial interactions. P. menziesii, a relatively drought-tolerant species, may be 

more sensitive to colder conditions compared to the shade-tolerant T. heterophylla, which occurs 
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at higher latitudes than P. menziesii and may possess more robust physiological mechanisms 

conferring cold resilience (Lassoie et al., 1985). The heightened sensitivity of P. menziesii to 

interannual variations in summer temperature may also result from greater exposure to temperature 

and other atmospheric extremes relative to the shorter, old-growth specialist T. heterophylla, 

aligning with previous work demonstrating that canopy trees are more responsive to climatic 

fluctuations (Bennett et al., 2015; Rollinson et al., 2021). Our results complement other recent 

studies that find life-history and forest structure introduce important variation in the sensitivity of 

neighborhood effects to climate (Kobe & Vriesendorp, 2011; Liu & He, 2022; Luo et al., 2024; 

Ramage et al., 2023).  

Along with life-history and forest structure, microbial interactions, which contribute to 

local CDD when relatively host-specific, may underly our main finding that neighborhood effects 

are sensitive to interannual variations in climate. For example, ectomycorrhizal networks that 

facilitate resource sharing among trees may amplify conspecific advantages in cooler years by 

buffering against climatic stress when decomposition rates are slower (Castaño et al., 2017; 

Steidinger et al., 2019). In warm years, when nutrients are more readily accessible, 

ectomycorrhizal networks may become less important to patterns of large adult tree growth. 

Conversely, wetter years are associated with increased abundance and virulence of root- and leaf-

associated pathogens (Delgado-Baquerizo et al., 2020; Milici et al., 2020), which may contribute 

to our finding of stronger stabilizing CDD in T. heterophylla growth in wet years.  

We highlight the stress gradient feedback hypothesis as a useful framework for 

understanding our results, which posits that increasing environmental stress should increase the 

benefits of relatively host-specific mutualisms relative to antagonisms (Doolittle et al. in prep). 

Under this framework, trees in stressful environments should receive amplified benefits from 
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proximity to conspecifics that share mutualists, potentially shifting the balance from competition 

to facilitation along stress gradients (David et al., 2020). Integrating the stress gradient feedback 

hypothesis with life-history differences, we hypothesize that canopy-exposed, shade-intolerant P. 

menziesii experiences increased physiological stress in cool years relative to dry years – which can 

be reduced in relatively conspecific environments by amplified benefits from ectomycorrhizal 

networks. Similarly, T. heterophylla, being less canopy-exposed and more shade tolerant, may 

experience more physiological stress in dry years relative to wet years, which can be reduced by 

resource sharing among conspecifics through ectomycorrhizal networks.  

Among the remaining questions limiting our understanding of neighborhood interactions 

is the degree to which thresholds exist at climatic extremes. While our study detected gradual shifts 

in local CDD with temperature and precipitation, ecosystems often exhibit non-linear responses 

when critical climate thresholds are exceeded (Franklin et al., 2016). The existence of such a 

threshold at climatic extremes may manifest as abrupt changes in the strength or direction of local 

CDD, and explain why studies like ours and Liu & He (2021) find that local CDD is negatively 

correlated with temperature (more stabilizing with mild warming), while others find that extreme 

warming erodes stabilizing neighborhood effects (Bachelot et al., 2020; Germain & Lutz, 2022).  

We find that tree growth is responsive to different climatic variables across different 

seasonal periods of growth. For both focal species, growth is most correlated with early summer 

VPD at lower elevations and late summer VPD at higher elevations (Figure 3-4A). Similar trends 

are present for precipitation in both species and temperature in T. heterophylla. Notably, selected 

climate windows do not always align with elevation – which may be indicative of temperature 

inversions caused by cool-air drainages (i.e., higher mean-spring temperatures and lower mean-

summer temperatures in valleys relative to ridgelines; Frey et al., 2016). While tree growth is not 
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uniformly responsive to seasonality, we find that both focal species are responsive to interannual 

differences in macroclimate.  

Overall, tree growth was most strongly predicted by tree size and highest for the largest 

trees at higher elevation sites. This pattern was particularly evident at the highest elevation site 

(RS22) where annual growth for both P. menziesii and T. heterophylla has dramatically increased 

in recent decades (Figure 3-2). While recent increases to growth rates at higher elevations could 

be reflective of reduced thermal constraints and extended growing seasons (Lenoir et al. 2008), we 

expect that increased growth at RS22 is likely driven by recent declines in populations of mid-

seral, climate-sensitive species (e.g., Abies procera; Franklin et al. 2024). Regardless of the 

mechanism, recent changes to local conditions appear to be advantageous to growth rates of both 

P. menziesii and T. heterophylla at the highest end of our elevational gradient.  

We highlight that our pairwise feedback result finding a demographic advantage for both 

focal species in conspecific environments in cool years is restricted to established adult trees, 

which typically experience weaker density-dependent effects than earlier life stages (Pu & Jin, 

2018; Zhu et al., 2015). Adult trees have more extensive root systems, greater carbon reserves, and 

enhanced resistance to pathogens compared to earlier life stages. Notably, our reliance on a static 

neighborhood measurement constrained our analysis to a maximum of 60 years of growth, which 

represents a relatively short window in the lifespan of these long-lived tree species. We accounted 

for this limitation by limiting our neighborhoods to trees ≥15-cm DBH, which were likely present 

throughout our study period given the growth rates of our focal species (Ruth, 1964). Nevertheless, 

future studies incorporating more frequent and detailed neighborhood measurements would 

provide additional insights into temporal neighborhood dynamics. 
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Our focus on large established adults likely also explains why we find generally neutral 

local CDD under most climate scenarios while studies of earlier life stages disproportionately 

reveal negative stabilizing local CDD (Comita et al., 2014; Hülsmann et al., 2024; Song et al., 

2021). The spatial patterns of large adult trees are the product of environmental and biotic 

constraints on growth and survival in earlier life stages. As climate change alters both the mean 

and variability of temperature regimes, these periodic disruptions to established competitive 

hierarchies could have cascading consequences for forest community composition and carbon 

dynamics. Understanding these stage-specific responses to climate-neighborhood interactions will 

be critical for forecasting forest resilience in an era of rapid environmental change, particularly in 

old-growth systems where large trees contribute disproportionately to ecosystem function and 

carbon storage. 

Conclusions  

Our results demonstrate that interannual climate variation can have important effects on 

growth patterns of large trees, weakening stabilizing conspecific density effects for P. menziesii in 

cool years and strengthening conspecific density effects for T. heterophylla in wet years. As 

climate change increases the frequency and intensity of extreme fluctuations in climate, these 

altered neighborhood dynamics may play an increasingly important role in reshaping growth 

patterns of large, established adults – with cascading consequences for carbon storage, ecosystem 

functioning, and local diversity. Future research should focus on integrating these local-scale, 

climate-mediated biotic interactions into models predicting forest responses to climate change, 

which have traditionally emphasized direct physiological responses to climate while overlooking 

the important role of neighborhood interactions. 
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Tables & Figures 
Table 3-1: Distribution of Sites and Tree Sampling. We utilized 612 cores from 306 trees collected 
either specifically for this study or in 2003 by Harmon & Woolley (2013). We omitted cores with 
broken wood, obvious dating errors, abnormal growth patterns, and cores for which the previous 
forest inventory survey recorded a diameter at breast height (DBH) less than 30-cm. Final core 
dataset included 249 trees distributed across 6 long-term forest inventory plots across 800-meters 
of elevation at the H.J. Andrews Experimental Forest LTER in Blue River, Oregon.  
 

Forest Stand 
Elevation 

(m) 
Trees Cored (2003) Trees Cored (2022) Site 

Totals P. menziesii T. heterophylla P. menziesii T. heterophylla 
RS07 490 0 18 0 0 18 
RS01 510 67 0 0 0 67 
RS02 580 0 0 13 20 33 
RS34 820 7 22 0 0 29 
RS31 900 0 0 23 16 39 
RS22 1290 10 16 19 18 63 

Totals: 84 56 55 54 249 
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Figure 3-1: Location of sampled reference stands within Andrews Forest in the central Cascade 
Range of Oregon, USA. Located in the central Cascade Range of Oregon, the H.J. Andrews 
Experimental Forest (Andrews Forest) is a long-term ecological research station (LTER) situated 
on forests, streams, and meadows that indigenous peoples have been in relationship for thousands 
of years. In the Kalapuya Treaty of 1855 (aka Treaty of Dayton, Willamette Valley Treaty), the 
Kalapuya were forced to cede this land to the US Government. This overview map of the Andrews 
Forest depicts the location of tree core sampling along an 800-meter elevational gradient, where 
light colors refer to high elevation and green, dark colors refer to low elevation (Table 1). Cores 
were taken from long-term forest inventory measurement plots (or “reference stands”; RS) dating 
back to the 1970s.  
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Figure 3-2: Growth patterns for T. heterophylla and P. menziesii from 1960 to 2019. Basal area 
increments (BAI) were modeled (natural log-transformed) in a GAM framework with global and 
stand-level time effects and random smoothing effects for individual trees (Table S3-2, S3-3). 
Here, plots are sorted by elevation and growth trends for each species are visualized over time 
ranges for which tree-ring records exist. Plots exhibited similar relationships to time, with notably 
low growth for RS01 in P.menziesii and notably high growth for both species in RS22. Dots 
represent individual tree growth and are colored to match stand scale. 
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Figure 3-3: Parameter estimates for density, climate, and size effects on tree growth across species 
and climate variables. Separate Bayesian GLMMs were used for each combination of species and 
climate variable to account for differences in climate window selections (Figure 3-4A). Estimates 
for which the 90% credible interval overlap zero are considered insignificant and colored black. 
Positive estimates indicate a positive effect on BAI (blue). Negative estimates indicate a negative 
effect on BAI growth (red). Note that both linear and quadratic terms are presented and are 
significant for DBH and many climate variables. For instance, a negative quadratic term indicates 
a saturating or parabolic shape for positive linear effects, and an inverse saturating or parabolic 
shape for negative linear effects. Growth was generally most associated with tree DBH, with 
density and climate varying in estimation with species and variable, respectively.  
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Figure 3-4: Analysis of local CDD and Pairwise Feedback (Is) across climate variables. We 
selected climate windows (A) by modeling BAI with linear and quadratic climate variables across 
different climate windows corresponding to months between April and November. Each model 
accounted for temporal autocorrelation and tree size. Here, we visualize the best-fit window as 
selected by log-likelihood. In other words, Panel A depicts the seasonal period for which tree 
growth of each species is most associated with each climate variable. Each selected climate 
window was then used in hierarchical Bayesian GLMMs of individual tree growth. We estimated 
stabilizing CDD (B) as the relative average marginal effect (rAME) of adding a single 15-cm 
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conspecific adult 1-meter from the base of the focal tree to an otherwise entirely heterospecific 
neighborhood. Positive rAME estimates indicate relatively increased performance (% change) in 
conspecific neighborhoods relative to heterospecific neighborhoods (destabilizing local CDD). 
Negative rAME estimates indicate relatively decreased performance (% change) in conspecific 
neighborhoods relative to heterospecific neighborhoods (stabilizing local CDD). We related rAME 
estimates for our focal species by estimating pairwise feedbacks Is  (C) from the posterior 
distributions of each combination of focal species and conspecific or heterospecific neighborhood 
across 5 quantiles (10% to 90%). Positive values indicate destabilizing feedback where each 
species growth is highest in conspecific neighborhoods, and negative values indicate stabilizing 
feedbacks where each species growth is highest in heterospecific neighborhoods.  

Supplemental Tables and Figures 
 
Table S3-1: Allometric Equations for Bark Thickness. We accounted for the biological reality that 
bark thickness scales with tree size to improve the reliability of our basal area increment 
calculations. We calculated bark thickness (BT) as a linear function of tree size for each species 
using standardized equations. 

Species 
Allometric Equation for Bark Thickness (BT, 

cm) Citation 
P. menziesii 𝐵𝑇 = 0.04 + 0.09 ∗ 𝐷𝐵𝐻 Miles & Smith 2009 
T. heterophylla 𝐵𝑇 = 0.40 + 0.17 ∗ 𝐷𝐵𝐻 Miles & Smith 2009 

 
 
Table S3-2: Results of the generalized additive model (GAM) for Pseudotsuga menziesii 
(Douglas-fir) growth. The model includes a global smooth term for time and its factor interactions 
with each stand included in our study (Table 3-1) as well as a random smooth effect for individual 
trees (TAG). EDF represents estimated degrees of freedom, Ref.df is the reference degrees of 
freedom, F-value indicates the significance of each term, and p-values are shown with significance 
levels (*** indicates p < 0.001). Our model finds high degree of variation in growth among 
individual trees and significant global- and stand-level patterns emerging across our elevation 
gradient.   

Term EDF Ref.df F-value p-value Significance 

s(time) 9.000 9 7.829 < 0.001 *** 

s(time): RS01 3.774 8 5.538 < 0.001 *** 

s(time): RS02 8.000 8 9.763 < 0.001 *** 

s(time): RS22 8.000 8 10.563 < 0.001 *** 

s(time): RS31 8.000 8 11.209 < 0.001 *** 

s(time): RS34 6.922 8 5.801 < 0.001 *** 

s(TAG) 135.808 138 358.909 < 0.001 *** 
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Table S3-3: Results of the generalized additive model (GAM) for Tsuga heterophylla (Western 
hemlock) growth. The model includes a global smooth term for time and its factor interactions 
with each stand included in our study (Table 3-1) as well as a random smooth effect for individual 
trees (TAG). EDF represents estimated degrees of freedom, Ref.df is the reference degrees of 
freedom, F-value indicates the significance of each term, and p-values are shown with significance 
levels (*indicates p < 0.05, *** indicates p < 0.001). Our model finds high degree of variation in 
growth among individual trees and significant stand-level patterns emerging across our elevation 
gradient. Stand-level patterns are dissimilar from one another as distinguished by the insignificant 
global smooth for time. 

Term EDF Ref.df F-value p-value Significance 

s(time) 7.469 7.964 0.990 0.486  

s(time): RS02 7.464 8.000 9.117 0.024 * 

s(time): RS07 0.000 8.000 0.000 0.025 * 

s(time): RS22 7.361 8.000 68.540 < 0.001 *** 

s(time): RS31 6.130 8.000 8.007 0.019 * 

s(time): RS34 5.152 8.000 39.524 < 0.001 *** 

s(TAG) 109.356 110.000 179.869 < 0.001 *** 

 
Table S3-4: Parameter estimates for Bayesian hierarchical GLMMs estimating contribution of 
tree size, neighborhood variables, and climate variables to tree growth. Estimates are presented 
along with 95% credible intervals for each species (PSME = P. menziesii, TSHE = T. 
heterophylla). 

Species Climate Model Parameter Estimate 95% CI 

PSME VPD Intercept 1.996 [1.473, 2.503] 

PSME VPD DBH 0.531 [0.384, 0.675] 

PSME VPD DBH2 -0.128 [-0.232, -0.034] 

PSME VPD VPD -0.036 [-0.043, -0.029] 

PSME VPD VPD2 0.002 [-0.003, 0.007] 

PSME VPD Con. Density 0.037 [-0.121, 0.201] 

PSME VPD Total. Denisty -0.114 [-0.219, -0.007] 

PSME VPD Con:VPD -0.028 [-0.036, -0.02] 

PSME VPD Total:VPD 0.012 [0.006, 0.018] 

PSME VPD Con:VPD2 0.001 [-0.005, 0.008] 



 142 

Species Climate Model Parameter Estimate 95% CI 

PSME VPD Total:VPD2 0.001 [-0.002, 0.004] 

PSME Temperature Intercept 1.972 [1.41, 2.493] 

PSME Temperature DBH 0.541 [0.399, 0.689] 

PSME Temperature DBH2 -0.126 [-0.229, -0.028] 

PSME Temperature Temperature 0.008 [-0.009, 0.025] 

PSME Temperature Temperature2 0.032 [0.023, 0.041] 

PSME Temperature Con. Density 0.046 [-0.118, 0.208] 

PSME Temperature Total Density -0.099 [-0.215, 0.011] 

PSME Temperature Con:Temp -0.063 [-0.083, -0.043] 

PSME Temperature Total:Temp 0.011 [0.002, 0.02] 

PSME Temperature Con:Temp2 0.018 [0.006, 0.03] 

PSME Temperature All:Temp2 0.000 [-0.005, 0.006] 

PSME Precipitation Intercept 1.993 [1.468, 2.505] 

PSME Precipitation DBH 0.529 [0.383, 0.679] 

PSME Precipitation DBH2 -0.129 [-0.235, -0.027] 

PSME Precipitation Precipitation 0.016 [0.009, 0.023] 

PSME Precipitation Precipitation2 -0.002 [-0.007, 0.002] 

PSME Precipitation Con. Density 0.029 [-0.133, 0.196] 

PSME Precipitation Total Density -0.107 [-0.216, -0.002] 

PSME Precipitation Con:Precip 0.034 [0.026, 0.042] 

PSME Precipitation Total:Precip -0.011 [-0.016, -0.006] 

PSME Precipitation Con:Precip2 -0.005 [-0.01, 0] 

PSME Precipitation Total:Precip2 0.002 [-0.001, 0.005] 

TSHE VPD Intercept 2.181 [2.031, 2.323] 

TSHE VPD DBH 0.639 [0.551, 0.73] 

TSHE VPD DBH2 -0.140 [-0.176, -0.104] 

TSHE VPD VPD -0.012 [-0.02, -0.003] 

TSHE VPD VPD2 -0.012 [-0.017, -0.007] 
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Species Climate Model Parameter Estimate 95% CI 

TSHE VPD Con. Density -0.011 [-0.119, 0.099] 

TSHE VPD Total Density 0.009 [-0.077, 0.092] 

TSHE VPD Con:VPD 0.011 [-0.006, 0.028] 

TSHE VPD Total:VPD -0.011 [-0.023, 0.002] 

TSHE VPD Con:VPD2 -0.007 [-0.018, 0.003] 

TSHE VPD Total:VPD2 0.005 [-0.003, 0.014] 

TSHE Temperature Intercept 2.180 [1.997, 2.363] 

TSHE Temperature DBH 0.637 [0.55, 0.725] 

TSHE Temperature DBH2 -0.138 [-0.174, -0.101] 

TSHE Temperature Temperature 0.001 [-0.013, 0.014] 

TSHE Temperature Temperature2 -0.002 [-0.009, 0.005] 

TSHE Temperature Con. Density -0.013 [-0.121, 0.096] 

TSHE Temperature Total Density 0.009 [-0.071, 0.094] 

TSHE Temperature Con:Temp -0.016 [-0.042, 0.009] 

TSHE Temperature All:Temp -0.003 [-0.019, 0.014] 

TSHE Temperature Con:Temp2 0.014 [0.001, 0.028] 

TSHE Temperature All:Temp2 -0.005 [-0.014, 0.005] 

TSHE Precipitation Intercept 2.178 [2.035, 2.317] 

TSHE Precipitation DBH 0.641 [0.554, 0.727] 

TSHE Precipitation DBH2 -0.141 [-0.176, -0.104] 

TSHE Precipitation Precipitation 0.026 [0.014, 0.037] 

TSHE Precipitation Precipitation2 -0.015 [-0.022, -0.008] 

TSHE Precipitation Con. Density -0.007 [-0.114, 0.107] 

TSHE Precipitation Total Density 0.007 [-0.076, 0.096] 

TSHE Precipitation Con:Precip -0.014 [-0.036, 0.009] 

TSHE Precipitation All:Precip 0.003 [-0.011, 0.017] 

TSHE Precipitation Con:PPT2 -0.016 [-0.03, -0.001] 

TSHE Precipitation All:PPT2 0.002 [-0.006, 0.009] 
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Figure S3-1: Example of Core Selection. (A) depicts core time series from 3 different trees that 
were excluded in the core selection process due to 3 consecutive years that sum to greater than 1 
standard deviation in growth representative of external factors (damage, competitive release, etc.). 
(B) depicts core time series from 3 different trees that were retained in the core selection process. 
Dark red band indicates 2 standard deviations from core mean (blue dashed line). Light red band 
indicates 3 standard deviations from core mean (blue dashed line). Mean growth of all cores is 
depicted with a green dashed line. Cores were flagged as potentially problematic using 
standardized criteria and reviewed by hand. We note that our selection procedure is flexible enough 
to include dramatic growth changes in short time periods, which could be indicative of climate 
sensitivity to extreme events (Panel B; Tree 07-00701), and yet robust enough to identify trees for 
which competitive release or suppression has altered growth trajectories (Panel A).  
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Figure S3-2: Observed distribution of conspecific densities across species and size classes. To 
ensure that our dataset captured relatively smaller and larger trees under similar conspecific 
densities we divided trees into two categories based on DBH at time of latest forest inventory 
survey (red = above mean DBH, blue = below mean DBH). Histogram depicts distribution of 
unique trees across a range of conspecific densities (Z-scores) which were calculated in 
combination with total densities. Dotted vertical line depict group means, which are nearly 
identical for T. heterophylla but differ substantially from P. menziesii. Conspecific densities are 
standardized Z-Scores selected from the grid-search models (Figure S3-3).   
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Figure S3-3: Effect on model fit by shifting alpha, beta, and D in conspecific and total LDI 
calculation. Linear mixed effect models with temporal autoregressive processes were iteratively 
tested with different combinations of alpha, beta, and D to account for the size- and distance-
dependent nature of neighborhood effects. Models were compared and selected using log-
likelihood. Heatmaps visualize a, b, and D around each optimal model with light colors equating 
to high log-likelihood values (better fits) and dark colors equating to low log-likelihood values 
(worse fits). This grid search selected a = 0, b = 1, and d = 1 for T. heterophylla and a = 0, b = 1.4, 
and d = 2 for P. menziesii. 
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Figure S3-4: Local CDD estimated across identical seasonal windows. As an alternative to 
allowing climate windows to vary in length and season across sites (see Figure 3-4), we estimated 
stabilizing CDD in identical July through September climate windows for each climate variable 
(precipitation, temperature, and VPD). Local stabilizing CDD is measured as the relative average 
marginal effect (rAME) of adding a single 15-cm conspecific adult 1-meter from the base of the 
focal tree to an otherwise entirely heterospecific neighborhood (see methods). Calculating across 
identical windows does not change our inference for P. menziesii but does remove the relationship 
between CDD and precipitation for T. heterophylla. We consider this analysis to be less 
informative to our dataset since trees are distributed across an elevational gradient and likely 
exhibit variability in seasonal associations (as seen in Figure 3-4A).  
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Figure S3-5: Local CDD estimated across short timespan (1980-2019). To validate including all 
dendrochronological data dating back to 1960, we ran a separate analysis with a cutoff date of 
1980, measuring stabilizing CDD using rAME of adding a single 15-cm conspecific adult 1-meter 
from the base of the focal tree to an otherwise entirely heterospecific neighborhood (see Fig 4 and 
methods). Restricting our dataset did not change our inference for P. menziesii but did remove the 
wettest years experienced by T. heterophylla and thus made the otherwise significant relationship 
between precipitation and CDD insignificant. Given the slow growth rates of adult trees in old-
growth forests in our system (Ruth, 1964) we considered including data back to 1960 to be 
appropriate and advantageous given the restricted precipitation range for T. heterophylla with more 
restrictive cutoffs.  
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Figure S3-6: Local CDD estimated as a standardized addition to observed conspecific densities 
as opposed to a heterospecific neighborhood. An alternative estimation of local CDD adds a 
standardized conspecific adult to the observed conspecific neighborhood (Hülsmann et al., 2024), 
as opposed to our main approach of adding a standardized conspecific adult to an otherwise 
heterospecific neighborhood. To account for any non-linearities in conspecific responses, we 
validated our approach against this alternative rAME estimation of local CDD and found no 
significant deviations from our inference. This indicates that across ranges from entirely 
heterospecific neighborhoods to observed neighborhood compositions conspecifics have a similar 
effect on individual growth.  
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Figure S3-7: Local CDD estimated as absolute change (aAME) from a adding a standardized 
conspecific adult to an otherwise heterospecific neighborhood. While we generally consider 
relative changes in growth to be more informative than absolute changes in growth, we present 
here the absolute average marginal effects (aAME) calculated by subtracting growth in a relatively 
conspecific neighborhood from an otherwise entirely heterospecific neighborhood (see methods). 
Results are presented on the scale of basal area increments in cm2yr-1.  
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Figure S3-8: Model estimated basal area increments across climate quantiles in standardized 
heterospecific and conspecific neighborhoods. While pairwise feedbacks (Is) provide important 
context for the community-level implications of local conspecific density effects, we also sought 
to understand whether positive feedbacks in cool years were driven by changes in P. menziesii 
growth or T. heterophylla growth. Here, predicted growth in relatively conspecific neighborhoods 
(standardized conspecific addition as in rAME estimation, see methods) is depicted in red, and 
growth in heterospecific neighborhoods is depicted in blue. Dots indicate posterior medians, and 
tails indicate 95% credible intervals. We note that in the case of precipitation for T. heterophylla 
and temperature for P. menziesii growth is changing most in conspecific environments relative to 
heterospecific environments.  
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Figure S3-9: QQ and residual plots from DHARMa output for P. menziesii precipitation model. 
The left panel displays a QQ plot comparing observed versus expected residuals, with statistical 
tests indicating no significant deviations from normality (KS test p=0.08268, Dispersion test 
p=0.151, Outlier test p=1). The right panel shows DHARMa residuals plotted against model 
predictions (rank transformed), with residuals scattered around 0.5 (red line) across the prediction 
range, suggesting the model assumptions are adequately met with no apparent patterns of 
heteroscedasticity or bias in the residuals. 
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Figure S3-10: QQ and residual plots from DHARMa output for P. menziesii temperature model. 
The left panel displays a QQ plot comparing observed versus expected residuals, with statistical 
tests indicating no significant deviations from normality (KS test p=0.09908 Dispersion test 
p=0.151, Outlier test p=1). The right panel shows DHARMa residuals plotted against model 
predictions (rank transformed), with residuals scattered around 0.5 (red line) across the prediction 
range, suggesting the model assumptions are adequately met with no apparent patterns of 
heteroscedasticity or bias in the residuals. 
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Figure S3-11: QQ and residual plots from DHARMa output for P. menziesii VPD model. The left 
panel displays a QQ plot comparing observed versus expected residuals, with statistical tests 
indicating no significant deviations from normality (KS test p=0.0.00857 Dispersion test p=0.159, 
Outlier test p=0.779). While the KS test was significant, KS tests are sensitive to large sample 
sizes and we did not consider this to suggest model misspecification. The right panel shows 
DHARMa residuals plotted against model predictions (rank transformed), with residuals scattered 
around 0.5 (red line) across the prediction range, suggesting the model assumptions are adequately 
met with no apparent patterns of heteroscedasticity or bias in the residuals. 
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Figure S3-12: QQ and residual plots from DHARMa output for T. heterophylla precipitation 
model. The left panel displays a QQ plot comparing observed versus expected residuals, with 
statistical tests indicating no significant deviations from normality (KS test p=.00001, Dispersion 
test p=0.385, Outlier test p=0.346). While the KS test was significant, KS tests are sensitive to 
large sample sizes and we did not consider this to suggest model misspecification. The right panel 
shows DHARMa residuals plotted against model predictions (rank transformed), with residuals 
scattered around 0.5 (red line) across the prediction range, suggesting the model assumptions are 
adequately met with no apparent patterns of heteroscedasticity or bias in the residuals. 
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Figure S3-13: QQ and residual plots from DHARMa output for T. heterophylla temperature 
model. The left panel displays a QQ plot comparing observed versus expected residuals, with 
statistical tests indicating no significant deviations from normality (KS test p=.00004, Dispersion 
test p=0.369, Outlier test p=1). While the KS test was significant, KS tests are sensitive to large 
sample sizes and we did not consider this to suggest model misspecification. The right panel shows 
DHARMa residuals plotted against model predictions (rank transformed), with residuals scattered 
around 0.5 (red line) across the prediction range, suggesting the model assumptions are adequately 
met with no apparent patterns of heteroscedasticity or bias in the residuals. 

 



 157 

 
Figure S3-14: QQ and residual plots from DHARMa output for T. heterophylla VPD model. The 
left panel displays a QQ plot comparing observed versus expected residuals, with statistical tests 
indicating no significant deviations from normality (KS test p=0, Dispersion test p=0.343, Outlier 
test p=1). While the KS test was significant, KS tests are sensitive to large sample sizes and we 
did not consider this to suggest model misspecification. The right panel shows DHARMa residuals 
plotted against model predictions (rank transformed), with residuals scattered around 0.5 (red line) 
across the prediction range, suggesting the model assumptions are adequately met with no apparent 
patterns of heteroscedasticity or bias in the residuals. 
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Abstract 

Understanding how environmental stress alters the strength of local plant interactions is 

key to explaining diversity in current and future plant communities. Along gradients of increasing 

environmental stress, traditional theory posits that plants experience stronger facilitative 

interactions and weaker antagonistic interactions. However, it remains unclear whether this pattern 

holds for the relative host-specificity of plant-microbe interactions along stress gradients. 

Understanding the dynamics between stress and host-specificity is particularly important for plant 

interactions with pathogenic and mycorrhizal fungi, which can drive opposing density-dependent 

processes that shape plant community compositions. We posit that increases in abiotic 

environmental stress are associated with greater abundances of relatively host-specific facilitative 

interactions, as plants rely on more specialized mutualists to acquire resources needed to cope with 

abiotic environmental stressors. We tested this prediction along an abiotic stress gradient in the 

central Cascade Range of Oregon, USA, using overlapping datasets of large high-resolution forest 

inventory plots, soil chemistry, and amplicon sequencing. Consistent with predictions derived 

from the SGFH, in low-elevation forest stands with benign abiotic conditions and abundant 

nutrients, within-plot site-to-site differences in local tree community composition were more 

associated with site-to-site differences in pathogenic fungal composition than site-to-site 
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differences in ectomycorrhizal fungal composition. However, in forests at high elevations with 

nutrient limitation and harsher microclimates, within-plot site-to-site differences in local tree 

community composition were more associated with differences in ectomycorrhizal fungal 

composition than site-to-site differences in pathogenic fungal composition. Additionally, we find 

that the within-plot spatial aggregation of ectomycorrhizal fungi increases across plots with 

increasing abiotic stress. These findings, while observational early tests of the SGFH, nonetheless 

suggest that mutualists become more closely associated with their host-tree species as abiotic stress 

increases. Interactions between fungal and tree communities likely play an important role in 

shaping forest composition along environmental stress gradients. 

Introduction 

Understanding the contribution of abiotic and biotic factors to species diversity remains a 

central goal of ecology (Brown, 1984). At local scales, plant species diversity is most often 

attributed to a mix of species-specific abiotic preferences for resources (e.g., nutrients, space; 

Grime, 1977; Tilman et al., 1982) and the outcomes of interactions between individuals (e.g., 

facilitation, antagonism; (Chesson, 2000). Interactions between abiotic preferences and species 

interactions form the foundation for the Stress Gradient Hypothesis (SGH), which posits that the 

ratio of facilitative to antagonistic species interactions increases with abiotic stress (Figure 4-1A; 

Bertness & Callaway, 1994; Maestre et al., 2009). In recent years, the SGH has been expanded 

and applied to cross-kingdom interactions between trees and root- and leaf-associated fungi which 

reciprocally mediate plant growth, survival, and reproductive rates (individual performance; 

(Allsup et al., 2023; David et al., 2020; Fadiji et al., 2023). However, predictions for species 

composition and diversity under the SGH often do not address whether plant-fungal interactions 

are relatively general (fungal species interacting broadly with approximately even strength across 
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many plant species) or relatively specialized (fungal species interacting strongly with relatively 

few plant species, even if they have weaker interactions with many plant species). Since host-

specific plant-fungal interactions are thought to have strikingly different implications for plant 

communities than general interactions (Bever, 2003; Broekman et al., 2019; LaManna et al., 2024), 

it is important to consider how relative host-specificity of these interactions is influenced by 

differences in abiotic stress.  

Relatively host-specific plant-fungal interactions (as defined above) are hypothesized to 

contribute to plant species diversity by generating differing density-dependent effects on 

conspecific individuals relative to heterospecific individuals, a phenomenon known as locally 

stabilizing or destabilizing conspecific density dependence (hereafter abbreviated as ‘local 

stabilizing CDD’ as in (Hülsmann et al., 2024; LaManna et al., 2024). There is widespread support 

for local stabilizing CDD at local scales, most often realized as a disproportionate negative effect 

on conspecific performance relative to heterospecific performance (Comita et al., 2014). This type 

of stabilizing CDD provides locally less dominant species with an advantage by limiting locally 

dominant species, potentially contributing to the maintenance of species diversity if other 

conditions are met (Chesson, 2000; Levi et al., 2019; Smith, 2022).. However, local stabilizing 

CDD can also be destabilizing (also known as positive CDD) when host-specific interactions 

enhance individual conspecific performance relative to heterospecific performance (Delavaux et 

al., 2023; Zahra et al., 2021). Destabilizing CDD advantages locally dominant species and can 

promote the erosion of species diversity under certain conditions (Chesson, 2000; Levi et al., 2019; 

Smith, 2022). Importantly, host-specific interactions need only be relatively host-specific to 

contribute to local stabilizing CDD; that is, they cause disproportionately strong effects on primary 

plant hosts relative to other hosts (Spear & Broders, 2021).  
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In plants, local stabilizing CDD is increasingly attributed to the outcomes of these 

relatively host-specific interactions with antagonistic and mutualistic fungi (Chen et al., 2019; 

Liang et al., 2021; Packer & Clay, 2000). Pathogenic fungi contribute to local stabilizing CDD by 

aggregating where conspecific density is high and reducing individual plant performance 

(Freckleton & Lewis, 2006; Ricklefs, 1977). Mutualistic mycorrhizal fungi, on the other hand, are 

thought to counteract local stabilizing CDD by aggregating where conspecific density is high and 

improving plant performance by aiding in nutrient acquisition and pathogen resistance, among 

other potential benefits (Delavaux et al., 2017, 2023; Jiang et al., 2021). Therefore, pathogenic and 

mycorrhizal fungi can generate opposing forces influencing the net strength and directionality 

(stabilizing or destabilizing) of local CDD.  

There is clear evidence that abiotic stress alters the composition of the root-associated 

microbiome (Hartman & Tringe, 2019), which suggests that changes to pathogenic and 

mycorrhizal root-fungal interactions may relate to shifts in local stabilizing CDD along 

environmental stress gradients. To date, empirical studies have found general support for the 

hypothesis that local CDD shifts predictably from stabilizing to neutral or destabilizing with 

chronic stressors such as depleted nutrient availability, harsh climates, and light limitation 

(LaManna et al., 2022; Lebrija-Trejos et al., 2023; Liu & He, 2021; Uriarte et al., 2018). Despite 

evidence that local CDD shifts predictably with abiotic stress gradients, we lack a framework and 

direct tests of how the underlying mechanisms generating CDD, such as host-specific pathogenic 

and mycorrhizal interactions, are impacted by abiotic stress and alter the strength and direction of 

CDD. 

To synthesize recent studies of local stabilizing CDD along abiotic gradients with 

predictions of the SGH, we present the Stress Gradient Feedback Hypothesis (SGFH). The SGFH 
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posits that relatively host-specific plant-microbe interactions become more facilitative with 

increases in abiotic stress – contributing to less stabilizing (i.e., more destabilizing) conspecific 

density-dependent feedback (Table 4-1; Figure 4-1B). Conversely, in abiotically benign 

environments, where nutrients are widely available and mutualists are potentially less necessary 

to plant survival and growth, the SGFH predicts stronger stabilizing CDD will be generated 

through increased importance and host-specificity of plant antagonists such as fungal pathogens. 

By formulating the SGFH, we explicitly link the SGH to host-specific interactions and their 

consequences for individual conspecific performance as well as population growth rates and 

species diversity along abiotic gradients. 

Here, we use an observational approach to begin to evaluate predictions derived from the 

SGFH. Specifically, we relate the spatial structure of pathogenic, mycorrhizal, and saprotrophic 

fungal communities to patterns of tree community composition along a 690-meter elevation stress 

gradient in old-growth forests of the central Cascade Range of Oregon, USA (Table 4-1). As 

elevation increases along this gradient, nutrient availability declines and microclimates become 

harsher. Using this elevational stress gradient, we assess predictions from the SGFH by pairing 

high-resolution forest inventory plots with chemical analyses and amplicon sequencing in both the 

mineral soils and litter layer of the forest floor. We predict that mycorrhizal fungi are more 

spatially aggregated, clustering in association with specific tree communities in higher elevations 

with harsher abiotic conditions. We predict the opposite pattern for pathogenic fungi; that spatial 

aggregation and associations with tree communities are highest in low elevation, abiotically benign 

forests. In addition to our focal guilds of pathogenic and mycorrhizal fungi, which are often 

invoked as an important driver of local CDD, we tested the spatial aggregation and associations of 

tree communities with saprotrophic fungi. Saprotrophic fungal communities functionally provide 
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a control group, as they are not thought to contribute to local CDD in similar ways to pathogens 

and mycorrhizal fungi. Therefore, we expected weaker patterns between elevational stress and 

saprotrophic fungal spatial aggregation or associations with tree communities than patterns 

observed for pathogenic and mycorrhizal fungi. Understanding the implications of interactions 

between fungal guild communities and trees along stress gradients is increasingly important to 

explaining the maintenance of species diversity under climate change and climate-driven changes 

to environmental stress.   

Materials & Methods 

Site Description 

This study took place across a 690-meter elevation gradient (500-meters to 1190-metres) 

at the Andrews Experimental Forest LTER near Blue River, Oregon. Climatic conditions vary 

across this gradient, with generally shorter growing seasons at high elevations due to persisting 

spring/summer snowmelt, dry summers, and freezing temperatures during the wet season. A 

detailed description of the tree communities and climatic conditions at the Andrews Experimental 

Forest LTER is available in Appendix S4-1: Section S4-1.   

Sample Collection 

To test predictions generated by the SGFH, we collected and examined the soil, fungi, and 

tree communities at 6 old-growth forest dynamics plots (Franklin et al., 2024) that were recently 

expanded in 2019-2023. In 5 of these plots (ranging in size from 2 – 12 ha; Table S4-1), all trees 

≥ 1 cm DBH were measured and mapped between 2019 and 2023 using TOPCON laser surveying 

equipment (Topcon Positioning Systems Inc., Livermore, CA). These long-term forest plots are 

part of the Smithsonian ForestGEO network (Andrews Forest Dynamics plots; 
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https://forestgeo.si.edu/sites/usa/andrews) and co-located with historical inventory censuses dating 

back to the 1970s.  

While most root-associated fungi interact with trees in mineral soil, the litter layer also 

harbors fungi capable of mediating plant performance (Prescott & Grayston, 2013; Veen et al., 

2019). Additionally, litter layer fungal communities may partially reflect foliar fungal 

communities which can enhance or reducing plant performance (Jia et al., 2020). To account for 

the ecological relevance of both mineral soil and litter layers for tree-fungi interactions, we 

sampled fungi at two depths (litter layer: O horizon; mineral soil: top 10-cm of A horizon) at each 

forest inventory plot between July and August of 2021 (Carpenter et al., 2014). Soil and litter were 

sampled along a 25x25-meter grid within each 2-12ha inventory plot, excluding plot edges (Table 

S4-1). Within every other grid square (in a checkerboard pattern), we collected 9 samples in a 

square pattern, 8 spaced evenly in 5-meters increments from the perimeter, and 1 from the square 

center. These samples were pooled and homogenized at each grid square. Pooled samples were air 

dried for 24-48 hours, split into two equal 100g samples for separate chemical and microbial 

analyses, and stored in -20°C freezers until processed.  

Soil Chemical Analyses, Microbiome Sequencing, & Bioinformatics 

To quantify both abiotic properties and fungal communities we utilized chemical analyses 

performed at the Soil Health Laboratory in the Crop and Soil Science Department of Oregon State 

University in the Fall of 2021 as well as amplicon sequencing on the PacBio Sequel IIe (Pacific 

Biosciences of California, California, USA) platform at the Functional Genomic Center in Zurich, 

Switzerland (FGCZ, Zürich, CH). A detailed description of the chemical nutrient assays is 

available in Appendix S4-1: Section S4-2. We performed amplicon sequencing of the ITS region 

using the forward primer ITS9munngs and the reverse primer ITS4ngUni (Tedersoo & Anslan, 
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2019). Procedures for international soil shipment as well as DNA isolation, amplification, and 

sequencing are available in Appendix S4-1: Section S4-3.   

To process raw CCS sequences, we followed an adapted cutadapt pipeline developed for 

demultiplexing PacBio and our specific ITS primer sequences (Martin, 2011). Using cutadapt, we 

removed primers before denoising, quality filtering, and checking for chimeras using Dada2 

(Callahan et al., 2016). Once demultiplexed and processed, we assigned taxonomic identity of 

amplicon sequence variants (ASVs) using the ‘probable’ and ‘highly probable’ filter of FUNGuild 

as recommended by Nguyen et al., (2016). FUNGuild assignments are often inclusive of life-

histories, which led to many cases in our dataset where a given ASV was categorized in 

overlapping guilds (i.e., “saprotrophic” and “ectomycorrhizal” or “saprotrophic” and 

“pathogenic). In many cases these overlapping assignments are informative, especially for some 

ectomycorrhizal fungi that have retained saprotrophic nutrient acquisition strategies. We allowed 

ectomycorrhizal and pathogenic guilds to contain ASVs that overlapped with saprotrophic life 

histories. No ASV was included in multiple focal guilds, meaning that if an ASV was categorized 

as “saprotrophic” and “ectomycorrhizal” it was only included in the “ectomycorrhizal” guild for 

subsequent analyses. All ASVs assigned to both “ectomycorrhizal” and “pathogenic” functional 

guilds were excluded. We observed a total of 11749 unique ASVs across litter layer and mineral 

soil samples. All categorized guild outputs from FUNGuild, including the “non-assigned” group, 

are listed in Table S4-2. Distribution of ASVs and reads by FUNGuild assignments are listed in 

Table S4-3.  

Microbial sequencing data is inherently compositional and suffers from unequal 

sequencing depth, overdispersion, zero-inflation, and data redundancy (McMurdie & Holmes, 

2014). Many traditional approaches, including rarefaction, treat all information in low-abundance 
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samples as unreliable, discarding information potentially informative for ecological inference – 

especially community analyses that are predicated on accurately representing species distribution 

and abundance.  This loss of microbial data through rarefaction is the subject of ongoing debate, 

especially when subsequent analyses are focused on determining distances between samples in 

multivariate space (Schloss, 2024; Warton et al., 2012).   

 Given our emphasis on distance-based analyses (e.g. PCoA, variation partitioning), we 

opted to use the denoising algorithm ‘mbDenoise’ (Zeng et al., 2022) instead of rarefaction as our 

primary method for minimizing inherent challenges with preparing fungal sequencing data. 

mbDenoise employs a zero-inflated probabilistic principal components negative binomial model 

that algorithmically distinguishes between biological and technical zeros (Zeng et al., 2022). The 

resulting denoised abundance matrix represents the estimated true abundance of each taxon in each 

sample after accounting for technical zeros, uneven sequencing depth, and overdispersion and 

performs favorably when fungal community data are used for spatial analyses (Busato et al., 2023; 

Sato et al., 2024). A detailed description of mbDenoise is available in Appendix S4-1: Section S4-

4. We used denoised ASV matrices in all downstream analyses except for beta-deviation analyses 

for which we utilize an established bootstrapping method (Kraft et al., 2011) that relies on 

untransformed ASV counts. All ASV matrices were Hellinger transformed when used in distance-

based analyses due to the poor performance of ecological data in Euclidean space (Legendre & 

Gallagher, 2001).  

Statistical Analyses 

We used several complementary analyses of spatial aggregation as a proxy for measuring 

relative preference for soil location or tree communities among pathogenic, ectomycorrhizal, and 

saprophytic fungal communities. Evidence of spatial aggregation, while not an explicit test of host-
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specificity, indicates that environmental factors and/or interactions are shaping the compositions 

of fungal guilds. Given the grid-based and compositional nature of our sampling design, we could 

not directly measure host-specificity in 1-1 relationships between host trees and fungi. All analyses 

were 3completed in R version 4.1.1 (R Core Team, 2021). Generally, our analyses were completed 

using the R packages ‘phyloseq’ (McMurdie & Holmes, 2013) and ‘vegan’(Oksanen et al., 2025). 

Data preparation was performed with the ‘tidyverse’ packages (Wickham et al., 2023). For 

hypothesis testing we used permutational analysis of variance (PERMANOVA) and mixed linear 

models (LMM) in the ‘vegan’ and ‘lme4’ (Bates et al., 2003) packages, respectively. Model fits 

were assessed using the ‘DHARMa’ package (Hartig, 2016). All figures were generated using 

‘tidyverse’ (ggplot2) and ‘ggpubr’ (Kassambara, 2016) packages.  

Relative abundance and compositional differences 

To test how elevation influences the composition of pathogenic, ectomycorrhizal, and 

saprotrophic fungal communities we used the ‘adonis2’ function of the vegan package to perform 

permutational multivariate analyses of variance (PERMANOVA) on denoised PCoA vectors 

across forest plots. Then, to assess how the relative abundance of pathogenic and mycorrhizal fungi 

varies with elevation and soil layer we used LMMs with a ln-transformed ectomycorrhiza-to-

pathogen read ratio as the response variable. We fit our models with elevation as a predictor, and 

a random effect of site to control for spatial non-independence of samples.  

Spatial aggregation relative to random assortment 

First, to demonstrate that ectomycorrhizal and pathogenic fungi are more spatially 

aggregated than expected under null community assembly, we adapted the approach for calculating 

β-deviations outlined in Kraft et al. (2011). β-deviations (SES β) are standardized effect sizes of 

the difference between pairwise sample Bray-Curtis dissimilarities and dissimilarities derived 
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from randomly assorted null communities. Since β-diversity is inherently a product of 

𝛼	(𝑙𝑜𝑐𝑎𝑙)	and 𝛾	(𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙)	diversity (Whittaker, 1960), calculating SES β allows us to compare 

spatial aggregation across sites independent of site-level differences in local and regional richness. 

A detailed description of this analysis, including equations and parameters for approximating null 

community assembly are available in Appendix S4-1: Section S4-5. We tested for significant 

differences between mean β-deviations at each elevation and guild using a 2-way ANOVA in each 

layer of soil (i.e., litter and mineral soil layers).  

Spatial aggregation relative to outgroup 

We further tested spatial aggregation of pathogenic and ectomycorrhizal fungal 

communities by comparing the spatial aggregation of focal guilds to the observed spatial 

aggregation of fungi without an assigned functional guild from FUNGuild (β-dispersion; Anderson 

et al., 2006). Unlike the β-deviation analysis described above, our β-dispersion analysis of focal 

guilds relative to non-focal guilds provides a metric of how spatially aggregated certain fungal 

guilds are in relation to the fungal community that does not fall into one of our focal guilds for 

which we have no a priori hypotheses of spetial aggregation. We calculated β-dispersion for each 

combination of layer, guild, and site using the ’betadisper’ function  in Vegan (Oksanen et al., 

2025), and then calculated β-dispersion  from iteratively resampled the non-focal community at 

the observed richness and sample depth. We ran this analysis with 1000 permutations and a 

standardized non-focal community (non-assigned guilds) across all tests. Similarly to our β-

deviation analyses, we present β-dispersions as standardized effect sizes between the focal guild 

dispersions and non-focal dispersions, where positive values indicate higher dispersion among 

focal guilds relative to non-focal communities, and negative values indicate over-dispersion 

relative to non-focal communities. We tested for significant differences between mean β-
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dispersion at each elevation and guild using a 2-way ANOVA in each layer of soil (i.e., litter and 

mineral soil layers). 

Assessing associations between fungal communities and tree communities 

Finally, we utilized variation partitioning to assess associations between fungal guild 

communities and tree composition across elevation. While β-deviation and β-dispersion tests 

provide insight into the spatial aggregation of fungal communities, variation partitioning goes one 

step further by relating changes in community composition of different fungal guilds with 

correlated changes in tree compositions using distance-based redundancy analysis (dbRDA). We 

consider this to be a measure of relative or functional host-affinity within each fungal guild 

community, since high R2 means that site-to-site differences in tree and fungal guild community 

composition are highly correlated, and low R2 values indicate that site-to-site differences in tree 

and fungal guild community composition are unrelated. We included pathogenic, ectomycorrhizal, 

saprotrophic fungi as an out-group, and soil chemistry in our variation partitioning analysis with 

the basal area of all trees from the sampled region of each forest inventory plot as a Hellinger 

transformed, Bray-Curtis dissimilarity matrix as the multidimensional response (Legendre & 

Legendre, 2012).  

Since soils were sampled and sequenced on a checkered grid within each forest plot, we 

used inverse distance weighted (IDW) interpolation to estimate the denoised PCoA vector for non-

sampled quadrats. IDW interpolation is a simple interpolation method that explicitly assumes a 

negative relationship between distance and site relatedness and performs favorably when 

compared to other interpolation methods for fungal community datasets (Janowski & Leski, 2023). 

While our original soil collection involved 6 forest inventory stands, two of these stands were 

incompletely surveyed before a wildfire in 2023. To avoid making inference on overly interpolated 
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data, we restricted this analysis to the 4 forest inventory plots for which we had the largest number 

of quadrats with overlapping tree inventory and sequencing data (RS38, RS02, RS31, and RS21; 

Table S4-1). A detailed description of variation partitioning including the selection of predictor 

matrices is available in Appendix S4-1: Section S4-6.  

Results 

Variation in soil properties with elevation 

Soil chemistry differed across the elevational gradient, with declines in nutrient availability 

at higher elevations (Figure S4-1; Table S4-2). PC axis 1 and PC axis 2 explained 39.8% and 

15.9% of variability in soil chemical composition, respectively (Figure S4-1A). Many of the 

measured chemical properties varied significantly with elevation, especially between the lower 

five sites and the two highest sites on the elevation gradient (1090 and 1190-meters, Figure S4-1).   

Relative abundance and compositional changes with elevation among key fungal guilds 

Both relative abundance of ectomycorrhizal to pathogenic fungi and community 

composition of ectomycorrhizal, pathogens, and saprotrophic fungi changed with elevation. In the 

litter layer, we found that pathogenic fungi are relatively more abundant compared to 

ectomycorrhizal fungi, at high elevations (Figure S4-2A; Table S4-5; t = -3.167, p = 0.0164). In 

contrast, we find that ectomycorrhizal fungi trend towards relatively more abundant at higher 

elevations in mineral soils, although the trend is insignificant (Figure 4-2B; Table S4-5; t = 1.698, 

p = 0.159). Along with read ratios, we find that the composition of ectomycorrhizal, pathogenic, 

and saprotrophic fungal guilds varied significantly with elevation (Figure 4-3; Table S4-6) 
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Spatial aggregation of pathogenic, ectomycorrhizal, and saprophytic fungi 

Our β-deviation analysis, which iteratively re-assembles fungal communities assuming 

random community assembly from all ASVs available at the plot-scale in a particular focal guild, 

showed that ectomycorrhizal, pathogenic, and saprotrophic fungal communities were more 

spatially aggregated than expected from a null model with random assembly of communities 

(higher standardized effect size of β-deviations; Figure 4-4). Ectomycorrhizal fungi in the mineral 

soil were increasingly spatially aggregated at higher elevations relative to aggregation expected 

under random assembly. However, β-deviations declined for ectomycorrhizal fungi in the litter 

layer with increasing elevation (Figure 4-4; Table S4-7; Table S4-8). Saprotrophic β-deviations 

were lowest in both mineral soil and litter layers at mid elevations and increased at each end of the 

elevation gradient (Figure 4-4; Table S4-7; Table S4-8). We found no evidence for elevation trends 

in β-deviations among pathogenic fungal communities.   

Our β-dispersion analysis, which compares spatial aggregation of focal fungal guilds to 

non-focal guilds, showed that ectomycorrhizal fungi were the most spatially aggregated (relative 

to other non-focal fungal guilds) in both mineral and litter soil layers, and saprotrophic fungi were 

the least aggregated relative to non-focal fungal guilds, even showing evidence of overdispersion 

relative to non-assigned fungi (Figure 4-5). We found a small but significant elevational trend in 

the spatial aggregation of ectomycorrhizal fungi in mineral soil, which become relatively less 

spatially aggregated towards the higher end of our elevation relative to non-assigned fungi (Table 

S4-9, Table S4-10). There were no elevational patterns in beta-deviations of pathogenic or 

saprotrophic fungi.  
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Association between Conspecific Densities and Fungal Composition 

Our dbRDA-based variation partitioning analysis, which examines correlations between 

spatial changes in tree community composition with changes in fungal guild community 

compositions and soil chemistry, revealed that key fungal guilds were more associated with tree 

community compositions than nutrient availability (Figure 4-6). Additionally, pathogenic fungi 

community composition was more correlated with tree community composition at low than at high 

elevations (Figure 4-6; Table S4-11). We also find that ectomycorrhizal fungi and saprotrophic 

fungi are most associated with tree composition at high elevations, although there is not a clear 

elevational trend across all four sites. Importantly for assessing our hypotheses, we find that the 

ratio of the proportions of tree community compositional differences explained by pathogenic and 

ectomycorrhizal fungal communities flips with increasing elevation. In other words, at lower 

elevations, within plot site-to-site differences in tree composition were more associated with site-

to-site differences in pathogenic fungi than site-to-site differences in ectomycorrhizal fungi.  

However, at higher elevations, within plot site-to-site differences in tree composition were more 

associated with site-to-site differences in ectomycorrhizal fungi than site-to-site differences in 

pathogenic fungi.  

Discussion 

Our findings provide multiple lines of observational evidence that support the Stress 

Gradient Feedback Hypothesis (SGFH). Specifically, our results support the idea that increasing 

abiotic stress promotes the host-specificity of mutualistic interactions over antagonistic 

interactions. That is, we find evidence that ectomycorrhizal fungi are more spatially aggregated 

relative to both randomly assembled communities (Figure 4-4) and non-host associated fungi 

(Figure 4-5). This spatial aggregation becomes more pronounced at higher elevations under local 
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conditions that are thought to be more abiotically stressful to plants. Finally, we found that 

pathogen fungal composition was more strongly associated with tree composition than 

ectomycorrhizal composition at low elevations, while ectomycorrhizal fungal composition was 

more strongly associated with tree composition than pathogenic composition at high elevations 

(Figure 4-6). Together, these findings suggest that interactions between trees and pathogenic fungi 

are more functionally host-specific at lower elevations whereas interactions between trees and 

ectomycorrhizal fungi are more functionally host-specific at higher elevations. Furthermore, 

stabilizing CDD has already been shown to go from stabilizing to less stabilizing or even neutral 

with increasing elevation in our study system (LaManna et al., 2022). Such observations lend 

initial support to some fundamental predictions of the SGFH framework and suggest this 

framework may be useful for assessing local stabilizing CDD in the context of abiotic stress.  

We find evidence that ectomycorrhizal fungi are relatively more spatially aggregated 

compared to randomly assembled communities at higher elevations in the mineral layer (Figure 4-

4). Elevational trends in spatial aggregation among focal fungal guilds (ectomycorrhizal, 

pathogenic, and saprotrophic fungal guilds) are strongest in comparison to randomized null and 

weakened or disappeared entirely when compared to non-focal community aggregation (Figure 4-

5). Increasing β-deviations (spatial aggregation relative to random assembly) with elevation 

indicates that ectomycorrhizal communities are responding independent of other fungal guilds, and 

independent to the total abundance and functional composition of the greater fungal community. 

Independent responses of ectomycorrhizal communities to elevation relative to other 

functional guilds may indicate a divergence between host selection of ectomycorrhizal fungi and 

abiotic filtering of non-ectomycorrhizal fungi in stressful environments (Lumibao et al., 2020). 

Abiotically stressful environments theoretically alter aggregation around hosts in all organisms 
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(Grime, 1977).  However, we only recover spatial aggregation patterns for ectomycorrhizal fungi 

(Figure 4-4) – which could indicate that host selection of ectomycorrhizal fungi outweighs abiotic 

stress as a predictor of fungal composition. Alternatively, similar patterns may arise due to 

understory plant heterogeneity and co-aggregation of trees and fungi around downed woody debris 

(Tedersoo et al., 2003). Decreased decomposition rates lead to increased downed woody biomass 

in high elevation forests, which may in turn attract both seedlings and fungi seeking limited 

nutrients from downed logs (i.e., nurse logs). One interpretation of our result that spatial 

aggregation of ectomycorrhizal fungi increases with elevation (Figure 4-4) is that fungi are more 

likely to aggregate around downed logs when mineral soil nutrient availability is poor. However, 

we find this interpretation unlikely given that elevational trends in spatial aggregation are only 

evident in mineral soil where fungi-root interactions occur, and the same trends are not present for 

saprotrophic fungi which also would be expected aggregate around debris. Finally, tree hosts in 

our system alter local soil nutrient availability and surface conditions for centuries, factors which 

have demonstrated impacts on the spatial arrangement and abundance of ectomycorrhizal fungi 

(Otsing et al., 2021). We conclude that changing spatial aggregation of ectomycorrhizal fungi – 

which occurs independent of saprotrophic fungi and litter layer fungi – is indicative that 

aggregation is occurring in locations with dense tree hosts (conspecifics) as opposed to locations 

with dense nutrients or understory plants.  

In contrast to our present observations, some prior studies suggest that ectomycorrhizal 

communities under extreme abiotic stress, such as at the arctic range-limits of vascular plants, are 

dominated by generalists (Botnen et al., 2014). Others indicate that the SGH may not be supported 

at extreme high levels of abiotic stress (He & Bertness, 2014; Michalet et al., 2014). To explain 

these differences, we hypothesize that our stress gradient is not extreme enough to capture 
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antagonistic and mutualistic plant-fungal interactions occurring at the limits of our focal tree 

species’ niche space. Moreover, we hypothesize that increasing host-affinity of ectomycorrhizal 

fungi in nutrient-poor environments may be a result of strong selective pressures for trees to 

upregulate mutualistic associations that bolster nutrient acquisition (Kiers et al., 2011). 

Additionally, ectomycorrhizal fungi may rely more on resource exchanges with trees in nutrient-

stressed environments and therefore form stronger, or more frequent, associations. We emphasize 

that our results in support of the SGFH are representative of environmental stressors that are 

generally tolerable for host trees, and not intolerably extreme environmental stressors which may 

become more common under climate change.  

In contrast to ectomycorrhizal fungi, we find that the correlations between tree and 

pathogenic fungi community composition declines with increasing elevation in the mineral soil 

(Figure 4-6), despite unchanging spatial aggregation (Figure 4-4). Several potential explanations 

for these results deserve future attention. First, we hypothesize that communities of pathogenic 

fungi may be equally relatively host-specific across elevation and simply less abundant at higher 

elevations (Větrovský et al., 2019) – thereby contributing less to local stabilizing CDD with 

increasing stress. In this case, the fundamental host-pathogen relationships may remain consistent 

across elevation, and overall effects on composition at high elevation are muted by reduced relative 

pathogen abundances independently of other factors. Alternatively, chronic stress, such as nutrient 

depletion at high elevations, may select for generalist pathogens that do not contribute to relatively 

host-specific feedbacks resulting in tree compositions that do not reflect underlying pathogen 

aggregation (Gostinčar et al., 2022). However, these explanations depend on pathogenic fungi 

being more susceptible to environmental stress than other fungal guilds, which remains uncertain 

in forest systems. Finally, another potential explanation for declining correlations between tree 
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and pathogenic fungi community composition with increasing elevation is that the harmful effects 

of pathogenic fungi may be increasingly offset by stronger facilitation under nutrient stress, known 

as mycorrhizal induced resistance (Cameron et al., 2013; Mauch-Mani et al., 2017). 

Ectomycorrhizal resistance to pathogens includes buffering against nutrient stressors that lead to 

downregulated investment in defenses, as well as physical sheathing of root structures that limits 

infection from nearby pathogens (Bonfante & Anca, 2009). As elevation increases, increased 

spatial aggregation and abundance of ectomycorrhizal fungi may prevent relatively host-specific 

pathogens from associating with hosts, potentially generating selection pressure for pathogens that 

are less host-specific and therefore contribute less to stabilizing CDD.  

In addition to finding support for the SGFH in spatial aggregation of pathogenic and 

ectomycorrhizal fungi, we also find abiotic stress patterns in relative abundance. Specifically, we 

find increasingly more pathogenic fungi relative to ectomycorrhizal fungi in the litter layer with 

increasing elevation, and an insignificant opposing trend towards more ectomycorrhizal fungi than 

pathogenic fungi in mineral soils at high elevations (Figure 4-2). These contrasting patterns 

suggest that different processes may be contributing to compositions of root-associated fungi 

across the litter and shallow mineral soil layers and may relate to decomposition rates across 

elevation. Both at our study site, and more broadly across the Pacific Northwest, decomposition 

rates decline with increasing elevation (Kirschbaum, 1995). At low elevations, where high-

moisture and low snowpack contribute to faster decomposition rates, ectomycorrhizal and 

saprotrophic fungi may more aggressively compete for organic matter in the litter layer (Steidinger 

et al., 2019). Alternatively, the efficiency and abundance ectomycorrhizal fungi in the litter layer 

at higher elevations may be limited by prolonged extreme cold conditions in the winter (Castaño 

et al., 2017; Klimek & Niklińska, 2024). The difference between the abundance of pathogenic and 
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ectomycorrhizal fungi across soil layers suggests either that mineral soil fungi play a more 

dominant role in tree performance than litter soil fungi or that the SGFH may need refinement 

when applied to interactions between trees and fungi in multi-layered soils where resource 

gradients and competitive environments vary significantly with soil depth (Warren et al., 2005). 

Vertical stratification of litter and soil fungal communities may affect local stabilizing CDD, 

particularly in local communities with both shallow and deep-rooting tree species. We emphasize 

the need to investigate the root-associated microbiome in a wider range of soil layers and assess 

their contribution to local stabilizing CDD along stress gradients. 

While historical explanations for conspecific density effects on individual performance 

centered the role of natural enemies in the form of herbivores, parasites, and pathogens (Janzen, 

1970; Connell, 1971; Ricklefs, 1977), our results add to a growing body of evidence emphasizing 

the importance of mutualistic interactions as counterbalances to the influence of natural enemies 

(Delavaux et al., 2023; Jiang et al., 2020). In formulating the SGH, Bertness & Callaway (1994) 

noted that “Positive interactions deserve increased empirical attention and should be incorporated 

into models of community organization”. The work presented here suggests that increased 

empirical attention is not only necessary among facilitative interspecific plant-plant interactions, 

but also among relatively host-specific mutualisms between plants and fungi that may contribute 

to patterns of diversity along abiotic stress gradients.  

Our findings center on ectomycorrhizal and pathogenic fungi due to their ecological 

relevance and well documented role in contributing to local stabilizing CDD (Delavaux et al., 

2023; Janzen, 1970; Connell, 1971; Jiang et al., 2020; Liang et al,  2021). Nevertheless, there are 

many other taxa that may contribute to local stabilizing CDD that we did not test for – including 

arbuscular mycorrhizal fungi, oomycetes, and aboveground organisms such as insects and foliar 
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fungal communities (LaManna et al., 2024). Each of these potential drivers may alter how host 

individuals experience abiotic stress – which could generate complex feedback loops altering local 

CDD effects on individual performance. The relative importance of these diverse taxa in driving 

local CDD patterns across environmental gradients, and how their effects may shift with increasing 

abiotic stress, remains an important avenue for future research. 

Conclusions 

Together, our observations lend support to the idea that the relative importance of 

ectomycorrhizal fungi in shaping CDD increases, relative to that of pathogenic fungi, as 

environmental stress increases. In other words, plants are increasingly associated with 

ectomycorrhizal fungi as elevation increases, which we may contribute to stronger destabilizing 

conspecific density effects at high elevations – which are well-documented at our study site and 

along other elevational gradients. In our system, these patterns also correlate with declining tree 

richness, further corroborating evidence that stress-mediated communities of relatively host-

specific mutualists and antagonists may contribute to species diversity along abiotic gradients. 

These results in support of the SGFH highlight the importance of understanding tree-fungal 

interactions in their abiotic contexts. Future studies should consider how other abiotic stressors, 

including extreme abiotic stress events such as ecological disturbances, may influence community 

dynamics by altering the relative importance of relatively host-specific antagonistic and facilitative 

interactions. In conclusion, the SGFH presents a viable framework for testing the role that host-

specific interactions play under abiotic stress, with preliminary evidence in tree-fungal systems, 

and potential for application across community ecology.  
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Tables and Figures 
Table 4-1: Definition and Tests of the Stress Gradient Feedback Hypothesis 

Stress Gradient Hypothesis (SGH): Competitive interactions are more important, or more intense, in 
benign, low-stress environments, whereas facilitative interactions are more important in harsh, high-
stress environments (Bertness & Callaway 1994, Maestre et al. 2009). 

Stress Gradient Feedback Hypothesis (SGFH):  Increased importance or intensity of relatively host-
specific antagonistic interactions contributes to negative conspecific density-dependent feedback in 
benign, low stress environments, whereas increased importance or intensity of relatively host-specific 
facilitative plant-microbe interactions contributes to increased positive conspecific density-dependent 
feedback in harsh, high-stress environments.  

Prior findings SGFH prediction Test of prediction in study 
Climatic and chemical 
nutrient limitations to 
plant performance are 
strongest at high 
elevations (Lomolino, 
2001). 

At high levels of abiotic stress 
facilitative plant-microbe interactions 
become increasingly abundant 
relative to antagonistic plant-microbe 
interactions.   

Compare the relative abundance of 
mycorrhizal and pathogenic fungi 
across a stress gradient associated 
with elevation.  
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Local CDD is primarily 
generated by relatively 
host-specific 
associations including 
between trees and 
pathogenic and 
mycorrhizal fungi, 
which generate 
differential affects 
across tree species 
(Jiang et al., 2021; 
Mangan et al., 2010; 
Packer & Clay, 2000; 
Song & Corlett, 2022).  

1. Antagonistic plant-microbe 
interactions are relatively more 
host-specific and/or more intense 
in abiotically benign environments 
than in abiotically stressful 
environments. 

2. Facilitative plant-microbe 
interactions are relatively more 
host-specific and/or more intense 
in abiotically stressful 
environments than in abiotically 
benign environments. 

Compare the absolute and relative 
spatial aggregation of pathogenic 
and mycorrhizal fungi along an 
elevational stress gradient: 
1. Spatial aggregation of pathogenic 

and ectomycorrhizal fungal 
communities relative to a 
randomly assorted null 
community (Kraft et al. 2011). 

2. Spatial aggregation of pathogenic 
and ectomycorrhizal fungal 
communities relative to other 
fungal functional guilds. 

The strength of local 
CDD correlates with 
tree diversity across 
elevation (stronger 
stabilizing CDD 
associated with higher 
tree diversity; (Fibich et 
al., 2021; LaManna et 
al., 2022). 

1. Conspecific tree compositions are 
associated with compositions of 
ectomycorrhizal fungi more than 
compositions of pathogenic fungi 
in abiotically stressful 
environments.  

2. Conspecific tree compositions are 
associated with compositions of 
pathogenic fungi more than 
compositions of ectomycorrhizal 
fungi in abiotically benign 
environments.  

Relate changes to the spatial 
structure of tree communities 
(analogous to changing conspecific 
abundances) with changes to 
pathogenic, ectomycorrhizal, and 
saprotrophic fungal communities 
using variation partitioning 
(Legendre & Legendre 2012). 
Compare differences between guild 
R2 values along an elevational stress 
gradient.  
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Figure 4-1: The Stress Gradient Hypothesis (A) and the Stress Gradient Feedback Hypothesis (B). 
The Stress Gradient Hypothesis (SGH, A) posits that competitive interactions are more important, 
more intense, or more frequent in benign, low-stress environments, whereas facilitative 
interactions are more important, intense, or frequent in harsh, high-stress environments. Here, we 
expand the SGH to relatively host-specific antagonists and mutualists (B). Relatively host-specific 
above- and belowground plant-microbe interactions may explain shifts in net conspecific density-
dependent feedback and correlated patterns of species diversity across abiotic stress gradients. All 
else being equal, antagonistic conspecific feedbacks may increase fitness differences under abiotic 
stress and promote species diversity by preventing competitive dominance of a single species 
(spatial patterns of species represented by colored circles). Alternatively, relatively host specific 
facilitative feedbacks, also generated by root- or leaf-associated microbes, may bolster conspecific 
performance and erode diversity – particularly under regimes of high abiotic stress. 
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Figure 4-2: Ratio of ectomycorrhizal to pathogenic fungi across elevation in the (A) litter layer 
and (B) mineral soil. In the litter layer (A), natural log transformed EcM to pathogen ratios decline 
with increasing elevation (t = -3.167, p = 0.0164). In the mineral soil (B), EcM to pathogen ratios 
trend towards increasing with elevation, although this effect was insignifcant (t = 1.698, p = 0.159). 
Circles represent individual soil samples; positions are jittered on the X axis to show sample size. 
Black lines represent best fit from LMM allowing site-level random intercepts. Shaded areas 
indicating 95% confidence intervals. Model statistics are presented in Table S4-4.  
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Figure 4-3: Compositional probabilistic PCoA analysis of (A) ectomycorrhizal, (B) pathogenic, 
and (C) saprotrophic fungal communities. Each point represents a sample, and points are color-
coded by elevation (500 m, 520 m, 790 m, 900 m, 1060 m, 1190 m). The axes (PCoA1 and PCoA2) 
explain the highest proportion of variance in denoised community composition data, which 
distinguishes between technical and biological zeros to account for the composition and 
incomplete nature of sequencing for fungal compositional estimations (see methods). Fungal guild 
communities are distinctly clusted by elevation. R2 and p values for elevational associations are 
presented in each combination of guild and layer as assessed using PERMANOVA (Figure S4-5).  
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Figure 4-4: Standardized comparisons of beta-deviations among fungal functional guilds in litter 
layer and mineral soil. Boxplots depict results of iterative testing of beta-deviations (SES β) for 
ectomycorrhizal fungi (green), pathogenic fungi (red) and saprotrophic fungi (blue) across 
elevations from 500-m to 1190-m. Dotted lines depict null envelope (+/- 2 SD), above and below 
which are considered to be assorting non-randomly (above 2, spatially aggregating; below 2, 
spatially over-dispersed). SES β compare beta diversity to expected beta diversity under random 
community assembly an accounting for regional (plot) and local (sample) richness. We find 
contrasting patterns for ectomycorrhizal fungi between the litter layer and mineral soil, particularly 
for the highest two plots where nutrients are the least available (Fig S1). Ectomycorrhizal fungi 
are most aggregated in litter layers at low elevation, and most aggregated in mineral soil at high 
elevations. No strong elevational trends exist for pathogenic fungi, which are generally the least 
spatially aggregated across elevation. Saprotrophic fungi show strong evidence of spatial 
aggregation at low and high elevations with generally lower spatial aggregation at mid elevations.   
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Figure 4-5: Standardized comparisons of beta-dispersions among fungal functional guilds in litter 
layer and mineral soil. Boxplots depict results of iterative testing of beta-dispersions for 
ectomycorrhizal fungi (green), pathogenic fungi (red) and saprotrophic fungi (blue) across 
elevations from 500-m to 1190-m. Dotted lines depict null envelope (+/- 2 SD), above and below 
which we considered to be evidence of non-random spatial aggregation (above 2, spatially 
aggregating; below 2, spatially over-dispersed). Whereas SES β compare beta diversity to expected 
beta diversity under random community assembly, beta-dispersions compare against an outgroup 
of fungi that were unassigned to any focal guild. This provides a measure of whether focal guilds 
are more spatially aggregated than the larger fungal communities. For ectomycorrhizal fungi in 
the litter layer, beta-deviations peak at 500-m and decreases with elevation, while pathogenic fungi 
fall generally within the null envelope and saprotrophic fungi show evidence of overdispersion. In 
mineral soil, beta dispersion patterns generally fell within the null envelope for pathogenic and 
saprotrophic communities but were positive, indicating spatial aggregation, for ectomycorrhizal 
communities. This figure provides evidence that ectomycorrhizal fungi are generally more 
spatially aggregated than non-assigned fungi, although the magnitude of aggregation is less than 
when compared to null assembly (SES β).  
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Figure 4-6: Correlated changes in tree community composition (species basal area), soil nutrients, 
and fungal communities across 4 large ForestGEO plots spanning 690 meters of elevation. Top 
axis represents elevation in meters. Color indicates study factor, being either a focal fungal guild 
or soil chemistry. Within each forest plot, adjusted R-squared values represent the result of 
dbRDA-based variation partitioning and describe the total correlated changes between fungal guild 
and tree community compositions. We find general support for the SGFH in the relative change in 
adjusted R2 between pathogenic and ectomycorrhizal fungal communities along the elevation 
gradient. Soil chemistry and saprotrophs also become more important to determining tree 
compositions our highest elevation site, which has the most distinct soil chemical composition (Fig 
S4-1).  

 

Supplemental Information (Appendix S4-1) 
 

Section S4-1: Detailed Site Description 
 

This study took place across a 700-meter elevation gradient (500-meters to 1190-metres) 

at the Andrews Experimental Forest LTER near Blue River, Oregon. Climatic conditions vary 

across this gradient, with temperature ranging from 7.4°C to 10.3°C and annual precipitation from 

2,040 to 2,354 mm/yr (Wang et al., 2016). Long-term meteorological data from stations at lower 

(436 m) and higher (1,268 m) elevations reveal that lower valleys typically experience higher 
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mean-spring temperatures, greater relative humidity, and more moderate year-long temperatures 

that provide extended growing seasons for evergreen species, even during winter (Waring & 

Franklin, 1979). In contrast, higher elevations face shortened growing seasons due to spring/early 

summer snowmelt, dry summers, and freezing temperatures during the wet season. The forest 

communities at Andrews LTER exemplify old-growth Pacific Northwest temperate rainforests, 

which are home to some of the world's tallest trees and highest aboveground biomass. The canopy 

is predominantly composed of Douglas-fir (Pseudotsuga menziesii), Western red-cedar (Thuja 

plicata), Western hemlock (Tsuga heterophylla), and various Abies species including Silver fir 

(Abies amabilis) and Noble fir (Abies procera). The mid-canopy and understory layers feature 

numerous broadleaf and conifer species, notably Big-leaf maple (Acer macrophyllum) and Pacific 

dogwood (Cornus nuttallii).  

Section S4-2: Detailed Soil Chemistry Methodology 
 

To address the role of soil chemistry in mediating fungal and tree compositional patterns, 

chemical analyses on macro- and micro-nutrients were performed on mineral soil samples at the 

Soil Health Laboratory in the Crop and Soil Science Department of Oregon State University in the 

Fall of 2021. C and N content was measured using dry combustion using an Elementer Vario 

Macro Cube (Elementar Americas Inc., Ronkonkoma, NY USA). OM was calculated as twice the 

total carbon content (Pribyl, 2010). pH was measured in Sikora buffer solution on Hanna HI5522 

benchtop meter (Hanna Insturments, Inc.). PO4-P extractions were performed using Bray P1 and 

measured on VWR V1200 spectrophotometry (VWR International, LLC, Vienna, Austria). Ca, 

Mg, and K were measured through a 1M ammonium acetate extraction measured on Agilent 5110 

ICP-OES (Agilent Technologies, Inc., Santa Clara, CA, USA). NO3-N and NH4-N were both 

extracted with KCl and measured on a VWR V1200 spectrophotometer using Griess reagents and 
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a Lachat QuikChem 8500 Series 2 flow injection analyzer, respectively. B, Cu, Fe, Mn, and Zn 

content were all extracted with DTPA-sorbitol and measured on Agilent 5110 ICP-OES. 

Section S4-3: Detailed Amplicon Sequencing Methodology 
 

To quantify the composition of fungal communities, we used amplicon sequencing on the 

PacBio Sequel IIe (Pacific Biosciences of California, California, USA) platform at the Functional 

Genomic Center in Zurich, Switzerland (FGCZ, Zürich, CH). 100g samples of both mineral soil 

and litter layers were air-dried for 24-48 hours and were checked for dryness before being 

packaged. Samples were stored in a 3o C fridge before being shipped overnight to ETH Zurich, 

Switzerland for sequencing. We isolated microbial genomic DNA from 250 mg of soil using 

DNeasy Power Soil Pro Kits (Qiagen, Hilden, Germany). To amplify ITS regions, we performed 

PCR on each sample with the forward primer ITS9munngs and the reverse primer ITS4ngUni at a 

concentration of 12.5 μM (Tedersoo & Anslan, 2019; Tedersoo & Lindahl, 2016). The fungal PCR 

reaction was performed with 0.5 μl of each primer, 1 μl of extracted DNA template, 13 μl of GoTaq 

G2 Hot Start Colorless Master Mix (Promega, CH, REF M743B) and 10 μl PCR grade ddH2O 

(REF P119C). Thermocycling was performed with the following procedure:  15-minutes at 95°C, 

30 cycles of (30-seconds at 95°C, 30-seconds at 57°C, 60-seconds at 72°C), and a final 10-minute 

extension step at 72°C with subsequent cooling at 4°C until sample collection. Before sequencing, 

we estimated the relative quantity of PCR products by running samples on 1% agarose gel for 25-

minutes and pooling based on band intensity. These pools were cleaned with AMPure beads 

(Beckman Coulter, Brea, California, USA) and DNA was quantified with Qubit 

(Invitrogen/Thermo Fisher Scientific, Massachusetts, USA).  

Section S4-4: Accounting for technical confounding factors using mbDenoise 
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mbDenoise employs a sophisticated zero-inflated probabilistic principal components 

analysis negative binomial model (ZIPPCA-nb) that algorithmically distinguishes between 

biological and technical zeros in microbial abundance data (Zeng et al., 2022). This methodology 

addresses a fundamental challenge in microbiome sequencing data: distinguishing between true 

biological absences (where a taxon is genuinely not present in a sample) and technical zeros (where 

a taxon is present but undetected due to sampling limitations, sequencing depth constraints, or 

other technical artifacts). 

The model architecture incorporates a two-part noise model with latent indicator variables 

𝑧)* 	~	𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜂)*) for each sample i and taxon j. The zero-inflation probability 𝜂)* is modeled 

through a logistic regression: 𝜂)* 	= 	 𝑒
(1$	:	;-)

1	 +		𝑒(1$	:	;-)Z , where 𝑐) are sample-specific 

parameters and τ* are taxon-specific parameters. This formulation allows both sample-level and 

taxon-level factors to influence the probability of biological zeros. When 𝑧)* = 1, the observation 

represents a biological zero indicating true absence of the taxon. When 𝑧)* = 0, the observation 

follows a negative binomial distribution NB(µ)*, φ*) that explicitly accounts for overdispersion 

commonly observed in sequence count data, where φ* are taxon-specific overdispersion 

parameters. The mean parameter follows: log(µ)*)= α)0 + β0* + 𝑓)
=β*, where α)0 handles uneven 

sequencing depth across samples, β0* represents taxon-specific baseline abundance, and 𝑓)
=β* 

captures the low-dimensional latent structure. 

Rather than making definitive binary classifications of zeros based on arbitrary thresholds, 

the ZIPPCA-nb model estimates the posterior probability of each zero being biological through 

variational inference. The variational approximation assumes q(zij) ~ Bernoulli(πij), where πij 

represents the approximate posterior probability that zero observation (i,j) is biological. This 
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inference procedure leverages complex patterns across the entire dataset through the latent factor 

structure 𝑓) 	~	𝑁(0, 𝐼) and factor loadings β*, where samples with similar environmental conditions 

are expected to have similar latent factor profiles 𝑓). A zero is assigned higher probability of being 

biological if a taxon is consistently absent across samples that share similar latent factor profiles, 

while zeros for taxa frequently present in ecologically similar samples are more likely classified 

as technical artifacts. The low-rank representation	𝑓)
=β* captures intrinsic redundancy in microbial 

communities, consistent with ecological theory that microbial communities are constrained by 

local environmental conditions (Kraft et al., 2015). This allows the model to "borrow strength" 

across samples when making zero classifications, which is particularly valuable for rare taxa where 

individual sample information may be limited. 

Probabilistically determining biological versus technical zeros offers substantial 

advantages for spatial pattern analysis in microbial data, as demonstrated in fungal community 

studies (Busato et al., 2023; Sato et al., 2024). This approach allows for information sharing via 

the low-rank representation while addressing multiple sources of technical variation: uneven 

sequencing depth (through α)0), overdispersion (through φ*), and excess zeros (through the zero-

inflation component). Given our emphasis on spatial and correlative community analyses we used 

denoised ASV matrices in all downstream analyses except for beta-deviation analyses, which 

utilize an established bootstrapping method (Kraft et al., 2011) requiring untransformed counts. 

All ASV matrices were Hellinger transformed for distance-based analyses due to poor 

performance of ecological data in Euclidean space (Legendre & Gallagher, 2001).  

Section S4-5: Calculating β-deviations 
 

First, to demonstrate that ectomycorrhizal and pathogenic fungi are more spatially 

aggregated than expected under null community assembly, we adapted the approach for calculating 
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β-deviations outlined in Kraft et al. (2011). β-deviations (SES β) are standardized effect sizes of 

the difference between pairwise sample Bray-Curtis dissimilarities and Bray-Curtis dissimilarities 

derived from randomly assorted null communities. Since β-diversity is inherently a product of 

𝛼	(𝑙𝑜𝑐𝑎𝑙)	and 𝛾	(𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙)	diversity (Whittaker, 1960), calculating SES β allows us to compare 

spatial aggregation across sites independent of site-level differences in local and regional richness. 

The formula for β-deviations (SES β) of a given site s, focal fungal guild g, and number of samples 

n is as follows:  

SES	β!> =
0
Observed	β!> − Null	β!>

𝑠𝑑(Null	β!>)
	4	

√n
 

Our null assembly resorted all ASVs from a given site into new communities for each sample 

while retain sample ASV richness 𝛼 and total site richness 𝛾. Neutral β-deviations are indicative 

that fungal communities are assorting stochastically (e.g., assembled into each 25x25-m grid 

square at random from all fungal species available in the entire plot). while positive β-deviations 

indicate that fungal communities are spatial aggregated (clustering) relative to random assembly 

and negative β-deviations indicate that fungal communities are spatially over-dispersed relative to 

random assembly (Kraft et al., 2011; Myers et al., 2013). While this approach does not account for 

sample completeness, β-deviations are comparable across sites when sample size differences are 

accounted for by dividing  SES β by the square root of sample size n (Xing & He, 2021). We tested 

for significant differences between mean β-deviations at each elevation and guild using a 2-way 

ANOVA in each layer of soil (i.e., litter and mineral soil layers). 

Section S4-6: Estimating associations between fungi and tree communities using variation 
partitioning  
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Variation partitioning is a multivariate statistical technique that decomposes the total 

variation in a response dataset into fractions explained by different sets of predictor variables, 

including their unique contributions and shared effects (Borcard et al., 2011; Legendre & 

Legendre, 2012). This method extends the concept of R² from simple regression to complex 

multivariate datasets, examining how much variation in community composition can be attributed 

to different environmental factors while accounting for correlations among predictors (Peres-Neto 

et al., 2006). The method works by fitting constrained ordination models (in our case, distance-

based redundancy analyses; dbRDA) to calculate the variation explained by each predictor set 

individually and in combination. The total variation is then partitioned into: (1) variation uniquely 

explained by each predictor set, (2) variation jointly explained by combinations of predictor sets, 

and (3) unexplained variation (Legendre & Legendre, 2012). This approach is especially useful 

when predictor variables are correlated, as it separates their independent effects from their shared 

contributions to explaining patterns in the response data. 

The predictors of our variation partitioning analyses were denoised PCoA axes retained 

from forward selection of species-by-site matrices for fungal pathogens, ectomycorrhizal fungi, 

and soil chemistry using the 'forward.sel' function of the 'adespatial' package (Dray, 2016; 

Legendre & Legendre, 2012). Axes were retained up to the adjusted-R² of the overall predictor 

matrix, although we also found similar results with p-value limits (Legendre & Legendre, 2012). 

Principal coordinates were calculated using the 'vegdist' and 'cmdscale' functions in the Vegan 

package (Oksanen et al., 2025). Using this approach, we estimate the total variation in the response 

matrix (tree species distance matrix) that is explained by each explanatory matrix (i.e., soil 

chemistry matrix, ectomycorrhizal fungi matrix, pathogenic fungi matrix) as well as the proportion 

of variation that is shared among explanatory matrices (Legendre & Legendre, 2012). Here, we 
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report the total variation in the response matrix explained by each predictor as our metric of host 

affinity. We additionally report the individual variation explained by each predictor in Table S12, 

although we consider this to be less ecologically relevant since we are interested in total 

associations and expect some degree of overlap since ectomycorrhizal and pathogenic fungi both 

associate with tree hosts. 
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Supplemental Tables and Figures 
Table S4-1: Site elevation, soil sample information, and proportion EcM tree basal area. Sites are 
distributed along nearly 700 m of elevation at the Andrews Forest in the central Cascade Range of 
Oregon, USA. Samples were collected on a 25 m2 grid, and varied in number based on the size of 
the plot. Forest inventory reference stands are larger than listed sample area as samples were only 
selected from the central region to avoid edge effects. Proportion of EcM tree basal area (>1 cm 
diameter trees) in each plot was calculated from the region of each forest inventory plot from which 
soil samples were collected. Because at plot RS27, only stems >5 cm diameter were measured, 
basal area is based on these stems only at this plot. Due to the lower resolution of this plot 
compared to other plots, it was excluded from spatial analyses.   

Site Mean Plot 
Elevation (m) 

Sample Area 
(hectares) 

Sample 
Number 

Proportion EcM 
Basal Area 

RS38 500 1.875 15 0.936 
RS02 520 1.875 14 0.615 
RS27 790 1.875 14 0.856 
RS31 900 9.375 70 0.947 
RS28 1060 1.875 12 0.995 
RS21 1190 1.875 14 0.999 
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Table S4-2: Final FUNGuild assignments based on recommended quality filters for each focal 
guild. We separated each amplicon sequencing variant (ASV) into the following guilds: 
“ectomycorrhizal”, “pathogenic”, “saprotrophic” or “unassigned”. Assignment was based on the 
probable and highly probable guild assignment filter and excluding any duplicate assignments 
(Nguyen et al. 2016). FUNGuild assignments are often inclusive of multiple life-history strategies 
(i.e., pathogenic and saprotrophic). Here, we generated mutually exclusive “ectomycorrhizal” and 
“pathogenic” guilds inclusive of overlapping saprotrophic guilds. The saprotrophic guild was 
defined as saprotrophic assignments that did not overlap with “ectomycorrhizal” or “pathogenic”. 
All guilds that did not fall into one of our focal categories, either for not including 
“ectomycorrhizal”, “pathogenic”, “saprotrophic”, or for not being retained at probable and highly 
probable filters, were grouped into “unassigned”. Each FUNGuild assigned guild as assigned to 
each focal category is listed below.  

Ectomycorrhizal Pathogenic Saprotrophic Unassigned 

Ectomycorrhizal Plant.Pathogen-
Wood.Saprotroph Undefined.Saprotroph - 

Ectomycorrhizal-
Undefined.Saprotroph-
Wood.Saprotroph 

Animal.Pathogen-
Fungal.Parasite-
Undefined.Saprotroph 

Dung.Saprotroph-
Undefined.Saprotroph-
Wood.Saprotroph 

Endophyte-Litter.Saprotroph-
Soil.Saprotroph-
Undefined.Saprotroph 

Dung.Saprotroph-
Ectomycorrhizal Animal.Pathogen 

Endophyte-
Litter.Saprotroph-
Soil.Saprotroph-
Undefined.Saprotroph 

Ericoid.Mycorrhizal 

Ectomycorrhizal-
Undefined.Saprotroph 

Animal.Pathogen-
Endophyte-Epiphyte-
Fungal.Parasite-
Plant.Pathogen-
Wood.Saprotroph 

Wood.Saprotroph Animal.Pathogen-
Soil.Saprotroph 

Ectomycorrhizal-
Endophyte-
Ericoid.Mycorrhizal-
Litter.Saprotroph-
Orchid.Mycorrhizal 

Leaf.Saprotroph-
Plant.Pathogen-
Undefined.Saprotroph-
Wood.Saprotroph 

Dung.Saprotroph Endophyte 

 Plant.Pathogen Soil.Saprotroph Lichenized 

 
Endophyte-
Plant.Pathogen-
Undefined.Saprotroph 

Plant.Saprotroph-
Wood.Saprotroph Soil.Saprotroph 

 Fungal.Parasite-
Wood.Saprotroph 

Endophyte-
Litter.Saprotroph-
Wood.Saprotroph 

Animal.Pathogen-Endophyte-
Epiphyte-
Undefined.Saprotroph 

 Algal.Parasite-
Bryophyte.Parasite-

Litter.Saprotroph-
Soil.Saprotroph-
Wood.Saprotroph 

Endophyte-Epiphyte-
Fungal.Parasite-Insect.Parasite 
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Ectomycorrhizal Pathogenic Saprotrophic Unassigned 
Fungal.Parasite-
Undefined.Saprotroph 

 Fungal.Parasite 
Dung.Saprotroph-
Endophyte-
Undefined.Saprotroph 

Animal.Pathogen-
Clavicipitaceous.Endophyte-
Fungal.Parasite 

 
Endophyte-
Plant.Pathogen-
Wood.Saprotroph 

Ectomycorrhizal-
Fungal.Parasite-
Plant.Pathogen-
Wood.Saprotroph 

Ectomycorrhizal-
Orchid.Mycorrhizal-
Root.Associated.Biotroph 

 Insect.Pathogen Dung.Saprotroph-
Plant.Saprotroph 

Ectomycorrhizal-
Wood.Saprotroph 

 Fungal.Parasite-
Lichen.Parasite 

Soil.Saprotroph-
Undefined.Saprotroph 

Dung.Saprotroph-
Ectomycorrhizal-
Soil.Saprotroph-
Wood.Saprotroph 

 Plant.Pathogen-
Plant.Saprotroph 

Undefined.Saprotroph-
Undefined.Symbiotroph Ectomycorrhizal 

 Endophyte-
Plant.Pathogen 

Lichenized-
Undefined.Saprotroph 

Animal.Pathogen-Endophyte-
Lichen.Parasite-
Plant.Pathogen-
Soil.Saprotroph-
Wood.Saprotroph 

 

Animal.Pathogen-
Endophyte-
Endosymbiont-
Epiphyte-
Soil.Saprotroph-
Undefined.Saprotroph 

Dung.Saprotroph-
Soil.Saprotroph-
Undefined.Saprotroph 

NULL 

 Animal.Pathogen-
Undefined.Saprotroph 

Dung.Saprotroph-
Wood.Saprotroph 

Ectomycorrhizal-Endophyte-
Plant.Pathogen-
Wood.Saprotroph 

 

Bryophyte.Parasite-
Leaf.Saprotroph-
Soil.Saprotroph-
Undefined.Saprotroph-
Wood.Saprotroph 

Litter.Saprotroph 

Animal.Pathogen-Endophyte-
Fungal.Parasite-
Lichen.Parasite-
Plant.Pathogen-
Wood.Saprotroph 

 
Fungal.Parasite-
Plant.Pathogen-
Plant.Saprotroph 

Dung.Saprotroph-
Undefined.Saprotroph 

Bryophyte.Parasite-
Ectomycorrhizal-
Ericoid.Mycorrhizal-
Undefined.Saprotroph-
Wood.Saprotroph 

 Endophyte-
Lichen.Parasite-

Endophyte-
Undefined.Saprotroph-
Wood.Saprotroph 

Bryophyte.Parasite-
Ectomycorrhizal-
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Ectomycorrhizal Pathogenic Saprotrophic Unassigned 
Plant.Pathogen-
Undefined.Saprotroph 

Ericoid.Mycorrhizal-
Undefined.Saprotroph 

 
Animal.Pathogen-
Plant.Pathogen-
Undefined.Saprotroph 

Leaf.Saprotroph 
Animal.Pathogen-Endophyte-
Plant.Pathogen-
Wood.Saprotroph 

 

Dung.Saprotroph-
Plant.Parasite-
Soil.Saprotroph-
Undefined.Saprotroph-
Wood.Saprotroph 

Dung.Saprotroph-
Soil.Saprotroph-
Wood.Saprotroph 

Bryophyte.Parasite-
Dung.Saprotroph-
Ectomycorrhizal-
Fungal.Parasite-
Leaf.Saprotroph-
Plant.Parasite-
Undefined.Saprotroph-
Wood.Saprotroph 

 

Endophyte-
Fungal.Parasite-
Lichen.Parasite-
Plant.Pathogen-
Wood.Saprotroph 

Dung.Saprotroph-
Plant.Saprotroph-
Wood.Saprotroph 

Animal.Pathogen-
Plant.Pathogen-
Soil.Saprotroph-
Undefined.Saprotroph 

 

Animal.Pathogen-
Endophyte-
Plant.Saprotroph-
Soil.Saprotroph 

Dung.Saprotroph-
Plant.Saprotroph-
Soil.Saprotroph 

Animal.Pathogen-Endophyte-
Fungal.Parasite-
Plant.Pathogen-
Wood.Saprotroph 

 
Bryophyte.Parasite-
Litter.Saprotroph-
Wood.Saprotroph 

Undefined.Saprotroph-
Wood.Saprotroph 

Dung.Saprotroph-
Ectomycorrhizal-
Litter.Saprotroph-
Undefined.Saprotroph 

 

Fungal.Parasite-
Soil.Saprotroph-
Undefined.Saprotroph-
Wood.Saprotroph 

Dung.Saprotroph-
Nematophagous 

Endophyte-Plant.Pathogen-
Wood.Saprotroph 

 
Endophyte-
Leaf.Saprotroph-
Plant.Pathogen 

Dung.Saprotroph-
Soil.Saprotroph 

Ectomycorrhizal-
Fungal.Pathogen-
Undefined.Saprotroph 

 Fungal.Parasite-
Litter.Saprotroph 

Endophyte-
Undefined.Saprotroph 

Animal.Pathogen-Endophyte-
Plant.Pathogen-
Dung.Saprotroph-
Undefined.Saprotroph 

 

Animal.Endosymbiont-
Animal.Pathogen-
Plant.Pathogen-
Undefined.Saprotroph 

Litter.Saprotroph-
Wood.Saprotroph 

Animal.Pathogen-
Plant.Pathogen-
Undefined.Saprotroph 

 Lichen.Parasite 
Dung.Saprotroph-
Ericoid.Mycorrhizal-
Lichenized 

Undefined.Saprotroph 
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Ectomycorrhizal Pathogenic Saprotrophic Unassigned 

 Plant.Pathogen-
Undefined.Saprotroph 

Leaf.Saprotroph-
Wood.Saprotroph 

Endomycorrhizal-
Plant.Pathogen-
Undefined.Saprotroph 

 
Animal.Pathogen-
Endophyte-
Wood.Saprotroph 

Epiphyte-
Undefined.Saprotroph 

Ectomycorrhizal-
Fungal.Parasite-
Soil.Saprotroph-
Undefined.Saprotroph 

 
Plant.Pathogen-
Undefined.Parasite-
Undefined.Saprotroph 

Lichenized-
Wood.Saprotroph 

Epiphyte-Plant.Pathogen-
Wood.Saprotroph 

 

Dung.Saprotroph-
Endophyte-
Plant.Pathogen-
Undefined.Saprotroph 

Plant.Saprotroph 
Animal.Pathogen-Endophyte-
Plant.Pathogen-
Undefined.Saprotroph 

 
Animal.Endosymbiont-
Animal.Pathogen-
Undefined.Saprotroph 

 

Animal.Pathogen-
Dung.Saprotroph-Endophyte-
Lichen.Parasite-
Plant.Pathogen-
Undefined.Saprotroph 

 

Animal.Pathogen-
Lichen.Parasite-
Plant.Pathogen-
Undefined.Saprotroph-
Wood.Saprotroph 

 Epiphyte 

 
Fungal.Parasite-
Litter.Saprotroph-
Undefined.Saprotroph 

 

Animal.Pathogen-Endophyte-
Ericoid.Mycorrhizal-
Plant.Pathogen-
Wood.Saprotroph 

 Fungal.Parasite-
Undefined.Saprotroph  

Dung.Saprotroph-Endophyte-
Litter.Saprotroph-
Undefined.Saprotroph 

 

Animal.Endosymbiont-
Animal.Pathogen-
Endophyte-
Plant.Pathogen-
Undefined.Saprotroph 

 Orchid.Mycorrhizal 

 Dung.Saprotroph-
Plant.Pathogen  Animal.Pathogen 

 Plant.Parasite-
Wood.Saprotroph  Lichen.Parasite-Lichenized 

   
Animal.Pathogen-Endophyte-
Epiphyte-Plant.Pathogen-
Undefined.Saprotroph 
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Ectomycorrhizal Pathogenic Saprotrophic Unassigned 

   Endophyte-Soil.Saprotroph-
Undefined.Saprotroph 

   

Epiphyte-Leaf.Saprotroph-
Lichen.Parasite-Lichenized-
Plant.Pathogen-
Wood.Saprotroph 

   Endophyte-Lichen.Parasite-
Undefined.Saprotroph 

   Fungal.Parasite-
Undefined.Saprotroph 

   

Bryophyte.Parasite-
Lichen.Parasite-
Ectomycorrhizal-
Ericoid.Mycorrhizal-
Undefined.Saprotroph 

   Arbuscular.Mycorrhizal 

   Endophyte-Plant.Pathogen 

   Endophyte-Plant.Pathogen-
Undefined.Saprotroph 

   Ectomycorrhizal-
Undefined.Saprotroph 

   Lichen.Parasite 

   Wood.Saprotroph 

   Nematophagous 

   Plant.Pathogen 

   

Endophyte-Dung.Saprotroph-
Lichen.Parasite-
Litter.Saprotroph-
Plant.Pathogen-
Soil.Saprotroph-
Wood.Saprotroph 

   Animal.Associated.Biotroph-
Root.Associate.Biotroph 

   Dung.Saprotroph-Endophyte-
Wood.Saprotroph 

   Soil.Saprotroph-
Undefined.Saprotroph 

 
 



 

Table S4-3: Distribution of common fungal guilds across sites sorted by number of amplicon sequence variants (ASVs) and sequence 
read counts. Assignments were made using the ‘probable’ and ‘highly probable’ filters of FUNGuild as recommended by Nyugen et al. 
(2016). Here, we present all guilds for which the number of observed reads was greater than 0.1% of all observed reads. Many reads 
were not assigned to any guild (23.02% of ASVs), with saprotrophs and ectomycorrhizal fungi being the next most common guilds. For 
information on how FUNGuild outputs were assigned into focal guilds, see methods and Table S2. Sequences in FASTQ format are 
available on NCBI under project number PRJNA1210581. 
 

  ASV Counts Read Abundance 
  Site-Specific Values  Site-Specific Values  
Guild % of 

Total 
RS38 RS02 RS27 RS31 RS28 RS21 Totals RS38 RS02 RS27 RS31 RS28 RS21 Totals 

Unassigned 23.35 772 453 580 1464 347 599 4215 23261 12722 14128 69238 12999 22335 154683 

Undefined.Saprotroph 22.69 342 247 263 644 214 266 1976 12159 15870 13169 82432 12861 13840 150331 

Ectomycorrhizal 18.86 337 260 311 924 236 264 2332 15670 13271 11011 62306 8046 14597 124901 

Dung.Saprotroph-Undefined.Saprotroph-
Wood.Saprotroph 

10.28 73 31 47 84 35 43 313 13989 2750 7271 26937 5306 11819 68072 

Ericoid.Mycorrhizal 6.66 18 21 31 60 24 55 209 2102 3092 4664 22194 3991 8065 44108 

Endophyte-Litter.Saprotroph-Soil.Saprotroph-
Undefined.Saprotroph 

4.11 43 14 51 69 26 34 237 2724 1198 3175 16857 1074 2203 27231 

Wood.Saprotroph 2.08 31 25 33 112 37 70 308 576 411 571 5135 1759 5333 13785 

Animal.Pathogen-Soil.Saprotroph 1.34 8 6 8 31 14 6 73 496 99 526 5184 839 1760 8904 

Leaf.Saprotroph-Plant.Pathogen-
Undefined.Saprotroph-Wood.Saprotroph 

1.32 33 14 28 89 53 57 274 739 469 552 4240 1542 1210 8752 

Endophyte 1.26 19 13 19 30 17 18 116 907 568 820 3835 606 1624 8360 

Ectomycorrhizal-Orchid.Mycorrhizal-
Root.Associated.Biotroph 

1.13 30 19 29 39 35 27 179 991 761 914 2454 1193 1172 7485 

Other 1.11 111 58 79 184 44 76 552 1385 711 978 2580 417 1313 7384 

Endophyte-Plant.Pathogen-
Undefined.Saprotroph 

0.91 22 13 17 29 20 20 121 762 424 512 1783 978 1589 6048 

Lichenized 0.75 8 7 5 20 7 8 55 140 341 85 3738 316 364 4984 
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Animal.Pathogen-Fungal.Parasite-
Undefined.Saprotroph 

0.65 8 9 9 31 4 10 71 60 435 316 3096 236 162 4305 

Ectomycorrhizal-Wood.Saprotroph 0.52 10 6 9 23 4 8 60 632 487 197 1405 432 327 3480 

Plant.Pathogen 0.46 28 11 27 33 14 14 127 816 119 1024 432 482 158 3031 
Soil.Saprotroph 0.43 3 2 6 10 3 2 26 92 19 1046 1536 69 68 2830 



Table S4-4: Elevational shifts in soil nutrient availability. We examined variation in key 
macro- and micro-nutrients across elevation using linear models for each variable 
accounting for site-level random effects. Model estimates for elevation and intercepts are 
presented with standard error in parentheses. 

 
 Dependent variable: 
 K Mg Na Mn Cu Fe Zn 
 (1) (2) (3) (4) (5) (6) (7) 

Elevation -0.309*** -0.487*** -0.081* 0.083*** 0.0005*** 0.052*** -0.023*** 
 (0.036) (0.064) (0.042) (0.016) (0.0001) (0.012) (0.006) 

Intercept 667.914*** 756.339*** 339.746*** -1.405 0.335*** 56.664*** 34.439*** 
 (33.123) (59.403) (39.048) (14.488) (0.077) (11.210) (5.150) 

Observations 239 237 239 238 238 238 237 
R2 0.240 0.198 0.015 0.108 0.113 0.074 0.070 
Adjusted R2 0.237 0.195 0.011 0.104 0.109 0.070 0.066 
Residual Std. 
Error 

132.178 (df 
= 237) 

236.572 (df 
= 235) 

155.821 (df 
= 237) 

57.711 (df 
= 236) 

0.306 (df = 
236) 

44.651 (df 
= 236) 

20.379 (df = 
235) 

F Statistic 74.861*** 
(df = 1; 237) 

58.066*** (df 
= 1; 235) 

3.726* (df = 
1; 237) 

28.449*** 
(df = 1; 

236) 

30.009*** 
(df = 1; 

236) 

18.828*** 
(df = 1; 

236) 

17.590*** (df 
= 1; 235) 

 Dependent variable: 
 OM N NO3.N NH4.N PO4.P CEC 
 (1) (2) (3) (4) (5) (6) 

Elevation 0.012*** 0.0003*** -0.001*** 0.002*** -0.056*** -0.021*** 
 (0.002) (0.00003) (0.0002) (0.0003) (0.008) (0.003) 

Intercept 5.322*** 0.078*** 1.506*** 0.743** 90.557*** 35.454*** 
 (1.448) (0.026) (0.197) (0.300) (7.467) (2.481) 

Observations 239 239 239 234 239 236 
R2 0.201 0.262 0.110 0.109 0.169 0.206 
Adjusted R2 0.198 0.259 0.106 0.105 0.165 0.202 

Residual Std. Error 5.778 (df = 
237) 

0.102 (df = 
237) 

0.787 (df = 
237) 

1.182 (df = 
232) 

29.797 (df 
= 237) 9.880 (df = 234) 

F Statistic 59.610*** 
(df = 1; 237) 

84.205*** 
(df = 1; 237) 

29.150*** 
(df = 1; 

237) 

28.315*** 
(df = 1; 

232) 

48.096*** 
(df = 1; 

237) 

60.600*** (df = 1; 
234) 

 *p**p***p<0.01 
 
Table S4-5: Model results for EcM:pathogen read ratios. We tested for a relationship 
between natural-log transformed sequencing EcM:pathogen read ratios across elevation. 
We found a significant negative relationship in the litter layer samples (relatively more 



 209 

pathogens at high elevations). While insignificant, mineral soil ratios trended positive 
(relatively more ectomycorrhizae at high elevations). 

 Sample Layer: 
 Ln EcM:Path Ratio 
 Litter Layer Mineral Soil 
 (1) (2) 

Elevation -0.002*** 0.001* 
 (0.001) (0.001) 

Intercept 2.809*** 1.384* 
 (0.540) (0.754) 

Observations 147 133 
Log Likelihood -203.295 -255.265 
Akaike Inf. Crit. 414.590 518.530 
Bayesian Inf. Crit. 426.551 530.092 

Note: *p**p***p<0.01 
  

Table S4-6: PERMANOVA test for differences in composition of key fungal guilds by 
elevation. We found significant variation in site-level guild composition using the 
‘adonis2’ function from the Vegan package set to 1000 permutations. P-value and R2 

results are presented in Figure 4-3. 

 Group Statistic N Mean St. Dev. Min Max 

Mineral Soil 
Ectomycorrhizal Fungi 

Df 3 82.667 66.463 6 124 
SumOfSqs 3 35.158 24.507 7.163 52.737 
R² 3 0.667 0.465 0.136 1.000 
F 1 3.091 - 3.091 3.091 
Pr(>F) 1 0.001 - 0.001 0.001 

Mineral Soil 
Pathogenic Fungi 

Df 3 82.667 66.463 6 124 
SumOfSqs 3 32.566 22.274 7.182 48.848 
R² 3 0.667 0.456 0.147 1.000 
F 1 3.390 - 3.390 3.390 
Pr(>F) 1 0.001 - 0.001 0.001 

Mineral Soil 
Saprotrophic Fungi 

Df 3 82.667 66.463 6 124 
SumOfSqs 3 12.466 6.012 6.703 18.698 
R² 3 0.667 0.322 0.358 1.000 
F 1 10.989 - 10.989 10.989 
Pr(>F) 1 0.001 - 0.001 0.001 

Litter Layer 
Ectomycorrhizal Fungi 

Df 3 93.333 75.692 6 140 
SumOfSqs 3 32.095 22.705 6.117 48.143 
R² 3 0.667 0.472 0.127 1.000 
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 Group Statistic N Mean St. Dev. Min Max 
F 1 3.251 - 3.251 3.251 
Pr(>F) 1 0.001 - 0.001 0.001 

Litter Layer Pathogenic 
Fungi 

Df 3 93.333 75.692 6 140 
SumOfSqs 3 28.588 17.046 9.722 42.882 
R² 3 0.667 0.398 0.227 1.000 
F 1 6.547 - 6.547 6.547 
Pr(>F) 1 0.001 - 0.001 0.001 

Litter Layer 
Saprotrophic Fungi 

Df 3 93.333 75.692 6 140 
SumOfSqs 3 23.622 15.060 6.664 35.433 
R² 3 0.667 0.425 0.188 1.000 
F 1 5.173 - 5.173 5.173 
Pr(>F) 1 0.001 - 0.001 0.001 

 
Table S4-7: Post-hoc comparisons of mineral soil β deviation (SES β) across site and 
guilds. Statistical comparisons of SES β across elevation for different fungal guilds in 
mineral soil. SES β relates the observed spatial patterns of each focal guild to expectations 
from null model (see methods). Rows depict estimated marginal means and standard error 
for site and guild combinations.  

Site Guild Est. Marginal 
Mean SE df lower.CL upper.CL 

RS02 Ectomycorrhizal 
Fungi 14.173610 0.37032840 10,651 13.447698 14.899523 

RS21 Ectomycorrhizal 
Fungi 31.237612 0.44848997 10,651 30.358488 32.116736 

RS28 Ectomycorrhizal 
Fungi 18.503035 0.34065258 10,651 17.835293 19.170778 

RS31 Ectomycorrhizal 
Fungi 10.086868 0.07032884 10,651 9.949011 10.224726 

RS38 Ectomycorrhizal 
Fungi 15.038630 0.31538301 10,651 14.420420 15.656839 

RS02 Pathogenic Fungi 3.668454 0.40567444 10,651 2.873256 4.463652 

RS21 Pathogenic Fungi 5.478209 0.50142703 10,651 4.495318 6.461099 

RS28 Pathogenic Fungi 3.635899 0.65652209 10,651 2.348993 4.922805 

RS31 Pathogenic Fungi 2.494404 0.09781679 10,651 2.302665 2.686144 

RS38 Pathogenic Fungi 3.923274 0.40567444 10,651 3.128077 4.718472 

RS02 Saprotrophic Fungi 14.542992 0.37032840 10,651 13.817080 15.268905 

RS21 Saprotrophic Fungi 31.515150 0.44848997 10,651 30.636026 32.394274 
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Site Guild Est. Marginal 
Mean SE df lower.CL upper.CL 

RS28 Saprotrophic Fungi 17.843697 0.34065258 10,651 17.175955 18.511440 

RS31 Saprotrophic Fungi 17.490296 0.07032884 10,651 17.352439 17.628154 

RS38 Saprotrophic Fungi 31.580029 0.31538301 10,651 30.961819 32.198238 

 
Table S4-8: Post-hoc comparisons of litter layer β deviation (SES β) across site and guilds. 
Statistical comparisons of SES β across elevation for different fungal guilds in the litter 
layer. SES β relates the observed spatial patterns of each focal guild to expectations from 
null model (see methods). Rows depict estimated marginal means and standard error for 
site and guild combinations. See figure 4-4 for more details. 

Site Guild Est. Marginal 
Mean SE df lower.CL upper.CL 

RS02 Ectomycorrhizal 
Fungi 37.905332 0.36751174 14,519 37.184962 38.625702 

RS21 Ectomycorrhizal 
Fungi 33.168545 0.43766032 14,519 32.310675 34.026415 

RS28 Ectomycorrhizal 
Fungi 37.286571 0.39952738 14,519 36.503446 38.069695 

RS31 Ectomycorrhizal 
Fungi 30.227317 0.07008174 14,519 30.089948 30.364686 

RS38 Ectomycorrhizal 
Fungi 45.353758 0.36751174 14,519 44.633388 46.074127 

RS02 Pathogenic Fungi 5.886065 0.36751174 14,519 5.165695 6.606435 

RS21 Pathogenic Fungi 13.008541 0.43766032 14,519 12.150671 13.866411 

RS28 Pathogenic Fungi 12.819573 0.39952738 14,519 12.036448 13.602697 

RS31 Pathogenic Fungi 6.636112 0.07116834 14,519 6.496613 6.775611 

RS38 Pathogenic Fungi 14.377052 0.36751174 14,519 13.656682 15.097422 

RS02 Saprotrophic Fungi 25.154997 0.36751174 14,519 24.434627 25.875367 

RS21 Saprotrophic Fungi 32.383838 0.43766032 14,519 31.525968 33.241708 

RS28 Saprotrophic Fungi 26.205378 0.39952738 14,519 25.422254 26.988503 

RS31 Saprotrophic Fungi 19.746159 0.06902782 14,519 19.610855 19.881462 

RS38 Saprotrophic Fungi 31.886454 0.36751174 14,519 31.166085 32.606824 
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Table S4-9: Mineral soil standard effect size of beta dispersions by site and guild. 
Statistical comparisons of standardized beta dispersion effect sizes across elevation for 
different fungal guilds in mineral soil. Model-estimated marginal means relate the 
similarity of samples within a site and focal guild to “non-assigned” fungi. Rows depict 
estimated marginal means and standard error for site and guild combinations.  

Site Guild Est. Marginal Mean SE df lower.CL upper.CL 

RS02 Ectomycorrhizal Fungi 2.0322093 0.01 14,985 2.0126081 2.05181051 

RS21 Ectomycorrhizal Fungi 2.8687436 0.01 14,985 2.8491424 2.88834482 

RS28 Ectomycorrhizal Fungi 2.8533142 0.01 14,985 2.8337130 2.87291545 

RS31 Ectomycorrhizal Fungi 2.7543018 0.01 14,985 2.7347005 2.77390298 

RS38 Ectomycorrhizal Fungi 2.9277036 0.01 14,985 2.9081023 2.94730479 

RS02 Pathogenic Fungi 0.6097220 0.01 14,985 0.5901207 0.62932318 

RS21 Pathogenic Fungi 1.0839996 0.01 14,985 1.0643984 1.10360087 

RS28 Pathogenic Fungi 0.3302925 0.01 14,985 0.3106913 0.34989374 

RS31 Pathogenic Fungi 0.6551912 0.01 14,985 0.6355900 0.67479245 

RS38 Pathogenic Fungi 0.5041421 0.01 14,985 0.4845408 0.52374329 

RS02 Saprotrophic Fungi -1.1520288 0.01 14,985 -
1.1716300 

-
1.13242754 

RS21 Saprotrophic Fungi -0.5998084 0.01 14,985 -
0.6194096 

-
0.58020719 

RS28 Saprotrophic Fungi -0.4746059 0.01 14,985 -
0.4942071 

-
0.45500465 

RS31 Saprotrophic Fungi -0.7908606 0.01 14,985 -
0.8104618 

-
0.77125939 

RS38 Saprotrophic Fungi -0.1115682 0.01 14,985 -
0.1311694 

-
0.09196695 

 
Table S4-10: Litter layer standard effect size of beta dispersions by site and guild. 
Statistical comparisons of standardized beta dispersion effect sizes across elevation for 
different fungal guilds in litter layer. Model-estimated marginal means relate the similarity 
of samples within a site and focal guild to “non-assigned” fungi. Rows depict estimated 
marginal means and standard error for site and guild combinations.  

Site Guild Est. Marginal 
Mean SE df lower.CL upper.CL 

RS02 Ectomycorrhizal 
Fungi 1.11808382 0.01 14,985 1.09848260 1.13768504 
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Site Guild Est. Marginal 
Mean SE df lower.CL upper.CL 

RS21 Ectomycorrhizal 
Fungi 0.51911640 0.01 14,985 0.49951518 0.53871763 

RS28 Ectomycorrhizal 
Fungi 1.26639205 0.01 14,985 1.24679083 1.28599327 

RS31 Ectomycorrhizal 
Fungi 1.88887874 0.01 14,985 1.86927752 1.90847997 

RS38 Ectomycorrhizal 
Fungi 1.58189439 0.01 14,985 1.56229316 1.60149561 

RS02 Pathogenic Fungi 0.74435256 0.01 14,985 0.72475133 0.76395378 

RS21 Pathogenic Fungi 0.99077717 0.01 14,985 0.97117595 1.01037839 

RS28 Pathogenic Fungi -0.20422191 0.01 14,985 -0.22382313 -0.18462068 

RS31 Pathogenic Fungi 0.76185826 0.01 14,985 0.74225704 0.78145949 

RS38 Pathogenic Fungi 0.06224491 0.01 14,985 0.04264369 0.08184613 

RS02 Saprotrophic Fungi -5.23172732 0.01 14,985 -5.25132854 -5.21212610 

RS21 Saprotrophic Fungi -5.10781819 0.01 14,985 -5.12741941 -5.08821696 

RS28 Saprotrophic Fungi -3.28204424 0.01 14,985 -3.30164546 -3.26244302 

RS31 Saprotrophic Fungi -3.82209821 0.01 14,985 -3.84169943 -3.80249699 

RS38 Saprotrophic Fungi -3.42013634 0.01 14,985 -3.43973756 -3.40053511 

 

Table S4-11: Total contribution of each predicting factor to variation partitioning 
estimates. We used dbRDA-based variation partitioning to determine correlations between 
changes in predictor matrices (fungal guilds or soil chemistry) and tree distance matrices 
at each site. 

Site Elevation (m) Factor Total 
Fraction (R2) 

RS02 520 Ectomycorrhizal Fungi 0.284 
RS02 520 Pathogenic Fungi 0.424 
RS02 520 Saprotrophic Fungi 0.432 
RS02 520 Soil Chemistry 0.204 
RS21 1,190 Ectomycorrhizal Fungi 0.536 
RS21 1,190 Pathogenic Fungi 0.361 
RS21 1,190 Saprotrophic Fungi 0.569 
RS21 1,190 Soil Chemistry 0.402 
RS31 900 Ectomycorrhizal Fungi 0.278 
RS31 900 Pathogenic Fungi 0.247 
RS31 900 Saprotrophic Fungi 0.314 
RS31 900 Soil Chemistry 0.198 
RS38 500 Ectomycorrhizal Fungi 0.421 
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Site Elevation (m) Factor Total 
Fraction (R2) 

RS38 500 Pathogenic Fungi 0.500 
RS38 500 Saprotrophic Fungi 0.416 
RS38 500 Soil Chemistry 0.252 

 
Table S4-12: Individual contribution of each predicting factor to variation partitioning 
estimates. While we consider the total fraction R2 to be most informative for assessing 
changing associations across elevation, we present here the individual contribution of each 
factor unique from other factors. These individual R2 values represent the non-overlapping 
contribution of each predictor to the response (tree composition distance matrix). 

Site Elevation (m) Factor 
Individual 
Fraction (R2) 

RS02 520 Ectomycorrhizal Fungi 0.054 
RS02 520 Pathogenic Fungi 0.136 
RS02 520 Saprotrophic Fungi 0.107 
RS02 520 Soil Chemistry 0.058 
RS21 1,190 Ectomycorrhizal Fungi 0.187 
RS21 1,190 Pathogenic Fungi 0.128 
RS21 1,190 Saprotrophic Fungi 0.235 
RS21 1,190 Soil Chemistry 0.201 
RS31 900 Ectomycorrhizal Fungi 0.380 
RS31 900 Pathogenic Fungi 0.449 
RS31 900 Saprotrophic Fungi 0.517 
RS31 900 Soil Chemistry 0.315 
RS38 500 Ectomycorrhizal Fungi 0.220 
RS38 500 Pathogenic Fungi 0.279 
RS38 500 Saprotrophic Fungi 0.213 
RS38 500 Soil Chemistry 0.081 
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Figure S4-1: Soil chemical properties change across elevation. (A) Principal Component 
Analysis (PCA) biplot showing the distribution of soil samples based on chemical 
properties at seven different elevations (500 m, 580 m, 790 m, 900 m, 1060 m, 1190 m, 
1290 m). Ellipses represent the 95% confidence intervals for each elevation group. (B-O) 
Chemical analyses across elevation. The black lines represent loess lines with shaded areas 
indicating standard errors. Different letters above data points denote significant differences 
among elevations as determined by ANOVA and Tukey HSD post-hoc tests (p < 0.05).  

 

 
Figure S4-2: Alternative PCoA analysis of (A) ectomycorrhizal, (B) pathogenic, and (C) 
saprotrophic fungal communities using rarefied microbial sequencing data. As an 
alternative to denoising, we assessed differences in guild compositions across the elevation 
gradient using rarefied microbial sequencing data with a standardized library size of 2000 
reads. Each point represents a sample, and points are color-coded by elevation (500 m, 520 
m, 790 m, 900 m, 1060 m, 1190 m). The axes (PCoA1 and PCoA2) explained the highest 
proportion of fungal guild communities and are distinctly clustered by elevation, although 
clustered poorly relative to our primary denoising approach. Site elevation predictive 
significance was assessed with PERMANOVA (Table S6)  
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DISCUSSION 
My dissertation makes several contributions to our collective understanding of how 

environmental stress and ecological disturbances influence the local neighborhood 

interactions thought to contribute to the stability and diversity of forest plant communities. 

By integrating theoretical frameworks with empirical study, I tested specific hypotheses 

regarding how local CDD responds to changing environmental conditions. Here, I briefly 

discuss how my empirical findings support the theoretical predictions developed in my 

conceptual work. 

In Chapter 1, I developed a framework categorizing ecological disturbances based 

on their primary effects on forest structure, predicting that combined disturbances like 

wildfire would neutralize local CDD by simultaneously affecting competitive densities, 

resource availability, and tree-associated communities of natural enemies and mutualists. 

My empirical test of post-fire seedling mortality in Chapter 2 strongly supported this 

prediction, demonstrating that wildfires disrupt the stabilizing neighborhood feedbacks 

evident in nearby undisturbed forests. Additionally, I found that wildfires neutralize the 

relationship between stabilizing local CDD and extreme heat. While several underlying 

factors may contribute to these findings, I find most compelling the hypothesis that 

neutralized local CDD in burned forests is the result of wildfire-induced mortality and 

erosion of tree-associated microbes which otherwise contribute to a positive relationship 

between abiotic stress and local CDD (more positive, destabilizing). Together, these 

empirical findings generally support the central predictions of my disturbance framework, 

most evidently the prediction that combined disturbances like wildfire neutralize local 

CDD and decouple neighborhood interactions from climate-related stress. 
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My empirical findings from Chapters 3 and 4 provide complementary insights into 

the Stress Gradient Feedback Hypothesis (SGFH) by testing how environmental stress 

alters the drivers and outcome of local CDD along an elevation gradient. The SGFH 

predicts that increased importance or intensity of relatively host-specific antagonistic 

interactions contribute to stabilizing local CDD in benign, low stress environments, 

whereas increased importance or intensity of relatively host-specific facilitative plant-

microbe interactions contributes to destabilizing local CDD in harsh, high-stress 

environments. 

In Chapter 3, my dendrochronological analysis revealed species-specific responses 

to climate that align with key predictions of the SGFH. For Douglas-fir (P. menziesii), local 

CDD became increasingly destabilizing (positive) in cooler years, suggesting that lower 

temperatures constitute a form of stress for this canopy-dominant, shade-intolerant species 

that enhances the importance of conspecific facilitation. Conversely, Western hemlock (T. 

heterophylla) exhibited stronger stabilizing local CDD in wetter years, indicating that 

reduced water stress (relatively un-stressful conditions) may enhance the effects of host-

specific antagonists for this shade-tolerant, co-dominant species. The differences in my 

main findings between focal species likely relates to individual tolerances to different 

stressors (temperature, precipitation) based on life-history and canopy position. Overall, 

we find broad support for the hypothesis that climate-induced stress temporarily alters local 

CDD on an interannual basis in adult trees, which represents a key advancement in the field 

by demonstrating that temporal patterns observed in short-term and seedling-focused 

studies can scale to influence growth in the largest members of forest communities across 

multiple decades. 
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In Chapter 4, I explore a mechanistic explanation for my findings of climate-

mediated shifts in local CDD among large adult trees by examining the spatial aggregation 

of soil fungal communities in relation to tree communities across elevation. As predicted 

by the SGFH, site-to-site differences in tree community composition were more strongly 

associated with pathogenic fungal composition at lower, more resource-abundant 

elevations, while associations with ectomycorrhizal fungal communities predominated at 

higher, more stressful elevations. The increasing spatial aggregation of ectomycorrhizal 

fungi with elevation provides additional evidence that trees rely more heavily on these 

mutualistic relationships under stressful conditions, and that observed changes to local 

CDD with environmental stress are likely driven by changes to underling tree-microbe 

interactions.  

Collectively, these findings provide empirical support, and reveal important 

nuances, for my frameworks of explaining local CDD in the context of environmental 

change and ecological disturbances. This work demonstrates that local CDD is not a static 

property of forest communities but rather responds dynamically to both acute disturbances 

and chronic environmental stress. The dendrochronological analyses from Chapter 3 

demonstrates that local CDD varies not only across space (as shown in Chapter 4) but also 

through time, as interannual climate fluctuations temporarily shift the balance between 

antagonistic and mutualistic neighborhood interactions. This temporal dimension adds 

considerable complexity to understanding how forest communities will respond to climate 

change, as future climates are expected to be defined not only by increasing mean 

temperatures but also increasing variance. Temporal shifts in the directionality and 

magnitude of local CDD may alternately accelerate or buffer compositional changes 
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depending on the specific climate variables involved and the life histories of dominant 

species.  

In summary, this dissertation has made important contributions to our theoretical 

and empirical understanding of how local conspecific density dependence (CDD) varies in 

changing environments, with important implications for the maintenance of species 

diversity and forest ecosystem resilience. By integrating conceptual frameworks with field 

studies in a variety of taxa ranging from soil fungi to adult trees, this work revealed that 

differences in the strength of conspecific and heterospecific neighborhood interactions are 

a dynamic factor influencing individual responses to both acute disturbances and chronic 

environmental stressors.  
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