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1 | The Special Issue

Catchment studies are foundational to hydrological and biogeo-
chemical process understanding that has informed resource
management, policy development and societal well-being (Burt
and McDonnell 2015; Likens 2021; Tetzlaff et al. 2017). These
place-based studies with sustained monitoring have shaped
understanding of fundamental ecosystem processes and con-
sequences of environmental change on ecosystems (Campbell
et al. 2022; Hewlett, Lull, and Reinhart 1969; Jones et al. 2012;
Latron and Lana-Renault 2018; Lovett et al. 2007; McNamara
et al. 2018).

The special issue, Research and Observatory Catchments: The
Legacy and the Future, originates from a groundswell of interest
and community spirit that reflects the commitment and passion
of the catchment community for sustaining our science, and its
collective conviction on the value and importance of catchment,
critical zone and ecosystem science.

The Special Issue grew out of efforts to engage the commu-
nity, highlight catchment studies and recognise the rich col-
lective legacies of catchment science. To frame the Special
Issue, we broadly defined research and observatory catch-
ments as sustained research at particular locations based on

research questions around a catchment study design, inclusive
of empirical, experimental and modelling studies. Common
characteristics of long-term catchment studies are listed in
Table 1. In general, catchment studies feature concentrated,
complementary and diverse measurements repeated over time
of ecosystem properties including soils, biology, weather, at-
mospheric deposition, physical processes, chemistry, isotopes,
sediments and water budget components. Regardless of par-
ticular measurements or site-specific research questions, the
studies occur at a scale that is meaningful to process under-
standing, resource management, policy, education, outreach
and public awareness of the environment and environmental
problems.

Most special issues in Hydrological Processes attract 10 to 30 ar-
ticles, but this one garnered 119 published papers. We sought to
maximise contributions to highlight the breadth and depth of
catchment research, which led to this large volume. Overall, the
outcome demonstrates the wide appeal of catchment science,
and the diverse scientific questions that can be addressed in
catchment studies.

We mention each and every contribution to the Special Issue,
but the high number of articles precludes detail. We leave it
to the reader to explore the content, discover the catchments,
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TABLE1 | Characteristics of catchment studies.

1. Spatial scales simplify process understanding by limiting heterogeneities in climate, geology, vegetation and land use.

2. Interdisciplinarity to examine the connections across, for example, climatic, physical, chemical and biological processes; and

serve as data sources for models and theory testing.

3. Long-term, fixed-interval monitoring of precipitation and stream water with frequent verification to detect the effects of past,
current and potential future forms of environmental change and pollution.

4. Sound science suitable to guide policy deliberations and monitoring to track outcomes of policy.

5. Accompanying meteorological data enable detection of effects of climate variability and change on hydrology.

6. Continuity and archiving of core data with a capacity for studies to evolve and be inclusive of new measurement technologies.

7. A community of researchers, including the next generation of scientists to seed the future, with long-term perspective and

understanding of the places they study.

absorb the rich legacy of data and ingest the basic, applied
and transformative findings that flow from these catchment
studies.

The Special Issue opens with an invited commentary by
Gene Likens (2021) on the watershed-ecosystem con-
cept that he and other scientists pioneered at the Hubbard
Brook Ecosystem Study in New Hampshire, USA. Sixty-five
of the articles are Data Notes, greatly exceeding the total
number in this category previously published in Hydrological
Processes. Data Notes are intermixed throughout the table
of contents with 53 conventional research articles. The pur-
pose of a Data Note “is to alert the scientific community to
the existence of data sets and data bases that could be used
in further hydrological, or multi-disciplinary collaborative re-
search” (https://onlinelibrary.wiley.com/page/journal/10991
085/homepage/forauthors.html). In addition to the basic
guidelines for a Data Note, we requested that authors place
particular emphasis on catchment description and establish-
ing a sense of relevance.

In organising a table of contents, we tried to strike a balance
among multiple grouping strategies: research themes, research
networks, geography and time. Many catchment studies included
in the Special Issue are part of established research networks,
including some that belong to multiple networks (Table 2). The
first group of articles, Section 2.1, nominally corresponds to
land management studies, including (1) forestry practices such
as harvesting, road building and forest regeneration, (2) agricul-
tural practices such as grazing, associated vegetation changes
and crop production, (3) landscape restoration and (4) urbani-
sation. The second group, Section 2.2, encompasses the broad
themes of hydrological and then biogeochemical processes. The
final group, Section 2.3, includes catchment studies that were
generally more recently initiated and used to address topics in
ecohydrology. Catchment research is interdisciplinary, so top-
ics often intermingle within and among articles without clear
boundaries across the broad categories of land management,
hydrology/biogeochemistry and ecohydrology. Some catchment
studies are covered in multiple Data Notes or research articles.
When possible, we grouped those interrelated articles together
in the table of contents.

2 | Catchment Study and Special Issue Essentials

The clearest exemplar of a long-term catchment study was es-
tablished at Sperbelgraben and Rappengraben in Switzerland
during the early 1900s (Andréassian 2004; Stdhli et al. 2011).
The United States Department of Agriculture (USDA) Forest
Service (USFS) initiated catchment studies in the 1910s (Neary
et al. 2012), including a major innovation in catchment science,
the paired-catchment study, at Wagon Wheel Gap, Colorado,
USA, from 1910 to 1926 (Bates and Henry 1928). These early
examples established basic principles that have been emulated
in catchment studies around the world. Studies multiplied
during the 1930s, including the early USFS catchments; the
Jonkershoek (Moncrieff, Slingsby, and Le Maitre 2021; Slingsby
et al. 2021) and Cathedral Peaks (de Villiers 1970) catchments in
South Africa; and the Kambuchi, Takaragawa and Tatsunokuchi
catchments in Japan (Kubota et al. 2021; Shimizu et al. 2021).
Contemporary with the starts of multiple USFS catchment
studies between the 1930s and 1970s (Neary et al. 2012), many
USDA Agricultural Research Service (ARS) catchments were
established beginning during the 1940s (Goodrich et al. 2022;
Goodrich, Heilman, Anderson et al. 2021). Another influential
innovation occurred during the 1960s when studies of solute
mass balances began at the Hubbard Brook Experimental Forest
(Likens 2021).

Importantly, catchment and paired-catchment studies have been
extended beyond a traditional forest and rangeland focus to ad-
dress topics such as non-native species encroachment (Moncrieff,
Slingsby, and Le Maitre 2021; Vivoni et al. 2021), prescribed fire
effects (Wagenbrenner et al. 2021), suburbanization (Follstad
Shah et al. 2021; Matson et al. 2021; Neilson et al. 2021; Tennant
et al. 2021; Wymore et al. 2021), community-supported science
(Osenga, Vano, and Arnott 2021), silvopastoral systems (Regina
et al. 2021) and impacts of recreation (Shanley et al. 2021).
Partnering strategies are common to the success of many catch-
ment research programmes around the planet. For example,
the research programmes at many USFS catchments expanded
over time to include critical partners via synergies, particularly
with the US Long-Term Ecological Research Program (LTER;
Table 2), additional government agencies, universities and
other research institutions. Since the early 2000s, catchment
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TABLE 2 | Formal networks of catchment studies with reference to articles in this Special Issue.

Networks and catchment studies

Special issue article

South African Environmental Observation Network (SAEON)

The Jonkershoek Forestry Research Centre, Western Cape, South Africa

USDA Forest Service (USFS) Experimental Forests and Ranges
HJ Andrews Experimental Forest, Oregon, USA

Caspar Creek Experimental Forest, California, USA

Kings River Experimental Watersheds, California

San Dimas Experimental Forest, California

Fraser Experimental Forest, Colorado, USA

Hubbard Brook Experimental Forest, New Hampshire, USA

Fernow Experimental Forest, West Virginia, USA

Coweeta Hydrologic Laboratory, North Carolina, USA

Santee Experimental Forest, South Carolina, USA

Marcell Experimental Forest, Minnesota, USA

Baltimore Cooperating Experimental Forest/Baltimore Ecosystem Study,
Maryland, USA

Bonanza Creek Experimental Forest and Caribou-Poker Creeks Research
Watershed, Alaska, USA

San Joaquin Experimental Range, California

Luquillo Experimental Forest, Puerto Rico, USA

Santa Rita Experimental Range, Arizona, USA
Forestry and Forest Products Research Institute, Japan

Jozankei, Hokkaido, Japan

Kamabuchi, Yamagata, Japan

Takaragawa, Gunma, Japan

Tsukuba, Ibaraki, Japan

Tatsunokuchi-yama, Okayama, Japan

Kahoku, Kumanoto, Japan

Sarukawa, Miyazaki, Japan
Japan Long Term Ecological Research Network

Fukuroyamasawa Experimental Watershed, Chiba, Japan

Slingsby et al. 2021 *

Moncrieff, Slingsby, and Le Maitre 2021

Johnson et al. 2021 *
Crampe, Segura, and Jones 2021
Zhang et al. 2021

Richardson et al. 2021 *

Wagenbrenner et al. 2021 *
Safeeq et al. 2021
Zhang et al. 2021

Wohlgemuth 2021 *

Rhoades et al. 2021
Fegel et al. 2021

Campbell et al. 2021 *
Green et al. 2021
Likens et al. 2021
Zhang et al. 2021

Guillén et al. 2021 *

Miniat et al. 2021 *
Zhang et al. 2021

Amatya et al. 2022 *

Sebestyen et al. 2021 *
Stelling et al. 2021 *
Sebestyen, Funke, and Cotner 2021

Zhang et al. 2021

Zhang et al. 2021

Zhang et al. 2021

Zhang et al. 2021
McDowell et al. 2021 *

Vivoni et al. 2021 *

Shimizu et al. 2021 *
Shimizu et al. 2021 *
Shimizu et al. 2021 *
Shimizu et al. 2021 *
Shimizu et al. 2021 *
Shimizu et al. 2021 *
Shimizu et al. 2021 *

Oda et al. 2021

(Continues)
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TABLE 2 | (Continued)

Networks and catchment studies

Special issue article

Kiryu Experimental Watershed, Shiga, Japan

International Network for Alpine Research Catchment Hydrology
Langtang, Bagmati, Nepal
Reynolds Creek, Idaho, USA

Sagehen Creek, California, USA
Dry Creek, Idaho, USA

USDA Agricultural Research Service Long Term Agroecology Watersheds (LTAR)
Beasley Lake Watershed, Lower Mississippi River Basin LTAR, Mississippi, USA

Central Mississippi River Basin LTAR, Missouri, USA
Choptank River, Lower Chesapeake Bay LTAR, Maryland

Little River Experimental Watershed, Gulf Atlantic Coastal Plain LTAR,
Georgia, USA

Little Washita River Experimental Watershed and Fort Cobb Reservoir
Experimental Watershed, Southern Plains LTAR, Oklahoma, USA

Mahantango Creek, Upper Chesapeake Bay LTAR, Pennsylvania, USA

North Walnut Creek, South Walnut Creek and South Fork of the Iowa River,
Upper Mississippi River Basin LTAR, Iowa, USA

Reynolds Creek Experimental Watershed, Great Basin LTAR, Idaho, USA

Texas Gulf LTAR, Texas, USA

Walnut Gulch Experimental Watershed, Arizona

French network of critical zone observatories, OZCAR
Service National d-Observation (SNO) Tourbiéres:
Landemarais, Bretagne, France
La Guette, Centre-Val de Loire, France
La Frasne, Franche-Comté, France
Bernadouze, Midi-Pyrénées, France
Galabre Catchment, Auvergne-Rhone-Alpes, France
M-TROPICS
Houay Pano, Luang Prabang, Lao People's Democratic Republic
The Nyong River Basin, Centre Region, Cameroon
Mule Hole, Karnataka, India
Rhone Sediment Observatory

Rhone Basin Long Term Environmental Research Observatory, Alpes-Cote-
d'Azur, France

Arc-Isere River, Auvergne-Rhone-Alpes, France

Katsuyama et al. 2021 *

Steiner et al. 2021 *

Goodrich et al. 2022 *
Glossner et al. 2022
Zhang et al. 2021

Zhang et al. 2021
Poulos et al. 2021

Goodrich et al. 2022 *
Lizotte Jr et al. 2021 *

Goodrich et al. 2022 *
Goodrich et al. 2022 *
Bosch et al. 2021 *

Goodrich et al. 2022 *

Goodrich et al. 2022 *
Goodrich et al. 2022 *

Goodrich et al. 2022 *
Glossner et al. 2022
Zhang et al. 2021

Goodrich et al. 2022 *

Goodrich et al. 2022 *
Goodrich, Heilman, Nearing et al. 2021 *

Gogo et al. 2021 *
Gogo et al. 2021 *
Gogo et al. 2021 *
Gogo et al. 2021 *
Legout et al. 2021 *

Boithias et al. 2021 *
Audry et al. 2021 *
Riotte et al. 2021 *

Delile et al. 2022

Thollet et al. 2021 *

(Continues)
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TABLE 2 | (Continued)

Networks and catchment studies

Special issue article

United Nations Educational, Scientific and Cultural Organisation International

Hydrological Program Ecohydrology Demonstration Sites
Demnitzer Mill Creek, Brandenburg, Germany

US Geological Survey
Mount Mansfield, Vermont, USA

Buck Creek-Boreas River Adirondack monitoring program, New York, USA

Biscuit Brook and Neversink Reservoir, New York
Loch Vale Watershed, Colorado
Panola Mountain Watershed, Georgia, USA

Sleepers River Research Watershed, Vermont

Czech Geochemical Monitoring (GEOMON) Network

Kleine et al. 2021

Shanley et al.

2021

Lawrence and Siemion 2021 *

Murdoch et al. 2021 *

Baron et al. 2021 *

Aulenbach et al. 2021 *

Shanley, Chalmers et al. 2022 *

Porter et al. 2022

Shanley, Taylor et al. 2022

Lesni potok, Stiedocesky, Czech Republic Navratil et al. 2021
Oulehle et al. 2021

Lysina Critical Zone Observatory, Karlovarsky, Czech Republic Zheng et al. 2021
Oulehle et al. 2021

Uhlitska, Liberecky, Czech Republic

Vitvar, Jakub, and Sanda 2022

Oulehle et al. 2021
Anensky potok, Vysocina, Czech Republic Oulehle et al. 2021
Cervik, Moravskoslezsky, Czech Republic Oulehle et al. 2021
Jezeii, Ustecky, Czech Republic Oulehle et al. 2021
Litavka, Stfedocesky, Czech Republic Oulehle et al. 2021
Liz, Jihoc¢esky, Czech Republic Oulehle et al. 2021
Loukov, Vysocina, Czech Republic Oulehle et al. 2021
Modry potok, Kralovéhradecky, Czech Republic Oulehle et al. 2021
Na zeleném, Karlovarsky, Czech Republic Oulehle et al. 2021
Pluhiiv Bor, Karlovarsky, Czech Republic Oulehle et al. 2021
Polomka, Pardubicky, Czech Republic Oulehle et al. 2021
Salacova Lhota, Vysocina, Czech Republic Oulehle et al. 2021
Spéalenec, Jiho€esky, Czech Republic Oulehle et al. 2021
U dvou loucek, Kralovéhradecky, Czech Republic Oulehle et al. 2021

US Long-Term Ecological Research (LTER) Network

HJ Andrews Experimental Forest, Oregon See USFS catchments above

Hubbard Brook Experimental Forest, New Hampshire See USFS catchments above

Coweeta Hydrologic Laboratory, North Carolina See USFS catchments above

Niwot Ridge, Colorado Bjarke et al. 2021 *
Badger et al. 2021

Barnhart et al. 2021

Tannucci et al. 2021
Medvedeff et al. 2021 *

Arctic, Alaska

(Continues)
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TABLE 2 | (Continued)

Networks and catchment studies Special issue article
McMurdo Dry Valleys, Antarctica Gooseff et al. 2022 *
Bergstrom et al. 2021
Baltimore Ecosystem Study LTER, Maryland Zhang et al. 2021
Bonanza Creek Experimental Forest and Caribou-Poker Creeks Research See USFS catchments above

Watershed, Alaska

Central Arizona-Pheonix LTER, Arizona

Florida Coastal Everglades LTER, Florida, USA
Georgia Coastal Ecosystems LTER, Georgia, USA
Harvard Forest LTER, Massachusetts

Jornada LTER, New Mexico

Kellogg Biological Station LTER, Michigan, USA
Konza Prairie LTER, Kansas, USA
Northern Gulf of Alaska LTER, Alaska
Plum Island LTER, Massachusetts
Sevilleta LTER, New Mexico
San Diego River, California Current Ecosystem LTER, California
Luquillo Experimental Forest, Puerto Rico
US Critical Zone Observatories (CZO)
Boulder CZO, Colorado
Catalina CZO, Arizona
Calhoun CZO, North Carolina
Christina River CZO, Delaware, USA
Jemez CZO, New Mexico
Luquillo Experimental Forest, Puerto Rico
Reynolds Creek Experimental Watershed, Idaho
Shale Hills CZO, Pennsylvania

San Joaquin Experimental Range, Southern Sierra CZO and Kings River
Experimental Watersheds, California

Providence Creek, Southern Sierra CZO and Kings River Experimental
Watersheds, California

‘Wolverton Basin, Southern Sierra CZO, California
German Terrestrial Environmental Observatories (TERENO)

Wiistebach catchment, Lower Rhine/Eifel Observatory, North Rhine-
Westphalia, Germany

Lake Hinnensee, Northeast German Lowland Observatory, Mecklenburg-
Vorpommern, Germany

Zhang et al. 2021
Zhang et al. 2021
Zhang et al. 2021
Zhang et al. 2021
Zhang et al. 2021

Vivoni et al. 2021 *

Zhang et al. 2021
Zhang et al. 2021
Zhang et al. 2021
Zhang et al. 2021
Zhang et al. 2021
Zhang et al. 2021

See USFS catchments above

Zhang et al. 2021
Zhang et al. 2021
Zhang et al. 2021
Zhang et al. 2021
Zhang et al. 2021

See USFS catchments above

See LTAR catchments above

Zhang et al. 2021

See USFS catchments above

See USFS catchments above

Zhang et al. 2021

Bogena, Stockinger, and Liicke 2021 *

Blume, Schneider, and Giintner 2022

Note: The networks and sites largely are ordered by article appearance in the
table of contents. An asterisk indicates a Data Note. Not all catchment studies in
the Special Issue are part of networks or included in this table.
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studies have been further enhanced by the critical zone concept
(Brantley, Goldhaber, and Ragnarsdottir 2007) and ecohydrol-
ogy as a field of study (Rodriguez-Iturbe 2000).

In general, catchment studies are incremental and iterative
(e.g., Burt et al. 2021; Soulsby et al. 2021; Stdhli et al. 2021),
which leads to perceptive science as findings evolve, stand the
test of time, or motivate complementary research and knowl-
edge (Burt 1994). Long-term data provide baselines for as-
sessing change and inform new generations of studies. While
the longest studies have close to a century or more of research
and monitoring (Goodrich et al. 2022; Guillén et al. 2021;
Miniat et al. 2021; Stéhli et al. 2011; Wohlgemuth 2021), some
seminal studies lasted for only a decade or so (e.g., Bates and
Henry 1928). Some sites are well known with decades of data
and hundreds of publications. Other catchment studies have
been established in recent decades (Bogena, Stockinger, and
Liicke 2021; Chaffe et al. 2021; Giesbrecht et al. 2021; Hissler
et al. 2021; Kakalia et al. 2021; Kleine et al. 2021; Knighton
et al. 2020; Osenga, Vano, and Arnott 2021; Steiner et al. 2021;
Wagenbrenner et al. 2021). Even lesser-known sites with fewer
publications boost our collective knowledge by representing
new geographies or new ideas. There is no definitive catalogue
of catchment studies, but we have mapped more than 700 on-
going or former catchment studies, including all the catchment
studies in this Special Issue (Figure 1).

2.1 | Foundational Knowledge From
Land Management Studies

Many USFS catchments, including forest and range lands, are
represented in this Special Issue (Table 2). Each USFS experi-
mental forest was set up to evaluate forest management strategies

and effects on water yield using paired catchments. Forest clear-
cutting followed by regeneration was the most common form
of study (Amatya et al. 2022; Campbell et al. 2021; Guillén
et al. 2021; Johnson et al. 2021; Miniat et al. 2021; Sebestyen
et al. 2021). Other forest management or disturbance studies on
USFS catchments covered in this Special Issue include effects of
selective cutting (Miniat et al. 2021; Richardson et al. 2021), for-
est plantation growth (Crampe, Segura, and Jones 2021; Johnson
et al. 2021), fire (Wagenbrenner et al. 2021; Wohlgemuth 2021)
and extreme weather events (McDowell et al. 2021). Forest man-
agement effects on water chemistry are also reported for several
USFS catchment studies (Fegel et al. 2021; Likens et al. 2021;
Sebestyen, Funke, and Cotner 2021).

Similar decades-long catchment studies elsewhere in the
United States (Sena, Williamson, and Barton 2021), Canada
(Moore et al. 2021; Webster, Leach, Hazlett et al. 2021; Winkler
et al. 2021), Japan (Katsuyama et al. 2021; Kubota et al. 2021;
Oda et al. 2021; Shimizu et al. 2021) and Europe (Laudon
et al. 2021) provide insight on hydrological response to forest
management strategies, as do more recent studies in forests of
Germany (Bogena, Stockinger, and Liicke 2021) and Panama
(Regina et al. 2021).

A new generation of catchment studies in South America pro-
vides information to manage streamflow and water yield for
forests in Chile at Forestal Arauco experimental catchments
(Balocchi, Flores et al. 2021; Balocchi, White et al. 2021),
Nacimiento (Iroumé, Jones, and Bathurst 2021) and the
Valdivian Coastal Reserve (Lara et al. 2021); and in Brazil at
the Itatinga Experimental Forest Station (Ferraz et al. 2021)
and Ponta da Canas (Reichert et al. 2021). Researchers also
address how land degradation due to anthropogenic incur-
sion, overgrazing and conversion to cropland affects water
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FIGURE1

| Global map of catchment studies cataloged by our catchment group. The red symbols show catchment studies that are included in this

Special Issue. The world light gray base layer was developed by Esri using HERE data, Garmin basemap layers, OpenStreetMap contributors, Esri

basemap data, and select data from the GIS user community.
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availability and erosion in Argentina (Jobbagy et al. 2021)
and Brazil (Ebling et al. 2022; Londero et al. 2021; Reichert
et al. 2021; Srinivasan et al. 2021). Each catchment study in
South America adds insight needed to restore ecological or hy-
drological function or manage streamflow with restoration of
native vegetation.

Land management in agricultural settings is also a prime
focus in European and North American catchment studies.
The catchment study design is well suited for providing in-
sight on intensive agricultural lands, especially when coupled
with innovative approaches like use of cosmic ray neutron
sensing to ascertain the distribution and temporal variability
of soil moisture across fields (Li et al. 2021). Where pasture,
cropland and forests intersect at larger spatial scales, there is
a need to understand how stream water yields, flowpath rout-
ing and storage-streamflow relationships respond to chang-
ing agricultural intensity and increased variability of weather
with climate change (Bouldin and O'Leary 2021; Kleine
et al. 2021; Meifll et al. 2021). Early studies during the 1960s at
the Slapton Ley Catchment in the United Kingdom garnered
attention and resulted in action to reduce nitrogen pollution
during the following decades (Burt et al. 2021). Studies in
the Fall Creek catchment of New York, USA provided foun-
dational knowledge to understand, manage and regulate leg-
acy phosphorus pollution where agriculture is intermixed
with other land covers and uses (Bouldin and O'Leary 2021).
At the Ardiéres-Morcille catchments in France, the research
programme is focused on effects of pesticides on aquatic eco-
systems and management alternatives to reduce pollutant
transport to streams (Gouy et al. 2021). Catchment studies
within the USDA ARS Long-Term Agroecosystem Research
(LTAR) programme span farming and grazing regions of the
USA (Table 2). The LTAR programme addresses the balance
between agricultural and other land uses as well as effects of
agricultural conservation practices on water resources (Bosch
et al. 2021; Glossner et al. 2022; Goodrich, Heilman, Anderson
et al. 2021; Goodrich, Heilman, Nearing et al. 2021; Lizotte Jr
et al. 2021).

2.2 | Hydrological and Biogeochemical Process
Insight

Catchmentstudies in this Special Issue have figured prominently
in the advancement of fundamental understanding of hydrolog-
ical processes. Researchers at Maimai in New Zealand showed
that subsurface stormflow was by far the major contributor to
stream response to rainfall (McDonnell et al. 2021). As empha-
sised in an evolving perceptual model of the Panola Mountain
Research Watershed (Georgia, USA; Aulenbach et al. 2021),
and supported by research elsewhere (Chifflard and Zepp 2022;
Soulsby et al. 2021; Vitvar, Jakub, and Sanda 2022), partitioning
among subsurface storage compartments refines understanding
of streamflow generation processes and water transit times. At
the Sleepers River Research Watershed, Vermont, USA, where
understanding of the importance of saturation excess overland
flow and subsurface stormflow to streamflow generation em-
anated from Tom Dunne's research (Dunne and Black 1970;
Shanley et al. 2015), Porter et al. (2022) further delved into flow-
path routing that drives streamflow generation and the timing

and magnitude of stream chemistry responses to stormflow. The
earliest experiments to study element cycling occurred at the
iconic Hubbard Brook where that research continues (Campbell
et al. 2021; Likens 2021; Likens et al. 2021).

Water balance at the catchment scale represents aggregation of
many water balance components. Studies in this Special Issue
provide insight on how better understanding of error and uncer-
tainty is needed to improve water budgets and hydrological and
Earth system models (Badger et al. 2021; Barnhart et al. 2021;
Blume, Schneider, and Giintner 2022; Green et al. 2021;
Moncrieff, Slingsby, and Le Maitre 2021; Ryken, Gochis, and
Maxwell 2022; Safeeq et al. 2021). It is similarly important to
quantify variability of water chemistry over space and time to
understand how geological, edaphic, biological, elevational and
other landscape features affect our understanding of solute
yields (Fegel et al. 2021; Porter et al. 2022; Rhoades et al. 2021;
Sebestyen, Funke, and Cotner 2021).

Sediment yield and transport processes are quantified in al-
pine areas of Switzerland (Stdhli et al. 2021) and France
(Thollet et al. 2021); conifer forests of northern California, USA
(Richardson et al. 2021); temperate forests of Japan (Katsuyama
etal. 2021) and France (Legout et al. 2021); humid tropics of Laos
(Boithias et al. 2021) and Cameroon (Audry et al. 2021); semi-
arid tropics of India (Riotte et al. 2021) and Brazil (Srinivasan
et al. 2021); semiarid grazing lands in Idaho, USA (Glossner
et al. 2022); forests and grasslands (Reichert et al. 2021) and
an agricultural area in Brazil (Ebling et al. 2022). Expanding
upon individual catchment studies of sediment transport, Delile
et al. (2022) used a multiscale approach to estimate sediment-
bound micropollutants across 18 major rivers.

In response to the acid rain crisis in North America and Europe
(Likens 2021; Likens et al. 2021), many catchment studies in-
cluded in this Special Issue were initiated to document the extent
and effects of the problem (Johnson and Lindberg 1992; Likens
and Bormann 1974). These catchments include: Turkey Lakes
(Webster, Leach, Hazlett et al. 2021; Webster, Leach, Houle
et al. 2021) and Dorset Environmental Science Centre (James
et al. 2022) in southern Ontario, and Kejimkujik in Nova Scotia
(Sterling et al. 2022), Canada; Bear Brook in Maine, USA (Patel
et al. 2021); US Geological Survey (USGS) catchments in New
York at Buck Creek in the Adirondack Mountains (Lawrence
and Siemion 2021) and Biscuit Brook in the Catskill Mountains
(Murdoch et al. 2021), in Colorado, USA at Loch Vale in the
Rocky Mountains (Baron et al. 2021), and in Georgia at Panola
Mountain (Aulenbach et al. 2021); in the Adirondack Mountains
at the Arbutus watersheds (Beier et al. 2021); and in Virginia,
USA within the Shenandoah Watershed Study (Riscassi
et al. 2021). Together, these studies have been instrumental in
documenting widespread effects of ecosystem acidification, and
of more recent importance, recovery in response to clean air
legislation. Furthermore, Likens et al. (2021) demonstrate that
stream chemistry returns to a more dilute baseline after ecosys-
tem acidification than before.

Even at catchments not prone to acidification, the development
of regional to national acidic deposition monitoring programmes
offered opportunities to advance understanding of ecosystem re-
sponses to atmospheric deposition and pollutants (Griffiths and
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Mulholland 2021; Sena, Williamson, and Barton 2021; Shanley,
Chalmers et al. 2022). Catchment studies with aquatic organ-
ism monitoring help in the diagnosis of aquatic stressors and
define ecosystem responses to acidification, land use change,
water pollution and climate change (Gouy et al. 2021; Griffiths
and Mulholland 2021; Matson et al. 2021; Medvedeff et al. 2021;
Murdoch et al. 2021; Sena, Williamson, and Barton 2021).

This expansion beyond the original research questions is a
common scenario in catchment studies (e.g., Stdhli et al. 2021).
For example, the GEOMON network in the Czech Republic
was established to gain insight on recovery from ecosystem
acidification, yet contemporary research at the GEOMON
catchments also provides knowledge of climate change effects
(Oulehle et al. 2021; Zheng et al. 2021), mercury pollution
(Navratil et al. 2021) and estimation of water residence times
(Vitvar, Jakub, and Sanda 2022). Likewise, research in Scotland
at Girnock Burn was originally on Atlantic salmon popula-
tions and hydrological questions followed (Soulsby et al. 2021).
Beyond original study designs, records from catchment studies
corroborate that many different components of meteorologi-
cal, hydrological and biogeochemical cycles change with cli-
mate (Campbell et al. 2022; Creed et al. 2014; Green et al. 2021;
Ledesma, Lupon, and Bernal 2021; Webster, Leach, Hazlett
et al. 2021; Webster, Leach, Houle et al. 2021).

As an intrinsic component and extension of climate change
research, studies on carbon sources, cycling and transport
have proliferated within catchment studies (Fegel et al. 2021;
Giesbrecht et al. 2021; Glossner et al. 2022; James et al. 2022;
Laudon et al. 2021; MacKenzie et al. 2021; Oulehle et al. 2021;
Shanley, Taylor et al. 2022; Sterling et al. 2022; Vivoni et al. 2021;
Webster, Leach, Houle et al. 2021). Several articles on USFS
catchments (Sebestyen et al. 2021; Stelling et al. 2021; Sebestyen,
Funke, and Cotner 2021) precede later articles on Canadian and
European catchment studies where peatlands affect water avail-
ability and biogeochemical cycling, with global ramifications for
carbon storage and cycling (Gogo et al. 2021; Laudon et al. 2021;
Marttila et al. 2021; Webster, Leach, Hazlett et al. 2021; Webster,
Leach, Houle et al. 2021).

Beyond mercury studies in the GEOMON Lesni potok catch-
ment (Navratil et al. 2021), mercury research occurs at the for-
ested Sleepers River headwaters in Vermont (Shanley, Taylor
et al. 2022), in a postglacial landscape at Kejimkujik in Nova
Scotia (Sterling et al. 2022), peatland catchments at the Marcell
Experimental Forest in northern Minnesota, USA (Sebestyen
et al. 2021), in mixed land uses drained by the East Fork Poplar
Creek in Tennessee, USA (Brooks et al. 2021; Brooks, Riscassi,
and Lowe 2021) and within the synthesis of micropollutants by
Delile et al. (2022).

With articles on the tropics and cold regions, including polar
and subarctic catchments, this Special Issue broadens beyond
a longstanding emphasis on temperate ecosystems. The trop-
ics are represented in the Special Issue with Data Notes from
the French M-Tropics Observatories in Laos at Houay Pano
(Boithias et al. 2021), in India at Mule Hole (Riotte et al. 2021)
and in Cameroon in the Nyong River Basin (Audry et al. 2021);
the Caribbean region in Puerto Rico, USA at the Luquillo
Experimental Forest (McDowell et al. 2021) and in Panama at

Lutz Creek (Larsen, Stallard, and Paton 2021) and Agua Salud
(Regina et al. 2021); and the subtropics of Brazil at the Peri Lake
Experimental Catchment (Chaffe et al. 2021).

Key research programmes reveal fundamental processes and
changing environments at the highest latitudes in the Arctic
in Alaska, USA at the Kuparak River (Iannucci et al. 2021;
Medvedeff et al. 2021) and Norway in Svalbard at Fuglebekken
(Wawrzyniak, Majerska, and Osuch 2021); Antarctica at the
McMurdo Dry Valleys LTER (Bergstrom et al. 2021; Gooseff
et al. 2022); and the subarctic in Greenland at Kobbefjord
(Abermann et al. 2021), Sweden at Krycklan (Laudon
et al. 2021), Finland at Pallas (Marttila et al. 2021) and the
Northwest Territories of Canada at the Baker Creek Watershed
(Spence and Hedstrom 2021).

Cold-regions process studies are not restricted to polar and sub-
arctic regions, and are being explored in catchments in alpine
and subalpine zones (Badger et al. 2021; Barnhart et al. 2021;
Bjarke et al. 2021; Kakalia et al. 2021; Meif3] et al. 2021; Stahli
et al. 2021; Thollet et al. 2021) or with glaciers (Abermann
et al. 2021; Baron et al. 2021; Steiner et al. 2021; Zhou et al. 2021).
Study of warming effects on snow accumulation and forest cover
is critical to consider how future climate affects water avail-
ability in mountain streams, with examples from Colorado at
the Niwot Ridge LTER (Barnhart et al. 2021) and Slovakia at
Jalovecky Creek (Holko, Danko, and Sleziak 2021).

2.3 | Advancements With Ecohydrology
and Critical Zone Studies

In recent decades, ecohydrological and critical zone studies have
overlapped with catchment studies, offering new insight aligning
to an era of low-cost sensors (Chaffe et al. 2021), free-air carbon
dioxide enrichment studies (MacKenzie et al. 2021), widespread
implementation of eddy covariance techniques to quantify
net ecosystem exchange of water and trace gases (Goodrich
et al. 2022; Ryken, Gochis, and Maxwell 2022; Sebestyen
et al. 2021; Slingsby et al. 2021; Vivoni et al. 2021), expanded use
of water isotopes (Bogena, Stockinger, and Liicke 2021; Hissler
et al. 2021; Kleine et al. 2021; Knighton et al. 2020; McDonnell
et al. 2021; Richardson et al. 2021; Stelling et al. 2021; Vitvar,
Jakub, and Sanda 2022; Zhou et al. 2021; Zuecco et al. 2021) and
in situ sensors for high-frequency water chemistry measure-
ment (Campbell et al. 2021; Shanley, Taylor et al. 2022; Stihli
et al. 2021; Wymore et al. 2021). Likewise, large, collective ef-
forts in and among catchment studies are vibrant and more com-
mon now than ever. For example, the East River Community
Observatory in the Rocky Mountains of Colorado, USA serves
as a community testbed for more than 30 partnering institu-
tions to collect multidisciplinary, multiscale measurements and
understand processes in a seasonally snow-dominated catch-
ment (Kakalia et al. 2021; Ryken, Gochis, and Maxwell 2022).
The Pallas catchment in Finland (Marttila et al. 2021) and the
Krycklan Catchment Study in Sweden (Laudon et al. 2021) are
similar multidisciplinary, community research programmes.

Such ecohydrology and critical zone studies at research catch-
ments document extremes of floods (Ledesma, Lupon, and
Bernal 2021) and drought (Kleine et al. 2021; Soulsby et al. 2021;
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Spence and Hedstrom 2021), with emerging regional coher-
ence and differences among hydroclimatic extremes (Zhang
et al. 2021). Networks of soil moisture sensors are being im-
plemented to better understand how plant-water relationships
from individual plants to crops, shrublands and forests af-
fect water availability, management and ecosystem produc-
tivity (Chifflard and Zepp 2022; Hissler et al. 2021; Knighton
et al. 2020; Li et al. 2021; Poulos et al. 2021; Soulsby et al. 2021;
Vivoni et al. 2021; Zuecco et al. 2021). Blume, Schneider, and
Glintner (2022), with a study at the Northeast German Lowland
Observatory, is an example of how insight on ecosystem com-
plexity is gained through long-term monitoring to adequately
sample the range of variability in hydrological processes across
seasons and phenological cycles.

In line with expanding emphasis beyond temperate forestlands,
arid and semiarid landscapes are also represented in the Special
Issue. Several large-scale collaborative catchment studies span-
ning natural, agricultural and urban areas provide insight on
water availability and management in arid and semiarid lands
in Utah, USA at the Wasatch Environmental Observatory
(Follstad Shah et al. 2021) and Logan River Observatory (Neilson
et al. 2021; Tennant et al. 2021). The San Dimas Experimental
Forest in southern California since 1933 is a source of data and
knowledge for steep semiarid catchments (Wohlgemuth 2021).
Poulos et al. (2021) disentangle soil moisture storage across an
elevation gradient and differences in aspect that drive net pri-
mary production for the Dry Creek catchment in a semiarid
steppe climatic regime of Idaho, USA. In deserts, catchment
studies, such as at the Jornada (New Mexico, USA) and Santa
Rita (Arizona, USA) Experimental Ranges, provide data to as-
sess ecohydrological responses to woody plant encroachment of
perennial grasslands (Vivoni et al. 2021).

3 | The Legacy and the Future

Cumulatively, the articles in this Special Issue serve many pur-
poses, including as a storehouse of unique environmental knowl-
edge, a catalogue of the myriad catchment studies that span the
globe, and as a resource for those seeking sites or datasets rele-
vant to their scientific inquiry. Catchment studies are useful to
expand process understanding and document ecosystem stabil-
ity, resilience and change (Creed et al. 2014; Jones et al. 2012;
Likens 2021), but we still have work to do to answer questions in
the basic and applied sciences. For example, Safeeq et al. (2021)
convincingly show a fundamental issue that remains unre-
solved in small catchment research, namely nontrivial closure
errors in water budgets.

Legacy is in the title of this Special Issue and is well chronicled
by the commentary, Data Notes and research articles. That mea-
surements are uninterrupted for decades to more than a cen-
tury at some sites is testament to the diligence of dedicated staff
and researchers. It is also important to extol synergies among
institutions and research networks that have propelled catch-
ment research forward (Table 2 and e.g., Knapp et al. 2012).
Future is also in the title of the Special Issue. With no shortage
of fundamental topics to investigate and environmental prob-
lems to address, catchment studies will continue to be a cata-
lyst for expanding knowledge and informing management. The

catchment study design and the findings it inspires serve to ad-
vance the hydrological, critical zone, ecosystem, biogeochemical
and other sciences.

When discussing the future, we are remiss if we do not remind
readers of challenges for site operators, cooperating research-
ers and users of catchment knowledge and data. Foremost,
the research programmes must remain relevant and nimble by
addressing questions in a timely fashion, while also providing
long-term datasets and accumulated knowledge needed to doc-
ument change and understand key processes (Hewlett, Lull,
and Reinhart 1969; Leopold 1970; Slivitzsky and Hendler 1964).
Despite heretofore adequate government or institutional fund-
ing for some sites, catchment studies are vulnerable to shifting
funding priorities as well as scientific and societal attitudes on
support for catchment research and monitoring programmes
(Burt and McDonnell 2015; Lovett et al. 2007; Rosi et al. 2022;
Tetzlaff et al. 2017; Xenopoulos and Frost 2015).

We also draw attention to the pervasive challenge of ageing infra-
structure, cost barriers to acquiring new technologies and ever-
present expenses for essential field labour, data management,
day-to-day operation and administrative oversight. Nonetheless,
analytical and technological advances offer promise with novel
approaches and innovative sensing that increase capacity for
data analysis, timely information delivery and knowledge dis-
covery (e.g., Chaffe et al. 2021; Li et al. 2021; Shanley, Taylor
et al. 2022; Wymore et al. 2021).

There is also clear need to make data accessible through com-
pilation from multiple catchment studies and institutions
(Arora et al. 2023; Follstad Shah et al. 2021; Holzmann 2018;
McMillan et al. 2023; Vlah et al. 2023; Zhang et al. 2021) and
leverage opportunities to archive and document data (e.g., Sena,
Williamson, and Barton 2021). Knowledge emanates from each
catchment study, yet by sharing data and synthesising findings
across catchments, a collective effort can lead to broader discov-
ery (Campbell et al. 2022; Jones et al. 2012; Knapp et al. 2012;
Tetzlaff et al. 2013; Zhang et al. 2017). With findability, accessi-
bility, interoperability and reusability guiding principles (FAIR;
Wilkinson et al. 2016) for data stewardship and a preponderance
of data repositories for storing data and associated metadata,
we have unprecedented capability to share, collaborate and
synthesise.

The knowledge and data collated in this Special Issue are build-
ing blocks to address new questions, for reanalysis and refine-
ment, and for collaborative, synergistic research. Though rarely
coordinated with identical sensors and frequencies of mea-
surements across sites, catchment studies are abundant and
geographically widespread. Many measurements are based on
general principles and there are enough similar measurements
across sites to compare and contrast across broad gradients of
geology, soils, vegetation, climate, land use and many other fea-
tures. Overall, catchment studies are sources of high quality,
fixed-interval data on numerous water, energy, weather, biolog-
ical and chemical variables across the land-atmosphere bound-
ary and over time.

Despite challenges, long-term catchment studies have immense
value, in part because they reveal surprises and unexpected
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changes over time (e.g., Crampe, Segura, and Jones 2021; Green
et al. 2021; Perry and Jones 2017). Generally, the logistics of site
operation and collaborations are well established and the sites
are well suited to host new scientists, experiments, novel in-
frastructure and innovative measurement campaigns. We also
have much to gain in terms of partnering to reduce uncertainty
in a nonstationary world, define and explore extremes, more
widely implement and validate local to regional remote sensing
platforms, inform representation in Earth systems models and
discover new opportunities to boldly advance basic and applied
sciences (Burt and McDonnell 2015; Fan et al. 2019; Knapp
et al. 2012; Lins and Cohn 2011; Tetzlaff et al. 2013; Zhang
et al. 2021).

It is inspiring to contemplate that many students have learned
basic principles of hydrology and ecosystem science from catch-
ment studies. Opportunities to discover, educate and engage
citizen scientists abound. We encourage all of you to connect
within and beyond our catchment science community to sustain
catchment studies and build on the legacy of knowledge discov-
ery and dissemination.
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