
1. Introduction
We define floodplain heterogeneity as the spatial variation of geomorphic and vegetation classes and patches 
across a floodplain (Iskin,  2023; Iskin & Wohl,  2023b). Classes represent distinct types of floodplain habi-
tats that blend geomorphic features and vegetation communities. Geomorphic features identified in the field 
include active channels, secondary channels with limited or no surface hydrologic connectivity, accretionary 
bars, backswamps, and natural levees. Vegetation communities include old-growth and younger conifer forest and 
deciduous forest, mesic wetlands, grasses, xeric vegetation, and beaver meadows (willow carrs). This definition 
of floodplain heterogeneity can be applied to any floodplain; expands on the metric for floodplain heterogeneity 
from Graf (2006) and Wohl and Iskin (2019); and is distinct from the metrics of floodplain connectivity (Ward 
et al., 2002), surface topographic complexity (Scown et al., 2015, 2016a, 2016b) and riparian vegetation (Aguiar 
et al., 2009) described in other studies.

Our primary objectives are to (a) quantify floodplain spatial heterogeneity for diverse natural floodplains in the 
United States using multiple heterogeneity metrics from landscape ecology, (b) evaluate whether statistically 
significant patterns occur among these data and determine whether there are salient characteristics of river corri-
dors that relate to multiple facets of heterogeneity, and (c) interpret the statistical results in terms of the primary 

Abstract We use the five landscape ecology metrics of aggregation index, percentage of like adjacencies, 
interspersion and juxtaposition index, patch density, and Shannon's evenness index to assess spatial 
heterogeneity at 15 floodplains in the continental United States. Assessments are based on floodplain classes 
and patches delineated remotely using topography and vegetation. Floodplain reaches examined here represent 
diverse drainage areas, flow regimes, valley geometries, channel planforms, and biomes. We selected sites 
with minimal direct human alteration. Our objectives are to quantify floodplain spatial heterogeneity; evaluate 
whether statistically significant patterns are present; and interpret the statistical analyses with respect to the 
influence of lateral channel mobility and valley-floor space available. We develop a conceptual model of 
the influences on lateral mobility and space available, and then test specific hypotheses derived from this 
conceptual model. These natural floodplains have a median aggregation index of 58.8%, median percentage 
of like adjacencies of 58.5%, median interspersion and juxtaposition index of 74.9%, median density of 1,241 
patches/ha, and median Shannon's evenness index of 0.934 (n = 15). In other words, natural floodplains have 
moderate aggregation of classes, high evenness and intermixing of classes, and a wide range of patch densities. 
Drainage area, the ratio of floodplain/channel width, elevation, precipitation, total sinuosity, large wood 
volume, planform, and flow regime emerge as important variables to floodplain heterogeneity. These results 
highlight the influence of biotic-abiotic interactions in shaping floodplain heterogeneity across diverse river 
corridors.

Plain Language Summary As river channels move across their valley floors, they create diverse 
topography including natural levees, cutoff meanders, secondary channels, and floodplain wetlands. These 
features increase the spatial variability of the floodplain. Many studies indicate that this variability strongly 
influences habitat abundance and diversity, storage of flood waters and excess nitrate or phosphate, and other 
floodplain functions. However, no one has systematically measured floodplain variability across multiple 
rivers and different geographic regions. We measured the variability of natural floodplains at 15 sites in the 
continental United States using metrics developed by landscape ecologists. We find that natural floodplains 
have distinctive variability signatures that relate to drainage area, the size of the floodplain, and other 
characteristics.
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controls—channel lateral mobility and valley-floor space available—as well as the factors underlying mobility 
and space, such as flow regime and biota. We first review floodplain functions and the importance of floodplain 
spatial heterogeneity, then present the conceptual model and hypotheses.

1.1. Importance of Floodplain Heterogeneity

Floodplains provide many ecological functions and the services they support (Petsch et  al.,  2022) including, 
but not limited to: soil formation, nutrient cycling, primary production, habitat provisioning, water regulation, 
erosion control, water purification, waste treatment, disease regulation, climate regulation, genetic resources, 
esthetic, and cultural services. They store material and facilitate the internal and external exchange of surface 
water, hyporheic water, groundwater, solutes including dissolved carbon, nitrogen and phosphorous, sediment, 
and organic matter including coarse particulate organic matter and large wood (Appling et al., 2014; Hopkins 
et al., 2018; Wohl, 2021). Floodplains more effectively capture and biologically process organic matter when 
compared to laterally confined river reaches with small to no floodplains (Bellmore & Baxter,  2014; Wohl, 
Lininger, et al., 2018) and store large wood (Iskin & Wohl, 2021). They provide habitat for a diverse array of 
organisms, including microbes (Bellmore & Baxter, 2014; Benke, 2001; Doering et al., 2021; Jeffres et al., 2008; 
Tockner et al., 2000; Zeug and Winemiller, 2008) and are commonly more biodiverse than other landcover types 
(Junk & Piedade, 2010; Tockner et al., 2008). Exchange of water between the river and the floodplain can be 
similar for both large and small rivers (D. T. Scott et al., 2019), highlighting the importance of studies that incor-
porate multiple river sizes.

Floodplain heterogeneity both reflects and influences water and sediment connectivity. Fluxes and storage of 
water and sediment can modify floodplain configuration and alter connectivity, but these fluxes also respond 
to existing connectivity. Consequently, floodplain connectivity is dynamic in time, changing with the rising 
and falling limbs of inundating flows (Arscott et al., 2002; Junk et al., 1989; Tockner et al., 2000), as well as 
in response to channel movement and associated erosion and deposition (Amoros & Bornette, 2002; Stanford 
et al., 2005), vegetation dynamics (L. G. Larsen & Harvey, 2010; Naiman et al., 2005), movement and storage of 
large wood (Wohl, 2021), modifications created by other biota (A. Larsen et al., 2021), and disturbances such as 
wildfire (Kleindl et al., 2015). Increased spatial heterogeneity of the entire river corridor, including floodplain 
presence, is associated with decreased catchment-wide sediment yield and sediment connectivity (Baartman 
et al., 2013).

Floodplain heterogeneity also influences floodplain forms and functions. Heterogeneity enhances diversity of 
hydrologic flow paths within the floodplain and thus diversity of water temperatures, water residence times, 
and associated biogeochemical reactions (Fuchs et al., 2009; Helton et al., 2014; Uno, 2016). Channel migration 
that creates heterogeneity also increases floodplain habitat diversity (Choné & Biron, 2016; Stella et al., 2011). 
Spatial heterogeneity in floodplain soils results in heterogeneity of channel sinuosity and meander migration 
patterns (Güneralp & Rhoads, 2011; Schwendel et al., 2015). Floodplain heterogeneity affects the deposition 
and storage of pollutants because many contaminants travel adsorbed to sediment or are influenced by spatially 
diverse microbial transformations in patchy surface and subsurface environments (Ciszewski & Grygar, 2016; 
Lowell et al., 2009). Floodplain soil heterogeneity affects carbon and nitrogen cycling (Appling et al., 2014) and 
carbon storage (Lininger et al., 2018; Samaritani et al., 2011). Surface heterogeneity of vegetation is associated 
with near-surface soil nutrient heterogeneity (Appling et al., 2014; Naiman et al., 2005). Floodplain topographic 
heterogeneity influences inundation patterns and resulting vegetation establishment (Friedman & Lee,  2002; 
Hughes, 1997; M. L. Scott et al., 1996), as well as fish life cycles, aquatic communities, and food webs (Bellmore 
et al., 2013; Stoffers et al., 2022; Uno et al., 2022; Zeug and Winemiller, 2008). These previous studies highlight 
the importance and the effects of floodplain heterogeneity, but there is much work to be done in comparing 
heterogeneity across latitudes, elevations, and biomes and connecting heterogeneity to overarching floodplain 
processes.

This study builds directly off the development of a classification workflow and choice of metrics from landscape 
ecology in Iskin (2023) and Iskin and Wohl (2023b), and extends the investigation to floodplain heterogeneity 
around the continental United States. We move beyond the case study by quantifying floodplain spatial heteroge-
neity for 15 natural floodplains across North America that differ in relative channel mobility, flashiness of flood 
peaks, and biome to provide insights into the fluvial and ecological processes that create and maintain natural 
floodplain heterogeneity.
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1.2. Conceptual Model

We seek to determine whether river corridor characteristics can predict levels 
of floodplain heterogeneity through a multivariate linear analysis and to infer 
processes that create and maintain floodplain heterogeneity. We start from 
the premise that the two primary controls of floodplain heterogeneity are the 
lateral space available for floodplain development in a river corridor and  the 
lateral mobility of the channel. For the conceptual model in Figure  1, we 
assume that the space available for a river is governed primarily by processes 
acting at timespans of millennia and longer (e.g., Wohl, 2015) and is thus 
static for the timespans of 10 1–10 2 years during which the floodplain features 
that we analyze are created and maintained. We use valley geometry to 
represent valley-floor space available for floodplain development and adjust-
ment based on the erosional and depositional powers of the river relative to 
erosional resistance of the adjacent uplands. We quantify drainage area and 
the ratio of average floodplain width to average channel width at the reach 
scale and use these as indicators of valley geometry because valley-floor 
width tends to increase with drainage area (e.g., Beighley & Gummadi, 2011; 
Bhowmik, 1984) but reach-scale variations in longitudinal trends are better 
captured by floodplain/channel width for a reach (e.g., Wohl et al., 2017).

We expect watershed-scale flow regime, reach-scale channel planform, and 
regional biota to influence lateral channel mobility. We categorize flow 
regime in snow and rain and use it as a proxy for the flashiness and rela-
tive erosional power of peak flows, assuming that snowmelt-dominated flow 
regimes are less flashy than rainfall-dominated regimes. Thirty-year normal 
precipitation is a variable that can be easily quantified from publicly available 
data and that may influence flow regime and floodplain vegetation. Mean 
floodplain elevation can be a proxy for elevational differences in climate 
and disturbance regime, particularly in high-relief watersheds (Sutfin & 
Wohl, 2019). Categorical planform reflects relative lateral mobility, which 
we interpret to increase along a continuum from straight to meandering, 
anastomosing, and then braided channel planforms (Schumm, 1985). Lati-
tude and elevation are likely to jointly distinguish ecoregions in the United 

States (Barry et al., 2004; Omernik, 1987) and median large wood volume (LWV) reflects a biotic influence on 
floodplain process and form (Collins et al., 2012) (Figure 1). Methods used to determine values and categories for 
each predictor variable are described in the Methods section and provided for each site in Table 2.

We relate the predictor variables in Figure  1 to five response variables that are commonly used patch- and 
class-based heterogeneity metrics from landscape ecology: aggregation index, percentage of like adjacencies 
(adjacencies), interspersion and juxtaposition index (interspersion), patch density (density), and Shannon's even-
ness index (evenness) (levels of each metric demonstrated in Figure S1 in Supporting Information S1). Aggrega-
tion and adjacencies are both measures of the class clumping across a landscape based on class edge length (He 
et al., 2000; Hesselbarth et al., 2022). Going forward the term aggregation will be used when we refer to these 
metrics together. Low values of aggregation indicate that few pixels are adjacent to pixels of the same class (He 
et al., 2000; Hesselbarth et al., 2022). Interspersion is a measure of intermixing of class types at a patch level, 
or how spatially mixed patches of different classes are (Hesselbarth et al., 2022; McGarigal & Marks, 1995). 
Density is a measure of how broken up a landscape is: a higher density indicates a landscape with more individ-
ual patches, regardless of class (Hesselbarth et al., 2022). Evenness is a measure of diversity and distribution of 
classes across a landscape (Hesselbarth et al., 2022). Higher evenness indicates that the landscape is not domi-
nated by one class (McGarigal & Marks, 1995).

1.3. Hypotheses

We test four hypotheses regarding relationships between predictor and response variables using pairwise compar-
isons of medians and variances, and a multivariate linear analysis.

Figure 1. Main controls of floodplain spatial heterogeneity and the predictor 
variables used to quantify them. Main controls are shown in dark blue text 
and predictors are shown in turquoise and orange text. Turquoise predictors 
indicate drainage basin-level values and categories, and orange predictors 
indicate study area-level values and categories. Solid arrows connect predictor 
variables to the main controls they represent and to other predictor variables 
that they influence or are influenced by, and double-sided arrows connect 
predictor variables the interact reciprocally with each other. The dashed 
arrow connecting Beaver and Floodplain Width/Channel Width represents the 
habitat preference of beaver for wider floodplains, but also the fact that beaver 
presence and dam building can increase the regularly flooded width of the 
valley floor (e.g., Westbrook et al., 2011). The inset tiles illustrate contrasting 
values or levels for each variable.
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Hypothesis 1. (H1): Aggregation will increase and density will decrease with increasing floodplain/channel 
width. We based this hypothesis on the assumption that the turnover rate of a relatively broad floodplain 
will be longer (Konrad, 2012; Mertes et al., 1996) and individual patches will persist for longer and be 
subject to less frequent disturbance, thus merging into larger patches via vegetation establishment and 
encroachment.

Hypothesis 2. (H2): Aggregation, interspersion, density, and evenness will increase with increasing large 
wood volume. This tests the inference that large wood accumulations can increase channel-floodplain 
connectivity (Collins et al., 2012; Jeffries et al., 2003), increasing the size of patches, but can also affect 
vegetation establishment, store sediment, and armor channel banks (Daniels & Rhoads, 2003; Skalak & 
Pizzuto, 2010).

Hypothesis 3. (H3): For non-beaver sites, interspersion, evenness, and density will increase and aggregation 
will decrease with increasing channel mobility and migration (as reflected in the proxy of planform). This 
hypothesis tests the assumption that new floodplain will be formed, vegetation succession will be reset, 
and sediment will be transported and deposited in new areas, thus dissecting large patches and therefore 
increasing the number of patches and class intermixing.

Hypothesis 4. (H4): Interspersion, evenness, and density will increase and aggregation will decrease with 
increasing flow regime flashiness (as reflected in the category of flow regime). This hypothesis tests the 
inference that the channel will be more mobile, and the floodplain will be inundated more often with less 
time for large vegetation to establish (e.g., Everitt, 1968), increasing the number of small, interspersed 
patches and dissecting large patches.

2. Study Area
We chose 15 diverse river corridors from the continental United States (Figure 2; Table 2) to represent a range of 
drainage area (30–500,000 km 2), flow regime (snowmelt vs. rainfall), channel planform (straight, meandering, 
anastomosing, beaver, braided), and biome/latitude (31–66°). We selected the least human-altered floodplains 
and watersheds that we could identify to minimize the effects of flow regulation, artificial levees, floodplain 
drainage and land cover changes, and channel engineering on floodplain process and form.

3. Methods
Following the methods from Iskin (2023) and Iskin and Wohl (2023b), we present a full suite of sites with field 
data and classified floodplains with quantified spatial heterogeneity and employ statistical methods to investi-
gate relationships between river corridor characteristics and floodplain heterogeneity. Data were collected at the 
study reaches along transects. Study reaches were chosen based on existence of a floodplain (river beads), access 
by car and foot, and in some cases by existence of published data sets. Field transect locations were spaced at 
approximately 10 times the average channel width. Classes were identified in the field based on geomorphic, 
hydrologic, and vegetation features. Patch were delineated along the floodplain transects on the 3–10 m scale and 
their boundaries were collected with a Garmin GPSMAP 66ST handheld GPS (±3 m horizontal accuracy). Field 
classifications for specific sites can be found in Table S1 in Supporting Information S1, Iskin and Wohl (2023b), 
Table 3, and Iskin (2023), Table 3.1.

Large wood (≥10 cm diameter, ≥1 m length) locations and diameters were collected along the transects. Large 
wood loads (volume) were then calculated from field transect data and from various sources that generally coin-
cide with the delineated floodplains (Table 1) according to Van Wagner's method (1968) using mapped transect 
length (Figure 3). Large wood volume estimates represent minima for some sites because we could not access the 
channel or floodplain on both sides of the channel (Iskin, 2023).

Two types of remote data were compiled: (a) remote imagery and (b) watershed and reach characteristics. Google 
Earth Engine (Gorelick et al., 2017) was used to create 2022 cloud-free mosaics of Copernicus Sentinel-2A 10- 
and 20-m bands coinciding with each floodplain. Lidar-derived digital elevation models (DEMs) were obtained 
from various sources. The highest spatial resolution publicly-available DEMs that covered the study sites were 
used. Specifics on Sentinel and DEM data collection can be found in Text S2 in Supporting Information S1 and 
Table S2 in Supporting Information S1.

Site variables were also compiled for each site: latitude and longitude, drainage area, floodplain area, floodplain 
perimeter, mean floodplain elevation (elevation), annual average precipitation (precipitation), categorical flow 
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regime, categorical planform, total sinuosity, and ratio of average floodplain width to average channel width 
(floodplain width ratio) (Table 2).

Drainage areas were obtained using StreamStats (USGS, 2023b) to delineate the contributing areas upstream of 
the study reaches (Table S2 in Supporting Information S1), with the pour points specified as the downstream-most 
parts of the study reaches. The basin polygons were brought into ArcGIS Pro (Esri,  2022) and the geodesic 
areas were calculated using Calculate Geometry. StreamStats is not available for interior Alaska or the State of 
Wyoming, so the drainage basins for the Yukon, Dinwoody Creek, and Downs Fork were delineated in ArcGIS 
Pro using the Watersheds (Ready to Use) tool (Esri, 2023) with the default snap distance and finest data source 
resolution (Table S2 in Supporting Information S1). Latitude and longitude were obtained from the pour points 
used to delineate the watersheds.

Floodplain boundaries were delineated manually in ArcGIS Pro using field transect data, Sentinel imagery, 
DEMs, and national park boundaries (where applicable). A 10-m geodesic buffer was added to the floodplains 
to account for field and/or user error (Iskin & Wohl, 2023b). Additional specifics on floodplain delineation can 
be found in Text S2 in Supporting Information S1. Floodplain area and perimeter were obtained by calculating 
the geodesic areas and perimeters from the floodplain polygons. The Sentinel and DEM images were clipped to 
the buffered floodplain polygons, and mean floodplain elevations were acquired from the clipped DEM statistics.

Figure 2. Floodplain sites used in this study, shown regionally and in more detail. Region 1 includes the Yukon River in the arctic (YAK); region 2 includes the Hoh 
River (HWA), Sol Duc River (SDWA), and Lookout Creek (LOR) in the Pacific Northwest; region 3 includes the Swan River (SMT), Downs Fork (DFWY), and 
Dinwoody Creek (DWY) in the Rocky Mountains; region 4 includes North St. Vrain Creek (NSV), Rough and Tumbling Creek (RTCO), East Plum Creek (EPC), 
West Bijou Creek (WBJ), and Sand Creek (SOK) in the Rocky Mountains and Great Plains; and region 5 includes Embarras River (EIL), Congaree River (CSC), and 
Altamaha River (AGA) in the (coastal) plains.
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Precipitation values were obtained from modeled average annual precipitation data for the coterminous U.S. 
(800 m resolution, 1991–2020 time period; PRISM, 2022), Alaska (800 m resolution, 1991–2020 time period; 
PRISM, 2018), and western Canada (2 km resolution, 1961–1990 time period; PRISM, 2002). The data were 
clipped to the respective drainage areas, and the mean values in millimeters were extracted from the raster statis-
tics. Flow regime was determined from visual inspection of 2021–2023 annual gauge/discharge data for each site, 
and from nearby sites for ungauged streams (USGS, 2023a). A snowmelt-dominated flow regime was assigned 
when the annual discharge had a few-months-long peak in the late spring/early summer, and a rainfall-dominated 
flow regime was assigned when the annual discharge had many short peaks in the year.

Planform classifications reflect a continuum based on flow, sediment, and wood regimes (Schumm, 1985), but 
we chose one planform category for each site (straight, meandering, anastomosing, beaver, or braided) based on 
field observations. We also calculated total sinuosity using base-flow imagery for each site available in Google 
Earth Pro as of March 2023 as a less subjective and numerical measure of planform characteristics. Average 
floodplain/channel width was calculated in ArcGIS Pro by measuring manually delineated floodplain widths 
and channel widths. Floodplain widths were measured perpendicular to the valley trend using the floodplain 
polygons. Channel widths were measured perpendicular to flow direction at the same locations as the flood-
plain widths using the Sentinel satellite imagery, DEMs, and ArcGIS Pro National Agriculture Imagery Program 
Hybrid base map where necessary (Iskin, 2023).

3.1. Analysis

Classification of the 15 study floodplains followed a similar workflow to Iskin (2023) and Iskin and Wohl (2023b) 
and is detailed in Figure 3. Classes are identified on the 10-m scale with an unsupervised remote sensing classifi-
cation run on a stack of data containing the Sentinel imagery, DEMs, and normalized difference vegetation index 
and normalized difference moisture index created using bands from the Sentinel imagery (Table S2 in Supporting 
Information S1), as described in greater detail in Text S2 in Supporting Information S1. An unsupervised classi-
fication scheme was used because the class types varied greatly across the US, and we did not want to limit the 
classifier to only finding the classes we saw in the field (e.g., with a supervised classification). We assume that 

River
Median transect 

wood load (m 3/ha) Range (m 3/ha)
Number of 
transects Collected

Yukon River a 30 0–170 24 (patches) June and July 2015

Altamaha River 10 0–140 4 October 2021

Congaree River b 50 1–180 NA October and November 2009

Embarras River 1,120 140–2,220 4 March 2022

Swan River c 140 130–150 16 July 2017

West Bijou Creek 130 20–220 10 July and October 2020

Hoh River 2,760 140–8,820 7 July 2021

East Plum Creek 0 No wood observed 3 September 2020

Dinwoody Creek 20 20–30 5 July 2019

Sol Duc River 3,900 800–18,900 10 July 2021

North St. Vrain Creek d 0 No wood observed 10 August 2010 and August 2018

Downs Fork 30 10–50 6 July 2019

Rough and Tumbling Creek 0 No wood observed 1 August 2022

Lookout Creek 4,110 0–8,660 10 July 2022

Sand Creek 0 0–600 10 June 2021

Note. These estimates include some instream wood at sites where the active channel was accessible by foot. Values are 
rounded to the nearest ten.
 aLininger et  al.  (2017) (Note: wood volumes do not include wood jams that were on the channel margins).  bWohl 
et al. (2011).  cWohl, Scott, et al. (2018).  dLaurel and Wohl (2019) and Wohl and Cadol (2011).

Table 1 
Floodplain Large Wood Loads for the United States
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the metrics calculated from the classification are not very sensitive to the specific area that is being classified. For 
example, we assume that adding the 10-m buffer will not significantly affect the results.

The classified floodplains and the data from Tables  1 and 2 were brought into R (R Core Team,  2023) and 
prepared for analysis and visualized using tools from the tidyverse, raster, rasterVis, and rgdal packages (Bivand 
et al., 2023; Hijmans, 2023; Lamigueiro & Hijmans, 2023; Wickham et al., 2019). The heterogeneity metrics of 
aggregation index (aggregation), percentage of like adjacencies (adjacencies), interspersion and juxtaposition 
index (interspersion), patch density (density), and Shannon's evenness index (evenness) described earlier were 
calculated using the landscapemetrics package (Hesselbarth et al., 2019).

Figure 3. Analytical workflow completed in ArcGIS Pro and RStudio.

 19447973, 2023, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035162 by O

regon State U
niversity, W

iley O
nline L

ibrary on [14/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

ISKIN AND WOHL

10.1029/2023WR035162

8 of 20

R
iv

er
La

tit
ud

e
Lo

ng
itu

de
D

ra
in

ag
e 

ar
ea

Fl
oo

dp
la

in
 a

re
a

Fl
oo

dp
la

in
 p

er
im

et
er

El
ev

at
io

n
Pr

ec
ip

ita
tio

n
Fl

ow
 R

eg
im

e
Pl

an
fo

rm
Si

nu
os

ity
W

id
th

 ra
tio

U
ni

ts
D

D
D

D
km

 2
km

 2
km

m
m

m
–

–
m

/m
m

/m

Y
uk

on
 R

iv
er

65
.9

−
14

9.
2

50
0,

32
9

2,
37

8.
2

40
1.

8
11

0
43

8
Sn

ow
A

na
sto

m
os

in
g

13
.3

7.
5

A
lta

m
ah

a 
R

iv
er

31
.4

−
81

.6
36

,5
42

37
.1

32
.2

1
1,

23
3

R
ai

n
St

ra
ig

ht
1.

2
19

.3

C
on

ga
re

e 
R

iv
er

33
.8

−
80

.7
21

,9
18

10
6.

1
53

.8
30

1,
24

8
R

ai
n

M
ea

nd
er

in
g

2
59

.2

Em
ba

rr
as

 R
iv

er
38

.9
−

87
.8

5,
49

6
6.

2
21

13
0

1,
09

8
R

ai
n

M
ea

nd
er

in
g

2.
2

25
.9

Sw
an

 R
iv

er
47

.9
−

11
3.

9
1,

54
0

26
.2

65
.2

96
0

1,
06

2
Sn

ow
A

na
sto

m
os

in
g

4.
8

12
.5

W
es

t B
ijo

u 
C

re
ek

39
.6

−
10

4.
3

65
3

1.
1

6.
5

1,
63

0
45

9
R

ai
n

B
ra

id
ed

2.
2

4.
1

H
oh

 R
iv

er
47

.8
−

12
4

32
3

9.
9

19
16

0
3,

98
4

R
ai

n
B

ra
id

ed
4.

1
7

Ea
st 

Pl
um

 C
re

ek
39

.3
−

10
4.

9
19

2
0.

02
0.

6
1,

95
0

55
2

Sn
ow

St
ra

ig
ht

1.
3

19
.4

D
in

w
oo

dy
 C

re
ek

43
.3

−
10

9.
6

13
1

0.
3

3.
2

2,
81

0
83

4
Sn

ow
M

ea
nd

er
in

g
1.

6
14

.3

So
l D

uc
 R

iv
er

48
−

12
3.

9
10

1
0.

6
6.

1
42

0
3,

85
6

R
ai

n
M

ea
nd

er
in

g
1.

5
7

N
or

th
 S

t. 
V

ra
in

 C
re

ek
40

.2
−

10
5.

5
84

0.
4

3.
5

2,
54

0
93

5
Sn

ow
B

ea
ve

r
2.

6
13

.7

D
ow

ns
 F

or
k

43
.3

−
10

9.
6

62
0.

2
2.

2
2,

81
0

84
9

Sn
ow

A
na

sto
m

os
in

g
5.

6
17

Ro
ug

h 
an

d 
Tu

m
bl

in
g 

C
re

ek
39

.1
−

10
6.

1
60

0.
1

1.
1

2,
95

0
59

1
Sn

ow
B

ea
ve

r
2.

6
8.

1

Lo
ok

ou
t C

re
ek

44
.2

−
12

2.
2

54
0.

1
2.

1
54

0
2,

34
1

R
ai

n
St

ra
ig

ht
1.

3
3.

2

Sa
nd

 C
re

ek
36

.8
−

96
.4

31
0.

1
2.

2
30

0
99

4
R

ai
n

M
ea

nd
er

in
g

1.
5

2.
8

Sc
al

e
D

ra
in

ag
e 

Ar
ea

St
ud

y 
Re

ac
h

D
ra

in
ag

e 
Ar

ea
Re

gi
on

al
St

ud
y 

Re
ac

h

N
ot

e.
 L

at
itu

de
, l

on
gi

tu
de

, f
lo

od
pl

ai
n 

ar
ea

, f
lo

od
pl

ai
n 

pe
rim

et
er

, t
ot

al
 s

in
uo

si
ty

, a
nd

 f
lo

od
pl

ai
n-

ch
an

ne
l w

id
th

 ra
tio

 a
re

 ro
un

de
d 

to
 th

e 
ne

ar
es

t t
en

th
; d

ra
in

ag
e 

ar
ea

 a
nd

 p
re

ci
pi

ta
tio

n 
ar

e 
ro

un
de

d 
to

 th
e 

ne
ar

es
t o

ne
; a

nd
 e

le
va

tio
n 

is
 ro

un
de

d 
to

 th
e 

ne
ar

es
t t

en
.

Ta
bl

e 
2 

Pr
ed

ic
to

r V
ar

ia
bl

es
 a

nd
 S

ou
rc

es

 19447973, 2023, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035162 by O

regon State U
niversity, W

iley O
nline L

ibrary on [14/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

ISKIN AND WOHL

10.1029/2023WR035162

9 of 20

The continuous predictor variables of latitude, longitude, drainage area, floodplain area, floodplain perimeter, 
elevation, precipitation, total sinuosity, and floodplain width ratio are compared to the calculated heterogeneity 
metrics via correlation. The categorical predictor variables are compared to the heterogeneity metrics using 
boxplots and non-parametric comparisons of medians using the coin and dunn.test packages (Dinno,  2017; 
Hothorn et al., 2008), and variances using the car package (Fox & Weisberg, 2019). For the analysis, flow regime 
was ordered by flashiness (Snow < Rain) and planform was ordered by channel mobility (Straight < Mean-
dering < Anastomosing < Beaver < Braided). Multivariate linear models are fit using the lm function, and the 
nonparametric method of leave-one-out cross-validation (LOOCV) is used to choose the most appropriate models 
using the tidymodels package (Kuhn & Wickham, 2020). Five models are fit with each heterogeneity metric as 
the response variable. The LOOCV model selection is iterative and is ultimately based on choosing the model 
with the highest LOOCV R 2 value.

4. Results
The 15 classified floodplains are presented in Figure 4 and through a quantitative comparison of the heteroge-
neity metrics for each floodplain. Correlations and pairwise comparisons of heterogeneity between the levels of 
the categorical variables are provided, and the LOOCV multivariate models are presented. H1–H4 are discussed 
first with qualitative results and then with the model results. To summarize the results, floodplain heterogeneity is 
significantly related to river corridor characteristics and some heterogeneity metrics are also significantly related 
to each other.

4.1. Classification

The classified floodplains for all sites are provided in Figure 4. Detail insets are provided for floodplains with an 
area ≥10 km 2. The Yukon River floodplain is the largest floodplain in this study (>2,000 km 2) and spans nine 
DEM tiles from three different years (Table 2, Table S2 in Supporting Information S1).

4.2. Exploratory Statistics

The overall median values of floodplain heterogeneity as quantified by five metrics are presented in Table 3. 
These results indicate that natural floodplains have moderate aggregation of classes, high evenness and intermix-
ing of classes, and a wide range of patch densities.

Some of the heterogeneity metrics demonstrate high collinearity with each other, as shown in fitted linear models 
in Equations 1–3 and pairwise scatter plots in Figure S2 in Supporting Information S1 (bold values in the equa-
tions represent p-values <0.05 for the models and individual predictors). The results show that adjacencies 
describes 97% of the variability in aggregation, indicating that perhaps only one of these metrics is necessary to 
capture the level of aggregation in a landscape. The opposite relationship between the aggregation metrics and 
density makes intuitive sense as one would expect an increase in the number of patches to decrease class aggre-
gation (Equations 1 and 3). Because aggregation and adjacencies are highly correlated, aggregation will be the 
only aggregation metric discussed going forward.

Aggregation Index = −𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 × 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 + 𝟎𝟎𝟖𝟖.𝟎𝟎𝟎𝟎; Multiple𝑅𝑅2 = 𝟎𝟎.𝟎𝟎𝟎𝟎 (1)

Aggregation Index = 𝟏𝟏.𝟎𝟎𝟎𝟎 × 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 − 1.54; Multiple𝑅𝑅2 = 𝟎𝟎.𝟗𝟗𝟗𝟗 (2)

PatchDensity = −𝟒𝟒𝟒𝟒.𝟒𝟒𝟗𝟗 × 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 + 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒.𝟑𝟑𝟒𝟒; Multiple𝑅𝑅2 = 𝟎𝟎.𝟖𝟖𝟒𝟒 (3)

Correlation tables were calculated for all the predictor and response variables (n = 15) (Table S3 in Supporting 
Information S1) to examine numerical relationships. There is some collinearity in the set of predictor variables, 
particularly latitude, longitude, floodplain area and perimeter, and total sinuosity. This intuitively makes sense 
as the variables are interconnected (Figure 1). Because of this, we removed latitude, longitude, and floodplain 
area and perimeter to obtain a final suite of predictor variables of drainage area, elevation, precipitation, total 
sinuosity, LWV, floodplain/channel width ratio, flow, and planform. We kept total sinuosity because it is the 
only numerical indicator of channel planform. The correlations (Table S3 in Supporting Information S1) show 
that floodplain/channel width is weakly negatively correlated with aggregation, not supporting H1. Large wood 
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volume is weakly negatively correlated with aggregation and evenness, and weakly positively correlated with 
density, partially supporting H2. Drainage area is strongly positively correlated with aggregation, weakly posi-
tively correlated with evenness, and strongly negatively correlated with density. Precipitation is weakly positively 
correlated with density and evenness, and weakly negatively correlated with aggregation. Total sinuosity follows 
the same trends as drainage area, partially supporting H3. This makes sense as these two predictor variables are 
strongly positively correlated. Elevation is weakly negatively correlated with evenness, density, and interspersion, 
and weakly positively correlated with aggregation.

Figure 4. Unsupervised classification (ISO) results for Regions 1–5: Yukon River, Alaska (YAK; with detail inset); Sol 
Duc River, Washington (SDWA); Hoh River, Washington (HWA; with detail inset); Swan River, Montana (SMT; with detail 
inset); Lookout Creek, Oregon (LOR); Downs Fork, Wyoming (DFWY); Dinwoody Creek, Wyoming (DWY); North St. 
Vrain Creek, Colorado (NSV); Rough and Tumbling Creek, Colorado (RTCO); West Bijou Creek, Colorado (WBJ); East 
Plum Creek, Colorado (EPC); Sand Creek, Oklahoma (SOK); Embarras River, Illinois (EIL); Congaree River, South Carolina 
(CSC; with detail inset); and Altamaha River, Georgia (AGA; with detail inset). ISO classes are not equal to field classes.
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Comparing median heterogeneity values among the categorical variables of planform (Figure 5) and flow regime 
(Figure 6) show that there are no significant differences in medians (Wilcoxon Rank Sum, Wilcoxon Rank Sum 
with ties, and Kruskal-Wallis Rank Sum test p-values all >0.05). There are also no significant differences in 
variances by flow regime (Levene's test p-values >0.05), but there are significant differences in variances for 
evenness by planform (Levene's test p-values <0.05).

Although there are no significant differences in medians, we can draw qualitative inferences in relation to the concep-
tual model-based hypotheses (H3–H4). H3 proposed that interspersion, evenness and density would increase with 
increasing channel mobility. Figure 5b shows that straight planforms (least mobile) generally have lower intersper-
sion than the other planform types, supporting H3. Figure 5c shows that meandering planforms have greater density 
than straight planforms, but that anastomosing and braided planforms (most mobile) have lower density than all the 
others, partially supporting H3. Figure 5d shows that median evenness increases from least mobile to most mobile 
planforms, supporting H3. H3 also proposed that aggregation would decrease with channel mobility. From Figure 5a, 
meandering planforms have the lowest aggregation and straight, anastomosing, and braided planforms have similar 
and higher aggregation. This only partially supports H3, as straight planforms have higher aggregation than meander-
ing, but anastomosing and braided planforms also have greater aggregation than meandering. Overall, H3 is primar-
ily supported by the data, but inclusion of more sites in each planform category would strengthen future analyses.

Similar to H3, H4 proposed that interspersion, evenness and density would increase and aggregation would decrease 
with increasing flow regime flashiness. Figures 6b and 6d show that median interspersion and evenness are simi-
lar for snowmelt (less flashy) and rainfall (flashier) flow regimes, not supporting H4. Figure 6c, however, shows 
increasing density with increasing flashiness of the flow regime, supporting H4. Figure 6a shows that aggregation 
decreases with increasing flashiness, supporting H4. Overall, we conclude that H4 is partially supported by the data.

4.3. Multivariate Models

Multiple attempts using standard methods for multivariate linear analysis led to overfitting and little applicability 
beyond the data set of 15 sites. Instead, we used a non-parametric method of model fitting that guards against 

River Aggregation (%) Interspersion (%)
Density 

(patches/100 ha) Adjacencies (%) Evenness

Yukon River 75.7 73.4 491 75.6 0.966

Altamaha River 58.8 73.3 1,213 58.5 0.934

Congaree River 52.3 73.2 1,578 52.1 0.922

Embarras River 55.7 71.7 1,335 55.2 0.906

Swan River 50.8 78.9 1,819 50.6 0.962

West Bijou Creek 56.7 80.2 1,328 55.4 0.973

Hoh River 66.0 71.6 855 65.3 0.973

East Plum Creek 60.6 55.2 1,168 56.7 0.721

Dinwoody Creek 60.2 79.3 1,217 58.9 0.917

Sol Duc River 50.8 79.9 1,866 49.5 0.967

North St. Vrain Creek 61.4 83.4 1,148 60.1 0.957

Downs Fork 69.5 78.3 832 67.0 0.927

Rough and Tumbling Creek 65.8 55.8 1,241 64.1 0.554

Lookout Creek 57.4 74.9 1,698 58.6 0.639

Sand Creek 46.9 96.6 1,823 48.6 0.972

Median 58.8 74.9 1,241 58.5 0.934

Note. Color scales represent red = 25%, yellow = 50%, and green = 75% of the metric's range, excluding density. The 
patch density color scale represents red = lowest value, yellow = 50th percentile, and green = highest value. Aggregation, 
interspersion, and adjacencies are rounded to the nearest tenth, density is rounded to the nearest one, and evenness is rounded 
to the nearest hundredth.

Table 3 
Calculated Heterogeneity Metrics for Each Site
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overfitting and can provide insights into important predictors of floodplain heterogeneity. The final LOOCV 
models are presented in Table 4. Boxplots of the estimates for each predictor variable for each model are given in 
Figures S3–S6 in Supporting Information S1. Predictor values are considered “important” (as opposed to statis-
tically significant) if the interquartile range of the boxplots does not include zero and the range of the boxplots 
are reasonably narrow.

The results show that 45% of the variability in aggregation can be explained by the full model. Drainage area, 
elevation, floodplain/channel width, planform, and flow regime are important in this model, with smaller drain-
age areas, higher elevations, and greater floodplain width ratios corresponding to larger aggregation values, 
supporting H1. Straight planforms have higher aggregation than anastomosing, beaver, and braided planforms, 
partially supporting H3. Rainfall-dominated flow regimes have higher aggregation than snowmelt-dominated,  not 
supporting  H4. Large wood volume can explain 77% of the variability in interspersion. The combination of 
drainage area, total sinuosity, LWV, and planform can explain 48% of the variability in density. All these predic-
tor variables are important in this model, with larger drainage areas, higher large wood volumes, and lower total 
sinuosity corresponding to larger density values, supporting  H2. Straight planforms have lower density than 
anastomosing and braided planforms, supporting H3. Lastly, precipitation can explain 59% of the variability in 
evenness and is important in this model, with greater annual average precipitation over the drainage area corre-
sponding with an increase in evenness. Table 5 summarizes support of Hypotheses H1–H4 from the qualitative 
and quantitative results.

Figure 5. Pairwise comparisons of heterogeneity metrics by reach-scale channel planform for (a) aggregation, (b) interspersion, (c) density, and (d) evenness. There are 
no statistical differences in medians.
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5. Discussion
The main controls of floodplain spatial heterogeneity are the space a river has available and the mobility of the 
channel across its floodplain (Figure 1). The predictor variables were chosen specifically to capture different 
fluvial processes that relate to and affect space and mobility. Determining the specific controls of floodplain 
heterogeneity within channel mobility and space available is complex, especially with a small sample size. The 

Figure 6. Pairwise comparisons of heterogeneity metrics by watershed-scale flow regime for (a) aggregation, (b) interspersion, (c) density, and (d) evenness. There are 
no statistical differences in medians.

Response variable Predictor variables LOOCV R 2

Aggregation DrA + Elev + Precip + TS + LWV + FP/CH + Plan + Flow 0.45

Interspersion LWV 0.77

Density DrA + TS + LWV + Plan 0.48

Evenness Precip 0.59

Note. Drainage area (DrA), mean floodplain elevation (Elev), annual average precipitation (Precip), total sinuosity (TS), large wood volume (LWV), ratio of average 
floodplain width to average channel width (FP/CH), categorical planform (Plan), and categorical flow regime (Flow) emerge as important predictor variables.

Table 4 
Leave-One-Out Cross-Validation Multivariate Models and R 2 Values
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non-statistically significant boxplot comparisons show that there may be differences in heterogeneity between 
planform and flow regime types, but the low sample sizes at the individual levels of the categorical variables are 
probably obscuring potential differences. The main takeaways from the exploratory analysis are (a) the general 
trends seen across sites of moderate aggregation, high interspersion and evenness, and varying patch density and 
(b) the potential for large wood in the river corridor to significantly influence floodplain spatial heterogeneity in 
a greater diversity of rivers than documented in previous studies. Future work could focus on establishing thresh-
olds for these metrics, such as between planform types of natural floodplains and for natural versus degraded 
floodplains.

A sample size of 15 is small in the realm of statistics but these data points reflect substantial time and effort and 
both the qualitative and LOOCV analyses provide a launching point for future study. More work could be done 
to (a) identify a more robust way to choose the maximum number of classes in the unsupervised classification 
workflow, as it is known that these metrics are sensitive to the number of classes used (Huang et al., 2006), and 
(b) test whether the delineated floodplain area significantly affects the metrics. Ways to reduce discrepancies 
in the satellite data could be further investigated as well. However, the results from the classification workflow 
are straightforward and are discussed at length in Iskin (2023) and Iskin and Wohl (2023b), so the following 
discussion addresses both the qualitative results from the boxplot comparisons and quantitative results from the 
LOOCV model fitting. Qualitatively, H2 and H3 are supported and H1 and H4 are partially supported. Quantita-
tively, river corridor characteristics can explain 45%–77% of the variability in floodplain heterogeneity, providing 
insights into the fluvial processes that create and maintain floodplain heterogeneity. An important caveat on this 
discussion is that some variables potentially relevant to channel lateral mobility and thus floodplain spatial heter-
ogeneity, such as discharge, sediment load in the channel (Constantine et al., 2014), or floodplain stratigraphy 
(Güneralp & Rhoads, 2011), were not quantified in this study.

Shifting focus to the quantitative results, drainage area, elevation, precipitation, total sinuosity, LWV, floodplain/
channel width ratio, planform, and flow regime type all influence floodplain heterogeneity. This supports the idea 
that heterogeneity is complex and reflects the influence of many fluvial processes. Additionally, no model is the 
same (Table 4), indicating that the heterogeneity metrics are capturing difference facets of floodplains heteroge-
neity and that it may be important to consider all four metrics when assessing a floodplain's heterogeneity across 
space and through time.

We infer that channel mobility in the form of planform and total sinuosity influences floodplain heterogeneity, 
and that there is (a) a difference in aggregation between straight and all other planforms, (b) a difference in 
density between straight and the most mobile planforms (anastomosing and braided), and (c) that patch density 
decreases with increasing total sinuosity. This is an interesting result as we would expect increasing channel 
mobility (straight < meandering < anastomosing < braided) to be positively related to increasing total sinuosity 
(Hong & Davies, 1979), but we see the opposite trend with density, a pattern that remains to be explained. Chan-
nel planform reflects differences in rates and styles of lateral mobility and associated patchiness of the floodplain. 
Meandering channels, for example, move in predictable directions, with meander migration toward the outside of 
each bend and episodic cutoffs. Braided channels are more likely to experience avulsion (e.g., Ashmore, 2009) 
rather than gradual lateral migration and to create a three-dimensional mosaic of floodplain topography and stra-
tigraphy rather than the meander-scroll topography and fining upward stratigraphy characteristic of meandering 
rivers (Miall, 1997). Previous studies suggest that channel planform integrates the effects of flow regime, sedi-
ment dynamics, large wood load, and floodplain vegetation, so it makes sense that channel planform is an impor-
tant factor influencing reach-scale floodplain heterogeneity in this analysis. This study adds to that understanding 
by examining correlations among these variables and floodplain heterogeneity across diverse river systems. To 

Hypothesis Result

H1: ↑ in aggregation, ↓ in density with ↑ in floodplain/channel width Partially Supported

H2: ↑ in aggregation, interspersion, density, evenness with ↑ large wood volume Supported

H3: ↑ in interspersion, density, evenness, ↓ in aggregation with ↑ mobility Supported

H4: ↑ in interspersion, density, evenness, ↓ in aggregation with ↑ flashiness Partially Supported

Table 5 
Summary of Support for Study Hypotheses
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return to the conceptual model, channel planform reflects differences in lateral mobility and space available in 
that braided, anastomosing, and meandering channels require a greater minimum floodplain width to develop 
when compared to straight channels.

We also infer that space available in the form of drainage area and floodplain/channel width ratio exerts an influ-
ence on floodplain heterogeneity, and that (a) aggregation decreases with increasing drainage area, (b) aggregation 
increases with floodplain width ratio, and (c) patch density increases with drainage area. Once again, this is an 
interesting result as drainage area and floodplain width ratio exhibit opposite trends in relation to aggregation. 
This supports previous studies that show that reach-scale variations in valley-floor width and floodplain area can 
create substantial variations in the relationship between drainage area and floodplain width (e.g., Wohl et al., 2017). 
Greater drainage areas are more likely to have large flood magnitudes and therefore increasing disturbance of at least 
the channel-proximal portions of the floodplain, leading intuitively to the relationship with increased density. Wider 
floodplains are more likely to have portions farther from the contemporary active channel that have long turnover 
times (Konrad, 2012) and may experience homogenization through vegetation succession and prolonged vertical 
accretion, as reflected in greater aggregation for greater floodplain width ratios. These results suggest that geomorph-
ically connected wider floodplains are very important to floodplain heterogeneity (Wohl, Lininger, et al., 2018).

The variables of average annual precipitation, mean floodplain elevation, and categorical flow regime were all chosen 
to constrain discharge characteristics. The results show that (a) aggregation increases with elevation, (b) aggregation 
is higher for rainfall-dominated flow, and (c) evenness increases with precipitation. We expect increasing elevation to 
correspond with greater likelihood of snowmelt-dominated flow and therefore less flashy systems and less floodplain 
disturbance due to colder winters. We see this reflected in aggregation increasing with elevation but not with higher 
aggregation for rainfall versus snowmelt. This suggests that elevation may not be an effective proxy for snowmelt 
versus rainfall dominated flow, and that the relationship between aggregation and elevation could more strongly 
reflect other vegetation dynamics rather than fluvial disturbances caused by different flow regimes. Lower aggrega-
tion for snowmelt systems could be due to the shorter growing season and reduced time for vegetation succession each 
year, resulting in less aggregated areas of vegetation. Evenness increasing with precipitation could reflect more evenly 
distributed resources for vegetation through higher groundwater levels across the floodplain (Zeng et  al.,  2019). 
Clearly, the relationships between elevation, precipitation, and flow regime need more study. Future study could use 
other proxies for flow regime, such as annual mean and range of temperature paired with precipitation and snow water 
equivalent, or direct measurements of flow regime such as mean annual flow, maximum annual flow, and base flow.

Large wood volume exerts an important influence on floodplain heterogeneity and is related to heterogeneity 
by (a) explaining 77% of the variability in interspersion and juxtaposition and (b) increasing density with LWV. 
It makes intuitive sense that large wood would increase density as wood can increase channel bifurcation and 
avulsion, island formation, planform complexity, and patchiness of floodplain forests (Collins et al., 2012). The 
primary effects of large wood in river corridors can be complex, however, as large wood can also reduce near-bank 
velocity and shear stress and reduce channel mobility (Daniels & Rhoads, 2003). Increasing the spatial detail of 
the large wood metric may shed light on the effects of large wood on floodplains, especially as large wood was 
once living trees and wood volumes reflect complex interactions between climate, habitat, and channel dynamics 
(Benda & Sias, 2003), shown simply in the strong positive relationship between precipitation and LWV (Table S3 
in Supporting Information S1). This data set only includes wood volume per area from a limited number of tran-
sects and does not include the spatial distribution or concentration (e.g., jams) of the wood on the floodplain. Wood 
loads can be dynamic in space and time (Iroumé et al., 2015; Ruiz-Villanueva et al., 2016; Tonon et al., 2017; Wohl 
et al., 2019; Wohl, 2013) and the distribution of wood in a channel or floodplain can change substantially over 
1–2 years (Wohl and Iskin, 2022). This highlights the need for more detailed study of large wood on floodplains 
to determine its effect on fluvial processes as related to floodplain heterogeneity. Isolating the category of large 
wood and including characteristics such as percentage of wood load in jams versus individual pieces, average 
distance between floodplain jams, average piece diameter, average piece length, and piece decay and/or burn class 
may allow for a more detailed understanding of the relationship between large wood and floodplain heterogeneity.

6. Conclusions
The results show that different facets of floodplain heterogeneity can be quantified with metrics from landscape 
ecology and that the patterns across the United States are varied and related to complex and dynamic fluvial 
processes. Although floodplain heterogeneity is a complex concept, there are some emergent trends from the 
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LOOCV model results that are easily interpretable, even with a sample size of 15. Qualitatively, we find that 
space available (measured by drainage area and floodplain/channel width ratio) and channel mobility (measured 
by channel planform and flow regime) are related to floodplain heterogeneity, and that natural floodplains in 
the United States have moderate aggregation, high interspersion and evenness, and a range of patch densities. 
Quantitatively, we find that drainage area, elevation, total sinuosity, floodplain width ratio, LWV, planform, and 
flow regime all influence floodplain heterogeneity and can explain 45%–77% of the variability in aggregation, 
interspersion, patch density, and evenness.

These findings can inform how river corridors can be managed to protect the processes that create and maintain 
floodplain heterogeneity, and how floodplains might change due to climate change. River corridor management 
and restoration can benefit from knowing the main controls of floodplain heterogeneity. Although management 
and restoration cannot target drainage area, elevation, or precipitation, they can target aspects related to natural 
flow, sediment, and wood regimes that affect sinuosity, floodplain width ratio, LWV, planform, and flow regime. 
Climate change is predicted to affect all the controls of floodplain heterogeneity, especially species distribution 
across latitude and elevation (Gray & Hamann, 2013) and habitat refugia (Michalak et al., 2018). The predicted 
effects of climate change are complex, and the results of this study highlight the need for additional investiga-
tion into how climate change will specifically affect floodplains and functional heterogeneity that sustain river 
ecosystems.

For natural corridors, we highlight the fact that it is difficult to isolate individual characteristics from each other 
(such as flow regime and elevation), because they commonly have dependent effects and are controlled by 
currently unidentified thresholds. The results presented here represent the beginning of cross-site investigations 
into floodplain heterogeneity. Future research could usefully focus on natural sites where it is possible to keep 
all/most of the characteristics consistent except for the variable of interest and compare floodplain heterogeneity 
related to that specific variable. For example, the Dinwoody Creek and Downs Fork sites in Wyoming occur 
adjacent to each other, so they have similar latitudes, elevations, precipitation, and flow regimes. The main distin-
guishing factor for these sites is that Dinwoody Creek has a straight planform, whereas Downs Fork has a history 
of glacier-outburst floods, creating an anastomosing planform. Searching for sites like these would be an effective 
way to investigate the effects of specific controls on floodplain spatial heterogeneity.

Future directions building from this research include increasing the breadth and depth of the data set. Increasing 
breadth includes (a) expanding the data set in the United States, such as including streams from the Southwest 
and Northeast, (b) expanding the data set globally to include natural rivers where sufficient elevation data are 
available, and (c) adding degraded sites to compare heterogeneity between impacted and natural floodplains. 
Adding sites that have been altered by human use might facilitate the delineation of metric thresholds for natural 
sites and provide more detail into natural versus altered levels of heterogeneity.

Our results only begin to identify the variables that influence floodplain heterogeneity, but no single measure of 
heterogeneity can capture the variability seen in the four metrics used in this study. We recommend that practi-
tioners focus on measuring large wood characteristics and investigating historical planforms and sinuosity values 
as they relate to fluvial processes relevant to a specific site and consider measuring and monitoring interspersion 
and patch density, as they are the most readily understandable and interpretable metrics. Our hope is that this is 
just the beginning of a body of work that investigates the relationship between floodplain heterogeneity, connec-
tivity, and fluvial processes, with the goal of protecting, improving, and restoring our river systems.

Data Availability Statement
The original field data collected for this study for West Bijou Creek, East Plum Creek, Rough and Tumbling 
Creek, Sand Creek, Hoh River, Sol Duc River, Lookout Creek, Altamaha River, North St. Vrain Creek, Congaree 
River, Embarras River, Swan River, Downs Fork, and Dinwoody Creek and floodplain delineation shapefiles 
for all sites are publicly available through Dryad (Iskin & Wohl,  2023a). For Yukon River delineation data, 
refer to Lininger et al. (2019), and for Yukon River wood data, refer to Lininger et al. (2017). Kimberly Meitzen 
provided the Congaree River National Park shapefile. Preliminary Swan River green lidar was used in this study 
(NCALM, 2023) and will be published by NCALM once finalized. The National Map (USGS, 2016, 2023c), 
the Washington Lidar Portal (Division of Geology and Earth Resources, 2022), the Colorado Hazard Mapping 
& Risk MAP Portal (CWCB, 2023), and OKMaps (Oklahoma Office of Geographic Information, 2023) were 
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used to download lidar files. StreamStats (USGS, 2023b) was used to delineate drainage areas, the National 
Water Dashboard (USGS, 2023a) was used to inspect annual streamflow patterns, Google Earth Engine (Gorelick 
et al., 2017) was used to create and download Sentinel-2A raster mosaics (links to the code provided in Support-
ing Information S1), ArcGIS Pro (Esri, 2022) was used to visualize and process the data and run the classification 
workflow, and R (R Core Team, 2023) was used to conduct the statistical analyses.

References
Aguiar, F. C., Ferreira, M. T. A., & Segurado, P. (2009). Structural and functional responses of riparian vegetation to human disturbance: Performance 

and spatial scale-dependence. Fundamental and Applied Limnology, 175(3), 249–267. https://doi.org/10.1127/1863-9135/2009/0175-0249
Amoros, C., & Bornette, G. (2002). Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology, 47(4), 761–776. 

https://doi.org/10.1046/j.1365-2427.2002.00905.x
Appling, A. P., Bernhardt, E. S., & Stanford, J. A. (2014). Floodplain biogeochemical mosaics: A multidimensional view of alluvial soils. Journal 

of Geophysical Research: Biogeosciences, 119(8), 1538–1553. https://doi.org/10.1002/2013JG002543
Arscott, D. B., Tockner, K., van der Nat, D., & Ward, J. V. (2002). Aquatic habitat dynamics along a braided alpine river ecosystem (Tagliamento 

River, northeast Italy). Ecosystems, 5, 802–814. https://doi.org/10.1007/s10021-002-0192-7
Ashmore, P. (2009). Intensity and characteristic length of braided channel patterns. Canadian Journal of Civil Engineering, 36(10), 1656–1666. 

https://doi.org/10.1139/L09-088
Baartman, J. E. M., Masselink, R., Keesstra, S. D., & Temme, A. J. A. M. (2013). Linking landscape morphological complexity and sediment 

connectivity. Earth Surface Processes and Landforms, 38(12), 1457–1471. https://doi.org/10.1002/esp.3434
Barry, R., Chorley, R., Barry, R. G., & Chorley, T. late R. (2004). Atmosphere, weather and climate (8th ed.). Routledge. https://doi.

org/10.4324/9780203428238
Beighley, R. E., & Gummadi, V. (2011). Developing channel and floodplain dimensions with limited data: A case study in the Amazon Basin. 

Earth Surface Processes and Landforms, 36(8), 1059–1071. https://doi.org/10.1002/esp.2132
Bellmore, J. R., & Baxter, C. V. (2014). Effects of geomorphic process domains on river ecosystems: A comparison of floodplain and confined 

valley segments. River Research and Applications, 30(5), 617–630. https://doi.org/10.1002/rra.2672
Bellmore, J. R., Baxter, C. V., Martens, K., & Connolly, P. J. (2013). The floodplain food web mosaic: A study of its importance to salmon and 

steelhead with implications for their recovery. Ecological Applications, 23(1), 189–207. https://doi.org/10.1890/12-0806.1
Benda, L. E., & Sias, J. C. (2003). A quantitative framework for evaluating the mass balance of in-stream organic debris. Forest Ecology and 

Management, 172, 1–16. https://doi.org/10.1016/S0378-1127(01)00576-X
Benke, A. C. (2001). Importance of flood regime to invertebrate habitat in an unregulated river – Floodplain ecosystem. Journal of the North 

American Benthological Society, 20(2), 225–240. https://doi.org/10.2307/1468318
Bhowmik, N. G. (1984). Hydraulic geometry of floodplains. Journal of Hydrology, 68(1–4), 369–374. 377–401. https://doi.

org/10.1016/0022-1694(84)90221-X
Bivand, R., Keitt, T., & Rowlingson, B. (2023). rgdal: Bindings for the “geospatial” data abstraction library. Version 1.6-4. Retrieved from https://

cran.r-project.org/package=rgdal
Choné, G., & Biron, P.  M. (2016). Assessing the relationship between river mobility and habitat. River Research and Applications, 32(4), 

528–539. https://doi.org/10.1002/rra.2896
Ciszewski, D., & Grygar, T. M. (2016). A review of flood-related storage and remobilization of heavy metal pollutants in river systems. Water, 

Air, & Soil Pollution, 227(7), 239. https://doi.org/10.1007/s11270-016-2934-8
Collins, B. D., Montgomery, D. R., Fetherston, K. L., & Abbe, T. B. (2012). The floodplain large-wood cycle hypothesis: A mechanism for 

the physical and biotic structuring of temperate forested alluvial valleys in the North Pacific coastal ecoregion. Geomorphology, 139–140, 
460–470. https://doi.org/10.1016/j.geomorph.2011.11.011

Colorado Water Conservation Board (CWCB). (2023). Colorado hazard mapping & risk MAP portal [Software: Online program that visualizes 
and assists download of lidar data for the state of Colorado]. Retrieved from https://coloradohazardmapping.com/lidarDownload

Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C., & Lazarus, E. D. (2014). Sediment supply as a driver of river meandering and floodplain 
evolution in the Amazon Basin. Nature Geoscience, 7(12), 899–903. https://doi.org/10.1038/ngeo2282

Daniels, M. D., & Rhoads, B. L. (2003). Influence of a large woody debris obstruction on three-dimensional flow structure in a meander bend. 
Geomorphology, 51(1–3), 159–173. https://doi.org/10.1016/S0169-555X(02)00334-3

Dinno, A. (2017). dunn.test: Dunn's test of multiple comparisons using rank sums. Version 1.3.5. Retrieved from https://CRAN.R-project.org/
package=dunn.test

Division of Geology and Earth Resources. (2022). Washington LiDAR portal [Software: Online program that visualizes and assists download 
of lidar data for the state of Washington]. Washington State Department of Natural Resources. Retrieved from https://lidarportal.dnr.wa.gov/

Doering, M., Freimann, R., Antenen, N., Roschi, A., Robinson, C. T., Rezzonico, F., et al. (2021). Microbial communities in floodplain ecosys-
tems in relation to altered flow regimes and experimental flooding. Science of the Total Environment, 788, 147497. https://doi.org/10.1016/j.
scitotenv.2021.147497

Esri. (2022). ArcGIS Pro [Software: Graphical information systems]. Retrieved from https://www.esri.com/en-us/arcgis/products/arcgis-pro/
overview

Esri. (2023). Watershed (ready to use). ArcGIS Pro 3.0 Help: Hydrology toolset. Retrieved from https://pro.arcgis.com/en/pro-app/latest/tool-ref-
erence/ready-to-use/watershed.htm

Everitt, B. L. (1968). Use of the cottonwood in an investigation of the recent history of a flood plain. American Journal of Science, 266(6), 
417–439. https://doi.org/10.2475/ajs.266.6.417

Fox, J., & Weisberg, S. (2019). An {R} companion to applied regression (3rd ed.). Sage. Retrieved from https://socialsciences.mcmaster.ca/jfox/
Books/Companion/

Friedman, J. M., & Lee, V. J. (2002). Extreme floods, channel change, and riparian forests along ephemeral streams. Ecological Monographs, 
72(3), 409–425. https://doi.org/10.1890/0012-9615(2002)072[0409:EFCCAR]2.0.CO;2

Fuchs, J. W., Fox, G. A., Storm, D. E., Penn, C. J., & Brown, G. O. (2009). Subsurface transport of phosphorus in riparian floodplains: Influence 
of preferential flow paths. Journal of Environmental Quality, 38(2), 473–484. https://doi.org/10.2134/jeq2008.0201

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis 
for everyone. Remote Sensing of the Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031

Acknowledgments
The authors thank Colorado Parks and 
Wildlife, the Geological Society of 
America, American Water Resources 
Association Colorado, and the Colorado 
Scientific Society for funding awarded 
to this project. We would also like 
to thank Samantha Pearson, Olivia 
Cecil, Meggie Olsen, Kristen Cognac, 
Logan Rutt, Daniel White, and Sarah 
Hinshaw for field work assistance. 
Thank you to Christi Lambert at The 
Nature Conservancy for assistance with 
background information for and access 
at the Altamaha River, Mark Schulze 
at HJ Andrews Experimental Forest for 
assistance with background information 
for Lookout Creek, Katherine Lininger 
at the University of Colorado Boulder 
for providing Yukon River floodplain 
delineations and large wood load data, 
The National Center for Airborne Laser 
Mapping (NCALM) for providing 
preliminary green lidar for the Swan 
River, Kimberly Meitzen at Texas State 
University for providing Congaree River 
DEM and park boundary data, and Max 
Ross at Olympic National Park for provid-
ing provisional soil data for the Hoh and 
Sol Duc Rivers. Thank you also to Kelly 
Bodwin at California Polytechnic State 
University, San Luis Obispo for R coding 
assistance and LOOCV method assis-
tance, Brianna Rick at the Alaska Climate 
Adaptation Science Center for Google 
Earth Engine coding assistance, Ann Hess 
at Colorado State University for providing 
input on statistical interpretation, and 
Kyle Horton at Colorado State University 
for providing review and input on Figure 
S1 in Supporting Information S1. We 
acknowledge the National Park Service 
for access to Olympic National Park under 
permit OLYM-2021-SCI-0044. Facilities 
were provided by the HJ Andrews Exper-
imental Forest and Long Term Ecological 
Research (LTER) program, administered 
cooperatively by Oregon State University, 
the USDA Forest Service Pacific North-
west Research Station, and the Willamette 
National Forest. Facilities were also 
provided by the Flathead Lake Biological 
Station operated by the University of 
Montana. I acknowledge The Nature 
Conservancy, Arapahoe County Open 
Spaces, and the Swan River State Forest 
for access to Sand Creek, West Bijou 
Creek, and the Swan River, respectively. 
This paper was improved by comments 
from two anonymous reviewers.

 19447973, 2023, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035162 by O

regon State U
niversity, W

iley O
nline L

ibrary on [14/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1127/1863-9135/2009/0175-0249
https://doi.org/10.1046/j.1365-2427.2002.00905.x
https://doi.org/10.1002/2013JG002543
https://doi.org/10.1007/s10021-002-0192-7
https://doi.org/10.1139/L09-088
https://doi.org/10.1002/esp.3434
https://doi.org/10.4324/9780203428238
https://doi.org/10.4324/9780203428238
https://doi.org/10.1002/esp.2132
https://doi.org/10.1002/rra.2672
https://doi.org/10.1890/12-0806.1
https://doi.org/10.1016/S0378-1127(01)00576-X
https://doi.org/10.2307/1468318
https://doi.org/10.1016/0022-1694(84)90221-X
https://doi.org/10.1016/0022-1694(84)90221-X
https://cran.r-project.org/package=rgdal
https://cran.r-project.org/package=rgdal
https://doi.org/10.1002/rra.2896
https://doi.org/10.1007/s11270-016-2934-8
https://doi.org/10.1016/j.geomorph.2011.11.011
https://coloradohazardmapping.com/lidarDownload
https://doi.org/10.1038/ngeo2282
https://doi.org/10.1016/S0169-555X(02)00334-3
https://CRAN.R-project.org/package=dunn.test
https://CRAN.R-project.org/package=dunn.test
https://lidarportal.dnr.wa.gov/
https://doi.org/10.1016/j.scitotenv.2021.147497
https://doi.org/10.1016/j.scitotenv.2021.147497
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
https://pro.arcgis.com/en/pro-app/latest/tool-reference/ready-to-use/watershed.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/ready-to-use/watershed.htm
https://doi.org/10.2475/ajs.266.6.417
https://socialsciences.mcmaster.ca/jfox/Books/Companion/
https://socialsciences.mcmaster.ca/jfox/Books/Companion/
https://doi.org/10.1890/0012-9615(2002)072%5B0409:EFCCAR%5D2.0.CO;2
https://doi.org/10.2134/jeq2008.0201
https://doi.org/10.1016/j.rse.2017.06.031


Water Resources Research

ISKIN AND WOHL

10.1029/2023WR035162

18 of 20

Graf, W. L. (2006). Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology, 79(3–4), 336–360. 
https://doi.org/10.1016/j.geomorph.2006.06.022

Gray, L. K., & Hamann, A. (2013). Tracking suitable habitat for tree populations under climate change in western North America. Climatic 
Change, 117(1–2), 289–303. https://doi.org/10.1007/s10584-012-0548-8

Güneralp, İ., & Rhoads, B. L. (2011). Influence of floodplain erosional heterogeneity on planform complexity of meandering rivers. Geophysical 
Research Letters, 38(14), L14401. https://doi.org/10.1029/2011GL048134

He, H. S., Dezonia, B. E., & Mladenoff, D. J. (2000). An aggregation index (AI) to quantify spatial patterns of landscapes. Landscape Ecology, 
15(7), 591–601. https://doi.org/10.1023/A:1008102521322

Helton, A. M., Poole, G. C., Payn, R. A., Izurieta, C., & Stanford, J. A. (2014). Relative influences of the river channel, floodplain surface, and 
alluvial aquifer on simulated hydrologic residence time in a montane river floodplain. Geomorphology, 205, 17–26. https://doi.org/10.1016/j.
geomorph.2012.01.004

Hesselbarth, M. H. K., Sciaini, M., Nowosad, J., Hanss, S., Graham, L. J., Hollister, J., & With, K. A. (2022). Package “landscapemetrics” refer-
ence manual. Retrieved from https://cran.r-project.org/web/packages/landscapemetrics/

Hesselbarth, M. H. K., Sciaini, M., With, K. A., Wiegand, K., & Nowosad, J. (2019). landscapemetrics: An open-source R tool to calculate land-
scape metrics. Ecography, 42(10), 1648–1657. https://doi.org/10.1111/ecog.04617

Hijmans, R. J. (2023). raster: Geographic data analysis and modeling. Version 3.6–14. Retrieved from https://cran.r-project.org/package=raster
Hong, L. B., & Davies, T. R. H. (1979). A study of stream braiding. Geological Society of America Bulletin Part II, 90(12_Part_II), 1839–1859. 

https://doi.org/10.1130/gsab-p2-90-1839
Hopkins, K. G., Noe, G. B., Franco, F., Pindilli, E. J., Gordon, S., Metes, M. J., et al. (2018). A method to quantify and value floodplain sediment 

and nutrient retention ecosystem services. Journal of Environmental Management, 220, 65–76. https://doi.org/10.1016/j.jenvman.2018.05.013
Hothorn, T., Hornik, K., van de Wiel, M. A., & Zeileis, A. (2008). Implementing a class of permutation tests: The coin package. Journal of 

Statistical Software, 28(8), 1–23. https://doi.org/10.18637/jss.v028.i08
Huang, C., Geiger, E. L., & Kupfer, J. A. (2006). Sensitivity of landscape metrics to classification scheme. International Journal of Remote 

Sensing, 27(14), 2927–2948. https://doi.org/10.1080/01431160600554330
Hughes, F. M. R. (1997). Floodplain biogeomorphology. Progress in Physical Geography: Earth and Environment, 21(4), 501–529. https://doi.

org/10.1177/030913339702100402
Iroumé, A., Mao, L., Andreoli, A., Ulloa, H., & Ardiles, M. P. (2015). Large wood mobility processes in low-order Chilean river channels. 

Geomorphology, 228, 681–693. https://doi.org/10.1016/j.geomorph.2014.10.025
Iskin, E. P. (2023). Beyond the case study: Characterizing natural floodplain heterogeneity in the United States (PhD dissertation). Colo-

rado State University. ProQuest Dissertations Publishing, 30315421. Retrieved from https://www.proquest.com/dissertations-theses/
beyond-case-study-characterizing-natural/docview/2820206748/se-2?accountid=9649

Iskin, E. P., & Wohl, E. (2021). Wildfire and the patterns of floodplain large wood on the Merced River, Yosemite National Park, California, USA. 
Geomorphology, 389, 107805. https://doi.org/10.1016/j.geomorph.2021.107805

Iskin, E. P., & Wohl, E. (2023a). Data associated with “Beyond the Case Study: Characterizing natural floodplain heterogeneity in the United 
States” [Dataset]. Dryad. https://doi.org/10.5061/dryad.0k6djhb4q

Iskin, E. P., & Wohl, E. (2023b). Quantifying floodplain heterogeneity with field observation, remote sensing, and landscape ecology: Methods 
and metrics. River Research and Applications, 39(5), 911–929. https://doi.org/10.1002/rra.4109

Jeffres, C. A., Opperman, J. J., & Moyle, P. B. (2008). Ephemeral floodplain habitats provide best growth conditions for juvenile Chinook salmon 
in a California river. Environmental Biology of Fishes, 83(4), 449–458. https://doi.org/10.1007/s10641-008-9367-1

Jeffries, R., Darby, S. E., & Sear, D. A. (2003). The influence of vegetation and organic debris on flood-plain sediment dynamics: Case study of 
a low-order stream in the New Forest, England. Geomorphology, 51(1–3), 61–80. https://doi.org/10.1016/S0169-555X(02)00325-2

Junk, W. J., Bayley, P. B., & Sparks, R. E. (1989). The flood pulse concept in river-floodplain systems. In D. P. Dodge (Ed.), Proceedings of 
the International Large River Symposium (LARS) (pp. 110–127). Canadian Special Publication of Fisheries and Aquatic Sciences Special 
Publication 106.

Junk, W. J., & Piedade, M. T. F. (2010). An introduction to South American wetland forests: Distribution, definitions and general characterization. 
In W. Junk, M. Piedade, F. Wittmann, J. Schöngart, & P. Parolin (Eds.), Amazonian floodplain forests. Ecological studies (Vol. 210). Springer. 
https://doi.org/10.1007/978-90-481-8725-6_1

Kleindl, W. J., Rains, M. C., Marshall, L. A., & Hauer, F. R. (2015). Fire and flood expand the floodplain shifting habitat mosaic concept. Fresh-
water Science, 34(4), 1366–1382. https://doi.org/10.1086/684016

Konrad, C. P. (2012). Reoccupation of floodplains by rivers and its relation to the age structure of floodplain vegetation. Journal of Geophysical 
Research, 117(G4), G00N13. https://doi.org/10.1029/2011JG001906

Kuhn, M., & Wickham, H. (2020). Tidymodels: A collection of packages for modeling and machine learning using tidyverse principles. Retrieved 
from https://www.tidymodels.org

Lamigueiro, O. P., & Hijmans, R. (2023). rasterVis. Version 0.51.5. Retrieved from https://oscarperpinan.github.io/rastervis/
Larsen, A., Larsen, J. R., & Lane, S. N. (2021). Dam builders and their works: Beaver influences on the structure and function of river 

corridor hydrology, geomorphology, biogeochemistry and ecosystems. Earth-Science Reviews, 218, 103623. https://doi.org/10.1016/j.
earscirev.2021.103623

Larsen, L. G., & Harvey, J. W. (2010). How vegetation and sediment transport feedbacks drive landscape change in the Everglades and wetlands 
worldwide. American Naturalist, 176(3), E66–E79. https://doi.org/10.1086/655215

Laurel, D., & Wohl, E. (2019). The persistence of beaver-induced geomorphic heterogeneity and organic carbon stock in river corridors. Earth 
Surface Processes and Landforms, 44(1), 342–353. https://doi.org/10.1002/esp.4486

Lininger, K. B., Wohl, E., & Rose, J. R. (2018). Geomorphic controls on floodplain soil organic carbon in the Yukon Flats, Interior Alaska, from 
reach to river basin scales. Water Resources Research, 54(3), 1934–1951. https://doi.org/10.1002/2017WR022042

Lininger, K. B., Wohl, E., Rose, J. R., & Leisz, S. J. (2019). Significant floodplain soil organic carbon storage along a large high-latitude river and 
its tributaries. Geophysical Research Letters, 46(4), 2121–2129. https://doi.org/10.1029/2018GL080996

Lininger, K. B., Wohl, E., Sutfin, N. A., & Rose, J. R. (2017). Floodplain downed wood volumes: A comparison across three biomes. Earth 
Surface Processes and Landforms, 42(8), 1248–1261. https://doi.org/10.1002/esp.4072

Lowell, J. L., Gordon, N., Engstrom, D., Stanford, J. A., Holben, W. E., & Gannon, J. E. (2009). Habitat heterogeneity and associated micro-
bial community structure in a small-scale floodplain hyporheic flow path. Microbial Ecology, 58(3), 611–620. https://doi.org/10.1007/
s00248-009-9525-9

McGarigal, K., & Marks, B. J. (1995). FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure. U.S. Forest Service 
General Technical Report PNW-GTR-351. Portland. https://doi.org/10.2737/PNW-GTR-351

 19447973, 2023, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035162 by O

regon State U
niversity, W

iley O
nline L

ibrary on [14/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1016/j.geomorph.2006.06.022
https://doi.org/10.1007/s10584-012-0548-8
https://doi.org/10.1029/2011GL048134
https://doi.org/10.1023/A:1008102521322
https://doi.org/10.1016/j.geomorph.2012.01.004
https://doi.org/10.1016/j.geomorph.2012.01.004
https://cran.r-project.org/web/packages/landscapemetrics/
https://doi.org/10.1111/ecog.04617
https://cran.r-project.org/package=raster
https://doi.org/10.1130/gsab-p2-90-1839
https://doi.org/10.1016/j.jenvman.2018.05.013
https://doi.org/10.18637/jss.v028.i08
https://doi.org/10.1080/01431160600554330
https://doi.org/10.1177/030913339702100402
https://doi.org/10.1177/030913339702100402
https://doi.org/10.1016/j.geomorph.2014.10.025
https://www.proquest.com/dissertations-theses/beyond-case-study-characterizing-natural/docview/2820206748/se-2?accountid%3D9649
https://www.proquest.com/dissertations-theses/beyond-case-study-characterizing-natural/docview/2820206748/se-2?accountid%3D9649
https://doi.org/10.1016/j.geomorph.2021.107805
https://doi.org/10.5061/dryad.0k6djhb4q
https://doi.org/10.1002/rra.4109
https://doi.org/10.1007/s10641-008-9367-1
https://doi.org/10.1016/S0169-555X(02)00325-2
https://doi.org/10.1007/978-90-481-8725-6_1
https://doi.org/10.1086/684016
https://doi.org/10.1029/2011JG001906
https://www.tidymodels.org
https://oscarperpinan.github.io/rastervis/
https://doi.org/10.1016/j.earscirev.2021.103623
https://doi.org/10.1016/j.earscirev.2021.103623
https://doi.org/10.1086/655215
https://doi.org/10.1002/esp.4486
https://doi.org/10.1002/2017WR022042
https://doi.org/10.1029/2018GL080996
https://doi.org/10.1002/esp.4072
https://doi.org/10.1007/s00248-009-9525-9
https://doi.org/10.1007/s00248-009-9525-9
https://doi.org/10.2737/PNW-GTR-351


Water Resources Research

ISKIN AND WOHL

10.1029/2023WR035162

19 of 20

Mertes, L. A. K., Dunne, T., & Martinelli, L. A. (1996). Channel-Floodplain geomorphology along the Solimões-Amazon river, Brazil. Geologi-
cal Society of America Bulletin, 108(9), 1089–1107. https://doi.org/10.1130/0016-7606(1996)108<1089:CFGATS>2.3.CO;2

Miall, A. D. (1997). A review of the braided-river depositional environment. Earth-Science Reviews, 13(1), 1–62. https://doi.
org/10.1016/0012-8252(77)90055-1

Michalak, J. L., Lawler, J. J., Roberts, D. R., & Carroll, C. (2018). Distribution and protection of climate refugia in North America. Conservation 
Biology, 32(6), 1414–1428. https://doi.org/10.1111/cobi.13130

Naiman, R. J., Bechtold, J. S., Drake, D. C., Latterell, J. J., O'Keefe, T. C., & Balian, E. V. (2005). Origins, patterns, and importance of heterogene-
ity in riparian systems. In G. M. Lovett, M. G. Turner, C. G. Jones, & K. C. Weathers (Eds.), Ecosystem function in heterogeneous landscapes 
(pp. 279–309). Springer Science + Business Media, Inc. https://doi.org/10.1007/0-387-24091-8_14

National Center for Airborne Laser Mapping (NCALM). (2023). Preliminary Swan River green LiDAR DEM without bathymetric correction (1 
m) [Dataset]. Retrieved from http://calm.geo.berkeley.edu/ncalm/dtc.html

Oklahoma Office of Geographic Information. (2023). OKMaps [Software: Online program that visualizes and assists download of lidar and other 
data for the state of Oklahoma]. Retrieved from https://okmaps.org/ogi/search.aspx

Omernik, J. M. (1987). Ecoregions of the conterminous United States. Map (scale 1:7,500,000). Annals of the Association of American Geogra-
phers, 77(1), 118–125. https://doi.org/10.1111/j.1467-8306.1987.tb00149.x

Petsch, D. K., Cioneck, V. D., Thomaz, S. M., & dos Santos, N. C. L. (2022). Ecosystem services provided by river-floodplain ecosystem. Hydro-
biologia, 850(12–13), 2563–2584. https://doi.org/10.1007/s10750-022-04916-7

PRISM Climate Group (PRISM). (2002). Western Canada average annual precipitation, 1961-1990 (2km; ASCIWe Grid) [Dataset: Averaged 
precipitation data for Western Canada]. Oregon State University. Retrieved from https://prism.oregonstate.edu/projects/canw.php

PRISM Climate Group (PRISM). (2018). Alaska average annual precipitation, 1981-2010 (800m; ASCIWe Grid) [Dataset: Precipitation data for 
the state of Alaska]. Oregon State University. Retrieved from https://prism.oregonstate.edu/projects/alaska.php

PRISM Climate Group (PRISM). (2022). United States average total precipitation, 1991-2020 (800m; ASCIWe Grid) [Dataset: Precipitation data 
for the continental United States]. Oregon State University. Retrieved from https://prism.oregonstate.edu/normals/

R Core Team. (2023). R: A language and environment for statistical computing [Software: Open source software used for data visualization and 
statistical analyses]. Retrieved from https://www.r-project.org/

Ruiz-Villanueva, V., Piégay, H., Gaertner, V., Perret, F., & Stoffel, M. (2016). Wood density and moisture sorption and its influence on large wood 
mobility in rivers. CATENA, 140, 182–194. https://doi.org/10.1016/j.catena.2016.02.001

Samaritani, E., Shrestha, J., Fournier, B., Frossard, E., Gillet, F., Guenat, C., et al. (2011). Heterogeneity of soil carbon pools and fluxes in a 
channelized and a restored floodplain section (Thur River, Switzerland). Hydrology and Earth System Sciences, 15(6), 1757–1769. https://doi.
org/10.5194/hess-15-1757-2011

Schumm, S. A. (1985). Patterns of Alluvial Rivers. Annual Review of Earth and Planetary Sciences, 13(1), 5–27. https://doi.org/10.1146/annurev.
ea.13.050185.000253

Schwendel, A. C., Nicholas, A. P., Aalto, R. E., Sambrook Smith, G. H., & Buckley, S. (2015). Interaction between meander dynamics and 
floodplain heterogeneity in a large tropical sand-bed river: The Rio Beni, Bolivian Amazon. Earth Surface Processes and Landforms, 40(15), 
2026–2040. https://doi.org/10.1002/esp.3777

Scott, D. T., Gomez-Velez, J. D., Jones, C. N., & Harvey, J. W. (2019). Floodplain inundation spectrum across the United States. Nature Commu-
nications, 10(1), 5194. https://doi.org/10.1038/s41467-019-13184-4

Scott, M. L., Friedman, J. M., & Auble, G. T. (1996). Fluvial process and the establishment of bottomland trees. Geomorphology, 14(4), 327–339. 
https://doi.org/10.1016/0169-555X(95)00046-8

Scown, M. W., Thoms, M. C., & de Jager, N. R. (2015). Measuring floodplain spatial patterns using continuous surface metrics at multiple scales. 
Geomorphology, 245, 87–101. https://doi.org/10.1016/j.geomorph.2015.05.026

Scown, M. W., Thoms, M. C., & de Jager, N. R. (2016a). An index of floodplain surface complexity. Hydrology and Earth System Sciences, 20(1), 
431–441. https://doi.org/10.5194/hess-20-431-2016

Scown, M. W., Thoms, M. C., & de Jager, N. R. (2016b). Measuring spatial patterns in floodplains: A step towards understanding the complexity 
of floodplain ecosystems. In D. J. Gilvear, M. T. Greenwood, M. C. Thoms, & P. J. Wood (Eds.), River science: Research and management for 
the 21st century (pp. 103–131). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118643525.ch6

Skalak, K., & Pizzuto, J. (2010). The distribution and residence time of suspended sediment stored within the channel margins of a gravel-bed 
bedrock river. Earth Surface Processes and Landforms, 35(4), 435–446. https://doi.org/10.1002/esp.1926

Stanford, J. A., Lorang, M. S., & Hauer, F. R. (2005). The shifting habitat mosaic of river ecosystems. SIL Proceedings, 1922–2010, 29(1), 
123–136. https://doi.org/10.1080/03680770.2005.11901979

Stella, J. C., Hayden, M. K., Battles, J. J., Piégay, H., Dufour, S., & Fremier, A. K. (2011). The role of abandoned channels as refugia for sustaining 
pioneer riparian forest ecosystems. Ecosystems, 14(5), 776–790. https://doi.org/10.1007/s10021-011-9446-6

Stoffers, T., Buijse, A. D., Verreth, J. A. J., & Nagelkerke, L. A. J. (2022). Environmental requirements and heterogeneity of rheophilic fish nurs-
ery habitats in European lowland rivers: Current insights and future challenges. Fish and Fisheries, 23(1), 162–182. https://doi.org/10.1111/
faf.12606

Sutfin, N. A., & Wohl, E. (2019). Elevational differences in hydrogeomorphic disturbance regime influence sediment residence times within 
mountain river corridors. Nature Communications, 10(1), 2221. https://doi.org/10.1038/s41467-019-09864-w

Tockner, K., Bunn, S. E., Gordon, C., Naiman, R. J., Quinn, G. P., & Stanford, J. A. (2008). Flood plains: Critically threatened ecosystems. 
In N. Polunin (Ed.), Aquatic ecosystems: Trends and global prospects (pp.  45–62). Cambridge University Press. https://doi.org/10.1017/
CBO9780511751790.006

Tockner, K., Malard, F., & Ward, J. V. (2000). An extension of the flood pulse concept. Hydrological Processes Special Issue: Linking Hydrology 
and Ecology, 14(16–17), 2861–2883. https://doi.org/10.1002/1099-1085(200011/12)14:16/17<2861::AID-HYP124>3.0.CO;2-F

Tonon, A., Iroumé, A., Picco, L., Oss-Cazzador, D., & Lenzi, M. A. (2017). Temporal variations of large wood abundance and mobility in the 
Blanco River affected by the Chaitén volcanic eruption, southern Chile. CATENA, 156, 149–160. https://doi.org/10.1016/j.catena.2017.03.025

Uno, H. (2016). Stream thermal heterogeneity prolongs aquatic-terrestrial subsidy and enhances riparian spider growth. Ecology, 97(10), 2547–
2553. https://doi.org/10.1002/ecy.1552

Uno, H., Yokoi, M., Fukushima, K., Kanno, Y., Kishida, O., Mamiya, W., et al. (2022). Spatially variable hydrological and biological processes 
shape diverse post-flood aquatic communities. Freshwater Biology, 67(3), 549–563. https://doi.org/10.1111/fwb.13862

U.S. Geological Survey (USGS). (2016). McKenzie river bare earth mosaic [Dataset: Bare earth mosaic of the McKenzie River near 
Blue River, Oregon]. Retrieved from http://prd-tnm.s3.amazonaws.com/index.html?prefix=StagedProducts/Elevation/metadata/
OR_McKenzieRiver_2021_B21/OR_McKenzieRiver_1_2021/spatial_metadata/contractor_provided/

 19447973, 2023, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035162 by O

regon State U
niversity, W

iley O
nline L

ibrary on [14/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1130/0016-7606(1996)108%3C1089:CFGATS%3E2.3.CO;2
https://doi.org/10.1016/0012-8252(77)90055-1
https://doi.org/10.1016/0012-8252(77)90055-1
https://doi.org/10.1111/cobi.13130
https://doi.org/10.1007/0-387-24091-8_14
http://calm.geo.berkeley.edu/ncalm/dtc.html
https://okmaps.org/ogi/search.aspx
https://doi.org/10.1111/j.1467-8306.1987.tb00149.x
https://doi.org/10.1007/s10750-022-04916-7
https://prism.oregonstate.edu/projects/canw.php
https://prism.oregonstate.edu/projects/alaska.php
https://prism.oregonstate.edu/normals/
https://www.r-project.org/
https://doi.org/10.1016/j.catena.2016.02.001
https://doi.org/10.5194/hess-15-1757-2011
https://doi.org/10.5194/hess-15-1757-2011
https://doi.org/10.1146/annurev.ea.13.050185.000253
https://doi.org/10.1146/annurev.ea.13.050185.000253
https://doi.org/10.1002/esp.3777
https://doi.org/10.1038/s41467-019-13184-4
https://doi.org/10.1016/0169-555X(95)00046-8
https://doi.org/10.1016/j.geomorph.2015.05.026
https://doi.org/10.5194/hess-20-431-2016
https://doi.org/10.1002/9781118643525.ch6
https://doi.org/10.1002/esp.1926
https://doi.org/10.1080/03680770.2005.11901979
https://doi.org/10.1007/s10021-011-9446-6
https://doi.org/10.1111/faf.12606
https://doi.org/10.1111/faf.12606
https://doi.org/10.1038/s41467-019-09864-w
https://doi.org/10.1017/CBO9780511751790.006
https://doi.org/10.1017/CBO9780511751790.006
https://doi.org/10.1002/1099-1085(200011/12)14:16/17%3C2861::AID-HYP124%3E3.0.CO;2-F
https://doi.org/10.1016/j.catena.2017.03.025
https://doi.org/10.1002/ecy.1552
https://doi.org/10.1111/fwb.13862
http://prd-tnm.s3.amazonaws.com/index.html?prefix=StagedProducts/Elevation/metadata/OR_McKenzieRiver_2021_B21/OR_McKenzieRiver_1_2021/spatial_metadata/contractor_provided/
http://prd-tnm.s3.amazonaws.com/index.html?prefix=StagedProducts/Elevation/metadata/OR_McKenzieRiver_2021_B21/OR_McKenzieRiver_1_2021/spatial_metadata/contractor_provided/


Water Resources Research

ISKIN AND WOHL

10.1029/2023WR035162

20 of 20

U.S. Geological Survey (USGS). (2023a). National water dashboard [Software: Online program that provides stream gage data]. Retrieved from 
https://dashboard.waterdata.usgs.gov/app/nwd

U.S. Geological Survey (USGS). (2023b). StreamStats [Software: Online program that delineates watersheds and provides basin-scale estimates]. 
Retrieved from https://streamstats.usgs.gov/ss/

U.S. Geological Survey (USGS). (2023c). The national map download client [Software: Online program that visualizes and assists download of 
lidar and other data]. Retrieved from https://apps.nationalmap.gov/downloader/

Van Wagner, C. E. (1968). The line intersect method in forests fuel sampling. Forest Science, 14(1), 20–26.
Ward, J. V., Malard, F., & Tockner, K. (2002). Landscape ecology: A framework for integrating pattern and process in river corridors. Landscape 

Ecology, 17(Suppl 1), 35–45. https://doi.org/10.1023/A:1015277626224
Westbrook, C. J., Cooper, D. J., & Baker, B. W. (2011). Beaver assisted river valley formation. River Research and Applications, 27(2), 247–256. 

https://doi.org/10.1002/rra.1359
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., et al. (2019). Welcome to the tidyverse. Journal of Open Source 

Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
Wohl, E. (2013). Floodplains and wood. Earth-Science Reviews, 123, 194–212. https://doi.org/10.1016/j.earscirev.2013.04.009
Wohl, E. (2015). Particle dynamics: The continuum of bedrock to alluvial river segments. Geomorphology, 241, 192–208. https://doi.

org/10.1016/j.geomorph.2015.04.014
Wohl, E. (2021). An integrative conceptualization of floodplain storage. Reviews of Geophysics, 59(2), e2020RG000724. https://doi.

org/10.1029/2020rg000724
Wohl, E., & Cadol, D. (2011). Neighborhood matters: Patterns and controls on wood distribution in old-growth forest streams of the Colorado 

Front Range, USA. Geomorphology, 125(1), 132–146. https://doi.org/10.1016/j.geomorph.2010.09.008
Wohl, E., & Iskin, E. P. (2019). Patterns of floodplain spatial heterogeneity in the southern Rockies, USA. Geophysical Research Letters, 46(11), 

5864–5870. https://doi.org/10.1029/2019GL083140
Wohl, E., & Iskin, E. P. (2022). The transience of channel-spanning logjams in mountain streams. Water Resources Research, 58(5), 

e2021WR031556. https://doi.org/10.1029/2021WR031556
Wohl, E., Kramer, N., Ruiz-Villanueva, V., Scott, D. N., Comiti, F., Gurnell, A. M., et al. (2019). The natural wood regime in rivers. BioScience, 

69(4), 259–273. https://doi.org/10.1093/biosci/biz013
Wohl, E., Lininger, K. B., & Scott, D. N. (2018). River beads as a conceptual framework for building carbon storage and resilience to extreme 

climate events into river management. Biogeochemistry, 141(3), 365–383. https://doi.org/10.1007/s10533-017-0397-7
Wohl, E., Polvi, L. E., & Cadol, D. (2011). Wood distribution along streams draining old-growth floodplain forests in Congaree National Park, 

South Carolina, USA. Geomorphology, 126(1–2), 108–120. https://doi.org/10.1016/j.geomorph.2010.10.035
Wohl, E., Rathburn, S., Chignell, S., Garrett, K., Laurel, D., Livers, B., et al. (2017). Mapping longitudinal stream connectivity in the North St. 

Vrain Creek watershed of Colorado. Geomorphology, 277, 171–181. https://doi.org/10.1016/j.geomorph.2016.05.004
Wohl, E., Scott, D. N., & Lininger, K. B. (2018). Spatial distribution of channel and floodplain large wood in forested river corridors of the 

Northern Rockies. Water Resources Research, 54(10), 7879–7892. https://doi.org/10.1029/2018WR022750
Zeng, Y., Zhao, C., Li, J., Li, Y., Lu, G., & Liu, T. (2019). Effect of groundwater depth on riparian plant diversity along riverside-desert gradients 

in the Tarim River. Journal of Plant Ecology, 12(3), 564–573. https://doi.org/10.1093/jpe/rty048
Zeug, S. C., & Winemiller, K. O. (2008). Relationships between hydrology, spatial heterogeneity, and fish recruitment dynamics in a temperate 

floodplain river. River Research and Applications, 24(1), 90–102. https://doi.org/10.1002/rra.1061

References From the Supporting Information
Allison, S., & Martinez, D. (2013). Hoh River LiDAR-delivery 2 technical data report. Retrieved from https://pugetsoundlidar.ess.washington.

edu/lidardata/proj_reports/Hoh_River_LiDAR_131104_Final_Report.pdf
European Space Agency (ESA). (2021). Level-2A. Sentinel online. Retrieved from https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/

product-types/level-2a
European Space Agency (ESA). (2023). Processing baseline. Sentinel online. Retrieved from https://sentinels.copernicus.eu/web/sentinel/

technical-guides/sentinel-2-msi/processing-baseline
Gleason, A., & McWethy, G. (2014). Lidar project quality assurance report. Retrieved from https://lidarportal.dnr.wa.gov/#47.79332:-123.65662:10
Google Developers. (2022). Sentinel-2 MSI: MultiSpectral instrument, level-2A [Dataset: Bottom of atmosphere ESA Sentinel dataset]. Earth 

Engine Data Catalog. Retrieved from https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR#bands
Open Topography. (2021). USGS 1/3 arc-second digital elevation model. https://doi.org/10.5069/G98K778D
Sabins, F. F., Jr., & Ellis, J. M. (2020). Remote sensing: Principles, interpretation, and applications (4th ed.). Waveland Press, Inc. Retrieved from 

https://www.waveland.com/browse.php?t=421

 19447973, 2023, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035162 by O

regon State U
niversity, W

iley O
nline L

ibrary on [14/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://dashboard.waterdata.usgs.gov/app/nwd
https://streamstats.usgs.gov/ss/
https://apps.nationalmap.gov/downloader/
https://doi.org/10.1023/A:1015277626224
https://doi.org/10.1002/rra.1359
https://doi.org/10.21105/joss.01686
https://doi.org/10.1016/j.earscirev.2013.04.009
https://doi.org/10.1016/j.geomorph.2015.04.014
https://doi.org/10.1016/j.geomorph.2015.04.014
https://doi.org/10.1029/2020rg000724
https://doi.org/10.1029/2020rg000724
https://doi.org/10.1016/j.geomorph.2010.09.008
https://doi.org/10.1029/2019GL083140
https://doi.org/10.1029/2021WR031556
https://doi.org/10.1093/biosci/biz013
https://doi.org/10.1007/s10533-017-0397-7
https://doi.org/10.1016/j.geomorph.2010.10.035
https://doi.org/10.1016/j.geomorph.2016.05.004
https://doi.org/10.1029/2018WR022750
https://doi.org/10.1093/jpe/rty048
https://doi.org/10.1002/rra.1061
https://pugetsoundlidar.ess.washington.edu/lidardata/proj_reports/Hoh_River_LiDAR_131104_Final_Report.pdf
https://pugetsoundlidar.ess.washington.edu/lidardata/proj_reports/Hoh_River_LiDAR_131104_Final_Report.pdf
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types/level-2a
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types/level-2a
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/processing-baseline
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/processing-baseline
https://lidarportal.dnr.wa.gov/#47.79332:-123.65662:10
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR#bands
https://doi.org/10.5069/G98K778D
https://www.waveland.com/browse.php?t=421

	Beyond the Case Study: Characterizing Natural Floodplain Heterogeneity in the United States
	Abstract
	Plain Language Summary
	1. Introduction
	1.1. Importance of Floodplain Heterogeneity
	1.2. Conceptual Model
	1.3. Hypotheses

	2. Study Area
	3. Methods
	3.1. Analysis

	4. Results
	4.1. Classification
	4.2. Exploratory Statistics
	4.3. Multivariate Models

	5. Discussion
	6. Conclusions
	Data Availability Statement
	References
	References From the Supporting Information


