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A B S T R A C T

The movement of solutes in a watershed is a complex process with multiple interactions and feedbacks across
spatial and temporal scales. Modeling the dynamics of solute transport along diverse hydrologic pathways
within watersheds – from hillslopes to stream channels and in and out of the hyporheic zones – is challenging
but critically important, as these processes integrate and contribute to the biogeochemical functioning of the
river corridor up to the river network scale. Here we use results from a long-term network-scale tracer test at
the H.J. Andrews experimental forest in western Cascade Mountains, Oregon, USA to inform a multiscale
framework for transport in stream corridors. The framework uses a Lagrangian-based subgrid model to
represent the effects of hyporheic exchange flow and advective transport at stream network scales. The spatially
and temporally resolved stream discharge needed for the transport model is imputed across the river system
by an entity-aware long short-term memory network. Modeled concentrations show good agreements with
the observations and exhibit power scaling laws indicative of a very wide range of timescales over which
hyporheic exchange flow occurs. Our results demonstrate a data-informed modeling framework that links
dynamical processes occurring at small scales to a network context to help understand how changes at reach
scale cascade into network-scale effects, providing a useful tool for sustainable river basin management.
1. Introduction

Over the past few decades, there has been growing interest in un-
derstanding the complex processes in the hyporheic zone (HZ) - regions
of sediment below and surrounding the channel that are permeated
with stream water (Cardenas, 2015). Much attention has been paid to
the physics, biogeochemistry, and ecology of hyporheic exchange flow
(HEF) (Boulton et al., 1998; Boano et al., 2014; Ward, 2016). In fact,
the exchange of water between stream and the HZ has been recognized
as an important process of the stream ecosystems and underpins a host
of water quality benefits along river corridors (Harvey and Fuller, 1998;
Packman and Brooks, 2001). This process is generally characterized
by bidirectional transport of mass (e.g., water and solutes), energy
(e.g., heat), and living organisms (e.g., bacteria) between the stream
channel and HZ (Tonina and Buffington, 2011; Gomez et al., 2012;
Gomez-Velez et al., 2014) and has been found to control biogeochemi-
cal cycling and ecological functioning over larger spatial scales (Fuller
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and Harvey, 2000; Conant et al., 2004; Battin et al., 2008; Mulholland
et al., 2008; Runkel, 2007; Palumbo-Roe et al., 2012; Schaper et al.,
2018).

Modeling solute transport in river networks, including the effects
of HEF, is critical to evaluating environmental response of a basin
– defined as the time varying quantities of interest (e.g., nutrients,
contaminants) at the basin outlet – to natural and anthropogenic distur-
bances. Because watersheds contain networks of dynamically connected
paths, this response is largely controlled by the river network geometry
through time delays and transformations imposed by the physics of the
environmental process operating on the network (Riml and Wörman,
2011; Ye et al., 2012; Czuba and Foufoula-Georgiou, 2014). Therefore,
a fundamental but challenging problem is how to integrate transport
mechanisms across a wide range of scales to understand the process of
water flow and solute transport through a network of diverse hydro-
logic pathways, including hillslopes, stream reaches, HZs, etc. (Gooseff
vailable online 28 June 2024
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et al., 2008; Rodriguez-Iturbe et al., 2009; Boano et al., 2014; Bertuzzo
et al., 2017).

Several modeling approaches have been developed to advance our
understanding of HEF and biogeochemical processing in the HZ. For in-
stance, high-dimensional and physics-based transport models have long
been used to describe pore water flows and associated HEF (Packman
and Brooks, 2001; Revelli et al., 2008; Cardenas, 2009; Boano et al.,
2009, 2010; Marzadri et al., 2012; Azizian et al., 2017; Dwivedi et al.,
2018). However, since biogeochemical conditions can vary rapidly over
very short distances in the HZ and this variability is an important
determinant of the overall function (Hedin et al., 1998), these models
often require computational meshes with very fine spatial resolution
and therefore are only tractable at relatively small spatial scales (e.g., a
single morphological feature with explicit representation of streambed
topography). At reach scales, a common strategy is to use a transient
storage model (TSM), which conceptualizes a finite-size, well-mixed
transient storage zone (TSZ) coupled to the main channel by first-
order mass exchange (Bencala and Walters, 1983; Runkel and Chapra,
1993; Harvey et al., 1996; Runkel, 1998). The TSM temporarily holds
solute and delays downstream transport for time scales longer than
advection and dispersion (Bencala et al., 2011). However, the TSMs
enforce an exponential distribution of residence times in the HZ, which
is inadequate to capture a long tail of solute residence times that can
be biogeochemical important by providing sufficient time to experience
anoxic conditions and thus affect biogeochemical function (Zarnetske
et al., 2011). To better represent the wide-ranging residence times of
solute arrivals, alternative parameterizations have been proposed with
different mathematical exchange characterizations between the main
channel and TSZs, including the continuous time random walk (Boano
et al., 2007, CTRW), multirate extensions to the TSM (Fang et al.,
2020), and integrodifferential approaches using lognormal (Wörman
et al., 2002), power law (Haggerty et al., 2002; Gooseff et al., 2003),
and shape-free (Liao and Cirpka, 2011; Liao et al., 2013; Knapp and
Cirpka, 2017) travel time distributions.

Network-based models for reactive transport at watershed and river-
basin scales have long been developed (Whitehead et al., 1998; Mulhol-
land et al., 2008; Bertuzzo et al., 2017; Czuba et al., 2018). Neverthe-
less, the majority of network-based models do not explicitly account
for mass transfer limitations between the flowing stream channel and
biogeochemically active HZs. Without explicit separation of in-channel
and out-of-channel processes, reaction rates become effective rates
that incorporate the effects of biogeochemical processes, mass trans-
fer limitations, and advective delays and flowpath diversity in the
HZ (Jan et al., 2021). As a result, the link to laboratory and site-scale
investigations of biogeochemical processes is tenuous at best. Among
advancements needed for modeling biogeochemical dynamics at river
network scales, Helton et al. (2011) highlighted improvements in the
representation of hydrologic exchanges between the stream channel
and subsurface waters coupled to more mechanistic representations of
biogeochemical cycles.

Motivated by stochastic Lagrangian approaches (Dagan and
Cvetkovic, 1993; Cvetkovic and Dagan, 1994; Marzadri et al., 2011,
2012, 2013; Azizian et al., 2015; Sanz-Prat et al., 2015) for efficiently
representing a diversity of groundwater flowpaths, Painter (2018)
developed a multiscale framework (Advection Dispersion Equation
with Lagrangian Subgrids – ADELS) that describes the HZ transport
system in Lagrangian form as a subgrid model with hyporheic age
replacing the spatial coordinate. In ADELS, each subgrid model
represents an ensemble of streamlines that are diverted into the HZ
before returning to the channel. The underlying principle is that all HZ
streamlines originating from a given channel grid cell have the same
upstream boundary condition governed by the concentration in the
stream channel; thus the concentration as a function of hyporheic age
is identical along the streamlines, differing only by the time required
to return to the stream channel, the hyporheic lifetime or travel time.
2

This means that only a single representative pathway needs to be h
simulated for each channel grid cell and the ensemble result can
be recovered by integrating information at various ages along the
subgrid simulation, allowing for relatively coarse discretization of the
stream channel network while still capturing the effects of fine-scale
geochemical variability within the HZ. In its original form, ADELS was
limited to steady-state flow. An extended formulation of ADELS that
removes this limitation to account for unsteady flow at reach scales
was recently introduced by Le et al. (2023).

In a previous work, Jan et al. (2021) developed a network-based
transport model based on the original ADELS formulation to simulate
biogeochemical processes at watershed scales. However, this model
was limited to steady-state flow in the stream channels using specified
mean annual streamflow across the network. Given the dynamic nature
of stream and river systems, the steady-state flow restriction clearly
limits the usefulness of this model for applications that require longer
time frames. In this paper, we extend the ADELS model that removes
the steady-discharge constraint as in Le et al. (2023) to represent
long-term dynamics of HEF and solute transport at watershed scales.
That is, we seek to develop a dynamic connectivity framework for
capturing the complexity of multiscale transport on a network and
then evaluate it against a season-long tracer test. Watershed-scale
transport analyses require a representation of spatio-temporal dynam-
ics of streamflow over the entire watershed including contributions
from sub-catchments of various sizes. As an alternative to a calibrated
process-based flow model, we reconstruct streamflow over an entire
watershed using a rainfall-runoff model based on the entity-aware long
short-term memory (EA-LSTM) neural network (Kratzert et al., 2019b)
that allows for learning similarity and discrimination between different
sub-catchments as a feature in the deep learning framework. We then
compare the breakthrough curves (BTCs) simulated using multiscale
framework to observed BTCs obtained from multiple locations during
a months-long tracer test in a mountain watershed.

2. Methodology

Our approach relies on performing a process-based scaling of the
stream network geometry (i.e., width function) to construct a time
response function for the process of interest (e.g. solute exports). This
scaling involves three main steps: establishing a directed graph repre-
senting the stream network (Section 2.1), generating streamflow on the
established graph (Section 2.2), and multiscale modeling and tracking
of solute transport on the graph (Section 2.3).

2.1. Graph representation of transport in streams

Let the stream network be defined by a root-directed binary span-
ning tree 𝖳 = (𝖵,𝖤), consisting of a set of vertices or nodes, 𝖵 = {𝑣𝑖},
and a set of edges or links, 𝖤 = {𝑒𝑖𝑗} ⊆ {(𝑣𝑖, 𝑣𝑗 ) | (𝑣𝑖, 𝑣𝑗 ) ∈ 𝖵 × 𝖵},
, 𝑗 = 1,… , 𝑁 , where 𝑒𝑖𝑗 represents the flow from 𝑣𝑖 to 𝑣𝑗 and |𝖵| = 𝑁 is
he number of nodes (Fig. 1a). The in-degree 𝑘𝑖𝑛𝑖 and out-degree 𝑘𝑜𝑢𝑡𝑖 of a
ode 𝑣𝑖 are the number of incoming and outgoing links, respectively. By
onstruction, 𝑘𝑖𝑛𝑖 ≤ 2 ∀ 𝑣𝑖 ∈ 𝖵(𝖳) for binary trees. We define a node with
𝑖𝑛 = 0 as a source, 𝑘𝑖𝑛 = 1 as an intermediate, and 𝑘𝑖𝑛 = 2 as a junction.
ource nodes are the points farthest upstream in the network with a
rainage area larger than a minimum threshold 𝐴 ≥ 𝐴𝑚𝑖𝑛, whereas

junctions are the points at which two streams or edges join. To set
the maximum length of 𝑒𝑖𝑗 ∈ 𝖤(𝖳), when the along-stream geographic
istance between two nodes forming an edge 𝑒𝑖𝑗 is greater than a
hreshold 𝑑𝑚𝑎𝑥, intermediate nodes are added to split the edge 𝑒𝑖𝑗 into

shorter ones. For the purpose of this study, branching of edges is not
allowed or equivalent to 𝑘𝑜𝑢𝑡𝑖 = 1 ∀ 𝑣𝑖 ∈ 𝖵(𝖳)∖𝑣1 (except at the root 𝑣1,

hich corresponds to the basin outlet where 𝑘𝑜𝑢𝑡1 = 0).
For any 𝑣𝑖 ∈ 𝖵(𝖳), we can delineate a corresponding sub-basin 𝛺𝑖,

hich can be represented by a tree 𝖳𝑖. It is easy to see that 𝖳𝑖 is a
ubtree of 𝖳 ‘‘rooted’’ at 𝑣𝑖. We can also assign to each 𝑣𝑖 a set of

ydrological attributes 𝜻 𝑖 of the sub-basin 𝛺𝑖 such as the upstream
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Fig. 1. Conceptual graph-based framework of a multiscale representation of transport in a river network under unsteady flow. (a) Illustration of a watershed with channel network
characterized by edges and different types of vertices. The highlighted segment of the network is an edge 𝑒𝑖𝑗 connecting nodes 𝑣𝑖 and 𝑣𝑗 . (b) Schematic of ADELS in edge 𝑒𝑖𝑗 under
unsteady flow conditions. Hyporheic zone (HZ) transport is represented by subgrid models in residence time 𝜏 formulation, which are coupled to the stream channel. The subgrid
auxiliary equation associated with each channel grid cell is representative of the ensemble of pathways (red arrows) within the grid cell. Gray shading illustrates the cumulative
travel time distribution of hyporheic lifetime. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Schematic diagram of the Entity-Aware-LSTM neural network. The cell states
𝐜(𝑡) characterizes the memory of the system. Dynamic inputs 𝑋𝑑 (𝑡) (e.g., precipitation,
temperature) are passed in the forget gate 𝐟 , whereas static inputs 𝑋𝑠 (e.g., catchment
attributes) are processed through the input gate 𝐢.

drainage area 𝐴𝛺 [L2], average slope �̄�𝛺 [–], average aspect �̄�𝛺 [rad],
verage elevation �̄�𝛺 [L], length 𝓁𝛺 [L], and perimeter 𝑝𝛺 [L] of the

sub-basin 𝛺𝑖. These attributes 𝜻 𝑖 are assumed to be constant over time.
To each edge 𝑒𝑖𝑗 ∈ 𝖤(𝖳) we assign a state 𝝃𝑖𝑗 which includes hydraulic
conditions of the corresponding stream segment such as the average
streamflow 𝑄𝑖𝑗 [L3 T−1], average wet cross-section area 𝐴𝑖𝑗 [L2], cross-
ection average depth 𝑑𝑖𝑗 [L], and cross-section average width 𝑤𝑖𝑗 [L],
tc. While not indicated explicitly, the attributes of 𝝃𝑖𝑗 may be a func-
ion of time to capture possible time-varying properties of the system.
ere we use hydraulic geometry scaling (Leopold and Maddock, 1953)

o relate time-dependent width, depth, and thus cross-section area
o time-dependent 𝑄𝑖𝑗 . Hydraulic geometry scaling provides general
rends of those quantities albeit with significant uncertainty. Stream-
pecific relationships can be used instead when that information is
vailable from detailed field investigations.

.2. Deep learning rainfall-runoff reconstruction of streamflow

We next develop a rainfall-runoff model based on the EA-LSTM
eural network (Kratzert et al., 2019b) to reconstruct streamflow for
ll sub-basins 𝛺𝑖 for 𝑖 = 1,… , 𝑁 . An overview of the EA-LSTM network
s given in Appendix A. The LSTM-based networks can generalize to
3

ngauged basins with better overall skill than calibrated conceptual
odels in gauged basins (Kratzert et al., 2019a). Here, each sub-

asin 𝛺𝑖 has a unique set of static hydrological attributes 𝜻 𝑖 and its
utlet corresponds to the node 𝑣𝑖 ∈ 𝖵(𝖳). Unlike the standard LSTM
etwork (Hochreiter and Schmidhuber, 1997), the EA-LSTM considers
oth static and dynamics inputs; and it conditions the processing of
he latter on a set of the former (Fig. 2). This design enables the EA-
STM network to simultaneously learn from both the time-independent
atchment characteristics (e.g., geometry, slope, etc.) and long-term
ependencies (e.g., precipitation and subsurface water storages). In par-
icular, it explicitly differentiates between similar types of dynamical
ehaviors (here rainfall-runoff processes) that differ between individual
ntities (here different sub-basins) and provide a universal set of model
arameters for all the sub-basins 𝛺𝑖. This universality is useful for

modeling streamflow from precipitation for multiple sub-catchments
within a single river basin.

An objective function is required to train the EA-LSTM network.
Since model training is across multiple sub-basins, a function that does
not depend on the basin-specific outputs is required to avoid bias. Here,
the basin-averaged Nash–SutcliffeEfficiency (NSE) index (Kratzert
et al., 2019b, see Appendix A) is used as a loss function for training
in the EA-LSTM. To avoid overfitting and select the most significant
static inputs, we examine different subsets of catchment attributes
selected from 𝜻 𝑖. For each subset, the EA-LSTM network is trained and
evaluated with the same dynamics inputs (e.g., meteorological forcing).
The subset that shows the best performance during evaluation period
(highest median NSE) is chosen as the catchment attributes for the
ML-based rainfall-runoff model to generate streamflow used for solute
transport modeling. Similar to standard LSTM model, the EA-LSTM is
not based on physical principles and thus does not guarantee mass
conservation. However, Frame et al. (2022) showed that the mass-
conserving LSTM (Hoedt et al., 2021, MC-LSTM) did not perform as
well as the standard (non-physical) LSTM at simulating peak flows and
out-of-sample events.

2.3. Multiscale model of transport in stream network

We use the recently introduced unsteady ADELS framework (Le
et al., 2023) to simulate solute transport in the stream network (i.e., on
the directed binary tree graph 𝖳), including processes in the stream
channels and the associated HZs (Fig. 1b). The ADELS model describes
the HZ transport system in Lagrangian form as a 1-D vertical subgrid
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Fig. 3. Map of the H.J. Andrews Experimental Forest, Blue River, Oregon, showing main tributaries, experimental watersheds, stream gage locations, weather stations, and the
longitudinal tracer test (LTT) sites.
model. The subgrid model for each channel grid cell represents the
ensemble of streamlines diverted into the HZ by all subgrid hydrogeo-
morphic features, such as bedforms, meander bends, alternating point
bars, and pool-riffle complexes. That is, the model is an upscaled repre-
sentation with an implied scale for the channel representation (Painter,
2018). The detailed formulation of ADELS framework with unsteady
flow is presented in Le et al. (2023) and summarized in Appendix B.

The unsteady ADELS framework has been implemented in the multi-
physics Amanzi-ATS model (Coon et al., 2019). Here we apply this
framework on the directed graph 𝖳 under the proportionality and su-
perposition assumption of linear system theory for multiscale modeling
solute transport at the watershed scale. Specifically, for all edges 𝑒𝑖𝑗 ∈
𝖤(𝖳), topologically defined meshes are created within each edge to
prescribe the discrete representation of the domain (i.e., grid cells) on
which Eq. (B.1) are solved. Mass balance constraints are imposed at
intermediate and junction nodes to link river segments, and Amanzi-
ATS solves the transport equation over the entire network as a linear
system. Topological mesh allows both stream networks (1D submani-
folds whose coordinate is defined as distance along the network) and
the subgrid mesh (1D submanifold whose coordinate is in travel time)
to be coupled in the existing mesh infrastructure of Amanzi-ATS (Jan
et al., 2021). Geochemical reactions (e.g. sorption) are implemented in
the open-source PFLOTRAN (Hammond et al., 2014) called in Amanzi-
ATS through the programming interface Alquimia (Andre et al., 2013;
Molins et al., 2022). Here the time series of streamflow is first recon-
structed at every node 𝑣𝑖 ∈ 𝖵(𝖳) using a rainfall-runoff model based on
the EA-LSTM neural network. Next, streamflow in all topological grid
cells along an arbitrary edge 𝑒𝑖𝑗 ∈ 𝖤(𝖳) is linearly interpolated between
nodes 𝑣𝑖 and 𝑣𝑗 for every time step. We note that at junction nodes, the
linear interpolation is done before the two upstream reaches join to
ensure mass conservation. Then interpolated streamflow along all the
edges is used for simulating solute transport described in Eq. (B.1).

3. Application to the H.J. Andrews experimental forest

3.1. Data and site description

We use observational datasets collected in the H.J. Andrews experi-
mental forest (hereafter referred to as HJA) to evaluate the
connectivity-based multiscale transport model. The HJA is located in
the central Cascade Mountains of Oregon, USA (44.23◦N, 122.17◦W)
and comprises of the entire drainage basin of the Lookout Creek (see
Fig. 3). The landscape in the HJA is generally mountainous terrain with
4

stream erosion, landslides, and past glaciations influencing the stream
geomorphology (Swanson, 1975). The climate regime of the HJA is
Mediterranean and includes a wet and mild winter and dry and cool
summer. The long-term mean annual precipitation ranges from 2200
to 3000 (mm), with about 75% of precipitation occurs during the wet
season from November to April (Johnson et al., 2021). The Lookout
Creek is a fifth-order watershed and has four tributaries: Cold, Lookout,
Mack, and McRae. This watershed is underlain by multiple rock types
of volcanic origin Swanson (2005), leading to substantial heterogeneity
in baseflow sources within the watershed (Segura et al., 2019).

The tracer data used in this study is obtained from a previous
work (Haggerty and Ninnemann, 2013), which consisted of a
watershed-wide longitudinal tracer test (LTT) on the main stream of
the Lookout Creek (Fig. 3). The LTT was initiated at the beginning
of the dry season (June) in summer 2003 and involved an in-stream
injection of Rhodamine WT (RWT) at a concentration of 12.5 (g/L)
with an average pumping rate of 0.46 (mL/s) over about 77 h at
site 0 (Ninnemann, 2005). This continuous injection was followed
by a system of monitoring at 8 downstream locations (sites 1, 2,
4, 6, 7, 10, 12, and 14) on the main stream until the end of the
dry season (November) in 2003. The monitoring sites were selected
at points above and below major confluences, including the Cold
Creek, Mack Creek, McRae Creek, as well as a monitoring station at
the HJA headquarters near the mouth of Lookout Creek basin. The
along-river distance from sites 0 to 14 is approximately 14.27 (km),
equivalent to approximately 90% the length of the mainstream Lookout
Creek. At each site, concentrations were recorded using a combination
of flow-through fluorometers measuring real-time concentrations and
grab samples collected with ISCO autosamplers and processed in a
laboratory fluorometer (Ninnemann, 2005).

Topographic and long-term hydro-meteorological data are used for
developing the rainfall-runoff model. In particular, catchment charac-
teristics are derived from high-resolution (1-m) lidar data and used as
the static inputs for the EA-LSTM neural network. Daily precipitation
during the period from 1979 to 2020 measured at the Primary Meteo-
rological (PRIMET) station near the downstream of the Lookout Creek
(Fig. 3b) is used as the dynamics inputs for the EA-LSTM neural net-
work. Missing data in the PRIMET station is filled by daily precipitation
observed at a nearby Climate station (CS2MET) that is also located in
the Lookout Creek watershed. Daily streamflow was measured during
the same time period (1979–2020) at 9 gaged experimental watersheds
in the HJA (including WS01-WS03, WS06-WS10, and Mack Creek) and
a United States Geological Survey (USGS) gaging station at the outlet
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Table 1
Catchment attributes derived from lidar topographic data for the experimental and Lookout Creek watersheds, including upstream drainage area 𝐴𝛺 , average slope �̄�𝛺 , average
spect �̄�𝛺 , average elevation �̄�𝛺 , average distance to the sub-basin outlet 𝑑𝛺 , and catchment length 𝓁𝛺 . Boldface indicates attributes that were selected for the EA-LSTM model to
enerating streamflow.
Watershed X [m] Y [m] 𝐴𝛺 [ha] 𝑠𝛺 [◦] 𝒂𝜴 [◦] 𝒛𝜴 [m] 𝑑𝛺 [m] 𝓵𝜴 [m]

WS01 559 271 4 895 174 95.57 33.20 204.87 715.16 1 003.3 1,843
WS02 560 273 4 895 771 62.48 31.98 227.83 785.53 633.9 1,239
WS03 560 445 4 896 517 97.44 31.05 220.34 777.49 1,113.2 1,796
WS06 565 394 4 901 228 12.06 16.97 164.46 955.01 318.0 639
WS07 565 796 4 901 632 14.54 18.64 158.19 1015.56 291.0 517
WS08 566 156 4 901 737 20.87 18.12 172.25 1057.77 499.1 901
WS09 559 223 4 894 485 8.63 33.07 243.34 573.53 260.8 554
WS10 559 005 4 896 219 11.82 33.85 246.02 578.67 254.3 498
MACK 566 465 4 896 651 572.87 27.42 194.38 1195.48 2,154.6 4,050
LOOKOUT 559 386 4 895 540 6205.38 24.39 198.70 979.16 10,290.8 17,537
of the Lookout Creek (USGS-14161500). The drainage areas of these 10
watersheds range from 8.5 to 6205 ha (Table 1). Missing streamflow
observations were infrequent, except for the WS07, which lacked data
between 1988 and 1994. In addition, high-frequency streamflow data
were also collected on the main channel of the Lookout Creek at
the same 8 monitoring sites and during the same time that the LTT
was measured (i.e., dry season 2003). However, the length of these
high-frequency streamflow observations varied substantially across the
sites and were often very limited. The catchment attributes of the
experimental and Lookout Creek watersheds are presented in Table 1.

To put more weight on analyses during the dry season when the
LTT was implemented, observed daily streamflow is normalized by the
catchment area and then transformed into log space for training the
EA-LSTM neural network. This transformation reduces the influence of
large streamflow during rainy, wet seasons on the loss function while
training the model over a long time period. In this study, the EA-LSTM
model training is performed using data from the time period 1 October
1979 through 30 September 2010. The EA-LSTM model testing is done
using data from the time period 1 October 2010 through 30 September
2020. The training and testing are applied for all 10 watersheds to
obtain a single set of parameters. Next, this parameter set is used to
generate streamflow over the entire Lookout Creek watershed (i.e., at
each sub-basins 𝛺𝑖) for the dry season in 2003 when the LTT was
conducted. The hyper-parameters of the EA-LSTM model are set as
follows: the number of hidden/cell states is 512, the dropout rate is
0.4, the length of the input sequence is 730, and the number of stacked
LSTM layers is 1. For the entire HJA, the catchment attributes selected
for the static inputs in the EA-LSTM network to generate streamflow
include the mean aspect 𝑎𝛺, mean elevation 𝑧𝛺, and length of the
sub-basins 𝓁𝛺 that show the highest value of the median NSE for all
sub-basins. The generated streamflow is then used as inputs for the
unsteady ADELS multiscale transport model.

The sorption coefficient of RWT solute (𝐾𝑑) is assumed homoge-
neous over the river network and selected at half of the value reported
in Gooseff et al. (2005) for a headwater sub-catchment (i.e., WS03)
within the HJA. This simple adjustment is made because the aforemen-
tioned study focused on the fine fraction of the hyporheic sediment
sample acquired, and it is likely an overestimate of the true in situ
isotherm for hyporheic sediments in the streambed. While this is a
strong assumption — which is not necessarily accurate in real-world
river networks exhibiting heterogeneities, we find it more plausible
than using the reported value, as it offers a conservative approach
to mitigate the risk of overestimating the true parameter. It is worth
noting that this assumption reduces hyporheic RWT sorption, thus
potentially affecting parameters related to the residence time of RWT
in the subgrid models. The other solute transport parameters of the
ADELS included the travel time distribution  , mean turnover rate
𝛼0, scaling exponent 𝛽𝛼 , mean longitudinal dispersion coefficient 𝐷0,
and its scaling factor 𝛽𝐷 (See Table 2). The Markov chain Monte
Carlo (MCMC) optimization method has been employed for parameter
estimation in ADELS models at the reach scale (Rathore et al., 2021;
5

Le et al., 2023; Rathore et al., 2023). However, the scalability of the
MCMC approach is challenging as the dimensionality of the problem
increases at larger scales. For the sake of simplicity and to concentrate
on the network-scale development, model parameters are manually
calibrated to minimize the L2 distance between modeled results and
observations across all monitoring sites (baseline simulation). It should
also be noted that while manual calibration facilitates direct adjust-
ment of parameters to demonstrate the workflow, this approach is less
reliable than the MCMC and lacks insight on parameter uncertainty.

To evaluate the impacts of streamflow variation and the HZ on
the dynamics of solute transport in the HJA, we compare the baseline
simulation against four variant configurations. These four sensitivity
experiments purely represent different aspects of the physics modeled
in the ADELS framework. The first experiment (E1) excludes the HZ,
indicating that solute transport occurs solely in the stream channel. The
second experiment (E2) assumes that streamflow remains in a steady-
state condition, but with spatial heterogeneity. In the third experiment
(E3), variations in streamflow do not affect the mass exchange rate
between the channel and HZ, denoted by 𝛼(𝑥, 𝑡) = 𝛼0 in Eq. (B.2).
Finally, the fourth experiment (E4) assumes that the speed at which
solutes move along streamlines within the HZ is not affected by the
variation of streamflow in the channel, i.e., 𝜈(𝑥, 𝑡) = 1 in Eq. (B.5).
Model parameters other than those specific to each experiment are held
the same as in the baseline simulation.

3.2. Network extraction

The stream network of the Lookout Creek watershed in the HJA
is extracted from lidar topographic data as shown in Fig. 4. The
network includes 22 intermediate and 37 junction nodes (represented
by blue and orange circles, respectively) in the stream channels and
38 upstream nodes (represented by open circles) in the upstream of
the watershed. The elevation at the upstream and downstream ends
of each edge (or stream segment) is extracted from the underlying
topography, differenced, and divided by the geographical distance
between two corresponding nodes to determine the slope 𝑠𝑖𝑗 of the
edge (indicated by the colorbar). The slope of the water surface is
assumed to be equivalent to the slope of the streambed under uniform
flow conditions which is likely approximate for most of the stream
networks. The heterogeneity of channel slopes within the Lookout
Creek watershed, indicated by continuous changes of the slopes from
the upstream (more steep) to the downstream (less steep), is likely to
lead to non-uniform velocities and magnitude of streamflow along the
channels. This suggests the need for including spatially explicit analysis
of streamflow variability into solute transport modeling at watershed
scales. To simulate transport within the stream channels of the HJA, we
discretize the river network domain into computational grid cells with a
size of 𝛥𝑥 ≈ 100 m. Within each grid cell, a subgrid mesh consisting of
10 cells, characterized by travel time coordinates, is used to capture
the fine-scale variability of transport within the HZ. We utilize an
explicit upwind numerical scheme for the advection terms in ADELS.

This choice is made to preserve positivity and ensure smooth solutions.
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Table 2
Parameters used for ADELS model.

Symbol Desciption Unit Value

𝐾𝑑 Sorption coefficient L/g 0.016
𝛼0 Pseudo-mean rate of water turnover 1/s 4.5 × 10−5

𝛽𝛼 Scaling exponent of hyporheic exchange – 0.09
𝛽𝜈 Scaling exponent for velocity changes in the HZ – 0.10
𝐷0 Mean longitudinal dispersion coefficient m2/s 0.011
𝛽𝐷 Factor representing the fluctuation of dispersion coefficient – 2.14
50 50th percentile of the travel time in the HZ h 2.5
Fig. 4. Graph network of the Lookout Creek watershed in the H.J. Andrews Experimental Forest represented by a spanning binary tree. Small circles denote three different types
of nodes; red circles with a star indicate the locations of longitudinal tracer test (LTT) sites. Colorbar indicates the slope of the river segments and arrows represent flow direction.
The network is derived from 1-m topographic Lidar data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Therefore, a stable time step 𝛥𝑡 is determined for each iteration based
on the CFL condition (Courant et al., 1967).

The relationships between catchment area 𝐴𝛺 and the mainstream
length 𝓁𝛺 for the 9 experimental and Lookout Creek watersheds are
shown in Fig. 5a. Although watershed shape and size vary significantly,
this relationship shows a structural relation 𝓁𝛺 ≈ 2.18𝐴0.54

𝛺 and is con-
sistent with commonly reported parameters proposed by Hack (1957)
and Montgomery and Dietrich (1992). While this pattern may not be
a strict power law in the purest form (𝓁𝛺 ∝ 𝐴𝑝

𝛺), it exhibits power
law-like behavior over a wide range of scales with the length of rivers
generally increasing sub-linearly with the area of their drainage basins.
Here the size of the circles indicates the Gravelius compactness (GC)
coeffcient (Gravelius, 1914), a metric of catchment shape defined as
the ratio between catchment perimeter and area. The GC values reveal
that basin elongation (large GC) does not correlate with a change in
the catchment area or size. Moreover, the GC does not correlate with
the orientation or aspect of the watershed.

The relationship between 𝓁𝛺 and 𝐴𝛺 for all sub-catchments (97
in total) delineated within the Lookout Creek watershed is shown in
Fig. 5b. Since the minimum threshold of the upstream nodes used to
delineate these sub-catchments is 50 ha, no sub-catchment whose area
smaller than this threshold is observed. Similar to the experimental
watersheds, the area-length relationship found in all sub-catchments
also exhibits the power law-like scaling (𝓁𝛺 ≈ 2.25𝐴0.5

𝛺 ) as reported in
previous studies (Hack, 1957; Montgomery and Dietrich, 1992). More-
over, the delineated sub-catchments are distributed relatively uniform
over a wide range of sizes with GC ranging from 1.45 to 3.49.
6

3.3. Rainfall runoff modeling

Fig. 6 shows the comparison of normalized daily streamflow ob-
tained from the EA-LSTM model (dashed lines) and observations (solid
lines) for the 9 experimental and Lookout Creek watersheds during
the testing period (2010–2020). Overall, the fit between observed
and modeled daily streamflow is very good quantified by the high
values of the NSE index (Nash and Sutcliffe, 1970). Although the size
of the experimental watersheds varies substantially that may affect
the generating mechanism and persistence of flow on the watersheds,
simulated streamflow based on the EA-LSTM neural network is in good
agreement with the observations for both dry (low flow) and wet (high
flow) seasons. This result demonstrates the ability of the EA-LSTM to
construct a universal model that can capture well the dynamics of the
rainfall-runoff process not only for Lookout Creek watershed but also
for all contributing sub-catchments within the watershed. We note here
that the WS07 has about 8 years of missing streamflow data, resulting
in lower density of the points in the plot.

Comparison of seasonality in streamflow between observations and
EA-LSTM model is further presented in Fig. 7. Overall, the results show
that the seasonality is well reproduced in most of the watersheds,
except at the WS07 where data are missing for a long period during
the model training. This absence of data leads to relatively low NSE
values between observations and model for both the dry season and
entire year periods. The EA-LSTM slightly overestimates streamflow
during the dry season in WS06 and WS09 where the drainage areas
are the smallest, resulting in NSE values lower than in other water-
sheds. Moreover, the results indicate more pronounced seasonality of
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Fig. 5. Relationship between the mainstream length 𝓁 and catchment area 𝐴 for (a) 9 experimental and Lookout Creek watersheds and (b) all sub-catchments 𝛺𝑖 obtained from
lidar data within the Lookout Creek watershed. Size of the circle represents the Gravelius coefficients (GC) of the corresponding sub-catchment. Solid and dashed lines show the
original Hack’s law (Hack, 1957) and the law proposed by Montgomery and Dietrich (1992).
streamflow in the smaller watersheds (e.g., WS06-WS10) compared to
the larger ones (e.g., WS02, WS03, Mack, and Lookout), as evidenced
by lower magnitudes of streamflow per unit area during dry months.
As the normalized streamflow during the wet season exhibits similar
magnitudes across all watersheds, the difference in seasonality may
be attributed to the effect of groundwater discharge during low flow
season, which is often limited in small headwater mountain streams.
In fact, the strong seasonality in WS10 (the second smallest watershed)
originates from a small fraction of old water that is preferentially
released during dry periods (Rodriguez et al., 2018). However, sea-
sonality can also be influenced by additional factors such as climate,
landforms, and geology. It is worth noting the contrast in streamflow
seasonality between WS01 (strong) and WS03 (weak), despite their
7

similar sizes. Voltz et al. (2013) suggested that the WS03 valley bottom
riparian area is well connected to its stream across a broad range of
hydrologic conditions, resulting in weaker seasonality in streamflow
compared to WS01. Given that streamflow magnitude significantly
impacts transport dynamics, seasonality must be well captured for
accurate modeling of solute transport during the dry season.

Streamflow over the entire network is then reconstructed for the dry
season (June-November) in 2003 when the LTT was implemented and
used for modeling solute transport (see Fig. 8). We note that only site
LTT-2 had long observations of streamflow that covered the entire LTT
period (∼6 months). All other monitoring sites had less than one month
of streamflow observations (same length of observations as tracer data).
The results show that the EA-LSTM model captures quite well the
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Fig. 6. Comparison of streamflow obtained from EA-LSTM model and observations during the testing period (2012–2021) for 9 experimental and Lookout Creek watersheds. Solid
lines show the 1:1 relationship. Dashed lines represent the best fit in log space and 𝑎 indicates the slope of the dashed lines.
Fig. 7. Comparison of streamflow seasonality between EA-LSTM model (dashed lines) and observations (solid lines) during the testing period (2012–2021) for the 9 experimental
and Lookout Creek watersheds. Gray shading indicates dry season. 𝑁𝑆𝐸𝑦𝑒𝑎𝑟 and 𝑁𝑆𝐸𝑑𝑟𝑦 indicate the NSE values between observations and modeled for entire year and dry season
periods, respectively.
magnitudes of streamflow at most of the monitoring sites. However,
we observe more variability and steeper slope of modeled streamflow
compared to observations in sites LTT-4, LTT-7, and LTT-10. Overall,
the results demonstrate that the EA-LSTM model has the potential to
reconstruct reasonably well daily streamflow from precipitation data
for simulating solute transport at watershed scale during the LTT
period.

3.4. Solute transport

Fig. 9a shows the comparison between the observed and modeled
BTCs of the RWT tracer for 8 monitoring sites. Three distinct stages
are evident in these BTCs. During the initial stage (rising phase), the
concentration rises dramatically as the tracer front arrives, especially
in the upstream monitoring sites. The model captures well the arrival
time of the tracer at most of the monitoring sites, implying that flow
velocity along the entire stream network is also well reconstructed. In
the second stage, the BTCs become more flat in response to streamflow
magnitudes and the topologic structure of the stream network. At the
end of the second stage, the BTCs reach the peak values after the
8

injection ends. However, the time that concentrations reach the peaks
also increases along the downstream due to the time delay effect of
the geometry of the network. This effect further leads to an increase in
the slope of the BTCs at the downstream during this stage. Overall, the
good fit between the observations and modeled concentrations at all
monitoring sites in the first two stages demonstrates that our model
is able to link dynamical processes occurring at small scales into a
network context. During the final stage (recession phase), the observed
BTCs at all monitoring sites are well approximated by a power law,
although the time ranges are somewhat limited. Modeled BTCs are also
approximately power-law but with some deviations for LTT-4. Power-
law decreases in the BTCs indicate a very wide range of hyporheic
residence times (Fig. 9b), as has been noted previously (Haggerty et al.,
2002; Gooseff et al., 2003). In other words, the solute and contaminants
can remain in the HZ and channel systems for a very long time and this
has important implications for stream biogeochemistry and river basin
management. Toward the end of the dry season, the modeled BTCs
are found to be more variable that could be attributed to the effects
of rainfall events in the early wet season (Fig. 9a). However, most of
the LTT observations are fairly short, except sites LTT-2 and LTT-4, and
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Fig. 8. (a) Time series of observed daily precipitation at PRIMET station (black bars) and streamflow discharge at the outlet of the Lookout Creek (red line) during the period
2002–2004. (b) Comparison of modeled (solid lines) and observed (dots) streamflow at 8 monitoring sites during dry season (June-November) in 2003. Note that the length of
streamflow observations varied substantially across monitoring sites and were often very limited. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
we are unable to make a comprehensive comparison with the modeled
results during this period.

The modeled BTCs obtained from four experiments (E1-E4) are
presented in Supplementary Figures S1-S4. In E1, the subgrid is ex-
cluded from the channel, resulting in no mass exchange between the
stream and HZ. In this case the RWT tracer is swiftly transported out
of the river network and the model is unable to capture the long tail
distribution of RWT concentration in the system (Figure S1). This is
inline with our expectations, and indicates that the representations of
the small-scale hyporheic processes are important in modeling the long-
term dynamics of solute transport along the river networks. In E2,
streamflow is assumed in steady-state condition, and the model fails
to capture the arrival time and peaks of concentration of the BTCs at
all monitoring sites (Figure S2). This result underscores the crucial role
of advection and dilution processes in capturing the complex dynamics
of solute transport at the river network scale. In E3, the variations of
streamflow do not affect the hyporheic exchange rate 𝛼, leading to over-
estimate of the solute concentration downstream of the river network
(Figure S3). This outcome may be attributed to the reduction in solute
mass entering the HZ compared to the baseline simulation, resulting in
higher RWT concentrations in the stream channel. In E4, streamflow
variability had no effect on flow velocity within the HZ, resulting in
similar patterns of the BTCs with slightly higher concentration of RWT
downstream the river network as in E3 (Figure S4). This indicates that
flow velocity within the HZ also plays an important role in the dynam-
ics of transport at watershed scales. Of the four experiments, the latter
two (E3, E4) are closer to the baseline simulation and observations,
suggesting the strong influences of hyporheic processes and streamflow
on transport modeling.

At river network scale, our connectivity-based model reproduces
the BTCs of the RWT tracer over an entire dry season in 2003 and
sheds light on our understanding of how river network geometry affects
transport dynamics. The residence time of the RWT in the streams is
largely controlled by sediment sorption and the travel time distribution
in the HZ before the RWT returns to the main channel. These multiscale
dynamics becomes more complex in the context of river network under
the effects of time delay and transformation. The long-term network-
scale observations of RWT tracer over entire dry season provide a great
opportunity to model these multiscale dynamics. In general, model
9

results show very good agreement between observed and modeled
BTC across scales and most of the sites, demonstrating the ability of
the graph model to properly capture the complex dynamics of solute
transport on the stream network. The model developed above offers a
new opportunity for solute transport modeling at watershed and larger
scales.

Our simplified model has several limitations however, and here we
discuss only the major ones. First, the model struggles to accurately
capture the abrupt changes in the BTCs observed at upstream sites LTT-
1 and LTT-2 immediately after the injection ceases. During this time
frames, the transport dynamics near the injection site are influenced
by a number of in-channel and HZ processes. To enhance the model
performance, it would be necessary to use more robust optimization
techniques such as the MCMC for parameter estimation. Second, the
model tends to overestimate concentration at site LTT-4 toward the end
of the simulation period. This could be attributed to the underestima-
tion of streamflow by the EA-LSTM at nodes near this site during the dry
season. Site LLT-4 is below the confluence with Cold Creek, where the
baseflow contribution is approximate one order of magnitude greater
than the rest of Lookout Creek watershed (Segura et al., 2019). Further
research is warranted to incorporate more accurate representation of
landforms and geology into the EA-LSTM to enhance the simulation of
rainfall-runoff process during periods of low flow.

4. Summary and conclusions

An important challenge in modeling solute transport at watershed
scales is to simultaneously represent the effects of large-scale stream
networks and fine-scale gradients in geochemical conditions along
diverse hydrologic pathways. In this paper, we present a machine-
learning-assisted conceptual framework for modeling the long-term
dynamics of solute transport at watershed scales. Our framework relies
on performing a process-based scaling of network geometry to con-
vert the network width function into a time response function where
the process of interest is the transport of solute (e.g., RWT). Here
the dynamics of solute in the stream network is modeled using an
unsteady multiscale framework (ADELS) that includes and describes
the HZ transport system in Lagrangian form as a subgrid model (Le
et al., 2023). The framework is applied to the HJA experimental forest
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Fig. 9. (a) Comparison of modeled (solid lines) and observed (dots) breakthrough curves of RWT solute concentration for 8 monitoring sites during the longitudinal tracer test
(LTT) in summer 2003. Horizontal and vertical axes are in log scale. The vertical red dashed line indicates the time injection ended on June 17, 2003. (b) Cumulative distribution
function of travel time in the hyporheic zone (HZ). The travel time is assumed spatially homogeneous over the entire river network. The annotation shows the travel time values
corresponding to the 10th, 50th, and 90th percentiles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
using months-long tracer tests during the dry season in 2003 to help
in understanding the multiscale dynamics and control of watershed
characteristics on solute transport.

It is shown that the stream network geometry and transport dy-
namics in the HJA combine to produce a complex response function
of RWT along the main channel of the Lookout Creek watershed. The
multiscale model is able to reproduce the power-law scaling behaviors
of the BTCs indicative of a very wide range of residence time dis-
tribution of solutes in stream network systems. Our findings suggest
the important roles of HZ in controlling the time response function
of solute transport at large spatial scales (e.g., watershed). For RWT,
the response function is also known to be affected by the process of
sorption to sediment (Runkel, 2015; Keefe et al., 2004) as implemented
in Eq. (B.1). In this study, the streamflow along the river network
is reconstructed using rainfall-runoff modeling based on the EA-LSTM
neural network (Kratzert et al., 2019b). The EA-LSTM model is able to
capture, spatially and temporally, the magnitudes of streamflow over
the entire Lookout Creek watershed from daily rainfall inputs which
is critical to simulate accurately solute transport in stream channels
during dry (low flow) season. Nevertheless, this approach requires long-
term and extensive observations of streamflow at multiple sub-basins in
the study area to be able to well train the deep learning neural network.
A direction for future work is to integrate the multiscale river corridor
into physically-based models, which will enable the representation of
10
land surface processes, biogeochemical effects of long range hydrologic
pathways and regional-scale groundwater flows.
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Appendix A. EA-LSTM neural network

The forward pass of the EA-LSTM is described by the following
equations (Kratzert et al., 2019b):

𝒊 = 𝜎(𝑾 𝑖𝒙𝑠 + 𝒃𝑖) (A.1a)

𝒇 (𝑡) = 𝜎(𝑾 𝑓𝒙𝑑 (𝑡) + 𝑼𝑓𝒉(𝑡 − 1) + 𝒃𝑓 ) (A.1b)

𝒈(𝑡) = tanh(𝑾 𝑔𝒙𝑑 (𝑡) + 𝑼 𝑔𝒉(𝑡 − 1) + 𝒃𝑔) (A.1c)

𝒐(𝑡) = 𝜎(𝑾 𝑜𝒙𝑑 (𝑡) + 𝑼 𝑜𝒉(𝑡 − 1) + 𝒃𝑜) (A.1d)

𝒄(𝑡) = 𝒇 (𝑡)⊙ 𝒄(𝑡 − 1) + 𝒊⊙ 𝒈(𝑡) (A.1e)

𝒉(𝑡) = 𝒐(𝑡)⊙ tanh(𝒄(𝑡)) (A.1f)

where 𝑡 represents time [T]; 𝒊 is an input gate which does not change
over time and only processes the static inputs 𝒙𝑠 (e.g., basin attributes);
𝒇 (𝑡) and 𝒐(𝑡) are the time-dependent forget and output gates, respec-
tively; 𝒙𝑑 (𝑡) are the dynamics inputs at time 𝑡 (e.g., meteorological
forcings); 𝒉(𝑡) and 𝒄(𝑡) represents hidden and cell states; 𝑾 , 𝑼 , and 𝒃
re learnable parameters for each gate, 𝜎 is the sigmoid function, tanh
s the hyperbolic tangent function, and ⊙ represents the element-wise
ultiplication. In the EA-LSTM network, the static input 𝒙𝑠 and dy-
amic input 𝒙𝑑 (𝑡) are processed separately for different tasks. Through
nput gate 𝒊, the static features control parts of the LSTM are activated
or any individual catchment, while the dynamic and recurrent inputs
ontrol information written into the cell 𝒈 for memory, forget gate 𝒇 (𝑡),

and output gate 𝒐(𝑡) at time 𝑡.
When calculate over data from multiple sub-basins, an objective

function that does not depend on the basin-specific outputs is required.
Here we use the basin-averaged Nash–SutcliffeEfficiency (NSE) in-
dex (Kratzert et al., 2019b) as a loss function for training the EA-LSTM
model:

𝑁𝑆𝐸 = 1
𝐵

𝐵
∑

𝑏=1

𝑀
∑

𝑚=1

(�̂�𝑚 − 𝑦𝑚)2

(𝑠𝑏 + 𝜖)2
(A.2)

where 𝐵 is the number of sub-basins, 𝑀 is the number of samples
e.g., days) per basin, �̂�𝑚 is the prediction of streamflow of sample 𝑚

(1 ≤ 𝑚 ≤ 𝑀), 𝑦𝑚 is the observation of streamflow of sample 𝑚, 𝑠𝑏 is
he standard deviation of streamflow in the basin 𝑏 calculated from the
raining period, and 𝜖 = 0.1 is a constant term added to the denominator
o that the loss function does not explode for sub-basins with very low
treamflow variance (Kratzert et al., 2019b).

ppendix B. ADELS framework

For tracers on a single reach under unsteady flow, ADELS model is
xpressed mathematically as (Le et al., 2023):

𝜕𝐶
𝜕𝑡

+
𝜕 (𝑄𝐶)
𝜕𝑥

− 𝜕
𝜕𝑥

(

𝐴𝐷𝜕𝐶
𝜕𝑥

)

= −𝛼𝐴𝐶 + 𝛼𝐴∫

∞

0
𝐶ℎ𝑧(𝑥, 𝑡,  )𝜙( )𝑑

(B.1a)
(

1 +
𝜌𝑏𝐾𝑑

)

𝜕𝐶ℎ𝑧 + 𝜈
𝜕𝐶ℎ𝑧 = 0 (B.1b)
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𝜃 𝜕𝑡 𝜕𝜏
𝐶ℎ𝑧(𝑥, 𝑡, 0) = 𝐶(𝑥, 𝑡) (B.1c)

where 𝑥 denotes the distance along the channel [L], 𝑡 represents
time [T], 𝐶(𝑥, 𝑡) is the concentration in the channel [ML−3], 𝐷(𝑥, 𝑡)
s longitudinal dispersion coefficient [L2 T−1], 𝑄(𝑥, 𝑡) is channel flow
L3 T−1], 𝐴(𝑥, 𝑡) is the channel wet cross-section area [L2], 𝐾𝑑 (𝑥) is
orption coefficient of solute in the HZ [L3 M−1], 𝜌𝑏 is bulk density
ML−3], 𝐶ℎ𝑧(𝑥, 𝑡, 𝜏) represents concentration in the HZ [ML−3], 𝜏 is
yporheic age or the time elapsed by a tracer since it starts moving
n a hyporheic streamline [T], 𝜙( ) is the probability density function
pdf) of travel time  in the HZ, and 𝛼(𝑥, 𝑡) is the hyporheic exchange
ate [T−1] calculated as:

(𝑥, 𝑡) = 𝛼0(𝑥)𝑓𝑄(𝑥, 𝑡)𝛽𝛼 (𝑥) (B.2)

here 𝛼0(𝑥) represents the pseudo-mean rate of water turnover through
he HZ [T−1], 𝛽𝛼(𝑥) is the scaling exponent of hyporheic exchange due
o variation of head boundary on the stream bed, and 𝑓𝑄(𝑥, 𝑡) [–] is the
low-factor (Selroos et al., 2013; Sanz-Prat et al., 2016) representing
he fluctuation of streamflow around the long-term mean:

𝑄(𝑥, 𝑡) =
𝑄(𝑥, 𝑡)

⟨

𝑄(𝑥, 𝑡)
⟩

𝑡

(B.3)

The longitudinal dispersion coefficient is calculated as follows (Fis-
cher, 1975; Antonopoulos et al., 2015):

𝐷(𝑥, 𝑡) = 𝐷0(𝑥) × 𝑓𝑄(𝑥, 𝑡)𝛽𝐷(𝑥) (B.4)

here 𝐷0(𝑥) [L2 T−1] is the mean longitudinal dispersion coefficient
nd 𝛽𝐷(𝑥) [–] is the scaling factor representing the fluctuation of longi-
udinal dispersion coefficient around the mean value. In Eq. Eq. (B.1b),
he usual Lagrangian form of the solute transport equation is modified
o include a pseudo-velocity 𝜈(𝑥, 𝑡) to represent fluctuations of the
arcy velocity around steady-state conditions as in Selroos et al. (2013)
nd Sanz-Prat et al. (2016). In the current context, we relate this flow
actor to channel discharge

(𝑥, 𝑡) = 𝑓𝑄(𝑥, 𝑡)𝛽𝜈 (B.5)

here the parameter 𝛽𝜈 represents the scaling exponent [–] for velocity
hanges in the HZ due to the variation of head boundary on the stream
ed (Le et al., 2023). Finally, 𝐴(𝑥, 𝑡) = 𝑤(𝑥, 𝑡) × 𝑑(𝑥, 𝑡) where flow
epth 𝑑(𝑥, 𝑡) [L] and width 𝑤(𝑥, 𝑡) [L] are obtained using the hydraulic
eometry scaling relations in the form of power functions of 𝑄(𝑥, 𝑡)
escribed by Leopold and Maddock (1953) as follows:

𝑑(𝑥, 𝑡) = 𝑏𝑑𝑄(𝑥, 𝑡)𝑎𝑑 (B.6a)

(𝑥, 𝑡) = 𝑏𝑤𝑄(𝑥, 𝑡)𝑎𝑤 (B.6b)

here 𝑎𝑑 , 𝑏𝑑 , 𝑎𝑤, and 𝑏𝑤 are empirical regression parameters.

ppendix C. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.jhydrol.2024.131562.
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