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Given their considerable ability to store and stabilize carbon (C), soils are a critical resource to 

maintain in the face of the accelerated effects of climate change on natural systems. Pacific 

Northwest montane forests are hotspots of above- and belowground C storage globally, yet the 

combined effects of extended seasonal drought, longer and more extreme fire seasons, and 

warming temperatures are already disrupting C cycling in these systems and stimulating release 

of soil C to the atmosphere. Accelerated release of CO2 may intensify C-temperature feedbacks, 

fueling further global changes. The processes that influence organic matter accumulation and C 

stabilization and destabilization in forest soils are still not fully understood, and can be especially 

hard to tease apart in areas with complex interactions among spatial and temporal drivers of soil 

C. Quantifying landscape-scale (km) and finer grain (m) resolution estimates of soil C, soil C 

cycling rates, and drivers of soil C stabilization and destabilization can help inform ecosystem 

models that feed into land management decisions. The H.J. Andrews Experimental Forest (HJA) 

is a 6400-ha Long Term Ecological Research (LTER) site in Oregon’s western Cascade 

Mountains with complex terrain, varied vegetation assemblages, steep slopes, and a substantial 

gradient in elevation. HJA hosts the Detrital Input and Removal Treatment (DIRT) experiment, 

which has manipulated organic matter input rates of needle litter, woody debris, and root-derived 

C for over two decades. The first chapter of this dissertation examines the effects of sustained 

additions or removals of detritus on soil respiration to address questions about the longevity of 

the soil organic matter priming effect. While adding a more labile C source in the form of needle 



 

 

litter resulted in slightly increased release of soil CO2 beyond the amount expected from litter 

additions, there were compensatory gains in soil C relative to control treatments. I provide 

evidence that soil organic matter priming is a short-term phenomenon and that there are more 

likely seasonal changes in moisture availability that are driving changes in plant and microbe soil 

C allocation. Surprising diurnal trends in soil respiration illustrate the tightly regulated 

relationship between tree stomatal conductance, midday vapor pressure deficit, and root-derived 

soil respiration. Additionally, root and rhizosphere respiration contributed the most to total 

respiration, while above- and belowground decomposition of organic matter contributed less. 

The second chapter of this dissertation expands in scope to a spatial analysis of soil carbon 

distributions across mid- and high- elevations of HJA. This research addresses questions about 

the interplay between topographic and vegetative drivers of persistent and labile soil C pools in 

complex terrain. Ratios of C to nitrogen (N) tended to be greater in valley versus ridge sites and 

were much greater in forest versus meadow sites, which may be an artifact of the N-limitations 

in lower elevations where nutrients are cycling more quickly – in contrast to higher elevations 

where decomposition is slowed and vegetative growth is less resource-limited. In chapter three, I 

further expanded the study area to the entirety of HJA and investigated the large- and small-scale 

drivers of total soil C and of soil C fractions, in addition to soil N. I found that, unsurprisingly, 

soil depth was the most significant predictor of soil C, but that important environmental controls 

included elevation (as a proxy for temperature and moisture regimes) and proximity to the 

nearest stream. I was surprised to find that aboveground biomass and landscape position were 

less important to prediction of soil C relative to climate thresholds. Using a combination of my 

field data and machine learning techniques, I produced maps of soil C, N, and mineral-associated 

and particulate organic matter C distributions across HJA. I compared my mapped soil C 

products with publicly available soil datasets and found wide variation in predicted soil C across 

different datasets that can be explained in part by their coarse resolution and interpolation across 

too few field samples. The insights gained from the studies in this dissertation point to the 

importance of matching the spatial and temporal scale of sampling to the scale of ecological 

processes, a critical step in producing higher resolution estimates of soil C across complex 

landscapes.  
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INTRODUCTION 

Carbon dynamics in forests are directly related to projected global climate change scenarios as 

global temperatures trend upwards and seasonal moisture regimes change, influencing nutrient 

cycling rates in natural ecosystems. Despite over a century of documented soil C measurements, 

major uncertainties still exist in the spatial distribution of terrestrial carbon (C) sources and sinks 

and, in particular, the interplay between factors that influence soil C distribution and persistence. 

Global soils contain more than three quarters of all terrestrial C (Jackson et al. 2017), so any 

changes to soil C or its inputs will influence global climate dynamics, whether through increased 

losses of soil C as CO2 to the atmosphere, increased C assimilation through changing vegetation 

regimes, or imbalances between soil C stabilization and destabilization. Temperate and boreal 

forests serve as a net sink of atmospheric CO2; as plants assimilate C into their biomass, much of 

that C makes its way into soil reservoirs over time via biogeochemical pathways including 

decomposition processes and root exudates. The pathways by which soil C is stabilized tend to 

be microbially mediated and root derived, while the pathways by which soil C is destabilized 

may be decoupled from those stabilization processes in space and time. Stabilized soil C is not 

entirely resistant to decomposition but tends to have longer residence times due to strong mineral 

associations. Stable soil C, or mineral-associated organic matter (MAOM), and the more 

ephemeral particulate organic matter, POM, differ not only in mean soil residence time, but also 

in their respective biogeochemical pathways of formation and will thus display differing 

responses to environmental conditions. These pathways of formation and biogeochemical drivers 

remain poorly understood, leading to large uncertainties in soil C response to global change.  

 

Identifying small-scale and large-scale drivers of not only bulk soil C distributions, but also 

distributions of POM and MAOM, across landscapes is an important part of assessing global C 

stocks and their vulnerability to climate change. The interplay between climate, vegetation, 

parent material, landscape position, and organisms as drivers of soil C distributions is complex in 

mountainous landscapes such as those of the H.J. Andrews Experimental Forest (HJA) in 

western Oregon, USA. Decomposition processes that can destabilize soil C and result in soil 

respiration (CO2 efflux from soils) are also varied in response to aboveground and belowground 
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organic matter sources. Long term experiments like the Detrital Input and Removal Treatment 

(DIRT) experiment in HJA can help elucidate those drivers by isolating the sources of 

aboveground and belowground organic matter inputs and measuring soil functional responses 

across decades.  

 

Advances in geospatial data products and computing capabilities over the past decade allow us to 

measure and model features of landscapes at increasingly finer grain resolution (e.g., 1 m2 lidar). 

There is enormous potential for these data products to be used to improve digital soil mapping, 

which in its current form is coarse resolution and highly interpolated from small numbers of field 

samples (e.g., NRCS SSURGO). Using machine learning (ML) methods to model and predict 

soil C distributions is a promising approach that is increasingly utilized but still in the early 

stages of development. By calibrating models to large numbers of fine-grain soil samples (1 m), 

relationships can be built among both fine-scale and landscape-scale drivers of soil C, and spatial 

patterns may be elucidated in the context of competing environmental covariates. 
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CHAPTER 1: Revisiting contributions to soil CO2 efflux to determine the 

   longevity of priming effects in a temperate coniferous forest 
 

Introduction 

Global soils serve as a storage reserve for over two-thirds of terrestrial carbon and even small 

perturbations to controls on soil carbon flux can cause net CO2 release to the atmosphere 

(Crowther et al., 2016). Loss of soil CO2 to the atmosphere enhances the greenhouse effect, 

resulting in increased global surface temperatures. Consequently, the overall carbon (C) balance 

and the rate of C exchange between soils and the atmosphere influence global climate. 

Examining the mechanisms that control the balance between soil C stabilization and soil C 

mineralization will help inform predictions of current and future soil C losses in the face of 

global change. 

 

While major uncertainties exist in estimates of the magnitude and spatial distribution of 

terrestrial C mineralization sources and C sinks, there is consensus that temperate and boreal 

forests represent considerable above- and belowground C stores (Hyvönen et al., 2007). 

Disruptions to forest soil C cycling will alter the capacity and functioning of these significant 

terrestrial C reservoirs. Annual global soil respiration (Rs) from mineralization of soil C is 

estimated at 87.5 Pg C (1999–2016 mean; Lei et al., 2021) -- a C flux second only to that of the 

world’s oceans (Janzen, 2015). The intertwined forces of global change and land use change 

threaten to transform net C sinks into net C sources through the positive climate feedbacks of 

increasing surface temperatures and accelerated release of soil C as CO2 (Crowther et al., 2016; 

Adamczyk et al., 2019). The continued capacity for soils to both mediate temperature and to 

function as a global C sink will weaken if the accelerated release of CO2 to the atmosphere 

surpasses the rate of plant and microbially-derived C inputs to soils and disrupts C retention 

through soil organo-mineral interactions. Further, increased potential for soils to transform from 

net C sinks to net C sources is associated with positive soil organic matter priming caused by 

elevated microbial metabolism in response to altered C inputs and sources (Sulzman et al., 2005; 

Fontaine et al., 2007; Crow et al., 2009a; Bernard et al., 2022; Castañeda-Gómez et al., 2022).  
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Forest C dynamics are an integral part of projected global climate change scenarios as global 

temperatures increase and changes in seasonal moisture availability influence nutrient cycling 

rates, including soil respiratory losses, in natural ecosystems. While some biomes may 

experience increased NPP in response to an accelerated nutrient cycling rate associated with 

climate warming, this increased aboveground productivity does not directly translate to increased 

belowground C sequestration (Lajtha et al., 2018; Pierson et al., 2021b). Instead, accelerated 

rates of vegetative growth and senescence have been widely shown to positively prime soil 

organic matter (SOM) across ecosystems, causing mineralization and release of soil C in excess 

of that added by increased NPP (Sulzman et al., 2005; Kuzyakov, 2010; Bernard et al., 2022). 

Diverse ecosystem responses to accelerated organic matter inputs can be explained in part by the 

varied avenues for soil C stabilization and destabilization, especially through interactions 

between microbial metabolism and plant roots in the rhizosphere. 

 

As the largest component of ecosystem respiration, soil CO2 efflux represents a significant loss 

of not only recent photosynthates, but potentially also loss of previously stabilized soil organic C 

(SOC). While changes in the belowground SOC store generally contribute little to overall soil 

Rs, ecosystem processes may act to destabilize additional stored SOC by inducing SOM priming. 

SOM priming represents the multiplicative effects caused by additions of labile organic inputs 

that then cause the release of additional CO2 due to stimulation of microbial activity that 

destabilizes previously stored C (Lajtha et al., 2018). This is just one example of the 

nonlinearities that exist along the stabilization/destabilization continuum as organic matter 

decomposes, transforms, and cycles between soil, aquatic ecosystems, and atmosphere.  

 

Soil CO2 efflux results from plant root and rhizosphere activity, including bacterial and fungal 

metabolism, plus the activity of soil fauna (Hanson et al., 2000; Sulzman et al., 2005). The rate 

of soil CO2 evolution therefore depends on the relative contributions of the above processes plus 

the ecological and physiological conditions that influence those processes (e.g., tree metabolism, 

plant-available water, soil pore network structure and oxygen availability, etc.). Soil mineralogy, 
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like that present in the allophane-rich Andisols and Inceptisols in Oregon’s Cascade Mountains, 

influences the potential for the electrostatic interactions and organo-mineral complexation that 

help retain C-containing compounds and will in part dictate the native C status of the soil. The 

balance between these SOC stabilization and destabilization processes will dictate total soil CO2 

efflux rates across varied temporal and spatial scales. 

 

Numerous studies since the early 2000s have attempted to disentangle the heterotrophic and 

autotrophic components of soil respiration because those components have been shown to 

respond differently to changes in environmental drivers (Hanson et al., 2000; Olsson et al., 2005; 

Schindlbacher et al., 2009). While it remains unlikely that these respiration sources can be truly 

separated using current methods, a common approach is to distinguish between organisms that 

receive their photosynthates from the plant canopy as functional autotrophs and those that 

metabolize dead/dying organic matter as functional heterotrophs (Högberg et al., 2004; Sulzman 

et al., 2005). Soil respiration can then be separated into three categories; root and rhizosphere 

derived CO2, CO2 evolved from decomposition of aboveground litter, and CO2 evolved from 

decomposition of belowground (mostly root) litter. A valuable approach to predicting SOC losses 

under global change conditions is to measure and model soil respiration under native and 

accelerated aboveground input conditions, in addition to restricted input conditions, which can 

help disentangle the heterotrophic and autotrophic components of soil respiration and provide 

insight into how the drivers of decomposition are influenced by both biotic and abiotic factors. 

 

My goals were to investigate the temporal bounds on the SOM priming effect by revisiting a 

western Cascade Mountains temperate forest site that had exhibited significant priming effects in 

response to manipulated litter additions two decades earlier (HJA DIRT site; Sulzman et al., 

2005). The H.J. Andrews Experimental Forest LTER (HJA) hosts the Detrital Input and Removal 

Treatment (DIRT) experiment, which was established in 1996 and has been maintained as 

detrital addition, exclusion, and control treatments ever since. The positive priming of added 

litter, found previously by Sulzman, cannot last indefinitely, or soils would be free of SOM, yet 
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few studies follow priming over time scales long enough to see the relative balance between 

priming by litter and SOM stabilization of litter inputs over time.  Thus, my primary objective 

was to study the longevity of SOM priming in order to answer the question: is priming a short- or 

long-lived phenomenon? Specifically, I asked the questions: (1) with added detritus (woody and 

needle litter) inputs, does the rate of CO2 efflux from soils remain elevated or stabilize with time 

relative to the input C rate?; and (2) with reduced detritus inputs, does the soil CO2 efflux rate 

remain constant or slow over time? I also investigated the seasonal and diurnal variation in 

autotrophic and heterotrophic soil CO2 efflux to explore whether these relationships changed 

after two decades of repeated annual detritus manipulation. 

Hypotheses 

I hypothesized that: (1) the loss of live roots, as one might expect from a catastrophic natural 

disturbance like wildfire, will cause cessation of SOM priming because root exudation will 

cease. This will cause continued decline in soil respiration rates over time because microbial 

communities no longer have the ready source of metabolites from root exudates and fine roots 

that allow them to “prime” a potentially more persistent pool of SOC, even with additional 

needle litter inputs; (2) SOM priming is a short-lived phenomenon; after a decade or more of 

repeated needle litter additions, a new equilibrium state has been established such that the SOC 

stabilization rate has effectively caught up with priming. Whereas an initial phase of priming was 

established with the addition of a labile C source (needle litter) that allowed the microbial 

community to overcome an activation energy threshold and metabolize a previously more 

persistent SOC pool, the microbial community quickly adapted to the new accelerated litter input 

rate and is able to metabolize the newly added litter without inducing additional priming. 

 

This study presents findings from in situ CO2 efflux measurements following two decades of 

detrital manipulations in a temperate PNW forest and compares relative efflux contributions to 

those reported by Sulzman et al. (2005) at DIRT experiment inception. 

Methods 
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Site Description 

The H.J. Andrews Experimental Forest LTER is the 6,400-ha drainage basin of Lookout Creek in 

the foothills of Oregon’s Western Cascade Mountains. Closed canopy, coniferous forests with 

assemblages of Douglas-fir (Pseudotsuga menziesii), western hemlock (Tsuga heterophylla), and 

western redcedar (Thuja plicata) dominate the lower elevations where the Detrital Input and 

Removal Treatment (DIRT) study site is located (44◦15′ N, 12◦10′ W). This region’s climate is 

maritime Mediterranean, with wet mild winters and dry cool summers (Waring & Franklin, 1979; 

Zald et al., 2016). Mean monthly temperature at a low elevation meteorological station (Primary 

Meteorological Station: PRIMET) near the study site ranges from -1-2 °C in January to a high of 

18-20 °C in August (mean air temperature of sensors at 150 cm and 250 cm height above ground 

from 2016 through 2018).  Precipitation, averaging 2,300 mm yr-1, falls primarily from 

November to March as a mix of rain and snow, with snowpack rarely lasting more than a couple 

of weeks (Zald et al., 2016). 

 

Soils at the HJA DIRT experiment site are classified (USDA Soil Survey Staff, 1999) as a mix of 

coarse loamy mixed mesic Typic Hapludands, Andic Dystrudepts, and Vitrandic Dystrudepts 

(Dixon, 2003). The relatively flat (slopes <5% steepness), south-facing study site lies at an 

elevation ranging from 531 to 556 m on colluvial and alluvial fan deposits with a generally thick 

(4–8 cm) organic soil horizon and abundant coarse woody debris (Dixon, 2003; Pierson et al., 

2021b). Additional DIRT soil chemical and physical properties are described in Sulzman et al. 

(2005), Lajtha et al. (2005), and Pierson et al. (2021b). 

DIRT Experimental Design 

DIRT is an ongoing, long-term (25+ year) experiment which assesses the role of plant detrital 

inputs to soil and their influence on short- and long-term nutrient cycling (Lajtha et al., 2005). 

The DIRT concept is replicated across ecosystems in the United States and worldwide 

(Nadelhoffer et al., 2004). The HJA DIRT site consists of replicated plots (3 replicate plots per 

treatment and control) with treatments that include elevated woody or needle litter inputs, 

restricted aboveground inputs, restricted belowground (i.e., root-derived) inputs, and plots with 
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restricted above- and belowground inputs, alongside control plots with undisturbed old-growth 

(>500-year-old) forest conditions (Table 1.1). Plot sizes for all control plots and treatments 

except the No Root (NR) and No Input (NI) plots are ∼150 m2, while the NR and NI plots range 

from 55 to 75 m2. 

Table 1.1 

Description of detrital manipulation treatments. 

Treatment Abbreviation Description 

Control CTL Natural above- and belowground detrital inputs 

Double litter DL Aboveground needle litter inputs doubled annually 

Double 
wood 

DW Wood chips applied every other year at a doubled input rate 

No litter NL 1-mm mesh screen on soil surface prevents aboveground needle 
litter inputs, which are removed annually  

No roots NR Trees girdled at experiment inception; live roots excluded via tarp-
lined trenches around plots 

No input NI Aboveground inputs excluded as in No litter plots; belowground 
inputs prevented as in No roots plots 

 

In-situ soil respiration measurements 

Plot-level soil CO2 efflux 

From November 2017 to November 2018, soil CO2 efflux was measured roughly weekly in 

May-July and once per month during the remainder of the year using a portable infrared gas 

analyzer (LI-8100A; LI-COR Inc., Lincoln, NE) attached to a closed dynamic respiration 

chamber (LI-8100-102) placed over a 10-cm diameter polyvinyl chloride (PVC) collar. Each 

PVC collar measures 5 cm in height and is inserted 2 cm into the mineral soil. Three PVC collars 
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were installed permanently in each plot (n=54) and collar volumes measured frequently, with 

updated volumes of collars + chamber headspace used for soil CO2 flux calculations at each 

collar location. The portable infrared gas analyzer (IRGA) measures buildup of CO2 in the collar 

+ chamber headspace over 90 s and the IRGA purges gas after each measurement. Plot-level gas 

flux measurements were typically taken between 0900 h and 1300 h to minimize temporal effects 

on CO2 efflux.  

Diurnal continuous soil CO2 efflux 

To examine temporal trends in CO2 efflux across 24+ hour periods, continuous IRGA 

measurements were taken at a single location in a CTL plot at a ten-minute sampling interval for 

between 24 and 144 hours once per month in June-September 2018. An additional set of 

continuous gas flux measurements was made with two LI-COR IRGAs to investigate the 

contribution of plant roots to total CO2 efflux in June and July 2019. These sets of measurements 

were made concurrently at a single location in a CTL plot and a single location in a NR plot over 

a 120-hour period, set to a ten-minute sampling interval. 

Statistical analysis and annual summation 

Loess, local polynomial regression fitting, was used to interpolate plot-level mean daily CO2 

efflux, which was then summarized by treatment between sampling dates for the time period 

spanning the end of 2017 through the end of 2018. Measured CO2 efflux was first averaged by 

treatment for replicate plots, then loess CO2 efflux models were fitted to each treatment. 

Estimated mean daily flux rates were extracted from loess regressions and summed to create 

annual treatment-specific values. The statistical significance of treatment was tested using two-

sample t-tests at p<0.1 and p<0.05 significance levels for each treatment’s mean daily CO2 efflux 

estimate and standard errors were calculated by treatment and tested against CTL standard error.  

Partitioning soil respiration components 

I used two separate methods to investigate the question of SOM priming. The first was to 

partition the respiration components by source, using differences between annual respiration 

rates in addition and removal treatments compared with CTL. Annual litterfall was estimated 
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from the mean mass of litter removed from NL and NI plots between 2016 and 2018 (293 ± 29 g 

m−2 y−1) and the mean C concentration of needle litter (459 ± 3 mg C g-1, reported in Pierson et 

al. 2021b). Following the methods of Sulzman et al. (2005), I calculated the carbon dioxide 

attributed to each source as follows: 

Aboveground litter: Equivalent to long-term annual litterfall, 134 g C m-2 y-1 

Rhizosphere respiration, Rr: No Roots mean annual Rs subtracted from Control mean 

annual Rs (CTL-NR) 

Belowground litter: Aboveground litter C and mean rhizosphere respiration subtracted 

from total annual Rs (Total Rs - aboveground litter C - Rr) 

Partitioning Rs components relies on a number of assumptions about SOC stores and the 

dynamics of litter decomposition. I assumed that SOC stores remain relatively constant over the 

short term and that annual aboveground litter inputs are equal to total respiration from 

decomposition of current litter and litter deposited previously across the years of experimental 

manipulation. I also assumed that severed roots surrounding trenched NR and NI plots were not 

contributing to respiration and that any root regrowth into those plots is minimal. Though I have 

not directly assessed this since the time of plot installation, I am confident that the combination 

of a 1-m deep trench around each plot, thick plastic lining, and soil backfilling remain effective 

against root intrusion. Sulzman et al. (2005) further corroborates this assumption, citing 

observations from DIRT plots in Pennsylvania - which were re-trenched 10 years after plot 

installation - indicate minimal root regrowth in that time.  

Priming calculations and litter decay modeling 

My second method to examine the question of SOM priming was to use litter decay models to 

assess the proportion of respiration that could be attributed to decomposition of the needle and 

woody litter added annually. Following the methods of Sulzman et al. (2005), I calculated the 

expected contributions to soil CO2 efflux using the CO2 efflux attributed to decomposition of 

aboveground litter each year over the twenty years since plot installation. I then calculated the 

difference between this expected Rs rate and the measured Rs rate for CTL, DL, and DW 
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treatments. For NL treatments, I subtracted the amount of litter C that was predicted to have been 

added under native conditions annually (134 g C m-2 y-1). I used the SOC stocks reported in 

Pierson et al. (2021b) and litter decay models (described below) to predict the amount of 

additional SOC that could be expected annually given our double litter (double needle litter and 

double woody litter: DL and DW, respectively) treatments, and compared those estimates with 

measured values normalized to CTL values. I similarly used litter decay modeling to predict the 

amount of litter C that is predicted to have been excluded from NL treatments over two decades 

of sustained exclusions, and compared those with measured SOC values, again normalized to 

CTL. The same process was used to compare the amount of added or restricted C to soil CO2 

efflux expected due to each DW or DL addition, or NL removal treatment.  

 

I calculated the CO2 efflux expected from the amount of litter added to DL plots for each 

treatment year using a first-order decay model with a decay constant for needle litter in Douglas-

fir-western redcedar assemblages at HJA. The same method was used for DW treatments, but a 

decay constant for Douglas-fir small branches (Fogel & Cromack, 1977) was substituted in the 

decay function. I ran each model over twenty years, iteratively adding or subtracting litter 

annually depending on the type of treatment (addition or removal). 

Results 

Seasonal and annual cumulative soil CO2 efflux by treatment 

Seasonal differences in mean soil CO2 efflux resulted from both addition and exclusion 

treatments relative to CTL (Fig. 1.1a). Mean annual cumulative soil CO2 efflux was greatest in 

DW and DL treatments (1511 ± 129 and 1414 ± 132 g C m-2 y-1, respectively), followed by CTL 

(1242 ± 165 g C m-2 y-1), though on an annual basis, these treatment differences were not 

significantly different than the CTL efflux (Fig. 1.1b). In the exclusion treatments, NL, NR, and 

NI exhibited significantly less annual CO2 efflux than CTL (827 ± 72, 653 ± 76, and 616 ± 51 g 

C m-2 y-1, respectively). Statistical significance was tested at the daily level and summarized for 

visual display due to the distinct seasonality of differences between treatment levels (Fig. 1.1c).  
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Figure 1.1 Seasonal and cumulative annual soil CO2 efflux. CTL = Control, DL = Double Litter, 

DW = Double Wood, NI = No Inputs, NL = No Litter, NR = No Roots. a Soil CO2 loess 

interpolated efflux shows significantly different seasonal patterns by treatment type (shaded area 

is one standard error of the mean), with addition treatments (DL and DW) following similar 

trajectory to CTL, while exclusion treatments (NI, NL, NR) display much lower efflux, 

particularly during the spring and summer seasons, than do the CTL or addition treatments (DW 

and DL). b Mean annual cumulative soil CO2 efflux was greatest in DW and DL treatments 

followed by CTL, though these treatment differences were not significantly different than CTL 

efflux (α = 0.05). In the exclusion treatments, NL, NR, and NI exhibited significantly less annual 

CO2 efflux than CTL c Statistical significance of daily mean CO2 efflux is aligned with timesteps 

in the ‘a’ panel plot of seasonal efflux. Individual t-tests compared mean daily soil CO2 efflux of 

each treatment to control at p<0.1 and p<0.05 significance levels. Significance lines were jittered 

to avoid overlap such that the three statistical significance levels are N.S. (not significant), p<0.1, 

and p<0.05. d Each treatment’s cumulative soil CO2 efflux is represented as percent of CTL with 

associated SE. 
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October through the end of December (2017) mean CO2 efflux rates were not statistically 

significantly different between any treatments and CTL (paired t-tests, p<0.05). In January 

through March, the NR treatment was significantly less (p<0.1) than CTL and in April and May, 

NI and NL were also significantly less than CTL efflux (p<0.1). Starting in mid-May and lasting 

through November 2018, DW efflux was significantly greater than CTL (p<0.05). The DL 

treatment showed shorter periods of statistically significant difference from CTL, including the 

end of May through the end of June and then again in October through November 2018 (p<0.1). 

During each of these periods, the DL treatment CO2 efflux rate was greater than CTL, while 

between those months, DL efflux was about the same or even slightly less than CTL. The 

treatment that excluded both aboveground and belowground inputs, NI, showed the fewest 

seasonal changes in CO2 efflux, and was significantly lower than the CTL efflux from mid-

March through mid-October (p<0.05). The NL treatment showed a similar trajectory to the NI 

treatment, but had a slightly shorter period of significant difference from CTL (April through 

early October; p<0.05). The NR treatment showed a different seasonal trajectory, with a 

sustained low efflux until mid-late summer, when efflux surpassed the other exclusion plot (NI 

and NL) efflux rates from July until October 2018. 

Contributions to total efflux by source 

Major avenues for SOC inputs include aboveground forest detritus, belowground root exudates, 

microbial and fungal activity in the rhizosphere, and root sloughing. Here I differentiate among 

the Rs that results from aboveground litter decomposition, belowground litter decomposition, 

and the combination of root and rhizosphere activity.  

 

The contribution of plot-level litter C, introduced by aboveground litterfall, was 134 g C m-2 y-1 

based on the average amount of needle litter mass collected from exclusion plot screens in the 

study year 2017-2018 (Pierson et al., 2021b). This litterfall estmate is slightly less than 

Sulzman’s reported long-term annual mean of 149.6 g C m-2 y-1 (average of 1976–1985 data for 

six locations within each of two old growth stands of the same species composition at the same 
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elevation as the DIRT plots) or Sulzman’s plot-level litterfall of 153.1 g C m-2 y-1 measured from 

2002 to 2003 (Sulzman et al., 2005).  

 

Under the assumption that the equivalent amount of newly added aboveground litter each year is 

mineralized to CO2 (i.e, C gains and losses are near steady-state in the short term), I attribute 

10.8% of the total 2017-2018 efflux to the decomposition of aboveground litter (Fig. 1.2), a 

decline of close to 9% from the 2002-2003 value. My estimate of the functionally heterotrophic 

decomposition of belowground litter in 2017-2018 was about 16% less than the 2002-2003 

estimate (41.8% vs. 58%). In contrast, my 2017-2018 functionally autotrophic root and 

rhizosphere contribution was much greater than the 2002-2003 estimate – 47.4% in 2017-2018 

versus 23% in 2002-2003. Taken together, these values represent 77% in 2002-2003 and 53% in 

2017-2018 attributed to functionally heterotrophic Rs sources with the remainder attributed to 

functionally autotrophic sources. 

 

Figure 1.2 Partitioned contributions of functionally heterotrophic (litter decomposition from 

aboveground and belowground sources) and functionally autotrophic (root and rhizosphere) 

sources to total soil respiration in 2002-2003 (data from Sulzman et al., 2005) and 2017-2018. 

Pathways for C transfers among pools and avenues for CO2 respiration are shown on the 

schematic diagram on the right side. 
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Comparisons between expected and observed respiration and SOC  

I calculated differences between measured and expected soil CO2 efflux and changes in SOC 

after two decades of litter additions or removals for DW, DL, and NL treatments. SOC values 

that resulted from litter decay modeling were considered to be the amount of C added by 

decomposition of the annual litter additions or equivalent C removed on a per mass basis, 

according to treatment type. In the DL treatment, the measured Rs was 1418 g C m-2 y-1, while 

the predicted Rs was 1393 g C m-2 y-1, which, when subtracted from the CTL Rs, represents 

18.4% more than expected Rs due to the addition treatment over two decades (Fig. 1.3). The DW 

treatment showed a much greater increase in Rs than predicted, representing 131.9% more Rs 

than expected, while NL Rs was much lower than expected (832 g C m-2 y-1 measured and 991 g 

C m-2 y-1 predicted), representing 59.5% more CO2 loss than expected. At the same time, SOC 

gains due to the addition treatments were greater than predicted, with 133.9% more SOC than 

predicted in the DW and 122.7% more in the DL treatment. In the exclusion treatment, I found 

15.6% more SOC in the NL treatment than expected based on the amount of litter C excluded 

over two decades (Fig. 1.3). 
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Figure 1.3 Litter decay modeling results for measured and predicted SOC and Rs by treatment. 

Open circles represent predicted SOC (top) or Rs (bottom) values based on litter decay modeling 

for additions or removals of needle litter or woody detritus. Filled circles represent measured 

values of SOC or Rs. Green represents NL, orange represents double litter, and purple represents 

double wood. The red dashed line represents CTL SOC stock or respired C, respectively. These 

predictions account for g of C added or removed from a given treatment over the 20 years of 

sustained detrital manipulations. The DW and DL (addition) treatments showed both greater Rs 

and greater SOC stock than the predicted value, while the NL (removal) treatment showed 

greater SOC stock but less Rs than the predicted value. 
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Discussion 

Effects of two decades of root exclusion on Rs 

My first hypothesis - that the loss of live roots would cause cessation of SOM priming - was 

supported. Treatments which excluded belowground, root-derived C inputs (NR) exhibited 

highly suppressed Rs rates relative to CTL regardless of season (Fig. 1.1a). While living trees 

provide a consistent supply of metabolites to the rhizosphere through root exudates, trees that 

were girdled at experiment inception and that have been dead for close to 20 years likely have 

highly suppressed rhizosphere microbial activity, as evidenced by lower rates of soil CO2 

evolution. Similarly, treatments which excluded aboveground and/or belowground litter C inputs 

(NI and NL) exhibited low Rs rates across seasons relative to CTL. The lack of a fresh supply of 

C has likely led to a decrease in overall decomposers, as well as decreases in soil microbial 

community abundance and activity under each exclusion treatment. 

Changes in proportions of Rs contributions over time 

Two decades after initial experimental treatments were applied, the contribution of root and 

rhizosphere Rs to total Rs is much greater, while the proportions of aboveground and 

belowground decomposition of litter are contributing less to total Rs. This suggests that some of 

the effects of global change on forest C cycling are already being realized in this late 

successional forest ecosystem, potentially driving faster C cycling rates through C fixation and 

decomposition, stimulating additional root growth and microbial and fungal C processing. 

Additional evidence resulting from litter decay modeling, discussed below, supports this 

assertion. 

 

At another DIRT site, Bowden et al. (1993) reported a root and rhizosphere contribution of 33% 

in the mixed deciduous hardwood of Harvard Forest, though pine forests often show greater 

rhizosphere respiration – between 47 and 62%. Studies in highly productive coniferous forests 

that resemble our study site have reported a wide range in rhizosphere contributions to total Rs, 

but these estimates often represent a greater contribution to total Rs than in other systems, 
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perhaps due to the presence of extensive mycorrhizal fungal networks in these ecosystems 

(Phillips et al., 2012). Sulzman’s 2002-2003 estimate (23%; Fig. 1.2) of the contribution of root 

and rhizosphere respiration to the total CO2 efflux was lower than the majority of published 

values in similar coniferous forests, while my 2017-2018 estimate (47%) falls within the (albeit 

wide) range of published estimates. A statistical model based on 31 field studies predicts 

rhizosphere contributions of 30–50% for our site (Bond-Lamberty et al., 2004, reported in 

Sulzman et al., 2005), which is in agreement with my estimate. 

 

In a more recent meta-analysis of studies from a global soil respiration database, Bond-Lamberty 

et al. (2018) demonstrated that the heterotrophic component of Rs is increasing. They report that 

the ratio of heterotrophic Rs to total Rs increased significantly between 1990 and 2014, from 

0.54 to 0.63, acknowledging that while the heterotrophic Rs response to ongoing changes in 

temperature, precipitation and organic matter input to soils remains uncertain, an increasing ratio 

of heterotrophic Rs to total Rs could be due to rising SOC losses and thus a climate feedback, 

and/or increasing GPP rates enhancing detritus inputs and thus counterbalancing C losses from 

SOC. Evidence from our experiment points to both phenomena happening, but we additionally 

posit that past experiments may have significantly underestimated the functionally autotrophic 

(root and rhizosphere) component of Rs. 

Is priming still happening after two decades of sustained litter additions? 

My second hypothesis was that SOM priming is a short-lived phenomenon and that a new 

equilibrium state would be reached after two decades of sustained needle litter additions. 

Evidence from in-situ Rs measurements strongly suggests that priming is not currently 

happening and that it is indeed a short-lived phenomenon, but that the rate of C cycling in this 

highly productive temperate coniferous forest has increased such that any additional C added via 

needle litter inputs is quickly utilized in microbial metabolism. Although there were slight 

increases in Rs beyond the C amount added in DL treatments, there were compensatory gains in 

SOC relative to the CTL treatments (Fig. 1.3). 
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It remains possible that our estimate (134 g C m-2 y-1) of aboveground litterfall may be somewhat 

underestimated due to the restricted area of the plots. Sulzman et al. (2005) estimated greater 

(153.1 g C m-2 y-1) aboveground litter contributions from this site and reported a long term mean 

annual litterfall estimate of 149.6 g C m-2 from a nearby site. If our litterfall estimates are indeed 

underestimates, our measured proportion of DL Rs to the amount of added litter C would be even 

less, indicating the potential for additional soil C storage. A demonstrated potential for these 

forests to continue accumulating SOC with added detritus inputs, particularly woody inputs, is 

corroborated by Pierson et al.’s (2021b) suggestion that mineral surfaces have not reached a 

saturation point and instead have continued potential to bind additional C compounds. 

 

I explored multiple avenues when investigating the question of soil organic matter priming, and 

none provided evidence that priming was still happening after two decades of sustained litter 

additions. Given that my DL mean annual Rs was only slightly greater than the C attributed to 

the added litter over two decades, and that the SOC stock was slightly increasing at the same 

time (Fig. 1.3), changes in Rs rates can be explained by the effects of detritus addition treatments 

on soil moisture availability rather than any increased microbial metabolism of mineral-

associated SOC. This suggests that priming is a short-term phenomenon and that perhaps there is 

a point at which the microbial community adjusts to the relative abundance of litter C rather than 

attempting to metabolize older/more complex (previously mineral-associated) SOC sources. 

Seasonal and diurnal trends in Rs 

Diverse biotic and abiotic factors influence the seasonality of the Rs response (e.g. soil 

temperature, soil water availability, plant phenology, root activity, and C availability and form as 

litter and root substrates; Lloyd and Tailor, 1994; Davidson et al., 1998; Subke et al., 2006; 

Savage et al., 2013; Han and Jin, 2018; Mӓki et al., 2022). Because these factors can interact at 

different temporal and spatial scales, disentangling specific drivers of Rs responses can prove 

difficult. At a seasonal scale, there may be a more predictable temperature-driven response for 

heterotrophic Rs (i.e., Q10 value, the coefficient for the exponential relationship between soil 

respiration and temperature, multiplied by ten), while plant water status, as a function of soil 
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moisture, may primarily drive autotrophic Rs. Plant water status varies not only seasonally, but 

also on a diurnal timescale in response to relative humidity, solar radiation, and soil moisture. 

Stomatal conductance is a tightly regulated response to water stress (i.e., trees closing stomata to 

retain moisture), and because water flux and C flux are functionally interconnected, stomatal 

opening or closure will influence root and rhizosphere Rs over a diurnal period. Indeed, midday 

depression in both broadleaf and conifer tree species’ transpiration and photosynthesis -- 

resulting from reduced stomatal conductance and associated with timing of the largest daily 

vapor pressure deficit -- is well-documented (Gao et al., 2002; Johnson et al., 2009). 

 

When I measured CTL Rs continuously (at a 10-minute sampling interval) in June and July 

2018, I found differing diurnal trends that may be explained by the seasonal availability of soil 

moisture and timing of daily photosynthetically active radiation (PAR) extrema (Fig. 1.4). Across 

ecosystem types, diurnal trends in Rs are well-documented -- where nighttime low air 

temperatures and lack of solar radiation drive low Rs rates and Rs increases exponentially 

throughout the day as air temperatures increase and plant and microbial activities increase. 

However, I was surprised to find a significant midday (~14:00 H) dip in Rs that happened 

consistently across multiple days in summer months (Fig. 1.4c). This dip manifested as a rapid 

drop in Rs, often to a nighttime-equivalent low, followed by a rapid Rs increase to a peak often 

equivalent to, or greater than, the earlier afternoon peak before Rs dropped quickly again into the 

nighttime. The second peak after the afternoon low typically occurred around 20:00 H, 

suggesting that there may be a slight lag time between plant assimilation of photosynthates and 

Rs. There is seemingly a high degree of temporal correlation between the timing of plants 

closing stomata to prevent desiccation in high temperature, high vapor pressure deficit 

conditions, and a sudden drop in Rs. The July Rs sampling occurred near peak seasonal PAR and 

near the seasonal low for soil moisture, while the June sampling took place before peak PAR and 

while there was still plant-available soil moisture (Fig. 1.4a-c). 
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Figure 1.4 Seasonal and diurnal trends in environmental covariates and Rs a CTL plot CO2 

efflux across multiple days in June and July plotted as points overlaid with a loess function, 

demonstrating a clear midday dip in Rs in July that is not present in June. b Photosynthetically 

Active Radiation (PAR) and volumetric soil moisture measured at a nearby meteorological 

station (HJ Andrews PRIMET) plotted as daily means across one year, showing seasonal changes 

that may drive Rs responses. Timing of diurnal Rs measurements are indicated by the colored 

vertical bars and indicate that the July Rs sampling occurred near peak seasonal PAR and near 

the seasonal low for soil moisture, while the June sampling took place before peak PAR and 

while there was still plant-available soil moisture. c Multiple days of 10-minute sampling 

interval CO2 efflux overlaid by hour of the day for each of June and July. Gray lines represent a 

loess function for each sampling day, while colored lines represent loess functions applied to 

each monthly set of data. Across multiple days, the July data demonstrate a highly consistent 

daily midday dip in CO2 efflux, while the June data show typical midday variance but no 

pronounced dip. 
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To examine whether this diurnal trend could be related to plant metabolic activity, I measured 

diurnal respiration in both a NR plot and CTL plot at the same time (Fig. 1.5). I hypothesized 

that the lack of live trees and live roots would lead to not only an overall reduction in Rs, but 

also the lack of a midday drop in Rs. Over multiple sampling events of consecutive days of Rs in 

CTL and NR treatments, I found convincing evidence that the midday Rs dip is very likely 

related to plant metabolic activity/current plant water status, as a midday dip was not present in 

any of the NR diurnal data (one representative diurnal sampling event shown in Fig. 1.5). 

 

Other studies have reported a similar midday depression in Rs, though to the author’s 

knowledge, none have shown such a large magnitude of suppressed midday Rs as the current 

study, and most report a greater lag time between canopy photosynthesis and root respiration (on 

the order of days rather than hours). In a study of spatial and temporal variation in Rs in a 

seasonally dry tropical forest in Thailand, the authors describe a midday depression in Rs during 

the dry season but not the wet season (Adachi et al., 2009). They report a midday depression of, 

at most, 42% between 0600 and 1400h. In a temperate coniferous forest in central Japan, Makita 

et al. (2018) report July and August midday declines in Rs even as air temperature increases, 

which they attribute to times of high temperature stress and a consequent decline in C supply to 

the root system.  
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Figure 1.5 Concurrent CO2 efflux measurements at 10-minute intervals from CTL and NR plots 

in June 2018. A significantly different diurnal curve over successive 24-hour periods is evident 

between the two treatments. While NR flux was always less than CTL, both initial peak effluxes 

aligned in the midafternoon, but Rs patterns then diverged. In the CTL plot, an initial 

midafternoon peak was followed by an immediate decrease and subsequent peak that was either 

adjacent to, or greater than, the initial peak. Over each diurnal period, the NR plot demonstrated 

a morning low climbing to an afternoon peak, then a subsequent steady decline overnight to the 

next morning’s low. 

 



24 

 

 

 A pulse-labeling experiment on photoassimilates and respiration in grassland soils demonstrated 

that, under sunny conditions, labeled C compounds were transported and respired belowground 

within two hours (Bahn et al., 2009). Similar studies in low-lying vegetation have shown 

comparably fast transfer of C from aboveground to roots (Johnson et al., 2002; Carbone & 

Trumbore, 2007). However, studies of tree (Populus and Pinus spp.) C transfer to roots and 

subsequent soil respiration have shown transfer rates on the order of two to ten days (Horwath et 

al., 1994; Andrews et al., 1999; Mikan et al., 2000; Ekblad & Högberg, 2001). A three-year study 

in western Oregon’s coniferous forests showed a strong link between VPD 5-10 days earlier than 

13C-labeled CO2 respiration, but suggested that lag times varied in response to environmental 

variables (Bowling et al., 2002). They found a strong correlation between precipitation during 

the month preceding sampling, leaf predawn water potential and soil water content. In a more 

recent long-term study of continuous Rs measurements in a Missouri forest, Liu et al. (2020) 

found that GPP regulated Rs with monthly mean time lags that varied between four to twelve 

hours, and that variation could be explained by past trajectories of moisture and temperature. 

Given the diversity of influences on plant photosynthesis and respiration, it remains likely that 

multiple time lags, rather than a single lag, are possible between photoassimilation and root 

respiration in a given forest. The rapid Rs response I found, that correlated with times of high 

plant water stress, is likely one of many lag responses to canopy conditions and a suite of 

environmental variables.  

 

Constraints imposed by changes in soil moisture availability 

Multiple distinct lines of evidence point to soil moisture availability as the most limiting factor 

for total soil Rs in this system at both diurnal and seasonal scales. At a seasonal level, soil 

moisture availability seems to be principally modulated by SOC content, while trees modulate 

soil moisture at a diurnal scale through transpiration and plant water flux. Added needle litter and 

woody detritus build up the organic soil horizon, acting as a buffering layer between the mineral 

soil and atmosphere. This additional organic matter helps retain more soil moisture, effectively 

extending the growing season for vegetation. This is evidenced by the August through November 

elevated soil CO2 efflux in the DL and DW treatments compared with the CTL efflux (Fig. 1.1). 



25 

 

 

May through July efflux is also elevated in the addition treatments relative to the CTL, 

suggesting that the buffering effect occurs both before and after the seasonal peak respiration.  

 

Additional support is provided by Pierson et al. (2021b), who found measurable decreases in 

bulk density in DW treatments after two decades of sustained woody detritus inputs (mean soil 

bulk density in the DW treatment was 0.5 ± 0.08 g cm-3, compared to 0.6 ± 0.08 g cm-3 in the 

CTL). The mineral soil profile from 0-100 cm in the DW treatment demonstrated increases in 

mean SOC compared with the CTL mineral soil profile, with mean SOC increases of 24% and 

54% measured in 0–10 and 10–20 cm depths, respectively. The mass of surface litter (organic 

soil horizon) increased by 61% from the DW treatment relative to the CTL (p < 0.04), while 

surface litter accumulation from the DL treatment was relatively minimal, with a non-significant 

mean difference of +15% (p < 0.92; Pierson et al., 2021b). These changes in DW treatment soils 

relative to CTL and DL soils lend additional support to the premise that this treatment is both 

gaining more SOC while respiring more CO2 and suggests that NPP has increased due to the DW 

treatment but not the DL treatment. 

 

The DW treatment especially, and DL to a lesser extent, effectively extend the growing season 

longer into the dry season by retaining more soil moisture, as evidenced by the more gradual 

incline to a June/August peak Rs, and a longer tail following that peak (Fig. 1.1). Seasonal 

differences in Rs and litter decay modeling suggest an overall increase in NPP in this system 

over two decades of sustained litter additions (Fig. 1.3). Increases in SOC were greater than 

predicted given the amount of litter added, while at the same time, Rs was greater than predicted. 

This corroborates Pierson et al.'s (2021b) suggestion that mineral saturation has not yet occurred 

in this ecosystem, and that there is potential for additional stabilization of SOC on mineral 

surfaces.  

 

In the early years of this experiment, Sulzman et al. (2005) found weak to nonexistent 

relationships between soil moisture and respiration and only a slightly stronger correlation with 
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soil temperature, suggesting that other drivers such as plant phenology and litter quality, and 

combinations of drivers that include interactions between these and soil moisture and 

temperature may be better predictors of soil respiration in this ecosystem. Sulzman reported in 

the early 2000s that volumetric water contents remain at or near saturation in winter months at 

the DIRT site, indicating that diffusion of CO2 through soil pores will be highly reduced during 

those months, resulting in lower Rs rates across all treatments as a function of both lower 

diffusion and the cooler temperatures that may inhibit microbial activity. Two decades later, my 

Rs trends follow a similar seasonal pattern across treatments – with highly suppressed winter Rs 

that is especially pronounced in the NR treatment (Fig. 1.1a).  

 

The somewhat surprising seasonal respiration trend in the NR treatment, where Rs is lower in the 

winter months compared with all other treatments, but greater Rs in late summer/early fall than 

the other exclusion treatments (NI and NL), may point to the significant contributions to total Rs 

from seasonal responses of root and rhizosphere Rs, but also to the potential shifting of microbial 

metabolism due to changes in resources in the NR plots (Fig.1.1a). Pierson et al. (2021a) 

reported increases in the more stable form of SOC (mineral-associated organic matter, or 

MAOM) in the NR plots after two decades of restricted root inputs and suggested that these 

unexpected gains may be due to the microbial community continuing to metabolize dead roots 

that persist in these plots. If this is indeed the case, the elevated late summer/early fall NR Rs 

relative to other exclusion treatments may be a result of the warmer temperatures and relative 

availability of soil moisture providing ideal conditions for microbial and fungal decomposition of 

dead roots, while the live roots in the NL plots may be suppressing Rs longer into the fall by 

taking up any available soil moisture for tree growth and maintenance, and NI treatments are 

likely experiencing a lack of buffering against temperature and moisture extremes due to the 

combination of restricted aboveground and belowground inputs and the resultant lack of SOC. 

Indeed, the NI treatment shows a remarkably steady low CO2 efflux rate across all seasons (Fig. 

1.1). 
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Other avenues for SOC loss 

Given that Pierson et al. (2021b) found that additional detrital litter inputs did not significantly 

increase SOC stocks in the mineral soil, we provide evidence that this additional litter was 

relatively quickly metabolized by soil microbes and respired as CO2. Other avenues for C loss, 

such as by erosion, wind, or buildup on the soil surface were refuted by Pierson et al. (2021b). 

Another recent study that measured DOC transport within HJA DIRT plot soils concluded that 

DL and CTL plot DOC loss did not significantly differ from one another, so it remains unlikely 

that the additional C in DL plots was lost via DOC leaching (Evans et al., 2020). Previous DIRT 

site studies also indicated that the DOC leaching component was minimal (Yano et al., 2004; 

Lajtha et al., 2018). 

SOC mineralization as a function of environmental change 

Global rises in Rs over recent decades point to sustained SOC losses stimulated by 

environmental changes that are likely to accelerate with continuing climate feedbacks (Bond-

Lamberty & Thomson, 2010; Hashimoto et al., 2015, Bond-Lamberty et al., 2018). Ecosystem 

changes resulting from increasing air temperatures and changes in seasonal moisture regimes 

have differing effects on the decomposition processes that affect SOC stabilization and 

destabilization. For example, changes in tree stomatal conductance in response to moisture 

limitation affect allocation of photosynthates to roots, in turn influencing root respiration as well 

as the availability of root exudates to rhizosphere organisms. Climatic shifts that influence the 

seasonality of moisture will not only result in nonlinear responses to MAOM stability (Heckman 

et al., 2023), but also the resulting Rs from destabilization of that MAOM. 

 

The nonlinearities that exist among C inputs, ecosystem processes, SOC, and Rs are difficult to 

represent in process-based forest C cycling models. The assumption that accounting for the 

quantity and quality (physicochemical properties) of organic inputs will lead to accurate 

predictions of SOC is continually shown to be an oversimplification (Pierson et al., 2021). At the 

same time, the avenues by which C is stabilized in soils (i.e. organo-mineral complexation and 

electrostatic interactions) are not simply reversed to destabilize that C (Bailey et al., 2019); 
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mineralization of SOC to CO2 is more nuanced at fine spatial and temporal scales and in 

response to diverse environmental and physiological drivers. Additionally, changes in seasonal 

water availability will influence NPP and, in turn, Rs, impacting the ability for forests to act as 

either sinks or sources of C. I provide evidence that the impact of water availability on C cycling 

- and particularly on those processes that influence SOC destabilization and Rs - in this 

temperate PNW forest is likely significantly more than is accounted for in current forest soil C 

cycling models that are primarily focused on substrate quantity and quality (e.g., Klopatek, 

2008), and that those effects can be seen on seasonal and diurnal timescales.  

Conclusion 

As this region continues to experience intensifying effects of climate change, seasonal moisture 

limitations are likely to become more pronounced, further limiting NPP and resulting in 

suppressed Rs because moisture limitations will outweigh any increased microbial and fungal 

decomposition. However, sustained woody detritus inputs, added at a rate greater than the natural 

turnover of woody forest biomass, may buffer this effect by increasing the organic soil horizon 

and retaining more soil moisture during shoulder seasons when trees may otherwise be moisture 

limited. Though I provide evidence that SOM priming from added litter is no longer occurring in 

this system, Rs responses to climate changes will be varied due to its disentangled drivers but 

will most likely follow changes in NPP as a function of soil moisture and the resulting effects on 

root and rhizosphere activity. 
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CHAPTER 2: Vegetation and topography as competing drivers of soil C 

distribution and persistence in HJ Andrews’ mid and high elevations 

 

Introduction 

Pacific Northwest (PNW) coniferous forests contain vast amounts of above- and belowground C 

in vegetation and soils. However, estimates of above- and belowground C vary widely across the 

literature. Estimated soil C stocks to 1 m depth across PNW coniferous forests from one study 

ranged from around 200 Mg ha-1 to close to 500 Mg ha-1 depending on climate gradients that 

follow elevation. In that study, C stocks in aboveground living and dead biomass, including the 

forest floor, were 100 to 260 Mg ha-1 (Gray et al., 2016). Another study estimated total 

ecosystem carbon (TEC) between 185 and 1200 Mg ha-1, where an average of 63% of that total 

was in vegetation, 13% in woody detritus, 3% in the forest floor, 7% in the 0–20 cm mineral soil, 

and 13% in 20–100 cm mineral soil (Homann et al., 2005). A study of PNW forest C in the early 

2000s estimated the upper bounds on C storage based on field data of 43 old-growth forest stands 

across Washington and Oregon (Smithwick et al., 2002). The researchers estimated TEC to 1 m 

and 50 cm soil depths to distinguish the faster cycling C pools (50 cm to surface) from the slower 

cycling pools (1 m depth). An area-weighted average for the PNW TEC storage to 1 m was 671 

Mg C ha-1, while the area-weighted TEC to 50 cm depth was 640 Mg C ha-1. In that study the 

Oregon Cascades contained above average TEC: 829 Mg C ha-1 down to 1 m depth and 806 Mg 

C ha-1 down to 50 cm. While aboveground C stocks in cool, temperate, moist forests such as 

those of the PNW are a fraction of those in tropical forests (28.5 and 152 Pg C, respectively), 

belowground C stores are second only to those in Boreal moist forests (210 and 357 Pg C, 

respectively; Scharlemann et al., 2014). However, spatial heterogeneity in these forest soils is 

such that field-level estimates are difficult to extrapolate to landscape-scale estimates, as 

exemplified by the wide range in C estimates above. Drivers of fine-grain variation in soil C are 

complex and likely differ from drivers of variation at larger scale. There remains a need to 

identify the mechanisms that determine distribution and retention of SOC in complex terrain that 

is home to forests known to hold some of the largest terrestrial soil C stocks. 
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Given that the Pacific Northwest’s sizeable soil C pool is highly heterogenous, there is great 

potential for improvements in estimates of the finer scale spatial distribution of this soil C, in 

addition to estimates that go beyond bulk soil C and account for the different soil density 

fractions – mineral associated organic matter (MAOM) and free particulate organic matter 

(POM). These soil density fractions represent soil C fractions with different turnover rates and a 

range in resistance to decomposition. POM includes lighter density particulate organics 

(fragmented plant material), while MAOM is dense material adsorbed to or occluded in 

microaggregate structures with minerals (Wagai et al., 2020). MAOM-C is the most likely to be 

better protected from microbial decomposition (although this does not indicate outright chemical 

recalcitrance) and corresponds to a more slowly cycling C pool (Sollins et al. 2006; Lavallee et 

al. 2020; Heckman et al., 2022). Due to differences in physical and biochemical properties, these 

fractions will likely respond differently to environmental drivers and to drivers at different 

scales. Fine-scale interactions among plants (especially plant roots), soil organisms and minerals 

help dictate the potential for organic matter sorption and retention, while larger-scale factors like 

climate and topographic gradients may influence turnover and decomposition of vegetation. 

Importantly, it has been shown across studies and diverse ecosystems that the majority of 

MAOM results from microbial processing, and that root exudates serve as a main nutrient 

substrate for the microbial metabolism that produces those organic compounds that then sorb to 

minerals (Sollins et al. 2006; Lavellee et al., 2020). The difference, then, in spatial distribution of 

POM and MAOM C pools may give insight into the biogeochemical drivers that are acting in 

different topographic positions under different vegetation assemblages. 

 

HJ Andrews Experimental Forest (HJA) exhibits the complex topography and diverse site history 

typical of Oregon’s western Cascades, with steep terrain carved out by glaciers and mass wasting 

events. It has a varied fire history, with periods of cultural burning lasting into the early 1900s 

and periods of fire suppression until the early 1980s. Meadows were likely used for sheep 

grazing during certain historical periods as well. Though there has been some forest 

encroachment on these meadows, many persist, acting as refugia for pollinators and a diversity 

of species (Popenoe et al., 1992; Miller and Halpern, 1998; Griffiths et al., 2005).  
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The complex landforms and landscape features coupled with the land management history (i.e., 

regions of forest harvest and long-term experimental plots) in HJA cause substantial spatial 

heterogeneity in aboveground biomass. Large storm events primarily topple larger (older) trees 

on ridges and upper slopes. Soils in these landscape positions are typically thinner, making them 

quickly saturate from precipitation and causing trees in those positions to be more vulnerable to 

disturbance events (Lal, 2005; Overby, 2003). The tallest trees on ridges may be exposed to 

greater risk from lightning strikes, greater wind gusts, and more snow accumulation, resulting in 

shorter trees dominating high elevation ridgelines. Tall trees tend to dominate low elevations 

along valleys because waterways carve out valleys and bring nutrients that then accumulate and 

build thick soil profiles (Griffiths et al., 2009). These areas tend to be less vulnerable to the 

moisture limitations of ridges and steep slopes and are more protected from strong winds, so 

trees in these areas can maximize growth based on available solar radiation. High density young 

forest stands exhibit characteristics similar to those of mature forests, like closed canopies and 

high leaf area index (Zald et al., 2016). However, recently disturbed forests have higher nutrient 

availability than undisturbed forests which has been shown to cause a shift in C-allocation from 

below- to aboveground; therefore, younger stands should negatively correlate with soil C 

accumulation (Johnson et al., 1982). As vegetative growth is limited by photosynthetic capacity, 

S- and W-facing slopes that have greater exposure to solar radiation may result in greater overall 

biomass (denser stands of smaller trees, but not necessarily more tall trees). However, as slopes 

steepen, this pattern may diminish since trees will experience greater susceptibility to wind and 

erosion and more tree mortality. Soil C allocation from above- and belowground sources may 

become temporally and spatially decoupled from plant metabolism and vegetative decomposition 

on certain landscape features such as steep slopes, where erosion is a fundamental process. 

Therefore, plant productivity and soil C pools (POM, MAOM, and bulk SOC) may respond 

differently to temperature-moisture gradients across topographic features.  

 

An exploration of the spatial scale of variation in forest aboveground living C (ALC) density was 

performed in HJA using 2008 LiDAR integrated with 702 field plots to map forest ALC density 

at 25 m grain (Zald et al., 2016). The researchers found that, unsurprisingly, timber harvest was 
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the most important driver of ALC. Young managed forest stand density was driven by factors 

influencing site productivity, while old unmanaged forest stand density was driven by site 

productivity factors and finer scale topographic conditions. A similar study was performed in 

2012 in HJA using the same LiDAR and assessed the variation in soil C stocks as predicted by 

stand dynamics and environmental drivers (Seidl et al., 2012). The researchers used a high-

resolution simulation model of landscape dynamics and found that about half of the variation in 

C stocks was explained by a combination of environmental drivers, while most of the remaining 

variability was explained by stand structure and composition. Griffiths et al. (2009) studied 

topographic effects on forest soils by sampling and characterizing 184 sites across HJA. They 

found that increased elevation strongly correlated with increased soil moisture and increased soil 

organic matter, and that increase was likely driven by increased precipitation and decreased 

decomposition rates, but that SOM accumulation on N-facing slopes may be the result of both 

decreased decomposition rates and increased primary productivity. Elevations were binned into 

low (<1000 m), medium (1000 – 1500 m), and high (>1500 m) classes and SOM ranged from 

18.7% in the low elevation class to 33.2% in the high elevation class. Lower elevation sites tend 

to exhibit higher productivity than high elevation sites due to the availability of water and the 

more favorable temperatures for growth. This means that large aboveground biomass does not 

necessarily correlate with large belowground C stocks, since regions of highly productive forest 

require a substantial nutrient pool to draw from, and this nutrient pool is made up of 

decomposing organic matter that releases CO2 as it is broken down. 

 

The studies outlined above point to the potential for LiDAR data to be used in combination with 

other spatial and climate data to quantify SOC at meso spatial scale (~1-10 m). If landscape 

features that can be determined from geospatial data co-vary with stand density and 

environmental variables, it may be possible to quantify SOC at finer resolution across complex 

mountainous landscapes. My goals were to assess the relative importance of SOC drivers at 1-10 

m scale and to describe how those drivers affected SOC persistence across varied landscape 

positions and distributions of aboveground biomass. I planned to then use relationships among 

the most important SOC predictors to then map SOC distributions across HJA, and to compare 
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my estimated SOC to coarser resolution publicly available SOC datasets (see Chapter 3 for the 

mapping components and comparisons with landscape scale datasets). 

 

My main research question was:  What are the spatial patterns in total soil C, MAOM, POM, and 

C:N, and how do those relate to the large-scale drivers of vegetation and topographic position? 

Hypotheses 

1) I hypothesized that SOM on ridges and peaks would contain a greater proportion of 

POM-C:MAOM-C, and that SOM in valleys and depressions would contain 

comparatively less POM-C:MAOM-C, because the generally thinner, less developed soil 

profiles of ridges have had less time to experience the conditions for MAOM to form 

from its precursor, POM. 

 

2) Secondly, I hypothesized that MAOM formation, as a primarily root-driven phenomenon, 

would follow aboveground biomass distributions such that soils enriched in MAOM 

would tend to occupy the valleys and depressions that not only produce the thick soil 

profiles that result from erosion and deposition, but have consequently provided the 

nutrient and soil moisture conditions necessary for growth of large trees with extensive 

root systems. However, I predicted that meadow sites may prove an exception to this 

pattern due to multiple scales of biological processes, from historical land management 

(cultural burning and the practice of grazing sheep in montane meadows) to bioturbation 

by pocket gophers, as well as the C stabilization provided by deep-rooted grasses. 

Methods 

HJA Stratification for Site Selection 

To control for the varied topographic features and vegetation assemblages that exist in HJA, I 

performed a series of steps to spatially stratify HJA into a number of representative classes. From 

among those classes, I chose individual replicate sites that could be accessed by road and trail. 

Using a combination of data sources gathered from the HJA Data Repository, in addition to 
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NRCS SSURGO data, PRISM climate data, and derived geomorphon (described below) from the 

digital elevation model (DEM) as predictor variables, I built random forest (RF) models to 

predict aboveground biomass (AGB) from 2008 lidar. With the assumption that AGB would be 

somewhat correlated with SOC, I spatially stratified HJA according to the most important 

environmental covariate predictors of AGB from the best-performing RF. Distance to stream and 

elevation were consistently the most important predictors of AGB, but soil sampling is not 

permitted close to streams given that HJA is a research forest, so I did not include distance to 

stream as one of the stratification variables. Given that neither of the most important predictor 

variables was, itself, a driver of variation in SOC, and that each effectively accounted for 

combinations of other environmental covariates like precipitation, air temperature, and landscape 

position, I chose sites that covered a wide range in each elevation, slope, aspect, geomorphon 

class, and AGB. Geomorphon is a fractal approach to represent landform that must be 

parameterized to the scale of interest, so I tested many search radii to find the best compromise 

between contiguous area of a single geomorphon class and number of landform classes 

represented. Using this approach, I proceeded using seven geomorphon classes. I then 

individually selected potential sampling sites based on site access (distance to roads and trails) 

and chose sites that covered a wide range in elevation, aspect, and plant cover type, but that were 

outside of areas that had been previously harvested. I chose sites that were at least 50 m from 

streams and greater than 100 m from roads, except two alder sites, which were, respectively, 75 

m and 20 m uphill from roads. This was due to the difficulty of site access through thick stands 

of unyielding alder. Out of 50 potential sites, I sampled 30 total due to constraints imposed by 

the 2020 pandemic, wildfires, and difficulty of site access. Because the intention was to study 

how environmental covariates drove SOC distributions across complex mountain terrain, I 

primarily focused my sampling efforts on sites across the varied terrain of Lookout Mountain, 

with 4 additional sites at each Carpenter Mountain and Frissell, and two sites in alder-dominated 

high elevation stands (‘AL1’ & ‘AL2’; Fig. 2.1). The Carpenter Mountain and Frissell sites were 

included as additional pairs of high elevation meadow and forest sites. 
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Figure 2.1 Distribution of sampling site locations with HJA Administrative Boundary Layer.  

Field Sampling 

During the summer of 2020, I sampled two test sites in summit geomorphon positions on 

Lookout Mountain. At each site I set one 30 m transect between two trees in a meadow and 

sampled each meter along the middle 15 m of that transect. After measuring the organic horizon 

depth and removing it, I sampled the 0-15 cm depth by driving a 20 cm long x 5.8 cm diameter 

PVC pipe into the mineral soil and carefully removing the intact PVC/soil core. The remaining 

depths of 15-30, 30-50, 50-75, and 75-100 cm were sampled with an electric auger (Landworks 

Earth Auger) with an attached 5 cm inner diameter core bit. At each meter along the 15 m 

transect, I sampled each soil depth. I transported the soil back to the laboratory and ran an air-
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dried, ground subsample of each soil depth on an elemental analyzer (Elementar Vario Macro 

Cube; Elementar Analysensysteme GmbH, Langenselbold, Germany) for total organic C and N. 

Monte Carlo simulations on my C data for each transect at each depth and transect position was 

then used to determine the predictive power lost by including fewer observations along each 

transect. From these simulations, I determined that a minimum of 7-12 meters along each 

transect should be sampled to capture the inherent spatial variation in SOC in the x-dimension. 

This general distance was further corroborated by Griffiths & Swansons’ (2001) transect study of 

soil properties across HJA, which determined from semivariograms that 5-m spacing provided 

statistically independent soil samples.  

 

The majority of sampling events for 30 total sites took place between July and September 2021 

field campaigns. I located sites using a handheld Garmin InReach GPS and topographic maps. At 

most sites, I collected a census of vegetation present within a 30 m x 30 m area with the aid of 

the Seek App by iNaturalist. I set a 15-50 m transect between two trees, if present, or orientated 

the transect from upslope to downslope if trees were not present. Each of the middle seven 

meters along the transect was flagged for soil sampling and I took bearings and distances to the 

nearest large trees to use for site geolocation correction in GIS software. If an organic horizon 

was present, I measured its depth and removed it to expose the mineral soil. Depending on ease 

of site access and the rockiness of soil, I sampled soils using either a Landworks Earth Auger or 

10-20 cm lengths of beveled PVC driven into the soil. I sampled to at least 30 cm depth unless a 

restrictive rock layer was present. Few sites were only able to be sampled at depths of 0-10 and 

10-20 for this reason, while most were sampled to at least 30 cm, and some included depths 30-

50, 50-75, and 75-100 cm. Based on test site results from 2020 sampling and Monte Carlo 

simulations, I sampled seven transect positions along each transect, spaced 1 m apart, at 20 of the 

30 total sites. The remainder of sites included between 3 and 14 total transect positions sampled. 

I sealed the intact soil-containing PVC cores in airtight bags and transported them back to the lab 

in coolers. 
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Bulk density was determined for each soil depth increment with a core sampler (either 5.8 cm 

diameter PVC pipe or auger core bit) when possible or by excavating a known volume of soil. 

PVC-sampled soils that were deemed sufficient for bulk density calculations were noted in the 

field, and any corrections for actual sample depth were measured as the distance between soil 

depth and top of PVC pipe. Rocks and roots were removed and volumes measured. Root 

volumes were negligible and were not considered in bulk density calculations, but rock volumes 

(determined by water displacement) were subtracted from sampling core volumes to estimate 

bulk density of mineral soil only. For samples that had inaccurate estimates of bulk density 

(incomplete field samples), bulk density was estimated from the same depth from other samples 

at the same site. 

Lab Analysis 

Soils were weighed in the lab before being set out to air dry and sieved to <2 mm. Large rocks 

and roots were removed and rocks were weighed and set aside for volume estimates using water 

displacement. Air dried soils were weighed for use in bulk density calculations. A subsample of 

each dried soil depth sample from each transect (n=500+), was ground in preparation for 

elemental C and N analysis. Organic C and N content from the 2020 samples were determined 

using an Elementar Vario Macro Cube (Elementar Analysensysteme GmbH, Langenselbold, 

Germany) at Oregon State University’s Soil Health Lab. C and N content for the remaining 

samples were determined using a LECO CHN elemental analyzer at the National Forage Seed 

Production Center (ARS-USDA) on Oregon State University’s campus. Accuracy of the C 

analysis was confirmed by >90% accuracy of included standard reference samples and >90% 

consistency in the analysis results between sample replicates. 

 

Composite mineral soil samples were made for each depth increment by combining an equal 

mass of each depth along a single transect to achieve one sample per depth per transect for soil 

density fractionation, as it was not feasible to density fractionate every individual sample. Soil 

density fractionation was performed on 30 g composited subsamples of < 2 mm mineral soil for 

each transect depth to separate the soils into light and heavy fractions. Soils were weighed into 
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conical centrifuge tubes with 50 mL of sodium polytungstate (SPT) solution at a density of 1.85 

g cm-3. Centrifuge tubes were vigorously shaken by hand, then placed on a shaker table for two 

hours. The resulting slurry was then centrifuged to separate the light fraction (<1.85 g cm-3) from 

the rest of the soil material. The light fraction was aspirated into a collection vessel, and 50 mL 

of SPT was added back to the centrifuge tube. The tube was shaken vigorously by hand for one 

minute, then centrifuged again. The light fraction was aspirated into the same tube, and the same 

process repeated once more to ensure that all of the light fraction material was removed. The 

light fraction SPT mixture was filtered through a Whatman GF/F filter to separate the solid 

material from the SPT. Light fraction solids were gently scraped into a Mason jar and dried in an 

oven at 60°C until constant weight was maintained. The heavy fraction solids remaining in the 

centrifuge tube were washed and centrifuged three times with deionized distilled water to 

remove SPT, before being scraped into a Mason jar and placed in the oven with the light fraction 

samples. Once dry, light and heavy fractions were weighed, then ground for C and N analysis.  

 

Data Analysis 

Measured SOC values were interpolated using weighted averages to harmonize all data to the 

same depths, which was necessary due to some field samples that varied in the depth increment 

recovered as a function of restrictive rocks and roots. Actual sampled depths were always noted 

in the field and used to correct for bulk density of samples. If any depth in a given sample was in 

the range I interpolated to, it was included in that depth range bin. The range of depths that went 

into each bin was recorded and the dataset was repeated the number of times needed to complete 

each depth set. The harmonized depths were: 0-10, 10-20, 20-50, 50-75, 75-100 cm.  

 

Statistical differences in SOC and fraction C were determined using one-way ANOVAs with site 

or site classification (vegetation type or landform position) as the explanatory variable. Post-hoc 

Tukey HSD tests were used to determine significant differences between sites grouped into one 

of two pairings of environmental covariates: meadow and forest, or ridge and valley. Sites were 

categorized into the ridge and valley classes only if they were forested, as meadow sites showed 
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significantly different soil properties and meadows were only present on ridges and sideslopes, 

not in valleys. Alder sites were excluded from the comparisons because they were significantly 

different than any other sites in any of the groupings. ANOVAs and post-hoc tests were 

performed separately for each fraction (POM and MAOM) and soil depth increment (0-10, 10-

20, 20-50, 50-75, 75-100 cm) combination, as well as for site-level comparisons with depths 

grouped. Statistical differences were defined as significant at α = 0.05. Data analysis, statistical 

analysis, and data visualization were performed in Deepnote (2021) using R coding language (R 

Core Team, 2021). GIS analysis was performed in Deepnote and QGIS (2009).  

Results 

The 30 sites included in this study occupied a variety of landscape positions – from valleys to 

slopes and ridges – and covered a range of vegetation assemblages (alder stands, old growth 

Douglas fir-Western hemlock, Pacific silver fir and mountain hemlock, and meadows). Sites 

covered a range of topographic positions, with most sites concentrated on Lookout Mountain but 

capturing the varied aspect, slope, and elevations present across the more mountainous regions of 

HJA. Across sites, elevation ranged from 780 m to 1550 m and slopes ranged from 4% to 40%.  

SOC trends in valley and ridge sites 

Forested ridge and valley sites showed similar trends of decreasing SOC concentration with 

depth, with ridge sites containing a greater, but statistically nonsignificant, SOC concentration 

than valley sites (Fig. 2.2). Although ridge sites tended to have greater C concentration than 

valley sites, this trend ceased below 50 cm depth. Ridge SOC concentrations varied from 61.4 ± 

15.0 mg C g-1 soil in the bottom depth to 145.5 ± 16.2 mg C g-1 soil in the upper depth, while 

valley sites contained SOC concentrations between 54.8 ± 9.6 in the bottom depth to 125.2 ± 

23.6 mg C g-1 in the upper depth. Ridge and valley sites contained similar SOC stocks in the fine 

earth soil fraction to 1 m depth (561.7 ± 26.3 and 530.3 ± 16.9 Mg ha-1, respectively) that were 

not statistically significantly different (p>0.05; Fig. 2.3). The ratio of mean C to N differed 

between valley and ridge sites, with valleys containing more C:N than ridge sites, although those 

differences were not statistically significant (p>0.1; Fig. 2.4). Valley site mean C:N ranged 



40 

 

 

between 22.1 ± 1.6 and 29.9 ± 4.0, while ridge site mean C:N ranged between  21 ± 6.3 and  23.9 

± 2.3.  

 

Figure 2.2 Mean SOC concentration by depth in ridge and valley sites ± SE of the mean. 
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Figure 2.3 Mean SOC stocks of the fine earth fraction in forested ridge and valley sites ±1 SE of 

the mean by soil depth increment. 
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Figure 2.4 Mean C:N ratio in ridge and valley sites by soil depth. Error bars represent ±1 SE of 

the mean. 
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SOC trends in forest and meadow sites 

Mean soil C concentration decreased by depth and was consistently less in meadow than in forest 

sites, although both cover types contained about the same C concentration at the 75-100 cm 

depth (54.1 ± 9.2 and 54.8 ± 9.6 mg C g-1 soil, respectively; Fig. 2.5). Mean soil C concentration 

by depth was not statistically significantly different between cover types (p>0.1 for all depths). 

In the top 0-10 cm depth, mean soil C concentration was 118.8 ± 10.3 mg C g-1 soil in forest sites 

and 95.4 ± 13.8 mg C g-1 soil in meadow sites. However, SOC stocks were slightly greater in 

meadow sites due to higher soil bulk density across depths in meadows versus forest sites (Fig. 

2.6; Table 2.1). Meadow sites contained mean SOC stocks to 1 meter depth of 552.4 ± 19.8 Mg 

ha-1, while forests contained 518.5 ± 13.9 Mg ha-1. Ratios of C to N were strikingly different 

between forests and meadows, with forests containing a much greater proportion of C to N than 

meadows (p<0.01; Fig 2.7). While forest C:N decreased with depth – from 29.5 ± 0.72 in the top 

depth to 23.4 ± 1.2 in the deepest depth – meadow C:N was quite similar across all depths (14.6 

± 0.35 – 15 ± 0.19).  

 

Table 2.1 Soil bulk density (Db) by depth in vegetation and topographic position classes.  

Db (g cm-3) § 

Soil Depth 

(cm) 

Valley 

5 sites 

Ridge 

7 sites 

Meadow 

9 sites 

Forest 

18 sites 

0-10 0.44 (±0.03) 0.41 (±0.04) 0.56 (±0.04)*** 0.41 (±0.02) 

10-20 0.54 (±0.03) 0.45 (±0.03) 0.65 (±0.05)** 0.51 (±0.02) 

20-50 0.65 (±0.04)* 0.55 (±0.02) 0.70 (±0.05) 0.61 (±0.02) 

50-75 0.76 (±0.04) 0.78 (±0.01) 0.87 (±0.08) 0.76 (±0.04) 

75-100 0.87 (±0.02) 0.87 (±0.01) 0.94 (±0.05) 0.87 (±0.02) 

§ ± 1 SE of the mean; * Differences in Db by depth between pairs of vegetation or topographic 

position classes were statistically significant (α = 0.05). 
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Figure 2.5 Mean SOC concentration by depth and cover type ± 1 SE of the mean. 
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Figure 2.6 Mean SOC stock in the fine earth fraction by cover type ± 1 SE of the mean per soil 

depth increment. 
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Figure 2.7 Mean C:N for forest and meadow sites by depth ± 1 SE of the mean. *** represents 

p<0.001 and ** represents p<0.01 at α = 0.05. 
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Site level differences by soil density fraction 

The proportion of MAOM-C relative to total soil C increased with depth and was significantly 

different between ridge and valley sites at the 20-50 cm depth only (p=0.046; Fig. 2.8). Below 50 

cm depth, the ratio of MAOM-C to total soil C was greater than the other depths, but more 

similar between valley and ridge sites. The ratio ranged from a low of 0.14 ± 0.03 at the surface 

depth of ridge sites, to a high of 0.52 ± 0.11 at the 75-100 cm depth of ridge sites. In forest and 

meadow sites, there was significantly greater MAOM-C relative to total soil C in the meadow 

sites at depth increments between 0 and 50 cm (p<0.05; Fig. 2.9). Mean meadow site MAOM-C 

proportion ranged from 0.28 ± 0.03 in the surface depth to 0.58 ± 0.09 in the 75-100 cm depth, 

while mean forest site MAOM-C proportion ranged from 0.19 ± 0.02 in the 0-10 depth to 0.52 ± 

0.03 in the 75-100 cm depth.  

 

Figure 2.8 The proportion of mean MAOM-C to bulk soil C by depth in ridge and valley sites ± 

1 SE of the mean. 
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Figure 2.9 The proportion of mean MAOM-C to bulk soil C by depth in forest and meadow sites 

± 1 SE of the mean. 

 

Across depths (except 75-100 cm), the MAOM-C concentration of valley sites was greater than 

the MAOM-C concentration of ridge sites, although differences were not statistically significant 
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(p>0.05; Fig. 2.10). In ridge soils, mean MAOM-C ranged from 15.6 ± 1.1 mg C g-1 bulk soil in 

the 0-10 cm depth to 25.4 ± 0.58 mg C g-1 soil in the 75-100 cm depth. In valley soils, mean 

MAOM-C concentration was 20.6 ± 2.24 in the 0-10 cm depth but was greatest in the 50-75 cm 

depth at 31.1 ± 10.8 mg C g-1 soil. In forest soils, the mean MAOM-C concentration was 

generally lower than it was in meadows, although the only statistically significant difference 

between the two was in the 20-50 cm depth (p=0.002; Fig. 2.11). In meadows, mean MAOM-C 

concentration ranged from 21.7 ± 2.23 mg C g-1 soil in the 0-10 depth to 32.3 ± 3.44 in the 20-50 

cm depth, before declining slightly in the 50-100 cm depth to around 29 mg C g-1 soil. In forests, 

mean MAOM-C concentration varied between 17.8 ± 1.1 mg C g-1 soil in 0-10 cm and 31.1 ± 

10.8 mg C g-1 in the 50-75 cm depth. 

 

Figure 2.10 Mean C concentration of the MAOM soil fraction as a proportion of bulk soil mass 

in ridge and valley sites, ± 1 SE of the mean.  
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Figure 2.11 Mean C concentration of the MAOM soil fraction as a proportion of bulk soil mass 

in forest and meadow sites, ± 1 SE of the mean. 

 

The mean C concentration of the POM fraction as a proportion of bulk soil C declined sharply 

with depth in ridge and valley sites (Fig. 2.12). The 20-50 cm depth was the only depth 

increment where there were statistically significant differences between the POM-C 

concentrations of ridge and valley sites (respectively, 72.3 ± 6.7 and 48.0 ± 6.1 mg C g-1 soil; 
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p=0.018). Ridge sites contained 111.3 ± 13.9 mg POM-C g-1 soil in 0-10 cm depths and 25.6 ± 

10.7 mg POM-C g-1 soil in the 75-100 cm depth, while valley sites contained between 93.7 ± 

21.9 and 22.5 ± 3.9 mg POM-C g-1 soil in their upper and lower depths. Forest POM-C 

concentration was generally greater than that of meadows, except in the 75-100 cm depth, where 

they were similar (Fig. 2.13). Forest POM-C concentrations were statistically significantly 

greater than those of meadow sites in the 20-50 cm depth (57.1 ± 4.5 and 37.9 ± 2.5 mg POM-C 

g-1 soil, respectively; p=0.008). Across depths, forest POM-C ranged from 22.5 ± 3.9 to 87.9 ± 

9.6 mg POM-C g-1 soil, while meadow POM-C ranged from 23.7 ± 9.0 in the 75-100 cm depth to 

64.4 ± 11.5 mg POM-C g-1 soil in the 0-10 cm depth. The ratio of POM-C to MAOM-C was 

greater in the ridge sites than the valley sites and declined in both cover types with depth (Fig. 

2.14). Below 50 cm, ratios were similar between the two cover types, while above 50 cm, there 

was significantly more POM-C to MAOM-C in 20-50 cm and 10-20 cm depths (p<0.05). Forests 

contained significantly greater POM-C:MAOM-C compared with meadows in the 20-50 cm 

depth (p=0.002), and also contained greater POM-C in the 0-10 and 10-20 cm depths, but those 

differences were not statistically significant. 
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Figure 2.12 Mean C concentration of the POM soil fraction as a proportion of bulk soil mass ± 1 

SE of the mean in ridge and valley sites. 
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Figure 2.13 Mean C concentration of the POM soil fraction as a proportion of bulk soil mass ± 1 

SE of the mean in forest and meadow sites. 

 



54 

 

 

 

Figure 2.14 Ratio of mean POM-C to MAOM-C ± 1 SE of the mean in ridge and valley sites. 
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Figure 2.15 Ratio of mean POM-C to MAOM-C ± 1 SE of the mean in forest and meadow sites. 

 

Discussion 

My first hypothesis that (1) SOM on ridges and peaks would contain proportionally more POM-

C than MAOM-C, and (2) SOM in valleys and depressions would contain comparatively less 

POM-C, was supported by my data (Fig. 2.14). Although not statistically significant at α = 0.05 

at all soil depths, POM-C did represent a greater proportion of total soil C than did POM-C in 
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ridge sites versus valley sites in depths above 50 cm, and was statistically significantly greater in 

the 10-20 cm and 20-50 cm depths. My second hypothesis, that regions of high aboveground 

biomass would correspond to regions of high MAOM-C, was somewhat supported by my data 

(Fig. 2.15). When I compared forested sites to meadow sites, the ratio of POM-C to MAOM-C 

was greater at soil depths between 0 and 50 cm, but was only statistically significantly greater in 

the 20-50 cm depth. My additional hypothesis about meadow sites containing more MAOM-C 

than would be expected based only on the amount of aboveground biomass was somewhat 

supported, given that the ratio of MAOM-C to bulk soil C was greater in the meadow sites than 

in the forest sites (Fig. 2.9). Meadows contained statistically significantly greater MAOM-

C:Bulk soil C in all depths between 0 and 50 cm. Below that, meadows still contained a greater 

proportion of MAOM-C to total soil C but the difference was not statistically significantly 

different. 

 

Across bulk C, C fractions, and C:N, the 20-50 cm depth was frequently the depth that showed 

the most significant differences between C by cover type and by topographic position. I attribute 

this to the 20-50 cm zone being a region of active root growth, rhizosphere activity, and animal 

activity, given that nutrients are plentiful and soil moisture is more abundant than in deeper 

depths. 

 

The lack of statistically significant differences between C stocks by topographic position or 

cover type was surprising. Although not statistically significant, the differences in those C stocks 

could still be considered substantial if one considers the magnitude across the entirety of HJA. If 

ridges do in fact contain a mean SOC of 560 Mg ha-1, and valley sites contain a mean of 530 Mg 

C ha-1, there could be greater implications for loss of that substantial ridge C stock with 

continued climate change effects, particularly if ridges and high elevation areas are warming at a 

faster rate than lower elevation areas. Another concerning trend is that ridges contained a greater 

proportion of POM-C, which is considered a more ephemeral C pool. Warming temperatures 
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could differentially impact this more vulnerable C pool and cause additional soil C loss via 

microbial respiration.  

 

Previous studies from HJA and other westside Cascade forests corroborate the low N status of 

these forests (e.g., Boyle et al., 2008; Pierson et al., 2021b). The significant differences between 

ratios of C to N in forests and meadows, with forests containing a much greater proportion of 

C:N than meadows (Fig 2.7), indicates that the forested areas are typically N-limited. This is in 

large part due to the abundance of woody detritus that contains a much greater C:N than the 

relatively smaller needle litter detritus input with a smaller ratio of C:N. In these forests, relative 

aboveground litter production is lower and the proportion of fine roots to coarse roots is greater 

due to the need for a tree to expand its search radius for soil N. Turnover of these fine roots is 

also reduced relative to forests that are less N-limited and that have increased ecosystem 

productivity (Nadelhoffer et al., 1985; Lajtha et al., 2018). While forest C:N decreased with 

depth, meadow C:N was quite similar across all depths. The relatively constant C:N in meadow 

soils with depth could be an artifact of the bioturbation by pocket gophers (family Geomyidae), 

which are abundant in these meadows. As the gophers burrow, they effectively mix the soil 

layers, creating more homogenous soil properties across depths. The lower C:N ratio in meadows 

could be attributed to a number of factors. SOM inputs in meadows consist of a lesser proportion 

of woody detritus (material that has a high C:N) because the vegetation mostly consists of 

graminoids, forbs, and beargrass (Xerophyllum tenax). Additionally, turnover of fine roots may 

be greater in these areas and may support microbial populations that have a larger proportion of 

bacteria relative to fungi. Bacteria are generally believed to require more N per unit biomass than 

fungi (Fierer et al., 2009). The diversity of plant species in meadows may also result in diverse 

root exudates, which would support microbial diversity and microbial biomass accumulation 

(Chen et al., 2019). Finally, nitrogen-fixing host species like lupines are found in some HJA 

meadows, and their presence will increase the soil N concentrations. 
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The difference between the meadow mean SOC stock of about 552 Mg and the forest mean SOC 

stock of about 519 could also be considered substantial despite the lack of statistical significance 

(Fig. 2.6). Meadows occupy a relatively small proportion of the entire HJA, yet they contain 

unique biodiversity and support pollinator species. The encroachment of forests into meadows 

could not only disrupt the unique ecosystem functions of meadows, but could also promote loss 

of C and N as trees mine nutrients from these soils. Griffiths et al. (2005) studied soil properties 

as related to conifer invasion of high elevation meadows in HJA and found that N was more 

available in meadow soils than in forest soils. By studying microbial enzyme activity, they found 

that the microbial population likely changed in response to tree invasion into meadows due to 

changes in available substrates. They concluded that the observed changes to soil properties 

happened quickly after forests begin to invade meadows and that trees quickly became the 

dominant force in biogeochemical cycling in these areas. This trend of forest invasion of high 

elevation meadows has implications for C and N cycling in these areas and is particularly 

concerning with respect to pollinator diversity loss and stable soil C loss in an era of global 

change. These trends are discussed further in chapter 3. 
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CHAPTER 3: Multi-scale spatial patterns in soil carbon distribution across 

complex mountain terrain 

 

Introduction 

Global soils serve as a storage reservoir of over two-thirds of terrestrial carbon, but soil carbon 

distribution in complex mountain terrain differs from the soil carbon gradients seen in flatter and 

more homogenous landscapes. Soil landscape mapping techniques that were developed for 

application in agricultural settings or natural resource management are less effective at capturing 

spatial variance in SOC in mountainous terrain that contains more edge features and greater 

spatial variation in SOC over short distances. Edge features in steep, highly variable terrain will 

cause abrupt changes in soil properties, which would otherwise tend to manifest as more gradual 

changes along a catena (Rahbek et al., 2019). Sampling and statistical analysis techniques must 

be able to account for spatial heterogeneity and sharp transitions in meter-distance soil 

properties. We can take advantage of recent advances in geospatial and computing technologies, 

as well as machine learning (ML) algorithms, to more accurately assess soil landscapes at fine 

spatial scale. 

 

Currently available mapped products of landscape-scale SOC differ widely in their predictions 

and distributions of predicted soil C. While some of this uncertainty is an artifact of inherent 

spatial heterogeneity of soils, much can also be attributed to the constraints on effective field 

sampling. Soil sampling methods vary – from digging pits to augering and extracting cores – but 

each method is time-intensive relative to the amount of spatial variation that can be captured per 

sampling event. As a consequence, it is a common practice to composite soils sampled from 

nearby locations, with the compositing distance and number of samples being chosen somewhat 

arbitrarily by the person sampling. By effectively hiding the inherent variability in soil properties 

by compositing, even less is known about the finer scale spatial variation in soils. While this may 

be less important for studies of landscape-scale processes, it becomes more consequential when 

studying processes that interact at multiple spatial scales (Dufour et al., 2006). For instance, in 

mountain terrain like that present in the mid and high elevations of HJA, climatic gradients 
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interact with vegetation distributions, parent material, and soil organisms to produce vastly 

different soil properties within tens of meters (Griffiths et al., 2009). Edge features created by 

steep terrain and mass movements produce highly heterogenous spatial distributions of soil 

organic matter, which are not well captured in current publicly available mapped soil products 

(e.g., SSURGO). In this study, my objective was to create a soil C map of HJA that effectively 

captured the spatial variation caused by the interaction of biogeochemical processes acting at 

multiple spatial and temporal scales. My research question was: How do soil C distributions vary 

across complex mountain terrain in response to small- and large-scale biogeochemical processes? 

To further explore the effect of spatial resolution on SOC estimates, I also compared my SOC 

estimates with those from other studies and publicly available spatial data. 

 

Methods 

Spatial and climate data sources 

Data accessed and downloaded from the HJA repository were provided by the H.J. Andrews 

Experimental Forest and Long-Term Ecological Research (LTER) program, administered 

cooperatively by Oregon State University, the USDA Forest Service Pacific Northwest Research 

Station, and the Willamette National Forest. This material is based upon work supported by the 

National Science Foundation under the grant LTER8 DEB-2025755. Data used in RF models are 

described below and referenced in Table 3.1.  

 

HJA dataset ‘TV062: Plant Community Typing (2009 update), Andrews Experimental Forest’ is 

a spatial data layer containing 23 forest communities that were classified through a combination 

of similarity analysis, stand ordination, and ground-truthed reconnaissance plots (Hawk & 

Schulze, 2010). This was used as the vegetation polygon layer. LiDAR (2008) derived products 

from 1 m spatial resolution data were used from dataset ‘GI010: Lidar data (August 2008) for the 

Andrews experimental forest and Willamette National Forest study areas’ (Spies, 2016). The 

derived product, aboveground biomass (AGB), was used in RF models as a predictor variable for 
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SOC from the dataset ‘TV080: Aboveground Live Biomass (2008), Andrews Experimental 

Forest (Spies, 2015). We used the elevation model from dataset ‘GI003: 10 Meter Digital 

Elevation Model (DEM) Clipped to the Andrews Experimental Forest, 1998’ (Lienkaemper & 

Valentine, 2005). Slope and aspect spatial layers were also derived products from the 2008 

LiDAR. For roads and trails, I used dataset ‘GI007: Transportation network system including 

trails, road construction history, and gates for the Andrews Experimental Forest, 1952-2011’ 

(Lienkaemper & Schulze, 2014). The stream network from dataset ‘HF013: Stream network 

from 1997 survey and 2008 lidar flight, Andrews Experimental Forest’ was used to match the 10 

m DEM (Lienkaemper & Johnson, 2016) and was used as a predictor variable in RF models as 

‘distance to nearest stream (m)’.  

 

Climate data were interpolated from 133 locations in HJA using the PRISM model (Daly, 2020). 

Monthly 1981-2010 normals were generated at 800 m spatial resolution for precipitation, mean 

minimum daily temperature, mean maximum daily temperature, mean daily temperature, 

daytime temperature mean, vapor pressure deficit (VPD) minimum, and maximum VPD. These 

normals were then summarized to annual estimates. I applied an inverse distance weighting to 

the mean value of the ten nearest neighbor pixels to spatially summarize all PRISM climate data.  

 

Geomorphon (terrain form) mode, minority, and variety (between 1 and 3 classes of 

geomorphon) at 30 m spatial resolution were used as predictor variables in RF models. 

Geomorphons are calculated using a machine vision fractal approach that calculates a 

comprehensive set of idealized landforms that are independent of the size, relief, and orientation 

of the actual landform. This larger set of landforms is binned into ten representative landforms: 

flat, peak, ridge, shoulder, spur, slope, hollow, footslope, valley, and pit (Jasiewicz & Stepinski, 

2013).  

 

 



62 

 

 

 

 

Table 3.1 Sources of data and associated spatial resolution. 

Category 
Environmental 

covariate 
Dataset Variable(s) 

Spatial 

Resolution 

Climate Precipitation PRISM mean annual precipitation 

(in) from monthly normals 

between 1981 and 2010 

800 m 

Temperature PRISM mean daily, mean daily 

minimum, and mean daily 

maximum temperature, and 

mean daytime temperature 

(degrees F) annualized from 

monthly normals between 

1981 and 2010 

800 m 

Vapor pressure 

deficit (VPD) 

PRISM VPD minimum, maximum 800 m 

Physical  Aspect HJA DEM from 

LiDAR 

mean aspect, SD, CV 10 m 

Slope HJA DEM from 

LiDAR 

mean slope percent, SD, CV 10 m 

Geomorphon 

(terrain form) 

Generated in R 

using opensource 

code (Jasiewicz 

& Stepinski, 

2013) 

geomorphon mode, minority, 

and variety* 

30 m 

Elevation HJA DEM mean, SD, CV 10 m 

Distance to HJA LiDAR mean distance to nearest 10 m  
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stream (Lienkaemper & 

Johnson, 2016) 

stream (m) 

Biological Aboveground 

biomass (AGB) 

HJA LiDAR 

(Spies, 2016) 

mean AGB (Mg ha-1), SD, 

CV 

10 m 

Vegetation 

assemblages 

HJA Plant 

Community 

Typing (Hawk & 

Schulze, 2010) 

polygons of 23 classes of 

vegetation assemblage 

NA 

*Number of different geomorphons at a site – between 1 and 3. 

Statistical Models and Mapping Methods 

Random forest (RF) was chosen as a data-driven modeling technique because of its ability to 

handle both categorical and continuous data from large datasets, ability to output an ordered list 

of variable importance allowing the user to tune models by adjusting covariates, robust decision 

tree framework, unbiased error estimates, and widely accepted (and growing) use in digital soil 

mapping at the landscape scale (Breiman, 2001; Wang et al., 2022).  RF models were developed 

to predict percent SOC from a suite of variables derived from GIS and climate data. Models were 

used to predict transect level and site level variables (described in Chapter 2), using the default 

parameters for RF. I used the environmental covariates described in Table 3.1 to predict those 

variables, in addition to depth increments (top and bottom soil sample depths in cm) used in field 

sampling. Eighteen separate RF models were built to predict C, N, C:N, bulk density (mean, 

standard deviation, and coefficient of variance for each), light and heavy fraction C (POM and 

MAOM, respectively), and light and heavy fraction mass proportions. Models were either built 

on transect-level data or data summarized to the site level for comparison. The same parameters 

and predictor variables were used for all models so that model performance and variable 

importance was comparable between models. I created a 5 m buffer around each transect position 

location and summarized pixel values for all data to all buffered point locations. I then created a 

10 m x 10 m grid across HJA to summarize all RF-generated data to, then created rasters from 

the gridded data. 

Cross-Validation  
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When I assessed spatial autocorrelation in SOC and environmental covariates, I found that SOC 

within sites at the 1 m transect level was more autocorrelated than was SOC by depth across 

sites. Summarizing variables from the transect to the site level would not effectively address this 

issue since autocorrelation would still exist between environmental covariates and site level data. 

To address the potential issue of sample and covariate autocorrelation, I cross-validated the three 

main RF models (that predicted C, N, and C:N) using a bootstrapped approach. For each RF 

model, I randomly selected one individual site’s data to leave out of the training dataset and to 

then predict on. For the remaining individual sites, I randomly selected one C value from a 

random depth at a random transect position to leave out of the training dataset, then used that 

bootstrapped dataset to predict that set of random values in validation. This approach was 

designed to prevent any possible overfitting of the RF model in any dimension (within site, by 

depth, and between samples and environmental covariates). Bootstrapped distributions from 

cross-validation are included in each inset plot for the variable importance plots.  

 

I performed additional cross-validation by testing my modeled predictions against a large set of 

soil samples from an unrelated research project in HJA performed by Robert P. Griffiths in the 

late 1990s (Griffiths et al., 2019). Griffiths sampled the 0-10 cm depth of soils at 0.5 km intervals 

along all accessible HJA roads and recorded a total of 183 sites. They report soil organic matter 

(SOM) percent for all samples, which I converted to approximate SOC percent by multiplying by 

the commonly accepted conversion factor of 0.5 that represents the stoichiometric proportion of 

C in organic matter (Pribyl, 2010). This conversion factor was close to the reported values of 

needle (46% C) and woody (47 % C) litter C measured by Pierson et al. (2021b) in the HJA 

DIRT site. While I intentionally avoided sampling near roads due to the known edge effects of 

road construction and road features (e.g., concentrated areas of runoff and localized erosion, 

vegetation differences resulting from disturbance and tree gaps, etc.), Griffiths intentionally 

sampled along roads – presumably for ease of site access. I recognize that a cautious approach to 

interpreting similarities between the two datasets is warranted due to known differences in 

sampling design but argue that general comparisons can still be made. I built an RF on Griffiths’ 
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SOM data using the same environmental covariates from my original RF to compare model 

performance between my RF and the Griffiths RF.  

Comparison with other soil products 

Publicly available SOM data were downloaded from datasets available in Google Earth Engine 

for comparison with my predicted C stocks. A conversion factor of 0.5 was used for conversion 

of SOM to SOC, as with the Griffiths data above. Soil depth increments varied among datasets, 

so data were harmonized to the same set of depths as were used in all other analyses (0-10, 10-

20, 20-50, 50-75, 75-100 cm) by taking a weighted average. NRCS Soil Survey (SSURGO) data 

were downloaded from ‘Web Soil Survey’ using a shapefile of the HJA boundary for the AOI. 

Other datasets were downloaded from Google Earth Engine databases and included “Soil Grids” 

and “Polaris” data products. The original Soil Grids, first released in 2014, predicts global soil 

properties on a 1 km grid. It was updated to “SoilGrids250m” in 2017 and algorithms were 

updated from linear models to tree-based machine learning models, so the predictions are now 

primarily data-driven (Hengl et al., 2017). They report that extensive covariates derived from 

remote sensing data were used for these modeling efforts, including variables such as MODIS 

EVI, monthly precipitation and landform classes. Hengl et al. (2017) found in their cross-

validation that their predictions for SOC tended to underestimate the overall mean with wide 

prediction intervals. Based on this, the researchers caution against using their predictions for 

detailed spatial modeling. The Soil Grids dataset was thus chosen as a coarse resolution (250 km 

spatial resolution) comparison product. Polaris Probabilistic Soil Properties is a USGS 30 m 

spatial resolution map of soil properties that covers the contiguous United States. Polaris data 

were developed using ML on high-resolution GIS data to remap the SSURGO database. Its 

developers claim that it offers solutions to some of the weaknesses in SSURGO data. Those 

weaknesses cited include the practice of gap-filling where soils were not mapped using data from 

the surrounding regions and the artificial discontinuous produced where political boundaries 

exist. Polaris was thus chosen as a finer resolution (30 m) data comparison product. 

 

Results 
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RF model results for predicting SOC 

When all predictor variables were included in the random forest model for prediction of percent 

C, the variance explained by the model was 86.6% (Fig. 3.1). I grouped covariates in physical, 

climate, and biological groupings to examine the relative proportion of variation explained by 

each set of covariates. The variance explained was scaled between zero and one to maintain 

interpretability between predictors used in each random forest. Depth was the most important 

covariate in predicting soil C, closely followed by mean elevation (physical drivers – though it 

could be argued that elevation more closely represents a combination of climate variables in the 

form of a moisture and temperature regime gradient). Mean daily maximum temperature was the 

next most important predictor, with distance to nearest stream explaining nearly as much 

variation. The first biological driver in order of variable importance was aboveground biomass 

(AGB), which explained almost half as much variation in soil C as did depth. The vegetation 

assemblage groupings consistently came up as the least important predictors, explaining almost 

none of the variation in soil C, and were excluded from the final model. Similarly, the landscape 

position variable, geomorphon, was not an important predictor of soil C, but was slightly more 

predictive than was vegetation assemblage.  

 

As described in the methods section, it was necessary to perform a rigorous cross-validation of 

each RF model by strategically leaving out sets of data and predicting them using a 

bootstrapping approach. While the bootstrapped model explained much less variation overall 

(R2=0.29), it showed a strong correlation with the full model (0.54 correlation coefficient) and 

regressed quite similarly to both the full model and the 1:1 line (Fig 3.1 inset plot). 
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Figure 3.1 Variable importance plot for RF prediction of soil C % with an inset plot of the 

regression of the predicted model versus the measured data and the goodness of fit of the cross-

validated bootstrapped model. Colors represent covariate groupings, with blue representing 

physical variables, red representing biological variables, and yellow representing climate 

variables. 

 

Using the same predictor variables, I built an RF model to predict soil C stock (Mg ha-1) in the 

fine earth fraction of 1 m depth of soil, but excluded depth as a predictor variable (Fig. 3.2). This 

was to isolate depth as a predictor from the rest of the environmental covariates, given that depth 

alone explained a large proportion of the variance in soil C and may overwhelm the effect of 
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other important predictors. With depth excluded, the RF model explained 65 percent of the 

variance in soil C stock. This indicates that depth alone explains about 20 percent of the total 

variance in soil C when the full model is compared with the constrained model. With depth 

excluded, the remaining ranking of variable importance was quite similar, except that 

precipitation increased in relative importance as an explanatory variable.   

 

Figure 3.2 Variable importance plot for RF prediction of soil C stock to 1 m depth, excluding 

depth as a predictor variable, with an inset plot of the regression of the predicted model versus 

the measured data and the goodness of fit of the cross-validated bootstrapped model. Colors 

represent covariate groupings, with blue representing physical variables, red representing 

biological variables, and yellow representing climate variables. 
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RF modeling results for prediction of N 

The same covariates were used in an RF model to predict organic N, with a similar, but not the 

same, set of predictors coming up as the most important (Fig. 3.3). Depth was comparatively less 

important than were elevation, mean daily maximum and mean daily temperature, and distance 

to nearest stream. The goodness of fit of the full model was high (R2 = 0.95, RMSE = 0.047), and 

although the cross-validation with the bootstrapped data showed much greater variance, the 

regression was still close to that of the full model and the 1:1 line. The split between the variance 

explained by the most important predictor, mean elevation, and the next two most important 

predictors, mean daily maximum temperature and distance to nearest stream, was much greater 

than in the C model.  
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Figure 3.3 Variable importance plot for RF prediction of soil N with an inset plot of the 

regression of the predicted model versus the measured data and the goodness of fit of the cross-

validated bootstrapped model. Colors represent covariate groupings, with blue representing 

physical variables, red representing biological variables, and yellow representing climate 

variables. 

RF model results for prediction of C:N 

As with the other RF models, I used the same covariates to predict the C:N and the model was, 

again, highly predictive of my measured C:N data (R2 = 0.97; Fig. 3.4). Depth was not an 

important predictor in this model, given that C:N did not differ by depth.  
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Figure 3.4 Variable importance plot for RF prediction of soil C:N with an inset plot of the 

regression of the predicted model versus the measured data and the goodness of fit of the cross-

validated bootstrapped model. Colors represent covariate groupings, with blue representing 

physical variables, red representing biological variables, and yellow representing climate 

variables. 
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Mapped products from RF predictions at 100 m2 spatial resolution 

Across HJA, predicted soil C concentration ranged from 67 to 250 mg C g-1 soil in the 0-10 cm 

depth increment (Fig. 3.5). Soil C concentrations appeared to follow a strong elevation gradient, 

with lower C concentrations generally in lower elevation areas and higher C concentrations in 

high elevation areas (see Fig. 3.6). There was a strong positive trend between closer proximity to 

stream and greater soil C, especially within about 50 m of a stream. The highest elevation ridges 

on Carpenter Mountain and Lookout Mountain (~1600 m) show high C concentrations 

concentrated on the ridge itself that quickly decrease with descending elevation off each side 

slope of the ridge, until a headwater begins for each stream network and the C concentration 

quickly increases again (Fig. 3.7). In the 75-100 m depth, C concentration is decreased to 

between 44 and 161 mg C g-1 of soil and appears less correlated with elevation and more 

correlated with distance to stream than in the surface depths (Fig. 3.8). There is a pattern of 

speckling present at the deeper depths, where spatial variation in soil C concentration is high at 

short distances, which could be attributed to greater uncertainty in soil C estimates at that depth.  

 

Figure 3.5 Spatial distribution of predicted soil C concentration across HJA in the 0-10 cm soil 

depth increment at a 10 m x 10 m pixel size. 
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Figure 3.6 Elevation map of HJA in meters.  

 

Figure 3.7 Lookout Mountain region enlarged to show patterns in soil C concentration at finer 

spatial scale. 
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Figure 3.8 Map of predicted soil C concentration across HJA in the 75-100 cm depth increment 

at 10 m x 10 m spatial resolution.  

 

Predicted soil N concentrations follow similar broad-scale spatial patterns to those of soil C, with 

greater N at high elevations and following waterways (Fig. 3.9). The gradient N follows is 

somewhat smoother than the C gradient, which showed more fine-scale spatial patterning in 

comparison. The N gradient distinctly follows elevation bands, with the highest N concentrations 

predicted between 1100 and 1300 m elevation. There’s a decrease in N above and below these 

elevations, and below 1100 m, distance to stream appears to replace elevation as the dominant 

driver of N distributions.  
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Figure 3.9 Map of predicted soil N concentration in the 0-10 cm depth increment across HJA. 

 

The predicted C:N shows different spatial patterns than either the C or the N map alone, with 

finer scale spatial patterns becoming evident (Fig. 3.10). Aboveground biomass distributions and 

areas of disturbance (forest harvest and mass movements) are much more apparent in the C:N 

map. At a larger scale, the C:N ratio is greatest in lower elevation areas but decreases with closer 

proximity to stream. Higher elevation areas have a distinctly low C:N, especially along ridges, as 

do areas of disturbance. C:N ranges from a low of 13.7 at high elevation to a high of 36.6 in 

lower elevation vegetated regions. C:N stayed constant with depth. 
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Figure 3.10 Map of predicted soil C:N in 0-10 cm depth increment across HJA. 

 

Predicted soil C stock followed similar trends to those of mapped soil C concentration but 

showed an even greater positive trend associated with streams and showed similarly strong 

associations with particular high elevation bands (1100-1300 m; Fig. 3.11). The side slopes and 

foot slopes of Lookout Mountain and other highly sloped areas showed the smallest C stocks (a 

low of 218 Mg ha-1 in the fine earth fraction to 1 meter depth), while flatter regions and valleys 

had the greatest soil C stocks (to a high of 873 Mg ha-1).  
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Figure 3.11 Map of predicted soil C stock to 1 m depth across HJA. 

 

Predicted POM-C concentration in the 0-10 cm depth ranged from 43.8 to 195 mg g-1 soil (Fig. 

3.12) and 21 to 160 mg g-1 soil in the 75-100 cm depth (Fig. 3.13). There were strong 

correlations between greater POM-C concentration, close proximity to stream, and higher 

elevations. Predicted MAOM-C concentration showed a strikingly different distribution than did 

POM-C (Fig. 3.14). In the 0-10 cm depth, MAOM-C varied between 13.7 and 36 mg g-1 soil, 

while in the 75-100 cm depth, the mean concentration was only slightly greater – varying 

between 14.8 and 41 mg g-1 soil (Fig. 3.15). Distance to stream was much less influential to the 

MAOM-C concentration than to the POM-C concentration. MAOM-C instead followed an 
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elevation gradient, where it was greatest in the flattest valleys below 800 m elevation, but 

increased sharply again in certain areas above 1400 m elevation.   

 

Figure 3.12 Map of predicted POM-C concentrations across HJA in the 0-10 cm soil depth 

increment. 

 

Figure 3.13 Map of predicted POM-C concentration in the 75-100 cm soil depth across HJA. 
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Figure 3.14 Map of predicted MAOM-C concentration in the 0-10 cm depth increment across 

HJA.  

 

Figure 3.15 Map of predicted MAOM-C concentration in the 75-100 cm depth across HJA.  
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A cross-validation of my RF model using Griffiths’ data  

I used the same covariates in an additional RF model to test its accuracy in regions of HJA where 

I had not sampled (mostly lower elevations and regions that had been harvested previously). The 

most important predictors in the Griffiths model were climate variables (temperature and 

precipitation), and distance to stream came up as explaining a negligible amount of the variation 

in SOM. The correlation coefficient between Griffiths’ measured and predicted SOM was 0.57, 

compared with the correlation coefficient between Griffiths’ model predictions and our measured 

SOC (divided by 0.5 to convert to SOM) of 0.41. A linear regression of Griffiths’ model 

predictions versus measured data produced a statistically significant p<0.01 at the 0.05 alpha 

level, with an R2 of 0.32. The Griffiths model was less predictive of my data, with an R2 of 0.16 

(p<0.01). However, when the models are regressed against each other, they predict similarly and 

are close to the 1:1 line (Fig. 3.16). 

 

Fig. 3.16 RF model prediction comparison between my RF-predicted SOM and measured SOC 

(converted to SOM; ‘HPC’) and between my RF-predicted values and Griffiths’ measured SOM.  
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SOC stock comparisons with publicly available datasets 

When SOC stock predictions across HJA were compared between my model and publicly 

available datasets, there was some overlap between SOC predictions from all four datasets, but 

the range of estimates varied widely between them (Fig. 3.17). The estimates from my RF model 

were higher, and Polaris data were the lowest, with SSURGO and Soil Grids in between. There 

was little agreement between my modeled results and Polaris when the data were regressed 

against each other (Fig. 3.18), more agreement with Soil Grids (Fig. 3.19), and much less with 

SSURGO (Fig. 3.20). When I tested the strength of correlation between each of the datasets and 

my data, I found the strongest correlations between my RF-modeled data and Soil Grids (Fig. 

3.21; corr=0.31), a negative correlation with SSURGO (-0.49), and no meaningful correlation 

with Polaris (0.05). My site-level and transect-level measured data showed a similar degree of 

correlation with Soil Grids as my RF-modeled data, but greater correlation with Polaris than did 

my modeled data (between 0.24 and 0.3) in the 0-10 cm depth. In the 0-100 cm depth, 

correlation among the above pairs was similar – between 0.23 and 0.35. The SSURGO soil C in 

0-10 cm was negatively correlated with all other datasets, but in the 0-100 cm depth increment, 

SSURGO was positively correlated with my site-level and transect-level data (correlation 

coefficients of 0.34 and 0.23, respectively).  
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Figure 3.17 Range in distribution of estimated SOC in the top 1 m of soil for HJA.  
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Figure 3.18 Regression of my RF-predicted soil C stock (‘hpc’) and the Polaris estimated C 

stock. 

 

Figure 3.19 Regression of my RF-predicted soil C stock (‘hpc’) and the Soil Grids estimated C 

stock. 
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Figure 3.20 Regression of my RF-predicted soil C stock (‘hpc’) and the SSURGO estimated C 

stock. 
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Figure 3.21 Correlation matrix for comparisons among publicly available datasets and my site-

level (“Site”), transect-level (“Transect”), and RF-predicted (“hpc”) data, as well as another 

dataset generated by Robert Griffiths (“Griffiths”) from soil sampling 0-10 cm along HJA roads 

in the late 1990s. The top matrix contains correlation coefficients for 0-10 cm depth soil C 

predictions and the bottom matrix contains correlation coefficients for 0-100 cm depth soil C 

predictions.  
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Discussion 

C and N trends with selected covariates 

The predictors I had previously assumed would have the greatest influence on soil C and N 

distributions – chiefly vegetation and topographic position – were alone less influential than 

climate variables and proximity to water source, although they certainly contributed to variability 

in C and N distributions. To further explore some of the trends in significant covariates, I 

performed a series of regressions relating different drivers to SOC, soil N, and C:N, discussed 

and presented below.  

 

A regression of SOC stock and distance to nearest stream shows a threshold distance that seems 

to be the most influential to SOC stock at around 50 m from a stream (Fig 3.22). At that distance, 

greater SOC stocks are associated with closer distance to stream. Beyond 50 m, SOC drops off 

precipitously as distance increases; the distribution appears to be bimodal at > 50 m and < 50 m, 

which appears to be the critical distance for influence of water source on SOC. 

 

When mean daily maximum temperature is plotted against SOC stock, there appears to be some 

structure in the data that may describe the relationship between decomposition and plant 

productivity as a function of temperature (Fig 3.23). Plant productivity decreases with 

temperature, as does decomposition, but not at the same rate. The pattern in Fig 3.23 may be 

indicative of the point at which decomposition exceeds the rate of productivity – around 13°C, 

with decomposition becoming more important and starting to outweigh plant productivity around 

14°C. The temperature trends could indicate that the rate of decomposition decreases more 

quickly than the rate of plant productivity with decreasing temperature. These temperature bands 

appear to correspond to elevation bands when mapped (as with the N data described below). 

 

The SOC stock shows a negative relationship with slope – likely indicative of the erosion that 

happens as slope increases (Fig 3.24). This is an important process in HJA, where steep slopes 
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are common and snowmelt and heavy rainfall cause erosion from hillsides and deposition along 

the edges of river valleys. 

 

 

 

Figure 3.22 Relationship between SOC stock and distance to nearest stream across HJA. 
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Figure 3.23 Relationship between SOC stock and mean daily maximum temperature across 

HJA. 
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Figure 3.24 Relationship between SOC stock and percent slope across HJA. 

 

A regression of elevation and soil N stock shows distinct banding at at least three distinct N 

thresholds (Fig. 3.25). These N bands appear to decrease slightly with increasing elevation, and 

are strongest at low N (~8-10 Mg ha-1), indicating that there is a strong influence of elevation 

(which produces temperature and moisture gradients) on N. A regression of temperature and N 

shows the same trend but reversed – as daily maximum temperature increases, so does N (Fig. 

3.26). To explore these N thresholds further, I plotted N stocks across HJA with thresholds that I 

identified as peaks in the temperature and elevation data (Fig. 3.27). I found that there was 

indeed a strong elevation gradient, where below ~1100 m, N stock was ≤ 11 Mg ha-1, and above 

that elevation, N stocks increased substantially to 15-20 Mg ha-1, and ˃22 Mg ha-1 if within 50 m 

of a stream and above 1100 m. Although soil N distributions are expected to follow N-fixing 

vegetation types like red alder (Alnus rubra), these patterns were not evident at the landscape 

scale in HJA. However, they were present in the site-level data presented in chapter 2. Red alder 

is known to be a pioneer species that establishes quickly after landscape disturbance, so it is 
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possible that the finer scale N distributions that are evident along roads and along streams 

(regions of greater soil N concentrations) are a result of alder presence. 

 

There was some structure present in the data when C:N was regressed against aboveground 

biomass, but the pattern was not consistent across the landscape (Fig. 3.28). There appeared to be 

two significant groupings of high and low C:N that produced a somewhat bimodal distribution of 

C:N at relatively low biomass (~300-400 Mg ha-1), where one grouping had low C:N (<25) and a 

larger grouping had higher C:N (30-38). This could be due to differences in vegetation type or 

forest harvest history. When C:N was classified into groupings of low C:N (18-25) and high C:N 

(28-37) and mapped across HJA, the groupings strongly followed an elevation-driven 

temperature gradient, with low C:N at the low-temperature, high elevations, and high C:N in the 

lower-elevation, higher temperature regions (Fig. 3.29; Fig 3.30). This pattern was mainly 

influenced by N, as it showed the same pattern as N when plotted (Fig. 3.16), except that the 

influence of distance to stream was not identifiable in the C:N map. While distance to stream was 

a less influential driver of C:N based on the map, suggesting that other drivers overwhelmed its 

influence, a regression of distance to stream versus C:N corroborated the significant influence of 

50 m distance to stream as a strong peak in the distribution (Fig. 3.31). At distances of 100-200 

m, the influence of stream on C:N substantially decreased. Within 50 m of a stream, the majority 

of the distribution centered around a C:N of 30-35, indicating that higher C and lower N were 

correlated with distance to stream. However, there was also a lower C:N peak between 20 and 23 

that suggested that lower C and higher N could also be associated with closer proximity to 

stream in certain areas. These areas were determined to be high elevations near the heads of 

streams based on the N map (Fig. 3.27). The C:N versus AGB and C:N versus distance to stream 

plots (Fig. 3.28 and Fig 3.31) show similar bimodal distributions, but in the peak at lower C:N, 

the ratio of C to N is much lower with lower AGB than it is with close proximity to stream. This 

suggests that moisture availability may be more influential to C:N than is the amount of biomass. 
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Figure 3.25 Relationship between elevation and soil N across HJA.  

 

Figure 3.26 Relationship between mean daily maximum temperature and soil N across HJA.  
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Figure 3.27 Map of predicted N stock to 1 m soil depth across HJA, classified and visualized by 

natural breaks in the data. 

 

Figure 3.28 Relationship between aboveground biomass (AGB) and C:N across HJA. 
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Figure 3.29 Map of C:N across HJA in the 0-10 cm depth increment, visualized by significant 

peaks in the C:N data. 

 

Figure 3.30 Relationship between mean daily maximum temperature and C:N across HJA. 
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Figure 3.31 Relationship between mean distance to nearest stream and C:N across HJA. 

Large- and small-scale spatial patterns 

On a global scale, temperature and precipitation represent the dominant controls on SOC cycling 

(Post, 1982), while vegetation, topography, and parent material may become more significant 

drivers at increasingly smaller spatial scale. The strong elevation gradients present in HJA can be 

used as a proxy for temperature and moisture thresholds and point to the overwhelming influence 

of climate at the km and even 10-50 m scale. The abrupt edges at particular elevation bands, such 

as 1100 to 1300 m, show critical thresholds where temperature and moisture become limiting to 

biological activity and to the biogeochemical processing of nutrients that results. Despite the 

strong influence of climate at different elevations in HJA, proximity to a water source (a smaller, 

meso-scale driver) is a dominant driver of C and N distributions, outcompeting climate in certain 

areas (e.g., high elevation watershed heads and low elevation valleys). Other drivers thought to 

be significant predictors of soil C and N were less so – surprisingly, AGB, vegetation 

assemblage, and topographic position were much less predictive than expected. Of those three, 

AGB was perhaps the most important, but was always secondary or tertiary to other predictors at 
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the landscape scale. Topographic position showed some significance in that high slopes were 

important for nutrient loss and transport from an area, and aspect could be seen as influential in 

the E-W ridge divide on Lookout Mountain, where N concentrations were greater on the W-

facing slope than the E-facing slope (Fig. 3.9). This could be a function of higher productivity on 

the W aspect, which experiences less seasonal moisture limitation than does the E aspect.  

 

In agreement with previous studies in HJA and other cool, temperate forests, soil C and N 

increased with elevation (Post et al., 1985; Hart & Perry, 1999; Griffiths et al., 2009; Jenny, 

2012). Organic matter resulting from primary productivity at high elevations is retained because 

the cold temperatures limit microbial activity (Paul, 2014).  In a soil transfer experiment at HJA, 

Hart & Perry (1999) transferred soils from high elevations to low elevations and vice versa and 

found that the soils originally from the high elevation sites had more than doubled soil net N 

mineralization and nitrification rates when transferred to the low elevation sites, while soils 

transferred from the low to high elevation sites resulted in greatly reduced N mineralization and 

nitrification. This evidence further supports the conclusion that high elevations in Oregon’s 

central Cascades support greater soil C and N storage than similar low-elevation sides as a 

function of temperature limitations on C and N mineralization at high elevations.  

Mineralogical influences 

While clay content has long been used as the principal modifier of SOM turnover rates in 

biogeochemical models due to its ability to sorb organic matter and promote aggregation, recent 

research efforts have pointed to the flaws in this simplistic representation and have instead cited 

the importance of specific physicochemical properties (Rasmussen et al., 2018). In humid, 

forested regions, an abundance of Fe and Al can be a strong predictor of SOM as both can bind 

organic matter. Rasmussen et al. showed that short range order (SRO) minerals and Ca may be 

more important drivers above pH 5.5, while lower pH (as in HJA soils) favors organo-metal 

complexation as the dominant factor. In HJA, the prevalent steep slopes prevent accumulation of 

clays in many areas, but moderately sloped regions and valleys are able to collect deep residual 

and colluvial, clay-rich soils. However, clay content tends to decrease with elevation if it is 
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below a weathering threshold since coarse, young volcanic material has not had sufficient time to 

develop significant secondary clay minerals (Osterloh, 2018).  

Additional trends with elevation: Persistent snowpack and Andisol formation 

Osterloh’s (2018) research in the Oregon Cascades suggests that snow and high annual 

precipitation (exceeding 150 cm) is highly influential in the formation of andic properties and 

Andisols, perhaps outweighing the influence of parent material as the most important factors for 

Andisol formation. He states that the rapid weathering caused by high levels of precipitation 

removes the soluble, base-forming cations from the soil, causing the less mobile Fe and Al to 

become oversaturated in the soil solution, thus forming short-range order (SRO) minerals. In his 

study, SRO minerals increased with elevation, meaning that the presumed capacity for C sorption 

increased with elevation. The prevalence of andic properties including SRO minerals were 

positively associated with elevations above 1000 m. Precipitation typically falls in the form of 

snow above elevations of 1200 m and can persist from December through April in the highest 

elevations. Mountainous regions are already experiencing decreased seasonal snowpack as a 

result of anthropogenic climate change. A recent review predicted a decline of 25% in snow 

water equivalent across the western US in the next 50 years (Siirila-Woodburn et al., 2021). With 

only a 2°C increase in winter temperatures, much of this snow is at risk of converting to rainfall 

(Nolin & Daly, 2006). As persistent snow lines increase in elevation and move further North in 

latitude, there may be fewer regions that have the conditions necessary for Andisol formation – 

and for the soil C storage that comes along with andic properties.    

Distributions of POM and MAOM 

Mineralogy is expected to be an important driver of not only bulk C distributions, but also 

MAOM-C distributions. Parent material and soil texture are significant drivers of MAOM-C, 

since the underlying mineralogy is necessary for interaction and potential for sorption with 

organic matter. To perhaps a lesser extent, vegetation and climate influence MAOM-C 

distribution. Clays and phyllosilicate materials with large surface area bind organic matter, 

forming soil aggregates. Plant roots provide labile C exudates to the microbial community in the 

rhizosphere, and those microbes aid in the aggregation processes. 
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I investigated the potential relationship between SSURGO mapped clay percent, MAOM-C, 

mapped rocks, wetlands and meadows, and soil bulk density to attempt to explain the distribution 

of MAOM-C across HJA (Figs. 3.32-3.36). As expected, there was a strong correlation between 

soil bulk density and MAOM-C (Fig. 3.34; Fig. 3.35). The higher bulk density along the ridge of 

Lookout Mountain was in agreement with the high prediction of MAOM-C in that area. 

Interestingly, as an aside, the prediction of greater bulk density in Watershed 1 of HJA (lower left 

corner of Fig. 3.34) would appear to agree with its harvest history (clearcut), particularly 

compared with the lower bulk density in its paired old growth Watershed 2 to the right of it. 

However, the mapped clay did not entirely agree with the MAOM-C distribution. There were 

low elevation areas in valleys that contained both greater clay content and greater MAOM-C, but 

the high MAOM-C content on the top of Lookout Mountain was not reflected by a high clay 

content – at least as predicted by SSURGO. When I plotted MAOM-C concentration as a 

function of clay percentage, I found some correlation between moderate clay concentration and 

moderate MAOM-C concentration (Fig. 3.32). The high bulk density along the ridge of Lookout 

Mountain did not entirely explain the distribution of MAOM-C, which covered a wider area on 

top of the mountain. The abundance of mapped “rocks, cliff, talus, steep tag alder patches” and 

wetlands and dry meadows on top of Lookout Mountain (Fig 3.36) could help further explain the 

MAOM-C in that area, since the alder patches and meadows are very likely higher soil N areas, 

and higher soil N correlates with a greater microbial community abundance for processing the 

organic compounds that form MAOM (in opposition to greater fungal abundance, which would 

tend to process a greater proportion of C and not lead to MAOM formation, according to current 

understanding).  
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Figure 3.32 Relationship between MAOM-C concentration and SSURGO clay content in the 0-

10 cm soil depth increment. 
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Figure 3.33 Map of SSURGO estimated clay percentage across HJA to 1 m depth (bottom) 

paired with MAOM-C concentration (top) for visual comparison. 
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Figure 3.34 Map of soil bulk density at 0-10 cm depth increments across HJA. 

 

Figure 3.35 Relationship between bulk density and MAOM-C concentration in the 0-10 cm soil 

depth increment (left) and 75-100 cm depth increment (right). 
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Figure 3.36 Mapped rocks, cliffs, talus, steep tag alder patches, wetlands, and dry meadows 

across HJA. 

 

Climate has long been recognized as a primary driver of soil C and N distributions (Jenny, 1961). 

Jobbágy & Jackson (2000) noted in a meta-analysis of global SOC stocks that the relative 

distribution of SOC with depth had a slightly stronger association with vegetation than with 

climate, but that the opposite was true for the absolute amount of SOC. In their analysis, total 

SOC increased with clay content and precipitation, and decreased with temperature. In shallow 

depths, climate was the primary driver, while in deeper depths, clay content was the dominant 

predictor of SOC. However, Rasmussen et al. (2018) showed that it is not just the amount of clay 

that is important for C interactions in soil, but the types of clays present, as well as the acidity 

and soil moisture regime. Rasmussen demonstrated that in acidic soils in humid temperate 

forests, Al- and Fe- complexes are the most important predictors of SOC, while in drier 

environments and with increasing pH, short-range order (SRO) minerals, Ca, and total clay 

emerged as more important drivers. 
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Torn et al. (1997) suggested that the non-crystalline amorphous Al and Fe hydroxides that 

accumulate in weathered soils may retain SOC for millenia. The 1:1 silicate clays are associated 

with shorter SOC timescales due to their more limited sorptive capacity than the larger surface 

area 2:1 silicate clays. Since weathering of volcanic parent material proceeds from metastable, 

non-crytalline mineral formation over the first ~150,000 years to accumulation of more stable 

crystalline minerals after that, the capacity for C sorption should follow a similar timeline 

(greater capacity in younger volcanics but decreasing over time on a millennial scale). As the 

volcanics weather, they transform from the Andisols known for their high C retention to Oxisols 

with a lower capacity to stabilize C.  

 

Transitions from seasonal snowpack to precipitation in the form of rainfall may be expected to 

increase the proportion of POM-C:MAOM-C in Cascade Mountains if there are commensurate 

increases in primary production and decomposition at high elevations that cause increased 

mineralization of C and N. Heckman et al. (2021) found that persistence of all C pools decreased 

with increasing mean annual temperature throughout the soil profile, while persistence increased 

with increasing wetness index in subsurface soils (30-176 cm). In their study, MAOM-C in 

surface soils (<30 cm) increased more strongly with increasing wetness index than did POM-C, 

but both pools showed decreased response to wetness index at depth. They conclude that climate 

showed a strong influence on soil C properties, and that there was risk of loss of soil C from 

protected pools in areas with decreasing wetness.   

Future work 

Although my RF models are highly predictive in their current state, there is much room for 

improvement through additional field sampling across the lower elevations of HJA and the mid 

elevations of Lookout Mountain, and through model refinement using additional and/or 

improved predictor variable datasets. Additional sampling would lend greater confidence to 

model estimates in areas that were not sampled and could be used to validate future models. I 

was surprised to find that the vegetation assemblages were not at all predictive of soil C, and I 

hypothesize that this is an artifact of the map not being truly representative of the spatial 
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distribution of vegetation across HJA. An improved vegetation assemblage map or a spectral data 

source like NDVI could be used instead, since it is well-established that vegetation type will 

influence soil C and N. Another improvement could be a data source that has high resolution 

parent material and mineralogy estimates across HJA. This could be used to better understand 

MAOM-C distributions across the region. Additional field sampling could aid this effort. Data 

sources that reach beyond the bounds of HJA could help elucidate the patterns of high C and 

high N (and consequently low C:N) along ridges, as the ridges mainly occupy the outskirts of the 

mapped area, and, as a consequence, there are relatively few E-facing slopes to investigate. A 

final recommendation would be to obtain a high-resolution soil depth map that includes cobble 

and boulder estimates. Although they occupy a relatively small proportion of the entire HJA, it 

could be useful to mask out the rock outcrops and rockfall areas as regions that do not contain 

soil C. Likewise, cobble, boulder, and smaller rock fragment estimates in soils would help 

accurately predict soil C area-based estimates. Overall, the increasingly higher resolution GIS 

datasets, coupled with increased computing power and ML techniques, if coupled with intensive 

field sampling, offer great promise to the enumeration of soil properties and understanding of 

biogeochemical cycling. 
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