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The patterns of forest structure are inextricably linked to ecosystem function. Forest canopy 

complexity, while nebulously defined as a concept, generally increases through time as forests 

develop and is associated with late successional and old growth Pacific Northwest forests. Fire 

and topography are thought to be drivers of canopy complexity, particularly in coastal Douglas-

fir/western hemlock forests that experience non-stand-replacing fire. This study sought to 

understand how patterns of canopy complexity are associated with patterns of topography and 

the processes of fire and post-fire successional recovery. Building on previous research 

conducted near the H.J Andrews Experimental Forest and Long-Term Ecological Research site, I 

linked lidar data to field data to look for associations between canopy complexity, time since 

fire, fire severity, and potential relative radiation. My findings of no associations between these 

variables differed from much of the literature. Reasons for these results may include chosen 

metrics, stand dynamics, simplified models, and/or data constraints.  
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Introduction 

Forest structural complexity  

In Simon Levin’s much-cited lecture “The Problem of Pattern and Scale in Ecology,” he argued 

that “understanding patterns in terms of the processes that produce them is the essence of 

science” (Levin 1992). The patterns of structure in a forest ecosystem are inextricably linked to 

its function (Spies 1998, Franklin et al. 2002, Franklin and Van Pelt 2004, Ishii et al. 2004, Kane 

et al. 2010a). Structure affects and is affected by species composition, age distribution, and site 

productivity (Franklin et al. 1981). For instance, more structurally complex forests are generally 

more productive (Ishii et al. 2004). Forest structural complexity does not have a single agreed-

upon definition (Spies 1998, McElhinny et al. 2005) and can vary according to forest type; this 

study will focus on structural complexity in Pacific Northwest (PNW) Douglas-fir forests. 

Typically, structural complexity focuses on forest trees (as opposed to including understory) and 

describes size and distribution of spatial, horizontal and vertical measures of trees, wood, and 

leaf area in a stand (Kane et al. 2010a). More generally, structural complexity is a measure of 

heterogeneity in the three-dimensional arrangement of biomass (Ehbrecht et al. 2021), and in 

some forests is associated with biodiversity (Lindenmayer et al. 2000). Definitions of structural 

complexity can include a high degree of variability in tree size; presence of standing dead trees 

and dead and down wood; vertically continuous canopy or multiple layers of foliage; and 

irregular horizontal distribution of structures, often apparent as canopy gaps and dense patches of 

saplings and poles (Franklin and Van Pelt 2004). Forest structure is dynamic through time, and is 

affected by the processes of succession and disturbance (Spies 1998). This study seeks to 

understand patterns of forest structure, how these patterns are affected by the processes of fire 

and post-fire successional recovery, and how those processes are modulated by patterns of 

topography.  

 

In PNW coastal Douglas-fir forest ecosystems, forest complexity generally increases as forests 

move towards late-successional and old growth (LSOG) ages, but can also vary widely in LSOG 

forests (Spies 2004, Reilly and Spies 2015). Complexity also influences ecosystem function 

(Reilly and Spies 2015); for example, higher levels of forest structural complexity are correlated 

with increased habitat quality and rates of primary production (Gough et al. 2019), and lower 

average summer temperatures compared to younger, less structurally complex forests (Frey et al. 

2016). More complex forests may also act as climate microrefugia (Frey et al. 2016). Structural 

complexity is one of the key features of LSOG forests of the Pacific Northwest, USA (PNW) 

(Franklin and Spies 1983, Franklin et al. 2002, Franklin and Van Pelt 2004). LSOG forests in the 

Pacific Northwest are characterized by large trees, large dead wood, and complex, multi-layered 

canopies (Spies 2004, Davis et al. 2015). These forests are a focus of research, monitoring, and 

conservation for PNW forest managers (Davis et al. 2015), have the highest rates of potential 

carbon capture of any forest type in the world (Franklin and Waring 1980), and take hundreds of 

years to develop complexity (Spies et al. 2018). These forests are on a continuum of LSOG 

traits—the Northwest Forest Plan uses an index of traits called old growth structure index 

(OGSI), which uses thresholds at 80 years of age to generally describe forests that start to mature 

and display stand structures associated with older forests, and at 200 years of age to generally 

describe forests that are deemed to have old growth features (Davis et al. 2015).  
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Structural complexity in LSOG coastal variety Douglas-fir (Pseudotsuga menziesii var. 

menziesii) forests contributes to their ability to provide habitat for a diverse group of organisms, 

including the northern spotted owl (Mouer et al. 2005), endangered marbled murrelet (Lorenz et 

al. 2021), and other vertebrates (Franklin et al. 2002). Less than 5% of LSOG Douglas-

fir/western hemlock forests remain from what existed pre-settlement (Franklin et al. 1981). 

Additionally, the Northwest Forest Plan defines “‘classic’ Douglas-fir old growth” as having 

multiple canopy layers (Mouer et al. 2005), and notes that fire is one of the biggest factors 

leading to losses in this forest category (Spies et al. 2018). While fire can lead to losses in LSOG 

forest coverage, it is also an intrinsic part of succession and development in PNW Douglas-fir 

forests.  

 

Role of fire in Douglas-fir forests 

Fire effects on forest ecosystems are diverse and depend on the forest’s fire regime as well as the 

characteristics of individual fires. A fire regime describes an ecosystem’s long-term patterns in 

fire seasonality, return intervals, size, severity, intensity, complexity, and type (Sugihara et al. 

2006). Different definitions exist for fire severity; this study will use a definition based on 

percent of mature trees killed: I define high severity fires as those that kill >70% of mature trees. 

In forests with low-severity, high-frequency fire regimes, fires usually kill understory shrubs, 

seedlings and saplings, but not mature trees, reducing competition for mature trees and leading to 

low-density forests (Allen et al. 2002, Turner et al. 2003, Sugihara et al. 2006). In forests with 

high-severity, low-frequency fire regimes, fires usually kill at least 70% of mature trees 

(according to the definition of high severity used in this study) and clear space for new seedlings 

and early seral species (Turner et al. 2003, Perry et al. 2011). These high-severity fires are often 

stand-replacing (SR), and this study refers to them as such. Mixed-severity fire regimes are more 

complex—these can be regimes with moderate severity fires, or regimes that include a range of 

fire effects between low-severity and high-severity, in which the typical fire creates a complex 

patchwork of fire-caused mortality (Agee 2005).   

Coastal Douglas-fir (hereafter referred to as Douglas-fir) forests exist in a variety of ecosystems 

from California to British Columbia. This study will focus on coastal Douglas-fir in the western 

Cascades of Oregon. Historically, research on these forests focused on high severity fire regimes 

and succession that could only occur after high severity, stand-replacing (SR) fire, which 

certainly applies to some Douglas-fir forests (Tepley 2010, Franklin et al. 2002). Fire’s role in 

these forests was viewed as a creator of open canopy patches, generating what was considered as 

necessary open conditions for shade-intolerant Douglas-fir seedlings to germinate. Though 

Douglas-fir is relatively shade-intolerant and germinates more readily in canopy gaps, 

germination also occurs in shade, though at much lower densities (Gray and Spies 1996). These 

Douglas-fir forests also include shade-tolerant trees, namely western hemlock (Tsuga 

heterophylla) and western redcedar (Thuja plicata). Non-stand replacing (NSR) fires in these 

forests typically kill many of the fire-susceptible shade-tolerant species, while the adult Douglas-

fir trees survive (Tepley et al. 2013). Though the traditional SR fire and subsequent successional 

model applies to many PNW Douglas-fir forests, NSR fires are also part of these forests’ 

complex mixed-severity fire regimes.  
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Recent decades have seen an increase in research into Douglas-fir mixed-severity fires and fire 

regimes (e.g., Perry et al. 2011, Tepley et al. 2013, Hessberg et al. 2016). Complex structures can 

result from non-stand replacing disturbance, such as high variability in tree diameter, multiple 

age cohorts, and small canopy gaps that shade-tolerant species colonize (Weisberg 2004). Fire 

may also lead to increased canopy complexity in surviving Douglas-fir trees by triggering 

creation of additional branches in the canopy (Johnston et al. 2018). Mixed-severity fire regimes 

are also the most variable category of fire regimes, and can include low, moderate and high-

severity fires (Agee 2005). Additionally, fire exclusion in moist Pacific Northwest forests has 

altered the patchwork distribution of seral stages that was historically created by fires (Spies et 

al. 2018). 

In relatively productive Douglas-fir environments with stand replacing (SR) fire, there’s a wide 

variety of successional pathways towards higher structural complexity. In environments with 

non-stand replacing (NSR) fire as well, there’s an even wider variety (Reilly and Spies 2015). 

Using Tepley and colleagues’ (2013) study in this ecosystem as an example, stands that 

experienced SR fire and no subsequent NSR fires tended to have shade-tolerant species 

regenerating continuously. This led to an initial shade-intolerant cohort and numerous cohorts of 

shade-tolerant trees, and in the absence of fire, fine-scale non-fire disturbances and gap dynamics 

drove further succession (Tepley et. al 2013). In contrast, stands that experienced NSR fire may 

have experienced either episodic or chronic NSR fires, both of which led to multiple age cohorts 

in both shade-intolerant and -tolerant species due to NSR fires creating canopy gaps in which 

shade-intolerant species could regenerate (Tepley et al. 2013). These results highlight the large 

number of different pathways towards complexity in these Douglas-fir forests. 

Structural Complexity, Topography and Scale 

 

Structural complexity after a disturbance can range from simple to highly complex, but stands 

are generally considered less structurally diverse during early and mid-development stages and 

higher during later development stages (Reilly and Spies 2015, Spies and Franklin 1988, though 

see Donato et al. 2012). Canopy structural complexity metrics derived from field and lidar 

measurements, such as crown height, rumple index, and proportion of canopy gaps, generally 

increase with stand age (Ogunjemiyo et al. 2005). 

 

Topography affects many aspects of forests, such as composition, productivity, germination, and 

fire risk (Dyer 2009). Complexity is also influenced by topography, which has more of an 

influence in mixed severity fire regimes than in SR fire regimes (Tepley 2010). I use topography 

as a proxy for water availability in this study. I chose water availability under the assumption 

that stands with greater water availability have higher site productivity, and are able to mature 

and build structural complexity more quickly compared to drier stands. Additionally, drier 

forests are more prone to fires in general. 

 

While some conifer forests can have high structural complexity in early regrowth after stand-

replacing fire (Harvey and Holzman 2014), complexity generally is relatively low after SR fires 

and increases as recovery from fire proceeds (Reilly and Spies 2015). Evidence of multiple 

successional pathways has been observed in some coniferous forests post-fire (Spies 1998, Poage 

et al. 2009, Tepley et al. 2013), including diverging successional pathways for which topography 
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(i.e., aspect and slope steepness) was the strongest abiotic association (Harvey and Holzman 

2014). Poage et al. (2009) found a weak association between the distributions of tree ages and 

landscape-level topographic variables in western Oregon Douglas-fir forests, and a strong 

association between distributions of tree ages and landscape-level fire variables. However, 

previously cited studies (e.g., Poage et al. 2009, Harvey and Holzman 2014) did not examine a 

finer scale of topographic variables; studies examining stand- or smaller scale topography (1s to 

10s of ha) and Douglas-fir forest structure are rarer than studies involving larger-scale 

topography (100s-1000s of ha) (but see Tepley 2010, which examined the association between 

topography and age structure on a <1 ha scale).  

 

The finer scale (30 m resolution) of the topographic data I use in this study is useful for 

numerous reasons. It allows for effective use of the fine resolution of remotely sensed data. 

Topographic heterogeneity is associated with forest hydrological conditions at fine scales 

(Muscarella et al. 2019), which in turn is correlated with forest canopy height heterogeneity. 

Forest fires can be spatially variable, with patches of different severity (Agee et al. 2005, 

Sugihara et al. 2006). A finer scale of topographic data allows for more directly relating 

topography to fire effects on forest canopy. Finally, topography influences fire behavior 

(Sugihara et al. 2006). For example, fires generally spread faster on steeper slopes, and aspect 

affects soil moisture and thus vegetation flammability (Agee 1993). Certain areas of fire-prone 

forests can be less likely to burn at high severity than their surroundings, known as fire refugia 

(Meddens et al. 2018); fire refugia can be associated with certain topographies (Krawchuk et al. 

2016). Therefore, interactive effects of topography and fire on canopy complexity are possible. 

 

It’s important to note that, although neither have an agreed-upon definition and they are often 

correlated (Kane et al. 2010b), canopy complexity and structural complexity are not necessarily 

the same thing. Spies (1998) lists four essential components of forest structure: distribution of 

tree ages/sizes; vertical distribution of foliage; distribution of horizontal canopy; and dead wood. 

Definitions of forest structure also sometimes include species composition (McElhinny et al. 

2005). Canopy complexity generally focuses on canopy height, canopy density, and variability in 

horizontal and vertical distribution of trees (Kane et al. 2010a, Kane et al. 2010b) but can also 

include leaf area index (Parker and Russ 2004). Consider a hypothetical stand with a diverse 

species composition and a wide distribution of diameters and ages, but a relatively uniform 

height distribution. This stand would have a high degree of structural complexity but not canopy 

complexity. This study will focus on canopy complexity.  

 

Knowledge Gap  

Questions remain regarding differences between mixed-severity and high-severity fire regimes as 

ecological processes contributing to LSOG Douglas-fir forests (Spies et al. 2018). Studying the 

effects of historical fires, relatively fine-scale topography, and their potential interactions on 

Douglas-fir canopy complexity may help clarify those differences. The 2018 Northwest Forest 

Plan (NWFP) Science Synthesis notes both a lack of remote sensing methods to detect non-high-

severity disturbance in LSOG forests, and that “future monitoring work will pursue approaches 

that tie the plot-based and mapped data sets together more closely” (Spies et al. 2018). Factors 

influencing spatial variability in forest conditions are poorly understood in mixed-severity fire 

regime Douglas-fir/western hemlock forests (Tepley 2010). Using lidar-based measurements of 
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the forest canopy enables analysis of canopy structure, including tree and stand height, horizontal 

density, and height variability on a larger spatial scale than can be achieved by field 

methodology in the same amount of time (Beland et al. 2019). Lidar data has been shown to be 

effective in directly assessing forest structural complexity, particularly when assessing changes 

in forest structure as they relate to succession in Pacific Northwest forests (Kane et al. 2010b). 

Additionally, Spies (1998) argues that the position of the observer affects the ecological 

observation made; examining this study site from above the canopy may reveal different insights 

than in situ observations. Research examining long-term dynamics in forest structural complexity 

in LSOG Douglas-fir forests and how they are impacted by fire and topography can help forest 

managers understand the importance of fire for succession, conservation, and future adaptation, 

as well as how to respond to current or future fires. 

Research Question and Hypotheses 

In this study, I examined canopy complexity in two Douglas-fir/western hemlock forests in the 

western Cascades mountains of Oregon, and how it is related to topography, time since last fire, 

and severity of the last fire. I completed this analysis to test in order to test three hypotheses 

arising from a single conceptual model of post-fire forest structural development (Figure 1). 

First, I hypothesized that canopy complexity immediately post-fire would be higher in sites that 

experienced NSR fire than sites that experienced SR fire. I reasoned that because NSR fires leave 

more mature trees alive than SR fires, the remnant trees in the post-fire canopy would contribute 

to higher heterogeneity than a canopy comprised of mostly or virtually all standing dead trees.  

Secondly, I hypothesized that these differences in canopy complexity between SR and NSR post-

fire stands diminish over time as the burned areas are recolonized and succession proceeds, and 

that over time, this difference in canopy complexity would diminish until eventually both 

pathways converge on an asymptote of maximum canopy complexity, and there was no longer a 

difference in canopy complexity between SR and NSR sites. It’s important to note that this study 

only examines recovery after the most recent fire. 

Finally, I hypothesized that stands in relatively drier topographic conditions would take longer to 

develop canopy complexity because they have less access to water than stands in relatively 

wetter topographic conditions, and that this slower development would prolong the time taken 

for both NSR and SR stands to converge upon maximum canopy complexity. This assumes that 

growth in stands is at least somewhat constrained by water availability. This also assumes that 

topography can be used as a proxy for water availability. 
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Figure 1. Conceptual diagram of hypothesized relationships between years since last fire, relative 

moisture (PRR) and rumple index (RI) in moist Douglas-fir/western hemlock forests in the 

central western Cascades in Oregon. In this study, I use topography as a proxy measure of water 

availability; PRR stands in for relative moisture. Hypothetical values, shown as points, are meant 

to show conjectured trends, not to predict actual values. Numbers are included in parentheses 

next to points for clarity. Numbers on RI axis are used only conceptually, meant to be compared 

relative to one another to show hypothesized trends.  

Methods 

The sites in this study are in the central western Cascades in Oregon, USA, and were originally 

established by Alan Tepley (Tepley 2010). These sites were chosen to represent Douglas-

fir/western hemlock forests across a variety of topographies in the central western Cascades. This 

study region was chosen because these Douglas-fir/western hemlock forests have a mixed-

severity fire regime, meaning they experience both stand replacing (SR) and non-stand replacing 

(NSR) fires (Tepley et al. 2013).  These sites are located in two watersheds: the Blue River 

watershed and the Fall Creek watershed (Figure 2). The Blue River watershed contains the H.J. 

Andrews Experimental Forest, part of the NSF Long-Term Ecological Research network. The 

Blue River study area includes the 240 km2 Blue River watershed as well as an additional 33 km2 

to the north of the watershed. The Fall Creek study area consists of the easternmost 330 km2 in 

the Fall Creek watershed.  

Field data 

In this study, I used the same slope facets, slope positions, transects, and plots as Tepley et al. 

(2010; 2013). The following describes that study design and field collection completed by Dr. 
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Alan Tepley. 124 stands were sampled in the original study—71 in the Blue River study area and 

53 in the Fall Creek study area (Figure 2). A slope facet is defined as an area of common aspect 

extending from ridgetop to valley bottom. According to Tepley’s sampling design (2010; 2013), 

facets were selected from within each of the two study areas (Blue River and Fall Creek) using 

stratified random sampling. A 5x5 km grid was superimposed over each study area and one slope 

facet was randomly selected in each of these 25 km2 grid cells. Slope facets were randomly 

selected by generating a random number corresponding with a single 1 km2 square within the 25 

km2 grid cell, then selecting the slope facet that made up the majority of that 1 km2 square. 

Within each selected slope facet, the total elevational range was divided into three equal 

segments—upper, lower, and middle—called slope positions. In each slope position, a randomly 

selected point within the forested area that was at least 100 m away from roads, streams or 

previously harvested areas was used as the midpoint of a 120 m transect that ran parallel to the 

slope contours. Each 120 m transect was divided into five 0.02-ha plots spaced evenly at 30 m 

intervals along the transect. In this nested structure, the different levels of spatial units, arranged 

from largest to smallest, are as follows: study area > slope facet > slope position > transect > 

plot. To take advantage of the availability of lidar data, I increased the area of the Tepley field 

transects by extending a 30-m buffer on either side of each transect, so that each transect had an 

area of approximately 7200 m2. These 7200 m2 transects are the unit of analysis for this study. 

The field-measured stand and age structure data were collected in each plot. For each living or 

standing dead tree >15 cm, diameter at breast height (DBH) and evidence of fire (i.e. charred 

bark or catfaces) were recorded. To measure tree ages within each transect, Tepley et al. (2013) 

split each plot into four quadrats and took an increment core of the largest-diameter living tree of 

each species in each quadrat. A total of 3277 trees over all transects were cored using this 

method, with an average of 27 trees sampled per transect (this was 76% of live trees in the 

transects). Sampling the largest tree of each species in each quadrat was done under the 

assumption that that was the largest tree, and including each species was done to also include 

smaller trees in the dataset. Tree cores were sanded and inspected under a microscope, then read 

to estimate establishment date. 85% of the cores were cross-dated, and establishment date was 

estimated for 89% of cores (3,046 trees). These data were used to create the age-structure classes 

described in the next section.  

Defining stand-replacing and non-stand-replacing fire 

In order to estimate the severity (stand replacing vs. non-stand replacing) and time since 

historical fires on each transect, Tepley et al. (2013) used the age structure of fire tolerant and 

intolerant tree species, presence of multiple age cohorts, and presence of fire scars and catfaces 

on living trees in any given transect to infer that the most recent fire was a NSR fire. The logic 

used was that if a given stand experienced NSR fire, some trees would die and others would 

survive. Shade-tolerant trees can be killed by low- to moderate-intensity fires such as surface 

fires, due to their thin bark, low crown heights and shallow roots (Hood et al. 2008). The shade 

intolerant trees in this ecosystem, Douglas-fir, are less likely to die in a surface fire once the trees 

become large. So, after an NSR fire, the oldest cohort of shade tolerant trees is younger than the 

oldest cohort of shade intolerant trees, and the distribution of establishment dates of shade 
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tolerant trees gets narrower as older shade tolerant trees are killed by fire. If the oldest cohort of 

shade tolerant trees is noticeably younger than the oldest cohort of shade intolerant trees, this is 

not by itself necessarily indicative of a NSR fire (because of other potential factors affecting 

mortality, like insects or disease that target western hemlock or western redcedar), but is one 

piece of evidence used to detect NSR fire.  

Additionally, burn scars and catfaces on surviving trees would indicate that there had been a fire 

there that did not kill every tree. Conversely, if the last fire a given stand had experienced was a 

SR fire, then the resulting oldest cohort would be made up of trees that germinated post-fire and 

thus establishment dates of both the shade intolerant cohort and the oldest shade tolerant cohorts 

should be similar. The SR label was assigned to a transect when the tree mortality in the transect 

was estimated to be greater than or equal to 70%, while transects were identified as NSR when 

mortality was less than 70% (Tepley et al. 2013). In addition to the mortality threshold, each 

transect was designated as SR or NSR based on the combination of the multiple indicative 

factors listed above. 

To measure age structure, Tepley et al. (2013) used four variables for both shade tolerant and 

intolerant species to describe the distribution of establishment dates for shade tolerant and 

intolerant species separately. Some of the variables for shade tolerant and intolerant species 

differed because of the higher likelihood of shade intolerant trees’ mortality in the event of fire; 

to reduce the influence of non-fire factors on analysis of age structure at the chosen scale; and to 

account for the potential differences between shade tolerant and intolerant age structures 

resulting from differences in post-fire regeneration patterns. Specifically, in this study 

environment, shade intolerant species like Douglas-fir have higher resistance to fire mortality but 

tend to regenerate between the immediate post-disturbance phase and the canopy closure phase. 

In contrast, shade tolerant species in the study environment tend to regenerate continuously, but 

are more prone to fire mortality. Variables were chosen to identify trends in forest age structure 

development post-fire regardless of the years (and thus year-based trends) in which each stand 

established, in order to compare stands that burned in different fires. Because of two historical 

periods of relatively high fire activity from the late 1400s to ~1650 and ~1800 to ~1925, Tepley 

et al. used the year 1780 as the cutoff between the two periods to help elucidate the background 

levels of fire when a tree germinated (Weisberg and Swanson 2003, Tepley et al. 2013). The 4 

variables used in a transect to identify age structure of shade-intolerant species were 1) 

proportion of trees that germinated before 1780, 2) total age range in a transect, 3) age range of 

trees germinated before 1780, and 4) proportion of trees with char marks on bark. The 4 

variables used for shade-tolerant species were 1) proportion of trees that germinated before 1780, 

2) total age range of the transect, 3) average age of sampled oldest living trees, and 4) standard 

deviation of sampled oldest living tree ages (Tepley et al. 2013). Tepley et al. (2013) used these 

metrics to assign each transect as either SR or NSR, which I used as an explanatory variable in 

my analysis. 
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Figure 2. a) The two watersheds in the study, Blue River and Fall Creek, and locations of the 

transects in the study area. b) Potential relative radiation values across the watersheds used in the 

study. c) Inset map showing the two watersheds’ location within Oregon and the greater Pacific 

Northwest.  

 

a) b) 

c) 
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Lidar data 

As Tepley et al. 2013 used only field metrics, I used lidar data to further investigate the forest 

canopy structure of the same field sites. Often, forest canopy structure that’s been measured with 

lidar is described using three categories of lidar metrics: height, variability of height, and density 

metrics of vegetation structures in the canopy (Lefsky et al. 2005, Kane et al. 2010a, Kane et al. 

2010b). My study used vertical structural complexity, which is related to variability in height. I 

chose a single metric to represent canopy complexity as the response variable: lidar-measured 

rumple index (RI), which is a 3D measure of canopy surface heterogeneity (Kane et al. 2010a). 

Kane et al. (2010a) found that most field-measured forest canopy structure variables in western 

Cascades coniferous forests were correlated with similar lidar-measured metrics. Lidar-measured 

RI specifically correlates well with standard deviation of canopy height and mean DBH (Kane et 

al. 2008, Kane et al. 2010a). Rumple index is defined as the ratio of canopy surface area to 

ground surface area for a given extent (Kane et al. 2010a); in this study, the extent used was 

approximately 7200 m2. Because rumple index measures both horizontal and vertical 

heterogeneity in the canopy surface, it is sensitive to both forest canopy gaps and variation in 

tree heights. Rumple index can also be thought of as crown roughness, and generally increases as 

the age of the stand increases (Ogunjemiyo et al. 2005). I chose rumple index as my response 

variable due to its correlation with a number of other forest canopy measurements and forest age, 

and ability to describe 3D variability. 

The scale of the 7200 m2 (0.72 ha) transect area allows assessment of canopy complexity over a 

larger area than the transects of Tepley et al.’s original 2013 study. However, if a hypothetical 

mixed-severity fire had a complex patchwork of fire severities, which sometimes occurs in this 

fire regime, then the resolution of a transect at this scale may be too coarse to capture that. The 

rumple index was calculated using the R package “lidR” (Roussel et al. 2020), which uses 

Jenness’ algorithm (2004). This algorithm calculates canopy surface area by calculating the 

vertical and horizontal distances between the cell in question’s centerpoint and the centerpoint of 

the 8 surrounding cells, then calculating the canopy surface area of the 8 triangles created by 

connecting the centerpoint of the central cell to each surrounding cell’s centerpoint (Jenness 

2004). Since these centerpoints of the 8 surrounding cells extend beyond the area of the cell in 

question, the lengths of the created triangles are divided by 2 to only cover the area within the 

cell. This algorithm does this process for cells in the canopy surface model and the digital 

elevation model, then divides the two to get the ratio, deemed rumple index. In this study, rumple 

index was calculated over each transect as a whole by summing the total surface area of the 

canopy in the transect, then dividing by the sum of the total surface area of the ground under that 

canopy. When surface area was calculated for the cells at the edge of the polygons, it used cells 

outside the polygon as needed to calculate the horizontal and vertical distances required. Each 

transect had one centerpoint, one summation of surface area, and one division to obtain the 

rumple index ratio. In ecological terms, if rumple were calculated at a 5x5 m pixel, for example, 

the ecological unit would be about the scale of an individual tree and its neighbors. At the 0.72 

ha scale of the transects, the ecological unit being described can be thought of as the canopy 

roughness on a stand scale—as noted before, this scale may not be able to assess a potentially 

fine-scale mosaic of burn severity.  
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I assumed that the differences in tree size between 2010, when the field data were collected, and 

2008-2016, when the lidar data were collected (Table 1), would have a negligible effect on 

measurements of rumple index. The ages of the oldest trees in each transect range from 100 to 

850 years, and I generally used the lidar acquisition closest to 2010, so the maximum gap 

between field measurements and lidar measurements is 6 years. All trees were at least 100 years 

old when measured. Height growth slows as coastal Douglas-fir trees age and get larger (Bond et 

al. 2006); coastal Douglas-fir trees can grow more than 1.5 m in height per year under ideal 

conditions, but that growth slows by an average of 2 cm per year of tree age (Bond et al. 2006). 

By 100 years of age, the trees in these transects have slowed their height growth per year 

considerably. Additionally, Tepley et al. (2013) did not measure tree heights. Therefore, I felt 

justified in assuming the effects of the difference in growth between field and lidar 

measurements on rumple index could be ignored. 

 Table 1. Details of the lidar acquisitions used in this study. Acquisition refers to the general area 

covered. Sensor refers to the name of the instrument used. Field of view refers to the angle at 

which the sensor emits light. First return point density refers to the number of points in a given 

area that are returned after bouncing off the first object the light hits. Vertical accuracy is the 

smallest difference in height that the lidar can detect. 

Acquisition Year Sensor 

Field of 

View 

First Return Point 

Density (points/m2) 

Vertical 

Accuracy 

(cm) 

H. J. 

Andrews 2008 Leica ALS50 Phase II 28° 9.1 

 

2 

Blue River 2011 Leica ALS60 Phase II 28° 10.4 

 

5 

Lane 

County 2014 Leica ALS80 30° 18.1 

 

3 

Sweethome 

& Timber 

Ridge 2016 Leica ALS80 30° 12.5 

 

 

2 

 

Topographic data 

I used a topographic variable as a proxy for moisture limitation. Potential relative radiation 

(PRR) was used as this proxy: it measures incoming solar radiation, which also indirectly 

measures water availability based on evapotranspiration and slope steepness (Pierce et al. 2005). 

In this study system, water is an important limiting factor for growth (Chen et al. 2010, Littell et 

al. 2008). Lidar-based studies of forest structure at the H.J. Andrews Experimental Forest (HJA) 

found that temperature, precipitation, and elevation were highly correlated with each other as 

well as with live forest carbon stocks (measured as aboveground live carbon) (Seidl et al. 2012, 

Zald et al. 2016). Another study done partly in the HJA suggests that, in this environment and 

other topographically complex environments in the western USA, PRR is better correlated with 

vegetation patterns than other measures of radiation (Pierce et al. 2005). Seidl et al. (2012) found 

that solar radiation was also an important driver of growth (measured as aboveground live 

carbon) at the HJA. PRR is calculated at the scale of the transect by averaging the PRR value of 
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each 30x30 m cell within the transect, but does not account for topographic position relative to 

surrounding forest. 

Explanatory and response variables 

The explanatory variables used in this study were potential relative radiation (PRR, a 

dimensionless measure of averaged relative radiation, used as a proxy for moisture limitation), 

time since most recent fire (TSF, measured in years), and fire severity (either SR or NSR, NSR 

defined as mature tree mortality less than 70% and SR as mature tree mortality greater than or 

equal to 70%). Fire severity was a categorical variable, with transects being either SR or NSR 

depending on the severity of the most recent fire in that transect. PRR was initially measured at a 

30 m resolution, but was averaged across each transect (approximately 7200 m2). TSF and fire 

severity did not vary at the 7200 m2 scale of each transect, so only one value for each was needed 

per transect. Rumple index was calculated at the scale of the transect. 

Modeling 

I used evidence from multiple linear regression to test my hypotheses. Because I hypothesized 

that complexity would reach an asymptote within the study’s temporal scale, violating the linear 

model assumption that every explanatory variable has a linear relationship with the response 

variable, I used the logarithm of each transect’s rumple index as the response variable. This 

converts the hypothesized nonlinear relationship into a relationship that can be described with a 

linear model. I checked the regression model assumptions of constant variance, and symmetric 

distribution of residuals, visually by plotting estimated residuals versus fitted values and normal 

quantile-quantile plots of estimated residuals for each model.  

Relationships among explanatory variables were initially visualized using pairwise scatterplots to 

ensure that the dataset had sufficient range across explanatory variables to support the inclusion 

of interaction terms in some regression models (Figure 3). Interactions between each explanatory 

variable were examined to assess whether changes in one explanatory variable were modulated 

by changes in another variable—for example, whether the relationship between PRR and RI 

depended on time since fire.  

I fit a full model (Model 1) including all three variables (PRR, fire severity, time since fire) as 

well as all interactions between variables, including a three-way interaction between all of them 

(see Equation 1). I fit 12 additional models that contained subsets of these 7 terms. Differing 

combinations of variables and interactions were used to examine each hypothesis. Table 1 lists 

the explanatory variables included in each model. I used AIC to compare the support for each 

model relative to the other models (Akaike 1973). All analysis was done using R (R Core Team 

2019), and plots were made using the “ggplot2” package (Wickham 2009) or with core R 

functions.  
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Figure 3. Pairs plot of response variable, rumple index, and all explanatory variables, showing 

range across all variables. Rumple index is the ratio of canopy surface area to ground surface 

area per transect. Time since fire is measured in years. PRR is a dimensionless metric 

representing incoming solar radiation and is averaged across each transect. Severity of the most 

recent fire in each transect is categorical and is either non-stand replacing fire (NSR, <70% 

mature tree mortality) or stand replacing fire (SR, ≥70% mature tree mortality). 
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Equation 1. Mathematical description of Model 1, the full model, including all variables and all 

interactions of variables. Because SR and NSR are represented by indicator variables, each 

transect is assigned to either group SR or group NSR depending on the severity of its most recent 

fire. 

Yt = β0 + β1*I.SRt + β2*PRR + β3*TSF + β4*I.SRt*PRR + β5* I.SRt *TSF + β6*TSF*PRR + 

β7*TSF*PRR*I.SRt + εt 

where: 

Yt  is the logarithm of the average rumple index (RI) of the tth transect; t = 1, 2, ..., 124 

β0 is the mean RI for a transect immediately after a fire (TSF = 0), with a PRR of 0 

β1 is the incremental change in the mean RI of group SR compared to group NSR   

I.SR is 1 when a transect is in group SR and 0 when a transect is in group NSR, 

β2 is the incremental change in mean RI for a 1-unit increase in PRR, 

β3 is the incremental change in mean RI for a 1-year increase in time since fire compared to 

a transect that has just burned, 

β4 is the incremental change in the PRR slope (β2) for the SR group compared to the NSR 

group, 

β5 is the is the incremental change in the TSF slope (β3) for the SR group compared to the 

NSR group, 

β6 is the interactive effect of TSF and PRR, 

β7 is the is the incremental change in the TSF*PRR slope (β6) for the SR group compared to 

the NSR group 

εt is the random error associated with the tth transect, where εt ~ N(0, σ2)  and εt and εt’ are 

independent. 

Modeling strategy and hypotheses 

AIC analysis was used to determine which combination of explanatory variables was best 

supported by the data. AIC penalizes models as the number of parameters increases, and a lower 

AIC score means the data support that model better than other models considered (Akaike 1973). 

Delta AIC, or ∆AIC, is the difference between a model’s AIC score and the minimum, or best, 

AIC score of the models it’s being compared to. If the full model was found to be best supported, 

then it may suggest that time since fire, PRR, an interaction between fire severity and PRR, an 

interaction between fire severity and time since fire, an interaction between time since fire and 

PRR, and a three-way interaction between PRR, time since fire, and fire severity were associated 

with a transect’s RI. The interactions being included in the best supported model could suggest 

that the relationship of PRR and time since fire on RI each are modulated also by the values of 
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the other two explanatory variables (the second explanatory variable being fire severity, which as 

a categorical variable cannot have an association with RI). 

If a model with the interaction between PRR and time since fire was selected as best supported, it 

could suggest that drier transects reached complexity at a different rate than wetter transects. If 

the best supported model included the interaction between PRR and fire severity, this could 

suggest that topographically mediated differences in fire severity may be associated with 

differing effects of both variables on RI. If the interaction between fire severity and time since 

fire was included in the best supported model, it could suggest that transects that burned at 

different severities were associated with different amounts of time to reach a given level of 

complexity.  

If PRR was included in the model with the best support, it could suggest that moisture limitation 

is correlated with a transect’s RI. If fire severity was included in the model with the best support, 

it could suggest that NSR and SR transects start at different levels of complexity, and if in 

conjunction with other evidence, may provide additional evidence that NSR and SR transects 

remain at different complexities through time. Whether time since fire is included in the model 

with the best support or not, I can use a plot of RI and TSF to look for evidence of a nonlinear 

association. 

The estimated coefficients of each explanatory variable in whichever model is most supported 

can help determine the relative correlation and sign of correlation (positive or negative) with log 

RI after accounting for all the other variables in the model. 

I also used a Kruskal-Wallis test of medians to assess whether there was a difference in log RI 

between age-structure types, in order to see if these RI data aligned with Tepley et al.’s (2013) 

findings. Tepley et al. (2013) used the age structure variables and evidence of past fires to 

classify each transect into one of six age-structure types. These data were then used to deduce a 

general fire regime of each age-structure type: Types 1 and 5 were classified as infrequent SR 

fire regimes; types 2, 3, and 4 as episodic NSR fire, and type 6 as chronic NSR fire. I tested 

medians in addition to means because I used logarithm of rumple index in my analysis, and, 

when backtransformed from a logarithmic scale to the original linear scale, the mean of the 

logarithm of rumple index is the median of rumple index.  

Scope of Inference 

The facets were randomly selected from all facets in the Blue River and Fall Creek study areas.  

Transects used in this study were selected randomly from the forested areas 100 m from roads, 

previously harvested stands, and streams within the facets in the Fall Creek and Blue River 

watersheds, and in a 33 km2 area north of the Blue River watershed. Therefore, the findings of 

this study can be applied to the forested areas meeting the aforementioned criteria within the Fall 

Creek and Blue River watersheds, and the 33 km2 area north of the Blue River watershed, during 

this study period. Further sampling and analysis would be required to determine whether the 

results apply to forests outside the studied areas or study period. 
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Results 

I checked the linear model assumptions for each of the 13 models, and found them sound. The 

logarithm of rumple index and explanatory variables were expected to have a linear relationship, 

and a scatterplot did not show evidence to disprove this. Transects were independent and 

randomly selected for sampling. Estimated residuals were found to have constant variance by 

looking at residuals vs. fitted values. Explanatory variables were not strongly correlated with one 

another. A quantile-quantile plot did not show evidence that residuals deviated from a normal 

distribution. 

Table 2. AIC scores, adjusted R2 values, and terms in each model. An X means that this 

column’s variable was included in this row’s model. AIC values compare each model’s relative 

level of support with each other included model, with lower scores being a higher level of 

support. Adjusted R2 values measure how much of the variance in rumple index is explained by 

each model, penalizing models with relatively more terms. Explanations of each term’s 

abbreviations can be found in Equation 1. 

 

The logarithm of RI was not correlated with any of the explanatory variables by themselves, or 

with any interaction of explanatory variables. Each of the 12 estimated models had very low 

adjusted R2 values, ranging from -0.027 (Model 2) to 0.015 (Model 1). Model 13, which includes 

no explanatory variables, had the best AIC score (-4.013), indicating that the best supported 

model for RI is the overall average. The AIC scores, difference from the best AIC scores 

(ΔAIC), and adjusted R2 values can be found in Table 2.  

 

 

Model  

ID 

AIC 

Value 

ΔAIC From Best 

Supported Model 

Adjusted 

R2 Value 

β0 β1*I.SRt  β2*PRR  β3*TSF β4*I.SRt*PRR   β5* I.SRt * 

TSF 

β6*TSF* 

PRR  

β7*TSF* 

PRR*I.SRt 

1 0.917 4.930 0.015 X X X X X X X X 

2 4.810 8.823 -0.027 X X X X X X X  

3 2.945 6.958 -0.019 X X X X X X   

4 0.946 4.959 -0.009 X X X X X    

5 2.849 6.862 -0.026 X X X X  X   

6 0.872 4.885 -0.017 X X X X     

7 -0.181 3.832 -0.016 X  X X     

8 -0.943 3.070 -0.010 X X X      

9 -1.002 3.010 -0.009 X X  X     

10 -2.857 1.156 -0.001 X X       

11 -2.086 1.927 -0.008 X  X      

12 -2.123 1.890 -0.008 X   X     

13 -4.013 0 N/A X        
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Figure 4. a) Visualization of the relationship between PRR and rumple index in transects in 

which the most recent fire was non-stand replacing. This graph includes the estimated regression 

of logarithm of rumple index and PRR with a 95% confidence interval. Both PRR and rumple 

index are averaged per transect. The regression line is curvilinear (logarithmic response 

variable), but because the correlation between variables is so low, the regression line looks 

linear. b) Visualization of the relationship between PRR and rumple index in transects in which 

the most recent fire was stand replacing. This graph includes the estimated regression of 

logarithm of rumple index and PRR with a 95% confidence interval. Both PRR and rumple index 

are averaged per transect. This regression line is also curvilinear (logarithmic response variable), 

but because the correlation between variables is so low, the regression line looks linear. c) 

a) b) 

c) d) 
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Visualization of the relationship between time since fire and rumple index in transects in which 

the most recent fire was non-stand replacing. This graph includes the estimated regression of 

logarithm of rumple index and time since fire with a 95% confidence interval. The regression is 

curvilinear because of the logarithmic response variable, but the line is virtually flat, showing 

extremely low correlation. d) Visualization of the relationship between time since fire and 

rumple index in transects in which the most recent fire was stand replacing. This graph includes 

the estimated regression of logarithm of rumple index and time since fire with a 95% confidence 

interval. The regression is curvilinear because of the logarithmic response variable, but looks 

linear. Again, this shows an extremely low correlation between these data. Visualizations c) and 

d) also show that the values of time since fire in NSR transects only range from approximately 

100 to 340 years since fire, while in SR transects, time since fire values range from 

approximately 120 to 850 years since fire. 

 

The AIC analysis done, in addition to the adjusted R2 values of each model, failed to provide 

evidence for any of the hypotheses in the studied stands. As the model with no variables and only 

an intercept (Model 13) had the best AIC score, we did not find evidence that time since fire or 

PRR were associated with log rumple index, or that time since fire or PRR had an interaction 

with fire severity. Visualization of relationships between variables confirm a seeming lack of 

adherence to variables’ hypothesized relationships. Figure 4 above shows the extremely low 

correlation between rumple index and mean PRR, and rumple index and time since fire, 

demonstrating a lack of correlation between assumed moisture stress, forest age, and canopy 

complexity. 

The Kruskal-Wallis test of medians found, at a significance level of 0.05, there was suggestive 

but inconclusive evidence of a difference between the median rumple indices of the different 

age-structure types (chi-squared = 10.67, df = 5, p = 0.05834). 
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Figure 5. Visualization of each transect’s average rumple index, grouped by age-structure types, 

indicates that the distribution of rumple index varied similarly across most age-structure types, 

with the exception of type 6. Age-structure types describe different pathways of stand 

development which are affected by the frequency and severity at which the stands have burned 

(Tepley et al. 2013). Shade tolerant and intolerant trees are described using separate metrics 

because of shade tolerant tree’s higher chance of mortality after fire, as well as shade tolerant 

tree’s tendency to regenerate continuously between fires, while shade intolerants tend to mostly 

regenerate between immediate post-disturbance and the canopy closure seral stage. The age 

structure of shade tolerant trees is based on 1) proportion of trees that germinated before 1780, 2) 

total age range of the transect, 3) average age of sampled trees, and 4) standard deviation of 

sampled tree ages (Tepley et al. 2013). Age structure of shade intolerant trees is based on 1) 

proportion of trees that germinated before 1780, 2) total age range in a transect, 3) age range of 

trees germinated before 1780, and 4) proportion of trees with char marks on bark (Tepley et al. 

2013). Age-structure type 6 describes stands aged approximately 60-200 years that have 

experienced relatively regular non-stand replacing fires since germinating after a stand replacing 

fire. This is the only age-structure type in the study that has experienced frequent non-stand 

replacing fires. 

Discussion 

The results of this study did not provide evidence for any of the hypotheses. The models were 

designed to identify which explanatory variables and interactions between these variables were 

correlated with logarithm of rumple index. Each hypothesis was tested with a related variable or 

set of variables, but no variable or interaction was found to be associated with logarithm of 

rumple index. In other words, I found no evidence that suggests an association between 

logarithm of rumple index, time since fire, or PRR, and found no interaction between any 

combination of PRR, time since fire, and fire severity.  
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To reiterate, the hypotheses of this study were as follows: 

1. There are differences in canopy complexity between transects that most recently experienced 

SR vs. NSR fire and these differences are at their maximum at year 0 post-fire and decline over 

time;  

 

2. Given enough time, transects will converge on the same asymptote of canopy complexity, 

with transects that experienced SR fire take longer to reach this asymptote than transects that 

experienced NSR fire;  

 

3. At drier sites, forest development is slower, and the convergence between NSR and SR 

transects takes longer than at wetter sites. 

These findings conflict with much of the literature on forest structure and canopy structure, 

including literature specifically on forest canopy structure in PNW LSOG Douglas-fir forests. 

Topography was found to be associated with structural and canopy complexity in LSOG 

Douglas-fir forests in the western Cascades (Weisberg 2004, Tepley 2010, Seidl et al. 2012) and 

with coniferous forests in Yosemite National Park (Kane et al. 2014). Variability in forest carbon 

(related to structural and canopy complexity) in western Cascades LSOG Douglas-fir was also 

found to be correlated with topography, and topography and time since fire had an interactive 

effect in the same study (Zald et al. 2016), although time since fire had a low R2 value in 

unlogged forests and the models had more than 10 explanatory variables. Zald et al. (2016) also 

found an asymptote of aboveground live carbon after 500 years since fire. Douglas-fir growth in 

the Pacific Northwest is correlated with moisture availability (Littel et al. 2008), and water 

balance is correlated with forest and canopy structure in coniferous forests in Yosemite National 

Park (Kane et al. 2014). Fire severity is correlated with subsequent structural and canopy 

complexity in PNW LSOG forests (Franklin et al. 2002, Franklin and Van Pelt 2004, Weisberg 

2004, Tepley 2010, Tepley et al. 2013, Kane et al. 2014, Hessberg et al. 2016). Finally, time 

since fire is correlated with structural and canopy complexity in PNW LSOG Douglas-fir forests 

(Spies and Franklin 1991, Franklin et al. 2002, Franklin and Van Pelt 2004, Zald et al. 2016, but 

see Donato et al. 2012 and Reilly and Spies 2015).  

This discussion will focus mainly on four potential explanations for these results:  

1. It is possible that the proposed hypotheses were not correct, and that factors not analyzed in 

this study (such as local gap dynamics) are more correlated with canopy complexity in the study 

sites.   

2. The metric rumple index may not represent the elements of canopy complexity associated with 

differing disturbance histories and moisture limitation. 

3. It is possible that using only one response variable, regardless of what the response variable is, 

did not represent canopy complexity well enough to test the proposed hypotheses. 

4. The range of data across each variable was limited in some areas. This could have influenced 

the results of analysis. 
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Influence of gap dynamics 

My findings do not provide evidence that canopy complexity in the studied sites is detectably 

affected by the severity of the most recent fire, time since most recent fire, or PRR. Reilly and 

Spies (2015) found that Douglas-fir/western hemlock stands’ structural and canopy complexity 

varied widely, particularly depending on whether the stands were in SR or NSR environments. 

The lack of correlation between a stand’s rumple index and its PRR value and time since fire, 

and lack of interaction with most recent fire severity, in Douglas-fir/Western hemlock forests 

theoretically adheres with Reilly and Spies’ finding that Douglas-fir/Western hemlock forests in 

this region contain stands with a wide variety of degrees of structural and canopy complexity. As 

seen in Figure 5 above, the rumple indices varied more within age-structure types than across 

them—the variability of rumple index is not correlated with the chosen explanatory variables.  

 

One possible reason for the lack of evidence for these hypotheses could be that the studied stands 

may be more affected by local stand dynamics than by their disturbance past or topography. As 

Pacific Northwest Douglas-fir forests develop, structural and canopy development transitions 

from being catalyzed by stand-scale process, such as high severity fire, to being catalyzed by 

gap-scale processes and local stand dynamics, such as a single tree or small clump of trees dying 

and creating a canopy gap (Franklin et al. 2002, Franklin et al. 1987).  Local stand dynamics may 

include heterospecific and conspecific competition for sunlight or growing space, damage from 

high winds or heavy snowfall, mortality from insects or disease, low-intensity fires, and soil 

moisture and characteristics (Franklin et al. 2002, North et al. 2004). Time since fire in this 

study’s transects ranged from 100 to 850 years since fire, and moist PNW Douglas-fir/Western 

hemlock forests may be considered old growth once they reach 200-250 years old (Spies et al. 

2018). It is very possible that after a long enough time, the impact of gap dynamics as described 

above overshadows the impact that a past fire had on canopy complexity. However, it is also 

worth noting that the rate at which canopy complexity develops through time varies widely 

between sites, supporting the idea that age is not always a reliable indicator of successional state 

and complexity (Spies and Franklin 1988). This is a potential downside for relying on time since 

fire as an indicator of successional conditions. Additionally, the data for this study lacked a 

subset of ages: stands that last burned approximately 220-370 years ago were not represented in 

this study.  

Rumple Index as Metric 

Rumple index, which was the single response variable in this study, was likely a problematic 

measure in this study system. Rumple index is determined based on the canopy height model, 

which measures only the exposed top of the canopy (Kane et al. 2010a). As such, rumple index is 

not meant to characterize a potential secondary canopy, which is an important aspect of the 

ecology in this study site—NSR transects, and most transects in this study, generally have at 

least two cohorts of trees. In the transects used in this study, canopies in transects that 

experienced at least one NSR fire in between SR fires often have multiple distinct canopies or a 

continuous range of tree heights starting from the upper canopy. 73% of the stands in this study 

had at least two postfire age cohorts and thus very likely two height cohorts (Tepley et al. 2013).  
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In another study in the Blue River watershed, Van Pelt and Franklin (2000) also found that 

shade-tolerant trees had formed a distinct secondary canopy under a much taller shade-intolerant 

canopy 200 years post-fire. The 2018 Northwest Forest Plan Science Synthesis notes that old, 

moist PNW forests typically have multiple canopy layers (Spies et al. 2018). Additionally, 

Franklin et al. (2002) note that many LSOG Douglas-fir/western hemlock forests have 

continuous canopy distribution.  

 

Only 15 of the 124 stands (12%) studied saw a SR fire between 1780 and 1940, while 95 of the 

124 stands (77%) show evidence of an NSR fire in this same time frame. Tepley et al.’s 2013 

study using the same stands, found that NSR fires, whether they occur infrequently between SR 

fires or relatively chronically, lead to environments conducive to multiple age cohorts with 

distinct cohorts of shade tolerant and intolerant species. These authors concluded that NSR fires 

in this study system send stands into alternate successional pathways; however, these pathways 

mainly differed in the age, size and canopy distributions of shade tolerant trees (Tepley et al. 

2013).  

 

Rumple index is a useful tool for measuring the upper canopy of a forest, but can only capture 

certain measures of forest heterogeneity. This study was conducted on recovery after fires 

ranging from 100 to 850 years ago; therefore, shade-tolerant trees in these study sites have had at 

least a century to regenerate secondary or continuous canopies. Thus, even sites that experienced 

only infrequent SR fire and followed a classical progression of shade intolerant species have had 

hundreds of years for shade tolerant species to establish, either continuously post-fire or in 

pulses, and become part of the canopy (Tepley et al. 2013). Continuing this example, by the time 

these sites reach old growth, canopies have multiple layers or a continuous vertical distribution 

in which shade tolerant species are integrated with shade intolerant species (Spies et al. 2018, 

Franklin et al. 2002, Tepley et al. 2013, Van Pelt and Franklin 2000). Rumple index’s vertical 

heterogeneity measurement is limited to the upper canopy, and in the productive LSOG forests in 

this study, being able to characterize the entire vertical distribution of canopy foliage is 

important. Due to the presence of shade tolerant species in every age-structure type, a metric that 

explicitly examines secondary and sub-canopies, and can discern between shade tolerant and 

intolerant species, could have provided more information for this study and should be considered 

by researchers interested in similar studies. Adding more response variables using metrics that 

include the whole canopy would be better. Since canopy complexity is a multifaceted concept, 

more response variables may allow for more accurate mathematical representation of complexity 

(see Single Response Variable section below). Leaf area index (LAI) may be a good choice: it 

examines the full canopy, whether in a continuous canopy or discrete layers, and can be 

estimated with aerial lidar (Wang and Fang 2020, Zheng and Moskal 2009). Another option is 

combining high density aerial lidar data with logistic regression modeling to detect and 

differentiate between multiple layers of forest canopy (Mund et al. 2015). An index describing 

structural complexity by synthesizing multiple variables into one value is another option; see 

section Structural Complexity as an Ecological Concept later in this paper for more information. 
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Kane et al. (2010a)’s finding that a suite of lidar data (95th percentile height, rumple index, and 

canopy density) can be used to measure successional stage in Pacific Northwest conifer forests 

was based on correlation with field metrics. Their suite included rumple index to measure 

variability of height, which these authors equated to canopy structural complexity. Rumple index 

in their study was correlated with field-measured mean DBH, SD of DBH, and SD of height. 

However, the same study notes that, because they only used first return lidar data, their 

measurements largely represent the upper canopy and should not be used to characterize 

secondary or subcanopies (Kane et al. 2010a). In my study, differences in the distribution of 

shade tolerant species within secondary, continuous or sub-canopies seem to be where the largest 

differences between age-structure types lie (Tepley et al. 2013). Because rumple index measures 

heterogeneity of the upper canopy by design, potential effects of topography and past fires on 

secondary canopies and understory in shade tolerant species may not be well represented. The 

lack of penetration into the canopy is an issue with rumple index, not with lidar. Aerial lidar can 

be used to measure forest subcanopy and understory, but its accuracy is dependent on the lidar 

density, the canopy orientation, and most relevantly, the lidar metrics used (LaRue et al. 2020).   

PRR as Metric 

Although PRR was expected to represent water availability, which considered the limiting factor 

in tree growth in this ecosystem (Chen et al. 2010, Littell et al. 2008), it is possible that it did 

not—using PRR as a proxy for water availability may be improved by instead using a more 

direct measure of water availability. Or perhaps water was not a limiting factor for growth in the 

studied transects. One challenge of using PRR at this scale is that water availability may only 

vary slightly at the small spatial scale of the 7200 m2 transects that made up this study’s 

sampling. The estimated PRR approach used in this study provides a level of detail “appropriate 

for landscape-scale vegetation analysis” (Pierce et al. 2005). This metric is calculated using a 

DEM. Therefore, depending on the footprint of the DEM, PRR can be calculated for a small 

footprint, but may not be an appropriate metric for the scale of this study—the sampling units 

used in this study, transects, are on a stand-level scale rather than a landscape-level scale. 

Finally, it would be better overall to use a metric that is a more directly related to the hypothesis 

being tested—for example, using a metric explicitly measuring moisture availability if that’s the 

variable in question. One other metric that could have been used is topographic position index 

(TPI). TPI is calculated by comparing the elevation of a certain point or area to the elevation of 

its neighbors to determine if the area is a peak, ridge, valley, or is flat. TPI can be calculated 

using any pixel size, so its scale can be tailored to the needs of the study. A benefit to TPI is that 

it describes a given area’s topography in relation to its surroundings, which can help predict the 

microclimate of that area. TPI is also often correlated with moisture availability, since water can 

accumulate in relatively lower-elevation areas (Maidment 1992). However, TPI and PRR do 

represent different aspects of topography: moisture drainage and incoming radiation, 

respectively. Another potential metric is topographic relative moisture index (TRMI), which is 

calculated based on topographic position, aspect, slope steepness, and slope configuration, and 

was developed for use in mountainous terrain (Parker 1982). This would have the benefit of 

including both topographic position and moisture data, and has been shown to be effective in 

associating forest patterns with environment in Yosemite National Park (Parker 1982). Water 
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balance (actual evapotranspiration and climatic water deficit) would be another good choice and 

has been associated with forest structure (Kane et al. 2015), provided fine resolution water 

balance data were available. Another possibility is that the problem was not with PRR as a 

metric, and that biotic factors were more strongly associated with canopy dynamics than abiotic 

factors, including topography and/or moisture availability. 

Single Response Variable 

Using a single metric, rumple index, as the only measure of canopy complexity was likely an 

oversimplification of a complex concept. Comparison with the following studies, largely in 

similar study sites, shows that these other studies used more response variables in their analyses. 

Kane et al. (2010b) calculated individual regression analyses using six response variables 

(rumple index, canopy density, 95th percentile height, mean DBH, standard deviation of DBH, 

and canopy closure). A study relating global structural complexity patterns to climate used four 

response variables: a structural complexity index, canopy height, canopy openness, and basal 

area (Ehbrecht et al. 2021). Another study on rates of productivity in structurally complex forests 

across the eastern US used nine canopy metrics and three species diversity metrics for a total of 

twelve response variables (Gough et al. 2019). However, see also Kane et al. (2013), in which 

part of the analysis included using linear regressions with only one structural or canopy metric as 

the response variable to test for changes in vertical structure across forest types. Finally, Kane et 

al. (2010a) note explicitly that “no single field or lidar measurement captures the state of a 

stand’s structural development”. As noted in the Rumple Index as Metric section above, 

potentially better options for metrics include LAI, high density aerial lidar data with binary 

logistic regression modeling (Mund et al. 2015), and/or a structural complexity index. 

Data and Data Distribution 

Lack of variation in some explanatory variables relative to RI and to each other may also have 

affected results. It’s also possible that, data distribution within the range of minimum and 

maximum values seen in this study notwithstanding, the minimum-maximum range itself of 

explanatory and response variable values was insufficiently large to observe the hypothesized 

relationships.  

 

Hypothesis 1 predicted differences in canopy complexity between transects that most recently 

experienced SR vs. NSR fire, and predicted that differences were at their maximum at year 0 

post-fire and decline over time. The shortest times since fire in this study were 100 years post-

fire. Therefore, the aspect of hypothesis 1 regarding differences immediately post-fire was not 

testable with this study’s data. However, including this aspect of the hypothesis in the study had 

the benefit of having a conceptual, combined hypothesis of canopy complexity’s relationship 

with time since fire, fire severity and topography across a length of time ranging from 

immediately post-fire to well into LSOG ages (Franklin and Spies 1988, Spies 1998, Spies et al. 

2018). 

 

The pairs plot in Figure 3 shows that time since fire in NSR transects ranges from approximately 

100 to 340 years since fire, while in SR transects it ranges from approximately 120 to 850 years 
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since fire. However, the transect with 850 years since fire is an outlier—the second-oldest SR 

transect is 550 years old. There is also a gap in data between 270-400 years since fire in SR 

transects. Douglas-fir forests in the PNW usually take from between 150 and 350+ years to reach 

LSOG decadence (Franklin et al. 2002, Spies and Franklin 1988), though moist PNW Douglas-

fir forests typically exhibit LSOG characteristics at 200 to 250+ years (Spies et al. 2018). 

Additionally, as PNW Douglas-fir forests age, they can transition from a foliage distribution that 

is heavy in the upper canopy to one that is more evenly distributed throughout the canopy 

(Franklin et al. 2002, Lindenmayer et al. 2000), which would not be detectable using this study’s 

metrics (RI). These data are also skewed towards forests with shorter times since fire, as is 

evident in Figure 3. 

 

Figure 3 also shows that the dataset includes more NSR transects than SR transects: 97 NSR 

transects and 27 SR transects were sampled. Because transects were chosen randomly for 

sampling, this should be a representative estimate of the proportion of NSR to SR fires in this 

study area. RI values were distributed across RI’s entire range of values (approximately 2.5 to 

8.5) across TSF’s entire range (between 100 and 600 years, plus one outlier at a value of 

approximately 850). RI values were distributed across RI’s entire range of values across PRR’s 

entire range of values (approximately 6000 to 21000). In NSR transects, RI values were 

distributed across RI’s entire range. In SR transects, RI has a slightly smaller range 

(approximately 3.25 to 8). PRR values were distributed across PRR’s entire range across TSF’s 

entire range. PRR values were distributed across PRR’s entire range of values in NSR transects, 

and across almost all of PRR’s range of values in SR transects (approximately 8250 to 20000).  

 

Subsequent research in a similar vein to this study may benefit from a larger number of samples 

from areas that most recently experienced SR fire than were used in this study, as well as data 

with a more even distribution of times since fire. Simply having a larger dataset with a higher 

number of transects sampled should help with this issue. 

Forest Complexity as an Ecological Concept  

Many aspects of structure and function in forest ecology are often interrelated (Bormann and 

Likens 1979, Franklin et al. 1981, Spies 1998, Franklin et al. 2002, Franklin and Van Pelt 2004, 

Ishii et al. 2004, Kane et al. 2010a). Theoretically, structural complexity is a measure of different 

structural attributes, the diversity of these attributes, and their relative abundance. In practice, 

structural complexity can be nebulous and does not have a standardized definition (McElhinny et 

al. 2005). According to a review of structural complexity literature, structural complexity can 

include foliage arrangement, canopy cover, tree diameter, tree height, tree spacing, stand 

biomass, understory vegetation, and dead wood, and that any attempt to calculate structural 

complexity should include many of these variables (McElhinny 2005). The same review found 

that numerous indices have been created in an attempt to synthesize multiple variables into a 

single value describing structural complexity, but no one index is agreed upon in the literature 

(McElhinny 2005).  
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However, this review also found that studies done on LSOG Douglas-fir and its structural and 

canopy patterns (e.g. Franklin et al. 1981, Franklin et al. 1987, Spies and Franklin 1991, Spies 

1998, Franklin et al. 2002) were more consistent in their definitions of structural complexity, 

metrics used to identify complexity, and defining associated benefits of that complexity on 

animal habitat, than the general literature (McElhinny et al. 2005). These papers were also 

successful in using structural and canopy complexity metrics (SD of DBH, number of Douglas-

fir trees >100 cm DBH, mean DBH, >5 m tall snag density, >50 cm DBH snag density, >60 cm 

DBH downed log density, snag volume (Spies and Franklin 1991)) to identify successional 

stages in Douglas-fir forests. 

Further literature on structural and canopy complexity could benefit from attempting to create 

accepted and specific definitions of them, in order to shift them from concepts to solid metrics. 

However, a one-size-fits-all approach may prove problematic as well. For example, the metrics 

that accurately describe the structural and canopy complexity of a PNW LSOG forest low in 

species diversity versus that of a tropical forest high in species diversity may differ. Further 

research is needed to define structural and canopy complexity in a way that is useful in multiple 

forest ecosystems.  

Next Steps 

Further research building on this study should consider including more variables for both 

explanatory and response terms, as is common in published ecological literature using similar 

analysis methodologies. Specifically, further research should consider using a metric like LAI to 

measure the full canopy when considering long-term effects of fire and topography on forest 

structure and canopy, or a structural complexity index. Another option for using lidar to detect 

multiple canopy layers is high density lidar data combined with binary logistic regressions. 

Further research may also consider choosing a topographic metric, or combination of metrics, 

more directly related to the phenomenon being studied. Additionally, although 85% of the 

samples in Tepley et al. (2013) were cross dated, cross dating all samples and employing cohort 

analysis sensu Merschel 2021 would provide a more accurate fire history. 

 

Conclusions 

I found a lack of evidence to support these hypotheses:  

 

1. There are differences in canopy complexity between transects that most recently experienced 

SR vs. NSR fire and these differences are at their maximum at year 0 post-fire and decline over 

time. 

  

2. Given enough time, transects will converge on the same asymptote of canopy complexity, 

with transects that experienced SR fire take longer to reach this asymptote than transects that 

experienced NSR fire. 

 

3. At drier sites, forest development is slower, and the convergence between NSR and SR 

transects takes longer than at wetter sites. 

 

These findings conflicted with much of the literature on canopy complexity in late successional 

and old growth Douglas-fir forests in the Pacific Northwest. This study was limited by the 
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exclusion of stands that experienced stand replacing fires between 220-400 years ago, and by a 

low sample size of stands that had experienced stand replacing fire most recently, as a result of 

data availability. More importantly, this study was limited by the use of a single variable (rumple 

index) as the response variable, and would have benefitted from including a response variable 

that measures the complete canopy.  
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