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Relatively little is known about how various factors influence snow water storage in 

forested mountain landscapes in maritime (warm winter) climates. This study took advantage 

of multiple snow data sources including long-term data, synoptic sampling, remote sensing, and 

modeling to examine factors influencing snow dynamics in the H.J. Andrews Experimental 

Forest, western Cascade Range, Oregon. The study combined two field campaigns, long-term 

snow survey data, long-term data from meteorological stations, lidar-derived snow depth 

maps, and snow modeling to quantify effects of forest canopy structure, landscape position, 

and season on snowpack depth and density in a ~52 km2 portion of forested watershed ranging 

from 800 to 1600 m in elevation. Methods included (1) collecting field measurements of snow 

in March of 2022 and 2023, (2) comparing long-term (1978-2022) snow measurements at the 

paired forested vs. open sites, (3) examining SWE and snow depth data at four meteorological 

stations (1997-2022), (4) using a lidar-derived snow height model of the upper elevations of the 

Andrews Forest acquired March 2022 to assess spatial patterns of snow depth, and (5) 

simulating snow water equivalent at forest and open sites using a snow model forced with 

meteorological data for the period 2014 to 2018.  

Field sampling indicated that snow depth in March 2022 was as much as 130 cm greater 

in the clearing at the Upper Lookout meteorological station (1298 m) than in the adjacent forest 

plantation.  Field sampling was used to validate lidar-derived snow depth. 



  

Long-term snow survey data from paired sites in forest gaps created by roads and 

beneath adjacent forests (1978-2022) indicated that average annual snow depth was two to 

three times greater in openings than in adjacent forest sites. Snow density was similar (about 

365-366 kg/m3) in forest and open snow survey sites. Snow disappeared earlier at snow survey 

sites under forest than in openings, but snow melt was more rapid in openings than under 

forest at snow survey sites.  

Analysis of daily snow depth and SWE records from three meteorological stations (1997-

2014) revealed a concave upward curve of average daily snow density over the snow season. 

Snow density ranged from 200 to 350 kg/m3 in November to January, 380 to 400 kg/m3 in 

February to early April, to higher values in May. Analysis of the 1995-2022 precipitation and 

SWE data from the Upper Lookout meteorological station also revealed that maximum snow 

water equivalent on April 1 was on average 38% of cumulative precipitation in the water year 

(Oct 1 to April 1).  

Analysis of the lidar image of 52 km2 of the upper elevation portion of the Andrews 

Forest (600 to 1600 m) indicated that lidar-derived snow depth in March 2022 varied with 

landscape position and forest canopy structure: deeper snow occurred on north- and east-

facing slopes, in valley bottoms, and openings such as avalanche tracks, montane meadows, 

access roads, and forest clearings created for meteorological stations. Lidar-derived snow depth 

was greater in plantations than in adjacent mature-old forest in valley bottoms affected by cold 

air drainage but was not related to forest canopy height in other landscape positions, based on 

a small sample of paired 60x60m polygons. Lidar-derived snow depth tended to overestimate 

field measurements, indicating that the post-survey elevation correction (+295 mm) may not be 

appropriate. The total volume of water stored in the snowpack in March 2022 based on the 

lidar-derived snow depth model (average depth 54 cm, average density 380 to 400 kg/m3) was 

approximately equivalent to 30 days of mean daily flow at Lookout Creek, which drains the H.J. 

Andrews Experimental Forest.  

Modeling of snow using the SUMMA model reproduced the measured snowpack in an 

opening at the Upper Lookout meteorological station when the model was forced with data 

from that station. However, modeling of snowpack under forest using parameterizations of 



  

forest interception developed at a nearby site in the Umpqua National Forest did not reproduce 

snow measured under forest in the field or at the long-term snow stakes. Snow modeling 

results demonstrated the importance of early winter air temperature effects on snowpack 

formation and persistence.  

These results demonstrate that conifer forests substantially reduce snow accumulation 

in a maritime climate, but these effects vary among years, with elevation, and with canopy 

structure. Further study is needed to better understand how landforms, climate, and conifer 

forest canopy influence snow accumulation and melt in the transient to seasonal snow zones of 

maritime climates. 
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1.   Introduction 
 
1.1   Motivation 
 

This study was motivated by a need to improve understanding of processes that 

influence the snowpack in a maritime climate, especially processes involving conifer forests. 

Snow accumulation responds to climate and forest management and influences water supply. 

Effects of climate and forest management on snow are a major issue in the Pacific Northwest of 

the United States, which is dominated by conifer forest and is one of the most productive 

timber producing regions in the world (Alig et al., 2000). More than half of commercial land 

used for timber harvest in western Oregon falls into the transient snow zone (~350–1100 m), 

and forest management has many effects on snowpack dynamics (Berris & Harr, 1987).  

In maritime climates of the western U.S., with wet winters and dry summers, water 

stored in the snowpack beneath conifer forests supplements streamflow in spring and summer. 

A maritime snowpack can accumulate to depths exceeding 3 m, has a snow-ground interface 

temperature near 0 °C throughout the winter, and has coarse grained snow due to ubiquitous 

wetting of the snowpack throughout the winter (Sturm et al., 1995; Sturm & Liston, 2021). Sixty 

to eighty percent of the source water for summer streamflow in the Willamette River, Oregon 

originates in the snow zone (>1200 m) (Brooks et al., 2012). The upper elevation areas of the 

Willamette River in the western Cascade Range of Oregon are “at risk” of shifting from a snow- 

to a rain-dominated winter precipitation regime, which would significantly decrease snow 

water storage (Mote, 2003; Nolin & Daly, 2006). Increases in air temperature associated with 

climate change exacerbate these risks to the snowpack in the western Cascade Range of 

Oregon (Sproles et al., 2013). Continued warming may push continental and boreal snow 

climate processes to regimes similar to those observed in maritime sites today (S. Dickerson-

Lange et al., 2017). 

Pioneering work on snow in the maritime climate of the Pacific Northwest occurred in 

the late 1940s and early 1950s at the Willamette Basin Snow laboratory in the upper Blue River 

basin, just north of the H.J. Andrews Experimental Forest (44.2332 °N. 122.1762 °W) (USACE, 

North Pacific Division, Portland, OR, 1956; USACE, South Pacific Division, San Francisco, CA, 
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1956). Storck et al (2002) examined effects of forest canopy on snow interception in the 

Umpqua National Forest, about 300 km south of the Andrews Forest. Within the Andrews 

Forest, other seminal work focused of clearcutting and rain-on-snow influences on a maritime 

snowpack (Berris & Harr, 1987; Dennis Harr, 1981; Harr, 1986). 

Losses in snow water storage can increase wildfire risk, forest susceptibility to pests, and 

water shortages, with implications for the socio-economic well-being of the Pacific Northwest 

(Li et al., 2017). A greater understanding of processes affecting snow within forests, particularly 

canopy interception, is essential for assessing the combined effects of global warming and 

continued timber harvest in the region. Improved understanding of how forests affect 

accumulation and ablation in a maritime climate could be transferrable to other locations as 

they experience climate warming.  

Forest conditions influence the amount of snow that is contributed to the underlying 

snowpack, the phase and density of the new snow contribution, and the snowpack energy 

balance (Andreadis et al., 2009). In a maritime snow climate, canopy interception may decrease 

snow accumulation by up to 60% (Storck et al., 2002). Parameterizations for snow models of 

canopy interception of snow have been developed for a maritime climate based on empirical 

measurements by Storck et al. (2002) and for a continental climate based on Hedstrom and 

Pomeroy (1998). The small number of empirical studies used for modeling of snow interception 

may limit model capacity to represent interception (Lundquist et al., 2021).  

 

1.2   Gaps in knowledge 
 

The effects of forests on snowpack in maritime climates are imperfectly understood. 

Canopy interception of snow plays a significant role in subcanopy snow accumulation in a 

maritime snow climate because air temperature and wind strongly influence interception 

processes (Andreadis et al., 2009; Roth & Nolin, 2019). In the western Cascade Range of Oregon 

winter air temperature is warm and wind speeds are low. Snow modeling using the DHSVM 

model in wet/warm climates indicated that snow water equivalent and snow duration under 

forest increase as canopy density decreases (Sun et al., 2022). Musselman et al. (2008) and 

Veatch et al. (2009) hypothesize that selective thinning can increase snow water storage in a 
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continental climate, while Lundquist et al. (2013) found that lower total canopy cover in 

warm/wet winter climates is likely to enhance snowpack retention. The dominant processes 

accounting for snow accumulation and ablation beneath forests differ in a maritime 

(warm/wet) and continental climate (cold/dry). Snow interception is the dominant control on 

accumulation in warmer climates due to higher snow cohesion at warmer temperatures. The 

fraction of total precipitation intercepted by a tree branch more than doubles when storm air 

temperature increases from -3°C to -1°C (S. E. Dickerson-Lange et al., 2021). During the melt 

season, sublimation accounts for 100mm of snow loss per season in a maritime climate (Storck 

et al 2002), but nine times more than this in a continental climate (Lundquist et al., 2021). The 

collective effects of climate on the deposition and removal of snow from the canopy in 

warm/wet climates is not well understood.  

The effects of past forest management on snow are unclear. Planted forests may have a 

higher density of tree wells and higher canopy closure compared to mature/old-growth forest. 

These factors may increase longwave radiation input to the snowpack and reduce snow 

accumulation in planted forests, but this effect may vary among planted stands with different 

ages and forest structure. Timber harvest influences rain-on-snow floods in the Pacific 

Northwest (Harr, 1986; Jennings & Jones, 2015), but process understanding is insufficient to 

connect fine-scale snowpack dynamics to regional timber harvest and extreme rain-on-snow 

flood events (J. A. Jones & Perkins, 2010). Apart from limited measurements at the H.J. 

Andrews Experimental Forest in Oregon and other locations in the Pacific Northwest, 

information concerning the snowpack energy balance during rain-on-snow events is lacking 

(Mazurkiewicz et al., 2008). 

The accurate estimation of snow water storage over the landscape is a key parameter 

for water resource managers, but full spatial coverage of snow water is difficult to obtain. 

Methods are lacking to accurately estimate the spatial variability of snow water storage and 

how it responds to changes in forest cover (Clark et al., 2011; Lundquist et al., 2021). For 

example, snow water equivalent typically is measured at only a few points in the landscape, but 

point based measurements of snow water equivalent are inadequate to capture the spatial 

distribution of snow water storage due to the high spatial and temporal variability of mountain 
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snowpack (Molotch & Meromy, 2014). Furthermore, remotely sensed spaceborne retrievals of 

snow water equivalent and model-based snow estimates in mountains are often inaccurate 

(Largeron et al., 2020). Airborne lidar offers the potential to estimate synoptic coverage of 

snow depth. Prior lidar retrievals of snow depth have been focused in alpine and sub-alpine 

areas of the Sierra Nevada in California and the Rocky Mountains in Colorado and Wyoming 

(Painter et al., 2016). However, few or no studies have used lidar to detect snow in lower 

elevations (<1500 m) of a forested maritime climate setting. 

 Snow simulation models can permit testing how various processes affect interception of 

snow in forest canopies. However, models of snow processes at the rain-snow transition near 

0°C have high rates of error (Wayand et al., 2016). Snow simulations (using PRMS) indicated 

that snow water equivalent was an order of magnitude lower under forest than measurements 

in openings (Perkins & Jones 2008). Measurements of accumulation, ablation, and interception 

using automated snow stations and paired snow stake sites have the potential to help improve 

model representations of canopy interception of snow in a maritime snow climate.  

 

1.3   Objectives and research questions  
 

The objectives of this study were to characterize snowpack dynamics in forests in a 

maritime climate using diverse data sources and contemporary methods. We drew on various 

long-term and short-term datasets on snow available from the H.J. Andrews Experimental 

Forest in western Oregon. Datasets include long-term paired snow stake data in openings and 

under forest canopy; long-term meteorological station data on snow depth and density, 

precipitation, air temperature, atmospheric pressure, and radiation; in situ snow field sampling; 

and an airborne lidar image of snowpack acquired in March 2022.  

 

We asked the following questions: 

 

1) What processes govern snowpack dynamics in the transient to seasonal snow zone in a 

maritime snow climate?  

2) What factors affect the spatial distribution of snow depth?  
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3) How well do snow model representations of forest canopy interception agree with field-

measured estimates of snow in openings vs. under forest? 

 

2. Study site description 
 
The 64 km2 Lookout Creek drainage basin (Figure 1) comprises the H.J. Andrews 

Experimental Forest (hereafter, “Andrews Forest”) in the western Cascade Range, Oregon. 

Lookout Creek drains into Blue River, which drains to the McKenzie River, a tributary to the 

Willamette River. The Andrews Forest has been part of the National Science Foundation’s Long 

Term Ecological Research program since 1980.  

The Andrews Forest ranges in elevation from 420 to 1,630 meters. The landscape in the 

Andrews is steep, with slopes as great as sixty percent.   

The climate in the Andrews Forest is cool and wet in the winter and warm and dry in the 

summer. Four benchmark climate stations established in 1987 (Vanmet) and 1994 (Cenmet, 

Uplmet, Varmet) are located in the seasonal snow zone and coincide with the study area 

(Figure 1). These stations measure air temperature, precipitation, snow, wind, atmospheric 

pressure, radiation, and other variables used in analyses. Warm snowpack conditions cause 

frequent melt events during the winter months of December, January, and February. The mean 

winter (December to February) air temperature at the Upper Lookout meteorological station at 

1,298 m elevation (Figure 1) fluctuates around 0°C and varies among years (Table 1). A transient 

snowpack may accumulate and melt several times throughout a season at 350 to 1,100 meters 

in elevation (Harr, 1986). Above 1,100 m a seasonal snowpack forms in November, accumulates 

to 2 to >7 m, and melts from March to June (Jefferson et al., 2008; Perkins & Jones, 2008). 

Snowpack in the Pacific Northwest Cascades is particularly sensitive to air temperature, and 

lower elevation zones in the western Oregon Cascades are classified as the most ‘at-risk’ snow 

within the region (Nolin & Daly, 2006).  

Vegetation in the Andrews Forest consists of mature and old-growth forest dominated 

by Douglas-fir (Pseudotsuga menziesii), western hemlock (Tsuga heterophylla), and western 

redcedar (Thuja plicata), with about 25% of area in young Douglas-fir dominated patches 

created by timber harvest from 1948 to the mid-1970s (Goodman et al., 2023; J. Jones & Grant, 
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1996). Mature/old-growth stands range in age from 150–700 years and can have trees as tall as 

75 meters (Figure 2).   

 
Table 1. Mean air temperature, December - February (°C), Upper Lookout meteorological 
station (1300 m), water year 2011-2015. 
 
Water 
year 2011 2012 2013 2014 2015 

 -0.07 0.78 -0.67 1.43 3.51 

  



 7 

 
 
Figure 1. Locations of field samples, lidar survey, meteorological stations, and snow stakes in 
the study site in the H.J. Andrews Experimental Forest.   
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Figure 2. Study site with canopy height model overlay (Dave Bell, 2023; Quantum Spatial, 2020).    
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3.   Methods 
 

This study applied multiple snow measuring, modeling, and estimating methods to 

investigate the factors and processes affecting snow accumulation and melt in the Andrews 

Forest, Oregon (Table 2). Long-term snow data from paired forest and open sites since 1978 

were combined with meteorological station records, a lidar survey, and snow modeling to 

investigate various effects on seasonal snowpack accumulation and ablation.  

 Snow sampling of the transient and seasonal snowpack in the Andrews Forest at 

elevations ranging from 800 to 1400 m was conducted in March 2022 and March 2023. (Figure 

1, Table 2). Snow surveying tools included an avalanche probe, a Federal sampler, and snow pits.  

A snow-on lidar survey was flown on March 17, 2022 to obtain the surface elevation of 

the snowpack. Snow depth was calculated by differencing a digital terrain model (DTM) 

containing the snowpack surface elevation with the USGS 3DEP (Thatcher et al., 2017) bare 

earth DTM, and the resulting spatial layer of lidar-derived snow depth was validated by 

comparison with snow depth measured from field sampling, snow survey stakes, and 

meteorological stations collected on the same date as the lidar survey (Figure 1, Table 2). 

Snowpack evolution was modeled over the period of water year 2014 to water year 

2018 using the Structure for Unifying Multiple Modelling Alternatives (SUMMA) as a snow 

model (Clark et al., 2015a, 2015b). The model was forced using meteorological data from the 

Upper Lookout meteorological station (Figure 1, Table 2) and the phase two of the North 

America Land Data Assimilation System (NLDAS-2) (Table 2). The Python wrapper used to 

manipulate the SUMMA model is pySUMMA (Choi et al., 2018).  

Long term meteorological and snow data (described below) were obtained from the 

Andrews LTER database and used to force the SUMMA model, to validate the lidar-derived snow 

depths, and to estimate snow density over time. Data from meteorological stations (MS001) 

included snow depth and SWE, air temperature, precipitation, relative humidity, wind, radiation, 

and air pressure (Table 2) (Daly et al., 2019). Vegetation classifications and history from the 

Willamette National Forest (TV061) were used to characterize vegetation conditions 

(Lienkaemper & Schulze, 2015). 
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Long-term snow stake measurements (MS007) included snow depth and SWE since 1978 

in paired openings and forest sites (Levno et al., 2023). The long-term snow depth data at 

paired snow stakes from the MS007 dataset were used to determine the effects of forest 

canopy on snow disappearance date, peak snow depth, snow water equivalent, and snow 

density (Table 2). The MS00701 dataset (Appendix A) includes paired measurements of SWE and 

snow depth in ten paired open and forest sites ranging in elevation from 450 m to 1400 m along 

major roads (1506, 1507, 320, 350 roads) in the Andrews Forest. Measurements from 1994 to 

2014 were obtained using a Federal sampler by technicians traveling to each stake two to ten 

times throughout the winter. In 2014, cameras were installed in small bunk houses attached to 

the trees pointing at the snow stakes (Photograph 1). The cameras are programmed to take an 

image at 9:00 AM, 12:00 PM, and 3:00 PM. These images are stored, uploaded by a technician, 

and converted to daily snow depth values by reading the height of the snow on the stake on 

each day that an image was captured. Each snow stake is made of PVC marked with tape at 

known heights (Photograph 2, Photograph 4). Processing of photos corrects for cones of 

depression or accumulation around snow stakes (e.g. Photograph 2).  

Of the 40 snow stakes in the entire MS00701 dataset, this study utilized the 20 that were 

included in the snow-on lidar survey extent(Figure 1). Little to no snow was present at the other 

10 forest stakes on the date of the lidar survey (March 17, 2022).  

The lidar survey covered the range of elevation in which the transient snow zone 

transitions to the seasonal snow zone (600 to 1400 m), including research watersheds such as 

Watershed 6, Watershed 7, and Watershed 8 (Figure 1). Of the 20 snow stakes that were 

selected for this study, only 13 had snow present at the time of the lidar survey.  

The MS00702 dataset contains additional measurements of SWE at snow stakes in open 

and forest sites at long-term old-growth forest Reference Stands from 1978 to 2003 (Appendix 

Table A-2). 
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Table 2: Description of data sources and models used in this study. 
 

Data analysis 
activity 

Date source 
name 

 
Description 

 
Application 

 
Citation 

Field snow sampling 
  

 
March 16, 
2022, snow 
survey 

Snow survey with 
Mark Raleigh to 
validate lidar. 
Methods: transects 
(5), 3x3m plots (16), 
and snow pits (2). 

Determine landscape 
patterns of snow, 
spatial analysis, validate 
lidar survey. 

 

 
March 1, 2, 
2023, snow 
survey 

Four planted forest 
stands (L305, L306, 
L704A, and L703) 
sampled with 30 m 
transects.  

Field data used to 
determine snow depth 
and SWE in planted 
forests. 

 

Geospatial data 
  

 
March 17, 
2022, lidar 
survey 

Lidar survey with 
airborne laser 
scanner on 
helicopter. 

This data is used as a 
high-resolution snow 
depth dataset.  

 

 
USGS 3D 
Elevation 
Program 
(3DEP) 

1-m bare earth 
digital terrain 
model. 

Differenced with ‘snow-
on’ lidar derived snow 
surface. 

(Lukas & 
Baez, 2021) 

 Canopy 
height model 

1-m canopy height 
model derived from 
a 2020 lidar survey. 

Raster used for analysis, 
provided by Dave Bell, 
USFS. 

(Dave Bell, 
2023; 
Quantum 
Spatial, 
2020) 

Snow modeling 
  

 
Structure for 
Unifying 
Multiple 
Modelling 
Alternatives 
(SUMMA) 

Hydrologic model. Used as a point-based 
snow model to simulate 
snowpack at the Upper 
Lookout benchmark 
meteorological station 
site. 

(Clark et al., 
2015a; Clark 
et al., 
2015b) 

 
pySUMMA Python wrapper. Wrapper used to work 

with SUMMA. 
(Choi et al., 
2018)    
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North 
American 
Land Data 
Assimilation 
System 

Land-surface 
model/climate 
reanalysis hourly 
data on a 1/8 
degree (13.875 km) 
resolution. 

This gridded product 
was used as forcing 
data for SUMMA.  

(Xia et al., 
2012) 

 
MeteoIO Open source C++ 

library specifically 
designed for using 
met data for 
hydrologic science. 

Used in Matlab to 
downscale the climate 
data from a single 
NLDAS grid cell. 

(Bavay & 
Egger, 2014) 

 
Downscaled 
WY 2010-
2022 NLDAS 
data 

Precipitation, air 
temperature. , wind, 
specific humidity, 
and longwave and 
shortwave radiation. 
Missing pressure 
needed for SUMMA. 

Longwave radiation 
used as meteorological 
forcing for SUMMA.  

 

Snow stake analysis 
   

 
MS00702 – 
Reference 
Stand and 
Historic Road 
snow course 

Snow dataset that 
includes Federal 
sampler 
measurements at 3- 
to 5-week 
resolution, 1978-
2003, at 6 paired 
sites in historic 
Reference Stands. 

Historic snow depth 
and SWE data used in 
analysis. 

(Levno et al., 
2023)   

  

 
MS00701 – 
Paired snow 
stakes 

Snow depth and 
SWE, 1994-2023, 
measured at 20 
paired sites with 
snow courses and 
automated snow 
stakes. 

Snow depth and SWE 
data used in analysis. 

(Levno et al., 
2023) 

Meteorological data 
   

 
Meteorologic
al Data from 
Benchmark 
Stations at 

Air temperature, 
relative humidity, 
dew point, soil 
temperature, soil 

Provisional 
precipitation, snow, 
and air temperature 
used for analysis with 

(Daly et al., 
2019) 



 13 

the H.J. 
Andrews 
Experimental 
Forest, 1957 
to Present 

moisture, battery 
supply, precipitation 
(stand-alone), and 
wind speed and 
direction.  
Provisional data 
files: 
uplmet_235_5min_
2022, 
uplmet_236_5min_
2022 

MS007 snow stakes, as 
well as validate lidar. 

 
MS00110 Snow water 

equivalent and snow 
depth (daily 
midnight), 1987-
2014.  

Snow data used for 
analysis. 

(Daly  et al., 
2019) 

 
MS00111 Air temperature 

measured by a 
thermistor. 

Meteorological forcing 
data for SUMMA. 

(Daly  et al., 
2019) 

 
MS00112 Relative humidity 

measured by a  
Meteorological forcing 
data for SUMMA. 

(Daly  et al., 
2019)  

MS00113 Precipitation 
measured by a 
heated shelter 
gauge. 

Meteorological forcing 
data for SUMMA. 

(Daly  et al., 
2019) 

 
MS00114 Wind measured by a 

propellor 
anemometer. 

Meteorological forcing 
data for SUMMA. 

(Daly  et al., 
2019) 

 
MS00115 Shortwave radiation 

measured by 
pyranometer.  

Meteorological forcing 
data for SUMMA. 

(Daly  et al., 
2019) 

 
MS00120 Snow water 

equivalent and snow 
depth (median 
depth for each 
hour), 1987-2014. 

Snow data used for 
analysis. 

(Daly  et al., 
2019) 

 
MS00136 Air pressure 

measured by 
barometric pressure 
sensor. 

Meteorological forcing 
data for SUMMA. 

(Daly  et al., 
2019) 

Vegetation data 
   

 
TV061  Vegetation 

classification, 
Andrews 

Characterize vegetation 
in sampled forest 
stands. 

(Lienkaempe
r et al., 
2015) 
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Experimental Forest 
and vicinity 
(1988,1993,1996,19
97,2002, 2008). 
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Photograph 1. Forest stake, close up of camera house. March 2, 2023. 
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Photograph 2. Open stake. March 2, 2023. 
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3.1   Field methods 
 

3.1.1   Field sampling of snow and forest characteristics 
 
Snow surveying in the Andrews Forest was conducted in March of 2022 and 2023. Snow 

depth and snow water equivalent (SWE) were collected at elevations ranging 800 to 1400 m at 

sites in the open, in former clearcuts, which are now forest plantations (hereafter, “planted 

forest”), and in mature/old-growth forests (dataset TV061, Table 2) (Lienkaemper & Schulze, 

2015). In total, the field sampling was conducted in six planted forests over both surveys in 

March of 2022 and March of 2023 (Table 3). The planted forest stands were established after 

clearcutting from 1961 to 1970. Stands ranged in elevation from 950 meters to 1380 meters 

and had NE, SE, SW, W, and NW aspects. Forest regenerated at different rates in these stands, 

and forest establishment dates ranged from 1963 to 1981; in many cases forest establishment 

(i.e., successful survival and growth of planted trees) required one or two decades (Table 3).  

The first snow field sampling was conducted in March 2022. Samples were obtained on 

March 16, 2022, and the lidar survey was completed on March 17, 2022. The goal of the March 

2022 field campaign was to validate snow depth values derived from a lidar survey. This is 

discussed in further detail in Section 3.2.1. Samples were collected along the 1506 road, in 

adjacent forests, and in a forest clearing created for the Upper Lookout meteorological station. 

In total there were 14 sites in the open, 6 sites beneath planted forests, and 3 beneath mature 

forests. Two planted stands, L708 and L704C were sampled for snow depth and SWE on March 

16, 2022 (Table 3, Figure 3). Along the 1506 road, snow samples were collected at the R50606 

and the R506F6 snow stakes (Figure 3). Of the 23 sites, 18 were plots of 9 m2, 3 were 15-meter 

transects, and 2 were snow pits (Table 3). Snow sampling methods included an avalanche 

probe, a Federal sampler, and snow pits (see details of field sampling in Section 3.2.1). In 

general, the forest canopy in the planted stands is only about 30 m tall, whereas trees in the 

adjacent mature/old-growth forest may reach 80 m, as shown in the canopy height model of 

2020 (Figure 2). The L708 stand was certified as reforested in 1976 and the L704C was certified 

in 1981. These stands have had ~50 years of growth but have canopy conditions that are very 

different from adjacent unharvested forests (Figure 2). 
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Snow depth and SWE samples were collected along the road, in the meteorological 

station clearing, in planted forests, and in mature/old-growth forests (Figure 3). Sampling in 

2022 did not extend downslope to the valley floor of Lookout Creek, where the lidar image 

shows deeper snowpack (Figure 3). See section 3.1.2 for details on lidar acquisition.
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Figure 3. Canopy height model of planted stands relative to March 16, 2022, snow sample 
locations. The canopy height model was derived from a lidar survey obtained 2020 (Dave Bell, 
2023; Quantum Spatial, 2020). 
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Figure 4. Lidar image of snow depth (flight on March 17, 2022) relative to March 16, 2022 snow 
sample locations. 
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The mean canopy height of each of the planted stands that were sampled for snow 

generally decreased with increased elevation (Table 3). The L708 stand has a particularly low 

mean canopy height value because the clearing for the Upper Lookout meteorological station is 

in the center of it. The mean canopy height is an average of all the raster cells that are within 

the L708 stand. Douglas-fir was the most abundant tree species (Species 1) in the primary 

canopy layer in the six planted forests that were sampled for snow in stands with elevations 

below 1,300 meters, and Noble fir was the most abundant tree species in stands with 

elevations above 1,300 meters. Noble fir was the second most abundant tree species (Species 

2) in the planted forest stands below 1,300 m in elevation, and Douglas-fir was the second most 

abundant species in stands above 1,300 m in elevation, while western hemlock was the second 

most abundant species in the stand that is less than 1,000 m in elevation. Prior to harvest in the 

mid-twentieth century these stands consisted of Douglas fir and true fir. These sites were 

mature/old-growth stands that were harvested in the 1960-1970s and certified as reforested 

two to more than 20 years later, indicating that these planted forests regenerated slowly. The 

harvest method in all six of the stands was clearcutting. 

On March 1-2, 2023, SWE and snow depth were sampled using a Federal sampler and an 

avalanche probe at four sites (L704A, L703, L306, and L305) ranging in elevation from 950 to 

1380 m (Table 3). Paired snow measurements were taken concurrently at a road site, a 

plantation stand, and a mature/old-growth stand (Figure 1, Figure 6, Figure 7). Each of the four 

planted stands was co-located with one of the snow stake pairs from the MS00701 dataset 

(Figure 6, Figure 7). The MS00701 snow stakes include one stake on the road within the planted 

forest and one snow stake in the adjacent mature/old-growth forest. Snow measurements 

were taken at the two stake locations while additional measurements were taken in the 

planted forest. Canopy height and canopy closure varied, including among the open sites. The 

roads in which the open stakes are located are generally 5-8 meters across, or five to twenty 

percent of the height of the adjacent canopy.  

After clearcut and planting, the L704A, L703, L306, and L305 stands were certified as 

reforested in 1981, 1962, 1983 and 1963 respectively. The four stands were replanted with 

Noble fir and Douglas-fir. Prior to harvest the stands primarily consisted of Douglas-fir and true 
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fir (Table 3). After 50–70 years of growth the forest canopy in the planted stands is shorter than 

adjacent older forests (Figure 6), and some of the stands, such as L703, have a higher tree bole 

density than older forests (Photograph 7).  
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Figure 5. Mean snow depth sampled in the field at 23 sites on March 16, 2022. 
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Table 3. Characteristics of the planted forest stands in the H.J. Andrews Experimental Forest 
that were sampled for SWE and snow depth during March 2022 and March 2023. ID = Planted 
stand identification code and Date = Date of sampling (Lienkaemper & Schulze, 2015). PSME = 
Pseudotsuga menziesii, Douglas-fir, TSHE = Tsuga heterophylla, western hemlock, ABPR = Abies 
procera, noble fir. 
 

Stand 
ID 

Elev 
(m) 

Canopy 
height 

(m) 

Year 
clearcut 

Year 
certified 

as 
reforested 

Aspect 
Species 

1 
Species 

2 

Original 
stand 

species 

Day 
sampled 

L703 988 25.1 1960 1962 SW PSME TSHE PSME/TSHE 3/2/23 

L704A 1145 13.3 1970 1981 W PSME ABPR 
PSME/true 

fir 
3/2/23 

L704C 1163 11.4 1970 1981 W PSME ABPR 
PSME/true 

fir 
3/16/22 

L305 1225 16.7 1961 1963 NW PSME ABPR 
PSME/true 

fir 
3/1/23 

L708 1298 8.7 1965 1976 NE ABPR PSME 
PSME/true 

fir 
3/16/22 

L306 1380 9.9 1961 1982 SE ABPR PSME 
PSME/true 

fir 
3/1/23 
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Table 4. Summary of mean snow depth, SWE, and snow density at 23 sites sampled on March 
16, 2022. Site: T = 15 m transect, SP = snow pit, UPL = plot in the UPL met station area, 1506 = 
1506 road. Cover = P = planted forest, M = mature/old-growth forest, O = opening. Probe depth 
= field measured snow depth by avalanche probe, tube depth = field measured snow depth by 
Federal sampler. Note that values for snow pits are only one sample, whereas values for 
transects are means of 15 samples, and values for plots are means of 16 samples.  

Site Cover 
Elevation 
(m) 

Probe depth 
(mm) 

Tube depth 
(mm) SWE (mm) 

Density 
(%) 

T 3 P 1163 760 -- -- -- 

SP P 1298 680 -- 300 44 

UPL 6 P 1300 670 580 305 52 

UPL 8 P 1300 840 655 330 50 

UPL 7 P 1301 610 529 254 48 

UPL 9 P 1303 880 932 432 46 

1506 6  M 1117 250 189 76 40 

1506 6  M 1128 360 176 76 43 

1506 6 M 1136 210 101 51 50 

1506 5 O 965 380 340 178 52 

1506 5 O 966 390 290 152 52 

1506 5 O 967 220 290 127 43 

1506 6 O 1120 750 743 330 44 

1506 6 O 1122 830 832 356 42 

1506 6 O 1122 910 882 356 40 

T 2 O 1157 1210 -- -- -- 

T 1 O 1187 1100 -- -- -- 

UPL 4 O 1299 1680 1084 559 51 

UPL 5 O 1299 1850 1714 660 38 

UPL 1 O 1302 1830 1651 762 46 

SP O 1304 1830 -- 777 42 

UPL 2 O 1305 1790 1348 610 45 

UPL 3 O 1305 1920 1638 686 42 

Ave-All  1194 963 776 369 46 

SD   586 531 234 4 

n   23 18 20 20 

SE   122 183 82 10 

Ave P  1277 740 674 324 48 

SD   105 180 66 3 

n   6 4 5 5 

SE   43 90 30 1 

Ave- M  1127 273 155 68 44 

SD   78 48 15 5 
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n   3 3 3 3 

SE   45 28 8 3 

Ave- O  1173 1192 983 463 45 

SD   648 569 265 5 

n   14 11 12 12 

SE    173 172 77 1 
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Figure 6. Canopy height model of planted stands relative to March 1 and 2, 2023 snow sample 
locations. The canopy height model was based on lidar obtained in 2020 (Quantum Spatial, 
2020). 
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Figure 7. Lidar image of snow depth (taken on March 17, 2022) relative to March 1 and 2, 2023 
snow sample locations. 
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Each site sampled during the March 1-2, 2023 field campaign included a road site, a site 

beneath a planted forest, and a site under a mature/old-growth forest stand. To collect 

concurrent snow measurements at these three site types, the snow survey was completed by a 

team of three people. I collected snow measurements in the planted forest with an avalanche 

probe and a Federal sampler, while Andrews Forest staff (Ben Nash and Greg Downing) 

collected snow measurements with a Federal sampler at the snow stake in the open and snow 

stake in the older forest (Photograph 1). This sampling design allowed snow depth and SWE to 

be sampled (1) beneath a planted forest canopy (2) beneath a mature/old-growth forest 

canopy and (3) at the adjacent road site representative of a forest opening. In the planted 

forests, snow was sampled along two, 30-meter transects parallel to contours approximately 

20- and 100-meters downslope from the road. Ten snow depth measurements were taken with 

an avalanche probe at 3-meter intervals along each transect. SWE was collected with a Federal 

sampler at 10 m intervals along the transect, but SWE measurements were incomplete due to 

lack of time. The sampling scheme was slightly different at the snow stakes, where Ben and 

Greg took three samples with a Federal sampler at 1–2-meter distances from each stake at 

random points around the stake. 

On March 1, 2023, the L305 (NW/1248m) and L306 (SE/1379m) planted stands were 

sampled along the 350 road. The highest elevation site (L306) was sampled in the morning, 

while the lower-elevation site (L305) was sampled in the afternoon. The weather was partly 

cloudy, and temperature fluctuated above and below zero degrees Celsius as clouds passed 

over and caused periods of shading. The SE-facing L306 stand has sparse tree cover despite 60 

years of regeneration since clearcutting in 1963 and a deep snowpack (Table 3, Photograph 3). 

In contrast, the L305 planted forest stand has a very dense, closed canopy, a NW aspect, and a 

shallow snowpack (Photograph 4).  

On March 2, 2023, the L704A (1145m) and L703 (988m) planted stands were sampled 

along the 1506 road. The higher elevation site, L704A, was sampled in the morning, while the 

lower elevation site, L703, was sampled in the afternoon. The L704A stand had deeper snow, 

particularly at sampling locations closer to the valley floor of Lookout Creek (Photograph 5). 

Snow at the bottom of the Lookout Creek (Photograph 6) bridges the creek and surrounding 
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riparian vegetation. Snow depth at this location was measured as > 2m on March 2, 2023. The 

L703 stand has a high tree bole density and canopy closure with some near ground vegetation 

such as vine maple (Photograph 7). Snow beneath the canopy of the L703 stand was dense and 

had a high water content at the time of sampling. Snow in the L703 stand stuck to the tree 

boles and the tree branches.  
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Photograph 3: L306 stand and transect (20 m from road) location. 
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Photograph 4: L305 stand and transect location. The top images are 20 m from road and the 
bottom images are 100 m from the road. 
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Photograph 5. L704A stand and transect location. The top images are 20 m from road and the 
bottom images are 100 m from the road. 
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Photograph 6. The valley floor of Lookout Creek in the L704A stand. The top images are 20 m 
from road and the bottom images are 100 m from the road. 
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Photograph 7. L703 stand and transect location. The top images are 20 m from road and the 
bottom image is 100 m from the road. 
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3.1.2   Lidar image acquisition 
 

A ‘snow-on’ airborne lidar survey was conducted in the Andrews Forest on March 17, 

2022. The lidar survey was conducted by the National Center for Airborne Laser Mapping 

(NCALM), a collaboration between the University of Houston (the operational center) and the 

University of California Berkeley (the data processing center) supported by the Division of Earth 

Sciences at the National Science Foundation (NSF) (https://ncalm.cive.uh.edu). 

Snow water storage is often quantified by peak SWE amount and peak SWE date 

(Sproles et al., 2013), so efforts to measure snow are often focused on collecting measurements 

on that date. Based on historical data, the lidar survey was scheduled for the estimated peak 

SWE period (mid-March). The lidar image was obtained on March 17, 2022, four to five weeks 

before the realized date of maximum SWE at the UPLMET snow pillow, which occurred on May 

3, 2022 (Figure 8). Peak SWE was expected to occur in early March, but during WY 2022 a 

significant accumulation period occurred in April, following a significant mid-winter melt period 

(Figure 8). The lidar survey (orange dashed line) was completed at a time after some mid-winter 

melt, but still in the accumulation season. Although the survey date did not align with the peak 

SWE date, it was conducted within the snow season at the end of a 2.5-month period of 

relatively constant snow, and it was completed before a large melt event (Figure 8). The SWE at 

the UPLMET snow pillow at the time on the lidar survey was ~ 625 mm and the peak SWE for 

the water year was ~800 mm, on May 3, 2022.  

To collect the ‘snow-on’ survey NCALM employed an airborne laser scanning (ALS) 

system (RIEGL VG-580 H2225798) mounted to a Robinson R66 helicopter. The system was 

configured with pulse repetition frequency of 300 kHz, a scanning rate of 200/s, scan angle of 

+/- 37.5 degrees, a scan overlap of 50%, and a beam divergence of 0.25 mrad, which yielded a 

laser footprint diameter of 12.5 cm. The average altitude of the helicopter was 500 m. NCALM 

lidar products have a typical nominal elevation accuracy of 5 to 10 cm with a horizontal 

uncertainty of 20 to 40 cm over flat open surfaces. The mean point density for the ‘snow-on’ 

survey was 23.3 points per square meter, but this density metric for returns varies considerably 

given the significant terrain and forest structure variation of the area of interest (AOI) 

(OpenTopography, 2022). 
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Data collected from the ‘snow on’ lidar survey were classified and QA/QC processed by 

NCALM. Due to the remoteness of the area, ground control points could not be collected, so 

NCALM collected kinematic GPS in the instrument calibration area during the flight. The 

calibration area was near Creswell, OR, about 80 km WSW of the Andrews Forest. The NCALM 

data processing team produced lidar-derived surface models, including a 1 m-resolution snow 

surface digital terrain model (DTM) and a 1 m digital surface model (DSM) (OpenTopography, 

2022). 

A map of lidar-derived snow depth was created by differencing the ‘snow-on’ DTM 

collected by NCALM with a ‘snow-off’ DTM collected on July, 2022 by the United States 

Geological Survey (USGS) as part of the 3D Elevation Program (3DEP) (Thatcher et al., 2017). 

3DEP data are free and open source. The data were downloaded as individual tiles that were 

combined to form one continuous raster using the Mosaic geoprocessing tool in ArcGIS Pro. 

Differencing was conducted using the Raster Calculator in ArcGIS Pro. The extent of the snow-

free lidar exceeded the snow-covered extent in all cases. The result was a raster of 1 m 

resolution in which each one square meter cell represents a difference in ground surface and 

snow surface elevations, equivalent to a snow depth measurement. To better account for the 

high spatial variability of snow in this analysis, the raster was resampled to images with 3, 5, 

and 10 m spatial resolution using bilinear interpolation. The result of the difference of the two 

raster datasets will hereafter be referred to as a snow height model (SHM). This is a 1 m raster 

consisting of snow depth estimates for each raster cell. The resulting raster contained 2.9% 

negative values, mainly located in areas of high topographic relief. High elevation areas had 

some cloud cover that may have increased the occurrence of negative values in those areas. 
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Figure 8. Snow water equivalent during WY 2022 measured at the Upper Lookout 
meteorological station (UPLMET) (1298 m). The dashed line indicates when the ‘snow-on’ lidar 
survey was collected. 
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Figure 9. Snow height model on March 17, 2022 in a 52 km2 survey area of the upper elevations 
of Andrews Forest and adjacent watersheds. 
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3.1.3   Meteorological station data about snow and other climate variables  
 
 Snow depth and SWE are measured at the CENMET, UPLMET, VANMET, and VARMET 

meteorological stations in the Andrews Forest (Figure 1). The snow measuring sites include a  

sonic snow depth sensor (since 1997) and a pressure sensing snow pillow containing an anti-

freeze solution. The snow pillow measures how much liquid water equivalent is in the 

snowpack by weighing the snow with a pressure transducer. Snow density is calculated from 

the snow depth measured at the acoustic depth sensor and SWE from the snow pillow. At 

UPLMET the acoustic sensor is above the pillow but at CENMENT, VANMET, and VARMET the 

acoustic sensor is not above the pillow, introducing uncertainty in the density measurements. 

Furthermore, the error in the acoustic sensor measurements increases in snow depth <10 cm. 

SWE has been measured continuously from 1987 (at Vanmet) or 1994 (at Cenmet and Uplmet) 

to the present, whereas snow depth measurements began in 1997 at these sites (Table 2). 

QA/Qced data were available until 2014, and provisional data were available starting in 2014 to 

2023. Snow data from UPLMET were used for model analysis and calibration. 

 Besides snow data, this study used air temperature, relative humidity, air pressure, 

precipitation, shortwave radiation, and wind speed measured at the Upper Lookout 

meteorological station (UPLMET) (Daly et al., 2019) as forcing data in the SUMMA model. Air 

temperature (method AIRUPL01) is measured by a thermometer at 450 cm height; mean 

output is every 5 minutes. Relative humidity (method RELUPLO01/REL012) is sampled using a 

Campbell Scientific model HMP45C probe housed in a R.M. Young Gill radiation shield at 450 

cm height; mean output every 15 minutes. Air pressure (ATMUPLO1) is sampled by a Campbell 

Scientific barometric pressure sensor, output every 15 minutes. Precipitation (method PPT016) 

is measured using a shelter-top heated rain gage with 13.3-inch orifice, tank gage, and a wind 

shield at 625 cm on the tower with a Campbell Scientific data logger. Shortwave radiation 

(method RAD021) is measured by a Kipp and Zonen solar radiation pyranometer, model CM-6B, 

with a Campbell Scientific data logger at 615 cm height; mean, total, and maximum solar 

radiation is output every 5 minutes. Wind (method WND008) speed and direction are sampled 

every 15 seconds by a propeller anemometer (RM Young Model 05103 Wind Monitor) mounted 
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to the tower at 1000 cm with a Campbell Scientific datalogger. Mean wind speed and direction 

are output hourly with a detection level 1 m/sec, for wind speeds >0.4 m/s. 

 

3.1.4   Snow survey stake methods 
 

Long-term snow data were available from 1994 to 2022 (MS00701), as well as 1978 to 

2003 (MS00702) (Levno et al., 2023). These data were used to calculate snow disappearance 

date and snow depth loss rates, and to compare snow depths and SWE values between paired 

sites in openings and under forests (Appendix A). 

 Annual, mean snow density by water year was calculated at ten sites of paired snow 

stakes from 1994 to 2014 using long-term SWE measurements from the MS00701 dataset. 

Long-term SWE data were used to calculate the annual mean snow density for each forest and 

open site. This density value was applied to the continuous snow depth at camera-sampled 

snow stakes following the SWE equation (Dewalle, 2008): 

𝑆𝑊𝐸 = 𝑑
𝜌𝑠

𝜌𝑊
 

Where SWE is water equivalent (m), 𝑑 is snowpack depth (m), 𝜌𝑠 is snowpack bulk density 

(kg/m3), and 𝜌𝑊 is the density of liquid water (kg/m3). 

 

3.2   Data analysis 
 
3.2.1   Validation of lidar image vs. field, meteorological station, and snow stakes 

 
Lidar-derived snow depth values were compared to data collected in the field, data 

measured at the paired snow stakes, and data measured at the snow pillows of the 

meteorological stations in the Andrew Forest. 

Field snow depth data were collected by a team of four on March 16, 2022 using 

procedures described above in Section 3.1.1. The snow survey was conducted on the day that 

the lidar survey was scheduled to take place, March 16, 2022, but cloudy weather delayed the 

flight to March 17, 2022. This one-day lag should not cause any significant discrepancies in 

snow depth. The goal of the snow survey was to collect snow depth ground truth 

measurements that could be compared to the value of a raster cell, so the sampling scheme 
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was focused on establishing plots as 3x3 m squares that could be compared to 3-meter raster 

cells in the snow height model. Site locations were recorded using a recreational-grade GPS, so 

there was uncertainty of 2-6 meters. Each square plot was measured in the snow using an 

avalanche probe of 3 meters. The square plots were established along the 1506 road beginning 

at 950 m in elevation and ending at the Upper Lookout Meteorological station (UPLMET) at 

1298 m. The station is located in a forest clearing that is 100 meters in diameter. The forest was 

cut for the installation of UPLMET and further clearing of trees occurred in 2018. The greatest 

number of snow samples collected during the survey were in the UPLMET clearing and adjacent 

forests. 

Snow depth and density data on March 16, 2022 were collected at 23 locations along 

the 1506 road in the Andrews Forest, using procedures described above in Section 3.1.1. Of the 

23 measurements, eighteen were plots, three were transects, and two were snow pits (Table 4, 

Figures 3 and 4). The area of each plot was 9 m2. Plots were designed as squares with the intent 

to mimic a single pixel to facilitate comparison to the snow depth values from one pixel within 

the snow height model. Snow depth measurements were taken at 16 points along the edges of 

each plot using a 3-meter long avalanche probe. SWE was also collected at 3 of the 16 points in 

each plot using a Federal sampler. The 16 snow depth measurements were averaged to obtain 

a mean depth for each plot. The three SWE measurements were averaged to obtain a mean 

SWE value for each plot. Snow depth measurements did not differ between avalanche probe 

and snow pits (Figure 5). 

 

3.2.2   Comparison of lidar snow depth by forest cover type 
 

Zonal statistics of the snow height model and canopy height model were calculated at 

ten paired sites of mature/old-growth forest and planted forest (Figure 10). Planted forest sites 

were located within the forest plantations that were closest in proximity to each of ten pairs of 

the MS00701 snow stakes that were located within the ‘snow-on’ lidar survey. Ten pairs of 

60x60 m polygons were located on the snow depth model and canopy height model (Figures 11 

and 12). Each pair consisted of a polygon in a planted forest and a polygon in an adjacent 

mature/old-growth forest at the same elevation and at a minimum distance of 25 m from the 
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edge of the stand (Figure 10, Figure 11). The 60x60 m polygons were selected visually to 

represent average canopy conditions, avoiding valley floors, very steep slopes, and openings.  

Summary statistics of the canopy height model and the snow height model raster cells within 

the polygons were produced using geoprocessing tools in ArcGIS Pro. The mean and standard 

error of lidar-derived snow depth within each polygon were calculated using the Zonal Statistics 

and Raster to Point geoprocessing tools in ArcGIS Pro.
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Figure 10. Locations of 60x60 m polygons used for sampling of canopy height and snow depth in 
planted forest stands and adjacent mature/old growth forest stands. 
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Figure 11. Ten pairs of 60x60 m polygons sampled for lidar-derived snow depth superimposed 
on the canopy height model. 
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Figure 12. Ten pairs of 60x60 m polygons sampled for lidar-derived snow depth superimposed 
on the snow height model (lidar-derived snow depth). 
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3.3   Snow modeling 
 
The structure for unifying multiple modeling alternatives (SUMMA) (Clark et al., 2015a, 

2015b) was applied as a point-based snow model to simulate seasonal snowpack in the open 

and beneath a conifer forest from the water year 2014 to water year 2018. The process-based, 

hydrologic modeling framework is a multi-physics model that simultaneously simulates multiple 

process of the hydrologic cycle. The SUMMA modeling framework allows the user to 

experiment with different model representations of each part of a hydrologic system, enabling 

a researcher to perform a systematic evaluation of different parametrizations of the same 

process, parameter values, and flux parameterizations. The design of the SUMMA model 

integrates multiple modeling approaches with a common set of conservation equations 

enabling researchers to understand the impact of different modeling assumptions on model 

behavior. This study applied SUMMA to (1) attempt to reproduce measured snowpack in the 

opening at the Upper Lookout meteorological station using forcing data from that 

meteorological station, (2) test how the parameterization for canopy interception of snow 

affects simulated accumulation, using two of the most common interception models in global 

snow models, Hedstrom and Pomeroy (1998) and Andreadis (2009), and (3) simulate snowpack 

response to the presence of canopy cover in conifer stands such as those of the Andrews. 

Canopy interception decreases snow accumulation significantly beneath forests in warm snow 

climates, so this study uses SUMMA to investigate that process.  

SUMMA is written in Fortran 90, so in order to work with SUMMA in an objected-

oriented computer programming language, this study utilized a Python library for wrapping the 

SUMMA modeling framework called pySUMMA (Choi et al., 2018).  
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Table 5. Model decisions used in SUMMA. 
 

Decision Used Default replaced 

soilCatTbl ROSETTA  
vegeParTbl MODIFIED_IGBP_MODIS_NOAH 

soilStress NoahType  
stomResist BallBerry  

fDerivMeth analytic  
num_method itertive  
LAI_method monTable  
f_Richards mixdform  
groundwatr bigBuckt  
hc_profile pow_prof  
bcUpprTdyn nrg_flux  
bcLowrTdyn presTemp  
bcUpprSoiH liq_flux  
bcLowrSoiH drainage  
veg_traits CM_QJRMS1988 

rootProfil powerLaw  
canopyEmis difTrans  
snowIncept stickySnow lightSnow 

windPrfile logBelowCanopy 

astability louisinv  
compaction anderson  
snowLayers CLM_2010  
thCondSnow smnv2000 jrdn1991 

thCondSoil funcSoilWet  
canopySrad noah_mp BeersLaw 

alb_method varDecay  
spatial_gw localColumn  
snowDenNew hedAndPom  
snowUnload meltDripUnload 
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3.3.1   Model forcing 
 
The SUMMA framework simulates thermodynamics (storage and flux of energy) and 

hydrology (storage and flux/transmission of water). The modeling domain extends from the 

atmosphere above the canopy to the river channel and includes the dominant biophysical and 

hydrologic processes such as runoff generation, canopy transpiration, canopy interception, 

within and below-canopy turbulence, and radiation transfer through the canopy. For each 

physical process, SUMMA includes equations that represent hypotheses of process 

representations that are used in global land surface and hydrologic models (Clark et al., 2015a, 

2015b). Generally, the meteorological forcing data that are required to drive processes within 

hydrologic models are: air temperature, air pressure, wind speed, specific humidity, 

precipitation, incoming short wave, and incoming long wave radiation. 

In this study, the SUMMA framework was applied as a snow model to investigate 1) how 

snowpack varies interannually, 2) how the presence or absence of canopy affects snowpack, 

and 3) how snowpack ablation and accumulation under a conifer forest varies depending on 

representation of canopy interception. Using meteorological forcing data from the Upper 

Lookout station, SUMMA simulated snowpack accumulation and ablation at a 1-hour 

resolution. The model uses the five-layer snow layering scheme from the Community Land 

Model to simulate energy and water exchange between layers within the snowpack (Lawrence 

et al., 2011). 

The meteorological forcing data for WY 2014-2018 used in this model were obtained 

from the Upper Lookout Meteorological Station (UPLMET) and the Phase 2 of the North 

American Land Data Assimilation System (NLDAS-2) (Mitchell et al., 2004). Data on air 

temperature, air pressure, wind speed, relative humidity, precipitation, and incoming short 

wave were obtained from UPLMET and longwave radiation data were obtained from NLDAS 

(Table 2). Specific humidity was not available at UPLMET, so it was calculated using relative 

humidity, air temperature, and pressure using Equation 1 (C. Lumbrazo, personal 

communication): 

 

Equation 1 
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spechum = 𝑅𝐻 ∗ ℇ^((17.67 ∗ (𝑇𝑛 − 𝑇𝑓𝑟𝑧))/(𝑇𝑛 − 29.65))/(0.263 ∗ 𝑃𝑛) 

 

where P is pressure (Pa), T is air temperature (K), and RH is relative humidity (%).  

 

The meteorological station, UPLMET, does not have a pyrgeometer that measures 

longwave radiation data, so longwave data from NLDAS-2 were used in the SUMMA forcing 

dataset. With the help of Mark Raleigh, the data were downloaded using Google Earth Engine 

at 1/8th degree resolution, then downscaled to the UPLMET site using the Meteo-IO library in 

C++ using a Matlab wrapper (Bavay & Egger, 2014). The longwave radiation from the NLDAS-2 

model were compared to longwave radiation data measured by meteorological station at a 

similar elevation in the Andrews, the Vanilla Leaf Meteorological Station (1275m) (VANMET). 

Using a qualitative/visual analysis of yearly, cumulative sums, it was concluded that the 

longwave radiation outputs from NLDAS were underestimated compared to longwave radiation 

measured at VANMET. To bring modeled longwave data closer to that measured at a 

comparable meteorological station, a uniform addition of 40 W/m2 was added to the longwave 

radiation forcing used for model forcing. 

The SUMMA model was run using default model decisions from the original test cases 

(M. P. Clark et al., 2021), except in three cases (Table 5). Those decisions are explained below. 

 The canopy interception of snow decision, ‘stickysnow’ was selected for model 

simulation because it includes the interception parameterization that was designed from 

empirical measurements collected in a climate similar to that of the study area, the Umpqua 

National Forest, by Storck et al. (2002) (Andreadis et al., 2009). The other snow interception 

decision, ‘lightsnow’, includes a canopy interception parameterization that was designed from 

measurements collected in boreal forests in southwest Canada (Hedstrom & Pomeroy, 1998). 

Interception modeling equations are described in greater detail in Section 3.3.3. This study 

assumed that the Andreadis et al. (2009) parametrization was best suited for the study site. The 

decisions for canopy shortwave radiation (canopySrad) and thermal conductivity of snow 

(thCondSnow) were selected by conducting sensitivity analyses on a test dataset, WY 2014, to 

determine which model decision replicated measured snow depth and SWE at UPLMET.  
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3.3.2   Sensitivity analysis, presence of conifer forest 
 

SUMMA has a structural core of conservation equations that is built up of routines from 

other models, such as the Noah-multiparameterization (Noah-MP) land surface model (LSM) 

(Clark et al., 2015a, 2015b). A LSM is a numerical model that simulates the partitioning, 

absorption, and transfer of water, radiation, and carbon between the atmosphere and the land 

surface (Pal & Sharma, 2021). LSMs include land surface characteristics that impact 

atmospheric processes such as albedo, surface roughness, and energy/moisture partitioning on 

the surface on the Earth. The Noah-MP LSM is an addition to the Noah LSM (Clark, Nijssen, 

Lundquist, Kavetski, Rupp, Woods, Freer, Gutmann, Wood, Gochis, et al., 2015; Niu et al., 

2011).  

The model decision ‘vegeParTbl’ within SUMMA determines which LSM vegetation 

scheme is used in model simulations (Table 5). This decision has five options, corresponding to 

vegetation category datasets originating from five different LSMs. The vegetation decision 

selected for this study is called ‘MODIFIED_IGBP_MODIS_NOAH’, which uses the vegetation 

category dataset from the Noah-MP LSM. Within pySUMMA, the Noah-MP model includes land 

surface characteristics grouped into sixteen vegetation category datasets that can be included 

in model simulations. Each vegetation category dataset has fifteen vegetation categories that 

create physical boundary conditions using functions for vegetation roughness length, albedo, 

emissivity, LAI, stomatal resistance, radiation stress, and vapor pressure deficit that control 

water and energy fluxes between the land surface and the atmosphere. This study used two of 

the vegetation category datasets; ‘Barren or Sparsely Vegetated’ to represent canopy 

characteristics of the UPLMET clearing and ‘Evergreen Needleleaf Forest’ to represent an 

adjacent forest. The LAI constraints in the ‘open’ category are a minimum of 0.1 and maximum 

LAI of 0.75 and the constraints in the ‘forest’ category are a minimum LAI of 5.0 and a 

maximum LAI of 6.4. However, Marshall and Waring (1986) estimated leaf area indices of 8 to 

16 for a Douglas-fir dominated 450-yr-old stand (Reference stand 2) in the Andrews Forest, 

although they believe that the LAI of 16 is an overestimate. Nevertheless, the LAI of old-growth 

forests in the Andrews Forest may exceed those included in the SUMMA model (Marshall & 

Waring, 1986). Using the two vegetation category datasets from the Noah-MP LSM a sensitivity 
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analysis was used to simulate snowpack response to the presence of conifer forest canopy 

cover. 

 Model performance was evaluated using the Nash-Sutcliffe Efficiency (NSE) for periods 

of snow accumulation and ablation for each of the five years of simulation (Table 6). Overall, 

SUMMA predicted SWE with a NSE value of 0.93 and snow depth with a NSE value of 0.71. The 

model was compared to quality checked data for water years 2014-2015 and provisional data 

for water years 2016-2018. 
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Table 6. Nash-Sutcliffe efficiency (NSE) values for SUMMA simulation output of snow depth and 
SWE for water years 2014 to 2018. NSE values are calculated separately for the accumulation 
and ablation seasons, defined as before and after peak measured snow depth or SWE. – 
indicates no measured data are available. 
 

 Snow depth  SWE   

Water year accumulation ablation accumulation ablation 
QA/QC 

completed 

2014 0.96 0.51 0.98 0.42 Yes 

2015 0.90 0.90 – – Yes 

2016 0.26 0.90 0.98 0.35 No 

2017 0.68 0.85 0.92 0.86 No 

2018 0.41 0.46 0.98 0.75 No 
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3.3.3   Sensitivity analysis, snow interception parameterization 
 

The SUMMA framework was further used to investigate the effect of model 

representation of canopy interception of snow on seasonal snowpack depth and SWE. A 

sensitivity analysis was conducted using the SUMMA decision, called ‘snowIncept’, that controls 

which interception model in used within SUMMA (Table 6). 

SUMMA includes two decisions for canopy interception of snow, following the two most 

widely used canopy interception models in snow modeling, Hedstrom and Pomeroy (1998) 

(HP98) and Andreadis et al. (2009) (Figure 13). These two models of canopy interception of 

snow were developed from empirical measurements of snow interception amounts in two 

distinctly different climates. HP98 was developed from empirical measurements of snow 

interception amounts in a southern boreal forest of western Canada (Hedstrom & Pomeroy, 

1998). The interception model developed by Andreadis et al. (2009) was created using empirical 

measurements from Storck et al. (2002). These two parametrizations have been validated in 

these individual settings and are widely used in global models (Lundquist et al., 2021). The 

effect of forest canopy on snow accumulation and ablation changes depending on which of the 

two canopy interception representations is used. 

The Andreadis et al. (2009) parameterization for snow interception describes canopy 

interception efficiency increasing rapidly as temperatures warm above -3 °C, due to increasing 

cohesiveness of snow at warmer temperatures (Figure 13). The Andreadis et al. (2009) snow 

interception parameterization was developed from observations of snow interception made by 

Storck et al. (2002) in the Umpqua National Forest, Oregon, at a site with an elevation of 1200 

m. Storck et al. (2002) conducted a 3-year field study with the goal of observing processes that 

control snow accumulation and ablation in a maritime snow climate. The work of Storck et al. 

(2002) provides a unique contribution to snow interception modeling, as many empirical 

equations that drive current snow interception models are derived from observations made in 

colder, drier snow climates such as those of boreal or continental sites (Lundquist et al., 2021). 

Using cut ponderosa pine, Douglas-fir, white fir, and lodgepole pine placed on lysimeters to 

monitor snow interception amounts, Storck et al. (2002) showed that conifer forests in snow 

climates similar to the Andrews Forest can intercept up to 60% of snow in a given storm.  
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The second of the two options in SUMMA for the representation of canopy interception 

of snow is formulated by Hedstrom & Pomeroy (1998) and describes the maximum snow load 

that can be retained by the forest canopy given current canopy structure and temperature 

conditions, or the maximum snow interception capacity, decreasing as temperature warms 

above –3 °C due to decreased branch stiffness. The HP98 snow interception model was 

developed from observations of interception in the southern boreal forest of western Canada 

(Lundquist et al., 2021). The two canopy interception models behave differently from –3 to 0 °C 

(Figure 13). Technical descriptions of model equations are outside the scope of this paper but 

can be found in the SUMMA Technical Description 1.0 (M. Clark, Nijssen, Lundquist, Kavetski, 

Rupp, Woods, Freer, Gutmann, Wood, Brekke, et al., 2015).  

 

 
Figure 13. Canopy interception of snow model equations, where L is the amount of snow 
intercepted by the canopy depending on HP98 (left hand side equation) or Andreadis et al.  
(2009) (right hand side equation) (Lundquist et al., 2021).  
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4.   Results 
 

4.1   Field comparisons 
 

Snow depth and SWE on March 16, 2022 were greatest in openings and least under 

mature/old-growth forest, with intermediate values under planted forest (Table 4, Figure 4). 

The March 2022 sites were not paired sites, so significant variation in elevation was associated 

with each sample group. For example, every snow sample in the mature/old-growth forest 

group was taken at a lower elevation than the minimum elevation of the planted forest group. 

This may have contributed to the significantly lower snow depth observed at the mature/old-

growth forest sites. Otherwise, snow depth at the open sites increased with elevation, with a 

maximum snow depth measured in the clearing for the Upper Lookout meteorological station. 

There were also high snow depth values measured in the planted forest stand upslope of the 

UPLMET station, which has sparse canopy (Figure 3) and high snow depth shown in the lidar 

image (Figure 4). However, these values are thought to be overestimates by the avalanche 

probe digging into underlying soils. 

In March 2022 the average snow depth was 1,192 mm with an avalanche probe and 983 

mm with a Federal sampler at 14 open sites, which ranged in elevation from 965 to 1305 

meters and had an average elevation of 1173 meters (Table 4, Figure 4). The average SWE was 

463 mm with a bulk snow density of 45% at the open sites. In contrast, snow depth was 740 

mm using an avalanche probe and 674 mm using a Federal sampler under six planted forest 

stands with an average elevation of 1277 m (Table 4, Figure 4). The average SWE in the planted 

forest stands was 324 mm and the average density was 48%. Snow depth was 273 mm using an 

avalanche probe and 155 mm using a Federal sampler, with a SWE of 68 mm, and density of 

44% under three mature/old-growth forest stands with an average elevation of 1127 m (Table 

4, Figure 4). Snow density was greatest in the planted forests and lowest in the mature/old-

growth forests, but there was no significant difference between these values. 

March 1 and 2, 2023 snow depth in four planted forest stands L703, L704A, L305, and 

L306, ranging from elevation 988 to 1379 meters generally increased with elevation (Table 7), 

except in the L305 stand which had an open, short canopy (Photograph 3). Snow depth was 
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more responsive to canopy cover and topographic factors, rather than increases in elevation. 

Snow depth was lowest beneath the stand at 988 m and highest in the stand at 1379 m but was 

responsive to canopy closure and canopy height in the four planted stands sampled.  
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Table 7. Variation of snow depth by elevation, measurement type, and distance from road at 
four planted forest stands, March 1 and 2, 2023. Samples were collected along two, 30 meter 
transects approximately 20 and 100 meters away from the road.  
 

Planted stand ID L703 L704A L305 L306 

Snow stake pair 506F5/O5 506F6/O6 350F3/O3 350F4/O4 

Mean elevation of snow 
stakes (m) 

988 1145 1248 1379 

20 m from road (Federal sampler) 

   number of samples 3 3 3 1 
   Mean depth (mm) 504 1444 897 2057 
   SE 43 52 157 

 

20 m from road (avalanche probe) 

   number of samples 10 10 10 10 
   Mean depth (mm) 697 1828 946 2315 

   SE 55 70 84 78 

100 m from road (Federal sampler) 

   number of samples -- -- 1 1 
   Mean depth (mm) -- -- 1245 2311 
   SE -- -- -- -- 

100 m from road (avalanche probe) 

   number of samples 10 10 10 10 
   Mean depth (mm) 923 2388 1126 2216 

   SE 48 116 78 42 
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4.2   Validation of lidar derived snow depth with data from field sampling, meteorological 
stations, and snow stakes 
 
 The lidar-derived snow depth values were validated by comparing them to snow depth 

based on field surveys, acoustic snow depth sensors, and snow stake photographs by 

automated cameras at the MS00701 snow stakes. These three validation datasets enabled 

comparisons of the lidar-derived snow depth values to measured values in the open, in planted 

forests, and in mature/old-growth forests at elevations ranging from 800 to 1300 meters. 

Comparisons included both lidar-derived snow depths, which had been corrected by addition of 

295 mm of elevation, and uncorrected lidar-derived snow depths, which had subtracted the 

295 mm elevation correction factor (Table 9). Overall, the lidar-derived snow depths exceed 

field measurements, indicating that the elevation correction applied to the lidar survey (295 

mm of heigh added) may not be appropriate. 

Snow depth measured in field sampling varied from 210 to 1,920 mm on March 16, 

2022, in 23 sites ranging in elevation from 965 to 1305 meters (Table 9). Snow depth in open 

sites increased with elevation. Snow depth in openings was 1.6 times deeper than under 

planted forest and 4.4 times deeper than under mature/old-growth forest.  

Based on field sampling conducted on March 16, 2022, lidar-derived snow depths from 

the elevation-corrected lidar data were not significantly different from field measured data in 

openings, but significantly greater than field measurements in forests (Table 9). In the 

comparisons and those that follow in this section, “significance” is based on non-overlapping 

standard error bars, which assume normally distributed data. Lidar-derived snow depths from 

elevation-corrected lidar data at 3, 5, and 10 m resolutions were on average 120 ± 54, 58 ± 55, 

and 142 ± 63 mm deeper, respectively, than field measurements for the 23 sites sampled in the 

field on March 16 (Table 9). Lidar-derived snow depths from elevation-corrected lidar data in 

openings at 3, 5, and 10 m resolutions were on average 47 ± 61, 40 ± 62, and 35 ± 69 mm 

deeper, respectively, than field measurements for the fourteen open sites sampled in the field 

on March 16 (Table 9). Lidar-derived snow depths from elevation-corrected lidar data in 

planted forest and mature/old-growth forest at 3, 5, and 10 m resolutions were on average 232 
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± 91, 84 ± 105, and 309 ± 98 mm deeper, respectively, than field measurements for the nine 

subcanopy sites sampled in the field on March 16 (Table 9).   
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Table 8. Lidar snow depth at 3 m, 5 m, and 10 m resolution on March 17, 2022, compared to snow depth data collected in the field 
using snow pits, a Federal sampler, and an avalanche probe on March 16, 2022. Site: T = transect, SP = snow pit, UPL = UPL met 
station, 1506 = 1506 road. Cover = P = planted forest, M = mature/old-growth forest, F = forest (both M and P), O = opening. Elev = 
Elevation, Field = field measured snow depth by IW (all methods), lidar  = lidar-derived snow depth at 3, 5, and 10m spatial 
resolution to account for spatial variability in snow and including a +295 mm correction imposed by NCALM, lidar uncorr = lidar-
derived snow depth at 3, 5, and 10m spatial resolution subtracting the 295 mm correction imposed by NCALM, field – lidar = field 
measured snow depth minus lidar-derived corrected snow depth, Field – lidar uncorr = field measured snow depth minus lidar 
derived uncorrected snow depth. SD = standard deviation, n = number of sites, SE = standard error. All snow depth measurements 
are in mm. 

 
 
 
Site 

 
 
 
Cover 

 
 
Elev 
(m) 

 
 
 
Field  

 
 
Lidar 
(3 m) 

 
 
Lidar 
(5 m) 

 
 
Lidar 
(10 m) 

 
Lidar 
uncorr 
(3 m) 

 
Lidar 
uncorr 
(5 m) 

 
Lidar 
uncorr 
(10 m) 

 
Field – 
lidar (3 
m) 

 
Field – 
lidar (5 
m) 

 
Field – 
lidar 
(10 m) 

Field – 
lidar 
uncorr 
(3 m) 

Field – 
lidar 
uncorr 
(5 m) 

Field – 
lidar 
uncorr 
(10 m) 

T 3 P 1163 760 1021 1060 695 726 765 400 -261 -300 65 34 -5 360 

SP P 1298 680 1170 561 1423 875 266 1128 -490 119 -743 -195 414 -448 

UPL 6 P 1300 670 675 654 816 380 359 521 -5 16 -146 290 311 149 

UPL7 P 1301 610 677 720 874 382 425 579 -67 -110 -264 228 185 31 

UPL8 P 1300 840 822 417 800 527 122 505 18 423 40 313 718 335 

UPL9 P 1303 880 870 654 1587 575 359 1292 10 226 -707 305 521 -412 

1506 6  M 1136 210 891 819 634 596 524 339 -681 -609 -424 -386 -314 -129 

1506 6  M 1128 360 421 545 507 126 250 212 -61 -185 -147 234 110 148 

1506 6  M 1117 250 804 589 702 509 294 407 -554 -339 -452 -259 -44 -157 

1506 5  O 965 380 563 669 592 268 374 297 -183 -289 -212 112 6 83 

1506 5  O 966 390 461 396 592 166 101 297 -71 -6 -202 224 289 93 

1506 5  O 967 220 386 391 159 91 96 -136 -166 -171 61 129 124 356 

1506 6  O 1120 750 256 391 311 -39 96 16 494 359 439 789 654 734 

1506 6  O 1122 830 1160 1049 684 865 754 389 -330 -219 146 -35 76 441 

1506 6  O 1122 910 717 615 694 422 320 399 193 295 216 488 590 511 

T 1 O 1187 1100 767 644 619 472 349 324 333 456 481 628 751 776 

T 2 O 1157 1210 1340 1362 1436 1045 1067 1141 -130 -152 -226 165 143 69 
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UPL4 O 1299 1680 1757 1757 1899 1462 1462 1604 -77 -77 -219 218 218 76 

UPL5 O 1299 1850 2043 1996 2113 1748 1701 1818 -193 -146 -263 102 149 32 

UPL1 O 1302 1830 1949 1984 1963 1654 1689 1668 -119 -154 -133 176 141 162 

SP  O 1304 1830 1951 1980 1934 1656 1685 1639 -121 -150 -104 174 145 191 

UPL 2 O 1305 1790 2035 1952 2000 1740 1657 1705 -245 -162 -210 50 133 85 

UPL 3 O 1305 1920 1964 2069 2186 1669 1774 1891 -44 -149 -266 251 146 29 

Ave-all 
  

954 1074 1012 1097 779 717 802 -120 -58 -142 175 237 153 

SD 
  

586 592 619 649 592 619 649 259 263 300 259 263 300 

n 
  

23 23 23 23 23 23 23 23 23 23 23 23 23 

SE 
  

122 123 129 135 123 129 135 54 55 63 54 55 63 

Ave-F 
  

584 817 669 893 522 374 598 -232 -84 -309 63 211 -14 

SD 
  

251 215 186 366 215 186 366 274 317 295 274 317 295 

n 
  

9 9 9 9 9 9 9 9 9 9 9 9 9 

SE 
  

84 72 62 122 72 62 122 91 106 98 91 106 98 

Ave-O 
  

1192 1239 1233 1227 944 938 932 -47 -40 -35 248 255 260 

SD 
  

622 699 702 763 699 702 763 230 233 260 230 233 260 

n 
  

14 14 14 14 14 14 14 14 14 14 14 14 14 

SE     166 187 188 204 187 188 204 61 62 69 61 62 69 
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On average, at all sites (blue bars), field measured snow depth on March 16, 2022 was 

significantly less than corrected lidar-derived measurements and significantly greater than 

uncorrected lidar-derived measurements, based on non-overlapping standard errors (Figure 

14). On average, in the forest (orange bars), field measured depth was significantly less than 

corrected lidar-derived measurements at 1 m and 10 m resolutions but not at 3 m resolution, 

and significantly greater than uncorrected lidar-derived measurements at 5 m resolution but 

not 3 m or 10 m. On average, in the open (gray bars), field measured depth was not significantly 

different from corrected lidar-derived measurements, and it was significantly greater than 

uncorrected lidar-derived measurements. These results show that corrected lidar was closer to 

field measurements in all sites on average, and in openings, but uncorrected lidar was closer to 

field measurements in the forest at 1 and 10 m spatial resolutions. 

 

 
 
Figure 14. Effect of lidar spatial resolution and forest cover type on difference between field-
measured and lidar-derived snow depth. 
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Snow depth from the acoustic snow depth sensors varied from 164 to 1,564 mm on 

March 17, 2022 in the clearings of four meteorological stations ranging in elevation from 1028 

to 1300 meters (Table 9). Snow depth increased with elevation in these clearings. Snow depth 

differences between snow sensor measurements and lidar-derived measurements ranged from 

-474 mm (UPLMET, 5 m resolution) to 272 mm (VARMET, 5m resolution). 

Based on snow depth measured by acoustic snow depth sensors in openings at four 

meteorological stations on March 17, 2022, lidar-derived snow depths from elevation-corrected 

lidar data were significantly less than field measured data, but lidar-derived snow depths from 

uncorrected lidar data were significantly greater than field measurements in forests (Table 9).  

Lidar-derived snow depths from elevation-corrected lidar data at 1, 3, and 5m resolutions were 

on average 110 ± 95, 166 ± 86, and 8 ± 186 mm deeper, respectively, than field measurements 

for the four snow depth sensors at meteorological stations on March 17 (Table 9). Lidar-derived 

snow depths from uncorrected lidar data from at 1, 3, and 5m resolutions were on average 185 

± 95, 129 ± 86, and 303 ± 186 mm shallower, respectively, than field measurements for the four 

snow depth sensors at met stations on March 17 (Table 9).   
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Table 9. Lidar snow depth at 1,3, and 5 m resolution compared to snow depth data measured by an acoustic snow depth sensor at 
sites of the MS001 meteorological stations. 

Station Elev (m) Field  
Lidar (1 
m) 

Lidar (3 
m) 

Lidar (5 
m) 

Field  – 
lidar (1 
m) 

Field – 
lidar 
(3 m) 

Field – 
lidar 
(5 m) 

Field – lidar 
uncorr (1 m) 

Field – lidar 
uncorr (3 m) 

Field – lidar 
uncorr (5 m) 

CENMET                    1028 164 302 296 261 -138 -132 -97 157 163 198 

UPLMET                    1284 1354 1679 1761 1828 -325 -407 -474 -30 -112 -179 

VANMET                    1268 831 945 831 501 -114 -1 329 181 294 624 

VARMET                    1300 1546 1407 1671 1274 139 -125 272 434 170 567 

average 
     

-110   -166 8 185 129 303 

SD 
     

190 172 372 190 172 372 

n 
     

4 4 4 4 4 4 

SE           95 86 186 95 86 186 
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The average snow depth measured at the acoustic snow depth sensors at the four 

meteorological stations was significantly less than corrected lidar-derived snow depths at 1 m 

and 3 m, but not significantly different at 5 m resolution (Figure 15). The average snow depth at 

snow depth sensors at four meteorological stations was greater than uncorrected lidar-derived 

snow depths at 1 m, 3 m, and 5 m resolution. These findings indicate that the uncorrected lidar 

underestimated snow depth (field > lidar) and the corrected lidar overestimated snow depth 

(field < lidar).  

 

 
 
Figure 15. Effect of lidar spatial resolution on difference between snow depth from a snow 
depth sensor and lidar-derived snow depth. 
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measured snow depth in the forest (Table 10). Lidar-derived snow depths from elevation-

corrected lidar data were deeper than field measurements on average by 183 ± 39 in the open, 

62 ± 89 under forest, and 128 ± 47 mm overall (Table 10, Figure 16). Both field-measured and 

lidar-derived snow depths in the opening were 2.5 times deeper than in the forest (Table 10).
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Table 10. Lidar snow depth at 1 m resolution on March 17, 2022, compared to snow depth data 
collected in the field using an avalanche probe, two snow pits, and a Federal sampler at Upper 
Lookout meteorological station clearing and adjacent forest, March 16, 2022. Field = field 
measured snow depth with 16 points in a 3x3m plot using an avalanche probe, lidar = lidar-
derived snow depth at 1m spatial resolution and including a +295-mm elevation correction 
imposed by NCALM, field – lidar = field measured snow depth minus lidar-derived corrected 
snow depth. SD = standard deviation, n = number of sites, SE = standard error. All snow depth 
measurements are in mm. Snow depth measure by acoustic depth sensor at UPLMET on this 
date was 2,200 mm. 
 

Cover Field Lidar Field – lidar 

Open 1790 2050 -260 

Open 1920 2050 -130 

Open 1830 2150 -320 

Open 1830 1980 -150 

Open 1680 1730 -50 

Open 1850 2040 -190 

Forest 880 650 230 

Forest 610 750 -140 

Forest 670 630 40 

Forest 840 1000 -160 

Forest 680 960 -280 

All    
Mean 1325 1454 -128 

SD 572 645 157 

n 11 11 11 

SE 172 195 47 

Forest    
mean 736 798 -62 

SD 117 173 199 

n 5 5 5 

SE 52 77 89 

Open    
mean 1817 2000 -183 

SD 79 143 96 

n 6 6 6 

SE 32 58 39 
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Figure 16. Lidar validation using a 1-meter resolution snow height model with snow depth 
collected in the UPLMET clearing and beneath the surrounding planted forest on March 16, 
2022. 
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Table 11. Lidar snow depth at 3, 5, and 10 m resolution compared to snow depth data measured at snow stakes (MS00701), March 
17, 2022. ID: Snow stake identification. Cover: F = forest, O = opening, Elev = Elevation, Field = field measured snow depth, lidar  = 
lidar-derived snow depth at 3, 5, and 10m spatial resolution to account for spatial variability in snow and including a +295 mm 
correction imposed by NCALM, lidar uncorr = lidar-derived snow depth at 3, 5, and 10m spatial resolution subtracting the 295 mm 
correction imposed by NCALM, field – lidar = field measured snow depth minus lidar-derived corrected snow depth, Field – lidar 
uncorr = field measured snow depth minus lidar derived uncorrected snow depth. SD = standard deviation, n = number of sites, and 
SE = standard error. All snow depth measurements are in mm. 

ID Cover 
Elev 
(m) Field 

lidar 
(3 m) 

lidar 
(5 m) 

lidar 
(10 m) 

Lidar 
uncorr 
(3 m) 

Lidar 
uncorr 
(5 m) 

Lidar 
uncorr 
(10 m) 

Field - 
lidar (3 m) 

Field - 
lidar 
(5 m) 

Field - 
lidar 

(10 m) 

Field - 
lidar 

uncorr 
(3 m) 

Field - 
lidar 

uncorr 
(5 m) 

Field - 
lidar 

uncorr 
(10 m) 

R320F2                    F 805 0 268 237 388 -27 -58 93 -268 -237 -388 27 58 -93 

R350F1                    F 919 0 327 439 275 32 144 -20 -327 -439 -275 -32 -144 20 

R320F3                    F 935 0 207 207 247 -88 -88 -48 -207 -207 -247 88 88 48 

R320F4                    F 978 0 298 358 370 3 63 75 -298 -358 -370 -3 -63 -75 

R506F5                    F 1006 0 313 263 225 18 -32 -70 -313 -263 -225 -18 32 70 

R350F2                    F 1057 0 361 339 433 66 44 138 -361 -339 -433 -66 -44 -138 

R506F6                    F 1164 15 421 335 352 126 40 57 -406 -320 -337 -111 -25 -42 

R507F4                    F 1193 30 498 262 264 203 -33 -31 -468 -232 -233 -173 63 62 

R350F3                    F 1233 61 476 443 444 181 148 149 -415 -382 -383 -120 -87 -88 

R350F4                    F 1408 853 954 970 1030 659 675 735 -100 -116 -176 195 179 119 

R320O2                    O 793 30 443 472 420 148 177 125 -412 -442 -390 -117 -147 -95 

R320O3                    O 916 183 160 226 252 -135 -69 -43 23 -43 -70 318 252 225 

R506O5                    O 970 686 808 773 720 513 478 425 -122 -87 -35 173 208 260 

R320O4                    O 997 61 263 281 201 -32 -14 -94 -202 -220 -140 93 75 155 

R350O1                    O 892 0 336 300 374 41 5 79 -336 -300 -374 -41 -5 -79 

R350O2                    O 1063 213 899 644 432 604 349 137 -685 -430 -219 -390 -135 76 

R506O6                    O 1125 686 582 622 839 287 327 544 104 64 -153 399 359 142 

R507O4                    O 1180 -- 1216 1216 650 921 921 355 -- -- -- -- -- -- 

R350O3                    O 1263 1006 1335 1312 1354 1040 1017 1059 -329 -306 -348 -34 -11 -53 
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R350O4                    O 1387 1372 1176 1545 1798 881 1250 1503 196 -174 -427 491 121 -132 

Ave-all   274 567 562 554 272 267 259 -259 -254 -275 36 41 20 

SD   424 364 399 417 364 399 417 210 139 121 210 139 121 

n   19 20 20 20 20 20 20 19 19 19 19 19 19 

SE   63 127 126 124 61 60 58 -59 -58 -63 8 9 5 

Ave-F   96 412 385 403 117 90 108 -316 -289 -307 -21 6 -12 

std   267 211 220 234 211 220 234 108 96 86 108 96 86 

n   10 10 10 10 10 10 10 10 10 10 10 10 10 

SE   84 67 70 74 67 70 74 34 30 27 34 30 27 

Ave-O   471 722 739 704 427 444 409 -196 -215 -239 99 80 56 

SD   490 427 468 512 427 468 512 279 173 148 279 173 148 

n   9 10 10 10 10 10 10 9 9 9 9 9 9 

SE   163 135 148 162 135 148 162 93 58 49 93 58 49 
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On average, snow depth values captured on the ground by the cameras at the MS00701 

snow stakes were significantly less than elevation-corrected lidar-derived measurements and 

not significantly different than uncorrected lidar-derived measurements, regardless of lidar 

image spatial resolution (Figure 17, all, blue bars). On average, in the forest, field measured 

depths at snow stakes were significantly less than corrected lidar-derived measurements, and 

not significantly different than uncorrected lidar-derived measurements (Figure 17, forest, 

orange bars). On average, in the openings, depths measured at snow stakes were significantly 

less than corrected lidar-derived measurements, and greater than uncorrected lidar-derived 

measurements (Figure 17, openings, grey bars). The results presented show that the 

uncorrected lidar was closer than the elevation-corrected lidar to snow stake measurements at 

all sites on average and in the forest, but field measurements from snow stakes exceeded 

uncorrected lidar estimates in openings. 

 
 

 
Figure 17. Effect of lidar spatial resolution and forest cover type on difference between snow 
depth measured at snow stakes and lidar-derived snow depth. 
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4.2   Data analysis 
 

4.2.1   Lidar comparisons between different forest cover types 
 

To investigate differences in lidar-derived snow depth between paired sites of planted 

and unharvested forests, zonal statistics were extracted from the raster and compared to one 

another (Table 13). Mean values of lidar-derived snow depth were obtained for ten pairs of 60-

60 m polygons in planted forest and adjacent mature/old-growth forest. Elevation of the 

polygons ranged from 814 to 1361 m, with a mean of 1067 m (Table 13). Canopy height in 

polygons (based on the canopy height model, Figure 2 and Figure 6) ranged from 6 to 43 m, 

with an average of 35 ± 6 m in the mature/old-growth forest polygons, and an average of 23 ± 9 

m in the planted forest polygons. Average snow depth in the snow height model ranged from 

166 to 905 mm, with an average of 373 ± 28 in the mature/old-growth forest polygons and an 

average of 412 ± 66 in the planted forest polygons (Table 13). At these forested sites snow 

depth did not increase with elevation.
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Table 12. Characteristics of 60x60 m plots sampled for lidar-derived snow depth and canopy 
height in planted and mature/old forest stands. SD = standard deviation, SE = standard error, 
Cover = canopy cover type; M = mature and P = planted. 
 

 
Planted 
stand ID 

Snow 
stake 
ID 

 
 
Cover 

Mean 
elevation 
(m) 

Canopy 
height 
(m) 

 
Canopy 
SD (m) 

Snow 
depth 
(mm) 

 
Snow SD 
(mm) 

L503 320F2 M 815 35 21 507 273 
L522 320F3 M 947 33 12 302 98 
WS6 320F4 M 958 41 10 253 80 
L701 350F1 M 890 23 14 302 92 
L303/L371 350F2 M 1036 37 13 405 117 
L305 350F3 M 1220 31 17 508 183 
L306 350F4 M 1352 38 13 425 177 
L703 506F5 M 948 38 14 281 109 
L704A 506F6 M 1275 43 12 367 119 
L209 507F4 M 1230 30 9 383 195 
L503 320F2 P 814 34 6 282 80 
L522 320F3 P 914 26 7 494 203 
WS6 320F4 P 967 20 4 166 68 
L701 350F1 P 878 30 6 320 117 
L303/L371 350F2 P 1082 24 6 299 102 
L305 350F3 P 1217 22 7 571 177 
L306 350F4 P 1361 6 5 907 425 
L703 506F5 P 925 31 5 311 146 
L704A 506F6 P 1280 11 6 453 301 
L209 507F4 P 1227 25 4 318 125 
ave - all 

  
1067 29 

 
393 

 

SD 
  

184 10 
 

158 
 

n 
  

20 20 
 

20 
 

SE 
  

41 2 
 

35 
 

ave - M 
  

1067 35 
 

373 
 

SD 
  

186 6 
 

90 
 

n 
  

10 10 
 

10 
 

SE 
  

59 2 
 

28 
 

ave - P 
  

1067 23 
 

412 
 

SD 
  

192 9 
 

210 
 

n 
  

10 10 
 

10 
 

SE 
  

61 3 
 

66 
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Lidar-derived snow depth in 60x60 m polygons was greater beneath the mature/old-

growth forest in five instances and greater beneath the planted forest in the other five 

instances, suggesting no clear relationship of snow depth to canopy cover type (planted vs. 

mature/old-growth) (Table 13). The mean difference of snow depth between mature/old-

growth forests and planted forests was -39 ± 61 mm, indicating no significant difference. 

Canopy height in mature/old-growth polygons was 12 ± 4 m greater than in the planted 

polygons. Overall, there was no difference in the lidar-derived snow depth between planted 

forest and adjacent mature/old-growth forests, which are on average only 10 m taller than the 

planted forest.  

 
Table 13. Results of differencing the canopy height model and snow height model between 
planted and mature/old-growth forests using 60x60 m polygons, 1-meter raster. Sites were 
selected that were near long-term snow stakes. 
 

Snow stake 
ID             Elevation 

Mature/old minus 
planted snow 

depth 

Mature/old minus 
planted canopy 

height (m) 

320F2 815 225 1 

320F3 947 -192 7 

320F4 958 87 21 

350F1 890 -18 -7 

350F2 1036 106 13 

350F3 1220 -63 9 

350F4 1352 -482 32 

506F5 948 -30 7 

506F6 1275 -86 32 

507F4 1230 65 5 

Average   -39 12 

SD  194 13 

n  10 10 

SE  61 4 
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 At the ten paired 60x60 m sites, lidar-derived snow depth at elevations ranging from 

830 to 1360 meters in March 2022 was weakly positively related to elevation under planted 

forest, but not related to elevation under mature/old-growth forest, and there was no 

significant difference in snow depth between planted and mature/old-growth forests (Figure 

18).  

 

 
 
Figure 18. Mean and standard error (SE) of lidar-derived snow depth (1-meter raster) by 
elevation in ten pairs of polygons of 60x60 m in planted and mature/old-growth forest. 
Horizontal dashed line at 30 cm indicates uncertainty in lidar snow depth estimates based on 
comparisons with field measurements; snow depth at or below this line may not be greater 
than zero.

y = 0.0001x + 0.2141
R² = 0.0945

y = 0.0007x - 0.3507
R² = 0.4294

0.0

0.2

0.4

0.6

0.8

1.0

1.2

700 800 900 1000 1100 1200 1300 1400

M
ea

n
 s

n
o

w
 d

ep
th

 (
m

)

Elevation (m)
mature/old-growth planted forest

Linear (mature/old-growth) Linear (planted forest)



 80 

With the exception of one outlier, snow depth was not related to canopy height (i.e. in 

post-clearcut regenerating stands vs. mature/old-growth stands) (Figure 19). Over this range of 

canopy heights (20 to 43 m), increasing canopy height did not necessarily lead to shallower 

snowpack, suggesting that canopy structural characteristics such as leaf area index (LAI) and 

bole density control snow interception rates and amounts, rather than canopy height.  

 

  
 
Figure 19. Mean and standard error (SE) of snow depth in lidar image by forest cover type, ten 
paired sites.  
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The difference in lidar-derived snowpack depth (mature/old-growth minus planted 

forest) was not significantly related to the difference in canopy height between planted forests 

and mature/old-growth forests, based on ten 60x60 m polygons (Figure 20). Over the range of 

canopy heights sampled (20 to 43 m), snow depth was unrelated to canopy height. The 

L306/350F4 site has an open, sparse stand, creating an outlier with a large difference (>25 m) in 

canopy height. 

 
 

 
 
Figure 20. Difference of canopy height, mature/old-growth minus planted forest, vs. difference 
in snow depth in lidar image, 1-meter raster. 
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4.2.2   Meteorological station snow analysis 
  

Snow depth and SWE data from Upper Lookout, Vanilla Leaf, and Central meteorological 

stations from 1997 to 2014 were used to calculate mean snowpack bulk density values and 

their standard errors on each day of the year (Figure 21). Over the period 1997 to 2014, 

average snowpack density increased gradually from 0.25 to 0.4 g/cc (25 to 40% or 250 to 400 

kg/m3) from mid-November to the end of January, was constant at 0.4 g/cc from February 1 

until mid-March, then increased until May 1. By May 1, snow is typically absent from CENMET 

(1028 m), but at UPLMET (1298 m) and VANMET (1268 m), density declined in May and then 

increased by the end of May. The decrease in density of snow in May during the melt period 

was unexpected. This decrease may be due to loss of water from within the melting snowpack. 

 

 
 
Figure 21. Average snow density from 1997 to 2014 at Upper Lookout, Vanilla Leaf, and Central 
meteorological stations. Snow density was calculated for days with density < 0.7 and snow 
depth > 100 mm. The acoustic depth sensor is not considered to be reliable at depths <100 mm, 
and values >0.7 may be artefacts of patchy snow (M. Schulze, personal communication). These 
criteria omitted <3% of observations. Averages are for days of the year with more than three 
years of snow density data meeting these criteria. 
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 Maximum snow water equivalent at the Upper Lookout meteorological station ranged 

from 200 to 1,500 mm from 1994 to 2014 (Figure 22). Snow water equivalent ranged from 10 to 

78% of cumulative precipitation in the 1994 to 2014 water years (Figure 23). In some years, 

such as 1995 and 2004, SWE only briefly exceeded 30% of cumulative precipitation. 

 
 

 
Figure 22. SWE and cumulative precipitation, 1998-2014, Upper Lookout. 

 

 
 

Figure 23. Ratio of SWE to cumulative precipitation within each water year (Oct 1 – Sept 30), 
1994-2014, Upper Lookout meteorological station. 
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The relationship between SWE and snow density is complex (Figure 24). The lowest values 

of snow density occur at very low levels of SWE (shallow snowpacks), whereas snow density 

approached 0.5 g/cm3 in the deepest snowpacks (1 to 1.5 m of SWE) (Figure 24). Calculated 

values of snow density >0.7 occur at SWE values ranging from zero to 1 m, but these may be 

artefacts of patchy snow. Hence, snow densities in Figure 21 were calculated only for snow 

depths >100 mm, and densities > 0.7 were excluded. 

 
Figure 24. SWE (m) vs. snow density (g/cc), 1998-2014, Upper Lookout. 
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 A visual analysis indicated that changes in SWE were related to minimum air 

temperature at UPLMET (Figure 25). Generally, when minimum daily air temperature was > 0 

°C, SWE decreased and vice-versa. However, SWE increased on some days when the daily 

minimum air temperature was > 0 °C, and SWE decreased on some days when the daily 

minimum air temperature was < 0 °C. Increases in SWE when minimum daily air temperature 

was >0 °C could be caused by rain on snow, while decreases in SWE when minimum 

temperature was <0 °C may be due to sublimation or drainage of water from the base (basal 

discharge) of the snowpack when soils are >0°C.   
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Figure 25. Relationship of daily change in SWE to daily change in minimum T, Upper Lookout, 
for 1996-2019. 

-200

-100

0

100

200

300

400

-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0

ch
an

ge
 in

 S
W

E 
(m

m
)

minimum daily air T

2017, Jan 1 - May 31, UPLO

-200

-100

0

100

200

300

400

-15 -10 -5 0 5 10 15

ch
an

ge
 in

 S
W

E 
(m

m
)

minimum daily air T

2018, Jan 15 - May 15, UPLO

-200

-100

0

100

200

300

400

-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0

ch
an

ge
 in

 S
W

E 
(m

m
)

minimum daily air T

2019, Jan 1 - Mar 26, UPLO



 87 

4.2.3   Snow survey stake analysis 
 

At paired snow stakes, 2014 to 2022, snow disappeared earlier under the forest than in 

openings, but on average, the snow melt rate was faster in openings than under the forest. The 

average (2014 to 2022) difference in snow disappearance dates (SDDs) varied from 10 to 43 

days between the forest stake and the open stake at the ten MS00701 snow stake sites that are 

within the lidar survey extent (Table 14). This difference comes with some error associated with 

interpretation of SDD. For example, open stakes may have an SDD that is earlier than the SDD in 

the center of the road where the snowpack has been compacted more, or forest sites may have 

a SDD that occurs before all of the patches of snow in the surrounding area have been 

completely melted. These errors are associated with the sub-meter horizontal variability of 

seasonal snowpack and produce errors in SDD differences on the magnitude of ~2–4 days. 

 
Table 14. Average snow disappearance date, 2014-2022, open minus forest, and mean snow 
depth loss rate at ten MS00701 sites with paired snow stakes beneath the forest and in the 
open (on the road). 

Site 
Elevation 
(m) 

Delta SDD 
(days) 

Forest snow 
depth loss rate 
(mm/day) 

Opening snow 
depth loss rate 
(mm/day) 

 
Opening 
minus snow 
rate (mm/day) 

R320F2 799 11 26 25 -1 

R350F1 907 10 22 25 3 

R320F3 935 12 28 25 -3 

R320F4 988 24 19 36 17 

R506F5 1006 43 16 27 11 

R350F2 1060 36 24 25 1 

R506F6 1145 29 19 25 6 

R507F4 1187 38 23 32 9 

R350F3 1248 31 32 28 -4 

R350F4 1379 10 20 39 19 

ave     5.8 

SD     8.1 

SE     2.6 
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Snow was deeper in openings than in the forest and the SDD was significantly later in 

openings than in forests despite variability among years (Figure 26). The difference in snow 

disappearance date (in days) visually increases with elevation, but the effect of elevation on 

SDD was not tested. 

 

 
Figure 26. Difference in snow disappearance date, open – forest, 2014-2022. 
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mm/day in openings (Table 14, Figure 26). On average, snow depth loss rates were 6 mm/day 

faster in openings than under the forest (Table 14). At seven of the ten sites mean snow depth 

loss rates for the melt season were more rapid at the stake in the opening than at the stake 

under the forest (Table 14, Figure 27, Figure 28). 
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Figure 27. Mean snow depth loss rate using peak snow depth date, amount, and snow 
disappearance date, 2014-2022. 
 

 
 
Figure 28. Difference in snow depth loss rate, open – forest, 2014–2022. 
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Mean snow density from 1994 to 2016 (Table 15, Figure 29) at ten snow stake pairs 

ranging in elevation from 668 meters to 1379 meters varied by site type and elevation. At site 

320F1 the mean snow density at the forest stake was significantly greater than at the open 

stake (Table 15, Figure 29). At the other eight of the sites density values were not significantly 

different from one another and at the 350F4 open site snow density was significantly greater 

than the forest site. Calculating the annual, mean snow density across all 138 snow tube 

measurements in the forest and 213 measurements in the open from 1994 to 2016 revealed 

snow densities were similar at all elevations, except the sites at the minimum (668 m) and 

maximum (1379) elevation (Figure 29). The mean snow density across all elevations was 364 ± 

28 kg/m3 (36.4 ± 2.8%) in the forest and 366 ± 18 kg/m3 (36.6 ± 1.8%) in the open (Table 15). 

Annual, mean snow density across all elevations ranged from 318 to 413 kg/m3 (32 to 42%) in 

the forest and 337 to 426 kg/m3 (34 to 43%) in the open. Prior to the installation of the cameras 

at the snow stakes in 2014, the MS00701 dataset includes density measurements at ~3-12 

times per year. In 2014, cameras were installed at the snow stakes and the frequency of SWE 

samples was reduced to once a year, so the change in frequency and timing of measurements 

may affect density means. 

 
Table 15. Snow density (%) at ten pairs of snow survey stakes in forested sites over the period 
1994-2016. SE = standard error. 

Site Elevation Forest  n Mean SE Open n Mean SE 

320F1 668 6 41 2 11 34 3 

320F2 799 15 31.8 3.2 24 33.7 2 

320F3 926 15 32.3 3.1 24 33.9 2 

320F4 978 12 35.5 2.7 21 34.5 2 

506F5 988 13 39.5 5.9 25 36.1 2 

350F2 1060 11 36.9 2.4 24 36 2 

506F6 1145 20 35.5 2.6 29 38.3 1 

507F4 1187 12 36.7 3.1 14 38.9 2 

350F3 1248 15 35.3 2.4 22 37.9 1 

350F4 1379 19 39.9 1 19 42.6 1 

Total  138   213   

Average   36.4 2.8  36.6 1.8 
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Figure 29. Snow density (%) at 10 paired forest and open sites sampled from 1994 to 2016. See 
Table 7. 
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Table 16. Cumulative snow depth on April 1, forest as percent of open, at nine snow stakes with continuous (daily) records from 
2015 to 2022. This value was calculated by summing snow depth over the days in each snow season and calculating the cumulative 
snow depth in the forest site as a percent of the cumulative snow depth in the open site on April 1. The ID and elevation of each 
snow stake are provided. No data were available on April 1 for the 2020 year. 
 

 R350F4 R350F3 R507F4 R506F6 R350F2 R506F5 R320F4 R320F3 R320F2 mean n SD SE 

Year 1370 m 1233 m 1180 m 1164 m 1057 m 1006 m 978 m 935 m 805 m     

2015 33 53 -- 46 23 12 36 33 65 38 8 17 6 

2016 -- 51 -- 35 20 14 25 43 58 35 7 16 6 

2017 -- -- -- 43 18 18 18 -- 56 31 5 18 8 

2018 45 -- 54 50 26 23 32 51 47 41 8 12 4 

2019 23 73 53 -- 52 -- 51 70 61 55 7 17 6 

2020 -- -- -- -- -- -- -- -- --     

2021 15 35 35 23 10 4 10 15 120 30 9 36 12 

2022 -- -- -- 44 34 14 27 47 53 37 6 14 6 

              

mean 29 53 47 40 26 14 28 43 66 38 50 21 3 

n 4 4 3 6 7 6 7 6 7     

SD 13 16 11 10 14 6 13 18 25     

SE 6 8 6 4 5 3 5 8 9     
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Mid-March to early April marks the typical end of snow accumulation. The mean 

cumulative snow depth in the forest relative to open sites in mid-March to early April ranged 

from 21 ± 6 to 32± 3 % over the period 1994 to 2022 at five snow stakes with periodic data 

from 1994 to 2014, and continuous data from 2015 to 2022 (Table 17). The mean cumulative 

snow depth in the forest relative to open sites in mid-March to early April ranged from 26 ± 5 to 

64 ± 10 % during the period of periodic sampling (1994 to 2014), whereas it ranged from 21 ± 2 

to 40 ± 4% during the period of continuous sampling (Table 17). The analysis used April 1 for all 

years with continuous data (2015 to 2022), and the periodic sampling data that was closest to 

April 1 for the periodically sampled data (1994 to 2014). A visual analysis indicated that the 

mean cumulative snow depth in the forest relative to open sites from 1994 to 2014 was not 

related to elevation across the five sites (Table 17).   

 
Table 17. Relationships of snow depth under forest and in openings at snow survey stakes, 
1994-2022, by elevation. Cumulative snow depth, forest as percent of open. 
 

Snow survey 
stake ID R320F2 R350F2 R506F6 R507F R350F3 

Elevation 800 1050 1150 1150 1250 

1994-2014           

ave 31 19 32 21 32 

stdev 13 11 13 15 17 

count 20 17 20 7 17 

SE 3 3 3 6 4 

      
2014-2022      
ave 64 26 40 56 54 

stdev 26 14 12 71 13 

count 7 7 6 7 5 

SE 10 5 5 27 6 

      
1994-2022      
ave 40 21 34 39 37 

stdev 22 12 13 53 18 

count 27 24 26 14 22 

SE 4 2 3 14 4 
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Snow depth, forest as percent of open, was greater during the period of record prior to 

the installation of automated cameras at the snow stakes (Figure 30). The higher values of 

forest as a percent of open depth in the two periods may be due to differences in sampling: the 

snow depth measurements during the 1994–2014 period were taken with a Federal sampler, 

whereas depths for the 2015–2022 record were based on a camera reading of the snow stake. 

The higher values of forest as a percent of open depth in the two periods may be due to 

differences in dates used: data during the 1994-2014 period were obtained on April 1 plus or 

minus three weeks, whereas the measurements in the 2015-2022 period were all from April 1. 

A visual analysis of this data suggests the ~3-week sampling intervals before 2014 produced 

lower snow depth estimates (Figure 30). 

 

 
 
Figure 30. Cumulative snow depth, forest as % of open.  
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4.3   Snow modeling 
 

To assess model performance, the SUMMA simulation output for the open site at 

UPLMET was compared to measured snow depth and SWE values at the meteorological station. 

The SUMMA model simulation predicted snow depth in the open site with a Nash Sutcliffe 

Efficiency (NSE) value of 0.71 and snow water equivalent with a NSE value of 0.93 over the 

period of WY 2014 to 2018 (Table 7). Using the years that have QA/QCed snow data, WY 2014 

and 2015, NSE values were calculated for the seasonal snowpack accumulation and ablation 

seasons. For snow depth, the accumulation and ablation periods are delineated by peak snow 

depth date, and for SWE the periods are delineated by peak SWE date. The NSE values for snow 

depth and SWE were 0.96 and 0.98 in the accumulation season and 0.67 and 0.52 in the 

ablation season of the 2014 water year. The NSE value for snow depth was 0.9 in the 

accumulation season and 0.91 in the ablation season of the 2015 water year (Table 7). The 

years WY 2014 and 2015 were selected because reliable, QA/QCed snow data were only 

available during the two of five years of model simulations. The snow data from WY 2016-2018 

are provisional and not suitable for statistical comparison. This affects the NSE performance 

across all years and should be considered.   

For snow depth, the modeled value (blue line) is close to the measured value (red line) 

during periods of increasing snow depth but exceeds the measured value during periods of 

decreasing snow in all years, 2014 to 2018 (Figure 31, top panel). In 2016, the measured values 

of snow depth appear to be erroneous. In 2017, modeled snow depth exceeds the measured 

value during the period of increasing snow (Figure 31, top panel).  

 For SWE, the modeled value (blue line) is close to the measured value (red line) during 

periods of increasing SWE in all modeled years, but the modeled value (blue line) exceeds the 

measured value (red line) during periods of decreasing snow in all years except 2015, when no 

data was available (Figure 31, bottom panel). Modeled SWE is less than the measured value 

during the early part of the snow season in 2016 and much of the snow season in 2017 (Figure 

31, bottom panel). 
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Figure 31. Simulated snow depth (top) and SWE (bottom) output over a five-year period, 
covering water years 2014-2018, based on SUMMA model forced with data from the Upper 
Lookout benchmark meteorological station. Measured, provisional snow depth data by the 
acoustic snow depth sensor was resampled to 5-day median for better visual comparison. All 
other data is at a one-hour resolution.   
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The modeled snowpack temperature profile in the open, which is based on simulated 

energy and water exchange between five layers of the snowpack at a 1-hour resolution, shows 

periods of persistent cold layers at the surface of the snowpack in the mid-winter (blue and 

green colors in the middle panel of Figure 32), but generally the snowpack is predicted to be 

isothermal and near 0°C throughout the winter season (yellow colors in the middle panel of 

Figure 32).  

Water year 2015 was a year of anomalously low snowpack despite near normal 

precipitation (top panel, Figure 32). Low snow during this year was caused by warm minimum 

daily air temperature, particularly in the early winter (bottom panel, Figure 32). Water year 

2017 was a deep snow year with cold (dark blue) simulated near surface snow temperatures. 

Early winter minimum and maximum daily temperature were particularly low in WY 2017 

(bottom panel, Figure 32), which could have contributed to greater cold content and a deeper 

snowpack that year. 

 

 
 
Figure 32. Measured precipitation (top), simulated snow depth and snowpack temperature 
(middle), and measured minimum and maximum daily temperature for water years 2014-2018. 
 

Using the vegetation category dataset for an open site and a conifer forest site (see 

Methods section 3.3.2), SUMMA model output predicted delayed snow accumulation, less 
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snow depth, less SWE, and delayed melt under the conifer forest (green line) compared with 

the opening (blue line) (Figure 33). Model performance appeared to be similar across all years 

and canopy types, regardless of anomalously warm or cold winter seasons. The modeled snow 

depth under forest was 69% of the modeled snow depth in the opening on average on April 1 

across the five simulated years, and 66% of the modeled snow depth in the opening on average 

on all days across the five simulated years. These percentages are considerably larger than the 

observed snow depth under forest as a percent of the opening at snow stakes in the Andrews 

Forest (Figure A-1, Appendix A; Table 16).
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Figure 33. SUMMA snow depth and SWE output over a five-year period, covering water years 
2014-2018. 
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Simulated snow depth and SWE using the HP98 canopy interception of snow model are 

considerably greater than simulated snow depth and SWE using the interception model 

developed from empirical data measured in Oregon by Storck et al. (2002) and represented in a 

model by Andreadis et al. (2009) (Figure 34). The simulated snow depth using the HP98 model 

on average was 10 to 20% of the modeled snow depth using the Andreadis et al. (2009) model 

on April 1 across the five simulated years. The simulated SWE using the HP98 model on average 

was 199% of the modeled SWE using the Andreadis et al. (2009) model on all days across the 

five simulated years. The different models for canopy interception of snow produce different 

results as they were developed from empirical measurements taken in different snow climates. 

Using the HP98 parametrization produces a deeper snowpack than Andreadis et al. (2009) 

because less snow is intercepted by the forest canopy as storm temperatures get colder due to 

the cohesiveness of snow and other factors. 
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Figure 34. Snow depth and SWE output from a sensitivity analysis with the canopy interception 
of snow option 
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5.   Discussion 
 

The goal of this study was to explore the application of contemporary snow 

measurement and modeling tools to investigate how conifer forests may influence seasonal 

snowpack dynamics in a maritime snow climate. Results indicate that multiple factors operating 

at many spatial scales influence snow depth, SWE, and duration in the H.J. Andrews 

Experimental Forest, located in the Willamette National Forest, western Oregon, USA. Lidar 

imagery provided a synoptic view of the snowpack on a single date, but there was considerable 

uncertainty (± 200-300 mm) in lidar-derived snowpack depth values compared to field 

measurements, and snow depth was not consistently related to lidar-derived canopy height. 

Simulated snow depth and SWE using the SUMMA model reproduced measured snow variables 

over the 2014 to 2018 snow seasons with a Nash-Sutcliffe efficiency of 0.7 to 0.93 in the 

opening at a meteorological station at 1300 m elevation, when forced by data from that 

station. However, simulated snow depth and SWE under forests, using a parameterization for 

canopy interception of snow based on empirical studies in the nearby Umpqua National Forest, 

were much higher than indicated by long-term snow stake surveys and other field sampling.  

 

5.1   Effects of forest structure and topographic factors on snow  
 

Snow depth and density data collected with snow surveying, remote sensing, and 

estimated with snow modeling indicated that the spatial variability of snow in the H.J. Andrews 

Experimental Forest was not controlled by any single factor, but is influenced by elevation and 

landscape position, as well as vegetation cover type and forest structure. 

Snow, especially the effect of forests on snow, was expected to have different 

characteristics in the maritime climate of the Andrews Forest than in a continental climate, 

because of winter climate conditions that bring warm air temperatures, low wind, and high 

surface-ground interface temperatures (Sturm et al., 1995). Prior literature has explored the 

effect of maritime climate (Dickerson-Lange et al., 2015), elevation (Molotch & Meromy, 2014), 

aspect (Hinckley et al., 2014), and forest cover (Dickerson-Lange et al., 2021) on seasonal 

snowpack. The characteristics of seasonal mountain snowpack in a maritime climate are 

distinctly different from those of a continental or boreal snow climate (Sturm et al., 1995). The 
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relative strength of the effect of forests on snowpack accumulation and ablation is determined 

by snow climate (see Introduction) (Dickerson-Lange et al., 2021). In both maritime and 

continental snow climates, the effect of canopy interception of snow on snowpack 

accumulation is controlled by air temperature and snow event size. Warmer air temperature 

creates canopy conditions that are more efficient at intercepting snow than colder air 

temperature (Roth & Nolin, 2019). Forests effects on snow accumulation in the Pacific 

Northwest are enhanced because the land area of the region consists of 80% forest cover (Alig 

et al., 2000). 
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5.1.1   Maritime climate effects 
 

Results of this study indicated that snow density at the meteorological stations ranged 

from 250 kg/m3 to 550 kg/m3, was on average 400 kg/m3, and was 250 kg/m3 at the beginning 

of the snow season and 550 kg/m3 at the end of the snow season. In addition, average snow 

densities were 365 kg/m3 at long-term snow stakes, with little change with elevation or 

vegetation cover type (forest vs. opening). These snow densities compare to reported snow 

densities at SNOTEL site in maritime temperate climates of 400 kg/m3 on average, 250 kg/m3 at 

the beginning, and 600 kg/m3 at the end of the snow season (Mizukami & Perica, 2008). In 

contrast, reported snow densities at a SNOTEL site in a continental climate were 350 kg/m3 on 

average, 150 kg/m3 at the beginning, and 550 kg/m3 at the end of the snow season 

(Mazurkiewicz et al., 2008). The higher average snow densities in the maritime climate of the 

Andrews Forest compared to continental climates are due to warmer winter temperatures and 

deeper snowpack in the maritime climate. Modeled snow density values of canopy delivered 

snow by Bonner et al. (2022) suggested that snow sloughed from the canopy in continental 

climates is 150-240 kg/m3, while the density of snow sloughed from the canopy in maritime 

climates is as great as 500 kg/m3. This process highlights just one of many ways canopy 

dominates snow processes in a maritime climate. 

 

5.1.2   Effects of elevation 
 
Snow characteristics were expected to be related to elevation, because air temperature 

and precipitation change with elevation. Snow depth generally increases with elevation despite 

differences in canopy cover, climate, or topography (Tennant et al., 2017). It was expected that 

snow depth, SWE, and snow disappearance date would increase with elevation because of 

declining air temperature with elevation, while snow density would be greater in the open 

compared to beneath forests because snow is deeper in openings, causing compaction, and 

more longwave emission occurs in forests, which contributes energy to both snow on the 

ground and snow stored in the canopy. The study site included the transition from the 

ephemeral to maritime seasonal snow zone, two classes within which snowpack varies 

considerably in depth, extent, and metamorphism in maritime climates (Sturm et al., 1995; 
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Sturm & Liston, 2021). This study examined snow over the range of elevation of 600 to 1400 m, 

which is considered to be part of the transient (350-1100 m) snow zone (Harr, 1986). The study 

spanned forests of the Douglas-fir/western hemlock zone (below 1000 or 1200 m), transition 

zone, and subalpine true-fir forest zone (above 1200 m) (Zobel et al., 1976). 

A visual analysis of snow depth over the long-term at paired open/forest sites showed 

increases in depth with elevation at both the open and forest stakes (Figure A-1, Appendix A), 

but snow depth sampled in the field in March of 2022 and 2023 (Table 4), and in 60x60 

polygons in the lidar image was not related to elevation (Figure 17). Also, snow density beneath 

forests was not related to elevation at the MS00701 forest snow stakes (Table 11). Daily snow 

density at the meteorological stations increased as the winter season progressed, but sample 

size was too limited to comment on differences in snowpack density in the open across 

elevations. Differences in landscape position, slope orientation, and/or forest cover and 

structure (see below) probably account for the lack of relationships of snow depth and density 

to elevation in short-term sampling. 

 

5.1.3   Effects of slope orientation 
 
Snow characteristics were expected to differ based on aspect, because aspect in the 

rain-snow transition zone —where snow accumulates and persists near 0 °C— plays a 

particularly important role in accumulation and ablation (Hinckley et al., 2014). Shading of 

surfaces by adjacent terrain and exposure to prevailing winds leads to melting and compaction. 

In the northern hemisphere, slopes with south aspects have much more incident solar than 

north facing slopes, causing higher melt rates (Dewalle, 2008). Snow depth in the March 2022 

lidar image was qualitatively greater on N and E-facing slopes, but this effect was not tested 

statistically (Figure 9). In a limited sampling of a ridge line at 1500 m in the snow height model, 

the N aspect had a mean value of 2.3 m snow depth, and the adjacent S aspect had a mean 

depth value of 0.6 m. The bottom of Lookout Creek had 1.3 m. The average depth of the whole 

snow height model was 0.54 m.
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5.1.4   Effects of landform position and air drainage 
 
Snow characteristics were expected to differ based on landform position (hillslopes vs. 

valleys), as differences in slope and aspect cause temperature inversions and cold air flows 

(Malek, 2019; Rupp et al., 2020). In the Andrews Forest, temperature inversions occur during 

most months out of the year (Rosentrater, 1997; Rupp et al., 2021). Visual inspection of the 

lidar image in this study indicated deeper snowpack in the valley floor of upper Lookout Creek, 

but this effect was not tested statistically (Figure 9). Open canopy in the upper, west facing 

slopes of the L704A and L704C strip clearcuts (Figure 7) may facilitate cold air drainage and 

pooling in the valley floor, preserving deeper snow (Figure 9, Table 4, Table 7).  

 

5.1.5   Effect of vegetation cover type 
 
Snow characteristics were expected to differ in openings vs. forest, because forests 

intercept snow and emit longwave, decreasing snowpack accumulation. Reduction of snow 

accumulation from canopy interception of snow is expected to dominate over canopy shading 

and protection from wind, which could increase snow depth, in the Oregon maritime climate 

(Dickerson-Lange et al., 2017). Results from long-term paired snow stakes under forest and in 

openings indicate that forest canopies intercepted forty to sixty percent of snow over the study 

period (Appendix A, Figure A-1). The ratio of snow depth under the forest to snow depth in the 

open generally decreased with elevation.  

Many studies have investigated the effect of mature/old-growth forests on microclimate 

(Chen et al. 1993; Gray et al., 2002). Microclimate can be influenced by vegetation, micro-

topography, and elevation, but quantifying it requires fine spatial resolution measurements 

(Frey et al., 2016, Wolf et al. 2020). Comparing snow in “forest” vs. “open” sites along roads 

revealed large differences in snow characteristics. Snow depth under forest was much less than 

in openings at field-measured sites (Table 10) and at long-term snow stakes (Table 11, Figure 

17).   

Snow disappeared earlier and snow depth loss rates (a measure of melt rate) were less 

rapid at forest snow stakes than paired open snow stakes (Table 14). However, mean winter 

snow density was not different at forest snow stakes compared with paired open snow stakes 
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(Table 15). The Hedstrom and Pomeroy (1998) snow interception model used in this study 

focuses on event size and forest structure as the drivers of interception, rather than air 

temperature. In contrast, the Andreadis et al. (2009) parameterization is almost entirely 

dependent on air temperature but produces simulated snow depth and SWE (Figure 33) that is 

slightly less under forest than in the open. Although designed from empirical measurement of 

snow interception in Umpqua National Forest, the Andreadis interception model does not 

replicate interception amounts at Upper Lookout. Omission of air temperature or canopy 

structure considerations could contribute to model underestimates of interception (Roth & 

Nolin, 2019). Martin et al. (2013) also found that the VIC model underpredicted forest canopy 

interception by 33%, illustrating the prevalence of this issue in the snow modeling community.   

 

5.1.6   Effects of forest structure 
 
Snow characteristics were expected to differ based on forest structure differences 

between mature/old-growth forests versus planted forests, including edges, gaps, canopy 

height, and canopy density. The term ‘forest structure’ generally refers to the essential 

attributes of a forest stand such as structural type, size, and spatial distribution of vegetation 

components (Spies, 1998). The structural characteristics of planted and mature/old-growth 

forests influence microclimate (Frey et al., 2016). In this study, forest structure was categorized 

as ‘planted forests’ and ‘mature/old-growth forests’ to investigate differences in snow depth. 

The ‘planted forest’ class refers to forest that was harvested and planted 50-70 years ago. 

Mature/old-growth forests regenerated after wildfires circa 1500 CE and the mid 1800s CE. The 

structural components of old-growth forests include a diverse range of tree heights and crown 

diameters, a deep, dense overstory canopy, snags of varying size classes, and abundant downed 

and dead wood (Spies & Franklin, 1991). In contrast, planted stands have shorter canopies, 

denser stands, less species diversity, and less dead and down wood. The Andrews Forest (Figure 

2) is typical of National Forests across the western United States, which are a mosaic of patches 

of plantations and remnant old growth, intersected by a network of linear openings along 

forest roads and a network of edges between patches and between roads and adjacent forests. 
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In contrast, private industrial forest land has younger intensively managed plantations, and 

fresh clearcuts.  

Snow was expected to differ between forest and openings, depending on distance from 

an edge, or the size of the canopy gap. Chen et al. (1993) found that the transitions from forest 

to clearcut opening create microclimate influences on incoming radiation, relative humidity, 

vapor pressure, and air temperature, creating gradients across edges. The orientation of forest 

edges particularly influences air temperature and relative humidity in the summer (Chen et al 

1993). However, edge orientation was not associated with differential patterns of snow depth 

in the winter in maritime snow climates (Currier & Lundquist, 2018). Snow stakes are located 

along logging roads that were constructed in the 1950s and 1960s (see e.g., Jones and Grant 

1996). When they were constructed, the road width (“right of way”) was about 20 m including 

the cut slope, fill slope, and road surface. However, in the ensuing 60 years, trees have 

established on the road cut and road fill and the branches of neighboring trees have extending 

into the light gap above the road, so canopy gaps above current roads may be as little as ~5-8 

meters wide. Forest gap formation, size, and distribution is highly variable and depends on 

species composition within the stand. The width of the road gap is not dissimilar from sizes of 

naturally formed forest gaps, which range from ~4 to 9 m in diameter in mature (140 year) and 

old growth (400-500) Douglas-fir stands in the Cascade Range (Spies et al., 1990). Gap widths of 

5-10 m diameter are a small fraction of the height of neighboring trees, including 50 to 60-yr-

old planted forests (30+ m tall) or mature/old-growth forest (60 – 80 m tall), so they are highly 

affected by edges. Snow intercepted along the forest-opening edge may reduce snow in the 

road opening, or it may cascade onto the road gap, increasing snow in the road gap and 

potentially reducing snow within the forest along the forest-road edge. 

Snow also was expected to differ between planted and mature/old-growth forest based 

on differences in canopy height and canopy density. Across all snow climates, the dominant 

effect of conifer forests on snow accumulation and melt is the formation of tree wells 

(Musselman et al., 2008). Using DHSVM to model snowpack response to canopy density across 

multiple snow climates, Sun et al. (2022) found that increased canopy density was associated 

with reduced peak SWE and earlier snow disappearance date. A forest canopy density of 25 to 
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40% was associated with maximum snow accumulation based on field sampling and modeling 

in a continental climate by Veatch et al. (2009). Generally, across all climates, peak SWE 

decreases as the density of the forest canopy increases. In warm maritime climates, the effect 

of canopy density depends on the counteracting effects of interception versus exposure to solar 

radiation (Sun et al., 2022). 

The results of this study showed that snow depth sampled in the field in March, 2022 

was significantly greater in planted forest stands than in nearby mature/old-growth stands 

(Table 4). However, lidar-derived snow depth of mature/old-growth forest stands, with an 

average canopy height of 35 m, was not significantly different than lidar-derived snow depth in 

adjacent planted forests, with an average canopy height of 23 m (Table 13). Furthermore, 

canopy height was not related to lidar-derived snow depth in ten pairs of 60x60 m polygons 

(Figure 19).  

This lack of a clear relationship between canopy height and snow depth may be 

explained by the effects of stand density. Stand density and canopy closure were higher in 

planted forests than in adjacent mature/old-growth sampled in this study, but canopy height 

was greater in the mature/old-growth forest. A greater number of tree boles creating tree wells 

combined with the high canopy closure in the planted forests may explain the low snow depths 

measured in field sampling in March 2022 (Table 4) and March 2023 (Table 7). Also, sparse 

canopies in some planted forest stands (Photograph 3) are associated with deeper snowpacks 

than in planted stands with dense canopies (Photograph 4, Photograph 7). The shorter, denser 

canopy of the planted forests and the taller, less dense canopy of the mature/old-growth 

forests could have counteracting effects on snow accumulation, explaining the similar March 

snow depths between the two canopy types observed in this study. The ten pairs of sites used 

in the lidar analysis provided only limited information about the spatial variability of snow 

beneath forests. Further work using lidar-derived snow depths, lidar-derived canopy structure, 

and lidar bare earth models could help to identify forest structural characteristics and other 

factors that explain differences in snow depth.
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5.2   Implications and relevance  
 
Forecasting and measuring snow depth, SWE, and snow disappearance date is 

important to water supply, the surface energy balance, and soil moisture in mountain 

ecosystems. Snow metrics such as SWE and SDD of seasonal mountain snowpack help inform 

water management decisions, such as spring discharge estimates, that are critical to summer 

water supply. The Pacific Northwest has a Mediterranean summer climate with dry, hot 

summers and the late spring and summer stream discharge is sensitive to late spring/early 

summer snow water storage (Brooks et al., 2012). This study used lidar imagery to estimate the 

total snow water volume stored in the Andrews Forest and express it in terms of equivalent 

days of flow at Lookout Creek, the drainage basin that comprises the Andrews Forest (Table 

18). If the average snow depth from the lidar image is accurate, this calculation indicated that 

the volume of water stored on March 17, 2022 was equivalent to 29 to 31 days of mean daily 

flow at Lookout Creek, or 3.6 to 3.7 days of continuous high flow at a rate of the 1-year return 

period peak discharge. This volume does not represent peak SWE, so the amount of water 

contributed to discharge from the snowpack may have been greater than this estimate. On the 

other hand, this estimate may be too high, because the lidar snow depth may have been 

overestimated when using the 29.5 cm correction.. Furthermore, the lidar-derived snow depth 

does not include losses to basal discharge, a process that contributes water to the underlying 

soils throughout the winter, particularly in the ablation season. Contributions to soil moisture 

and run-off from basal discharge are not included in the lidar-derived SWE estimate and likely 

cause the estimated SWE volume to be lower than the actual water contribution from the 

snowpack to spring discharge, especially when considering the porosity of the soils in the 

Andrews Forest.  
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Table 18. Lidar-derived snow depth on March 17, 2022 as a volume of water based on average 
daily SWE measured 1997-2014 at the three meteorological stations and expressed in terms of 
equivalent streamflow at the mouth of Lookout Creek. 

 SWE = 0.38 SWE = 0.4 

average snow depth (m) 0.544 0.544 

snow density (%) 0.380 0.400 

snow water depth (m) 0.207 0.218 

Snow water volume (m3/m2) 0.207 0.218 

m2 per ha 10000 10000 

Snow water volume (m3/ha) 2067 2176 

n of hectares 4204 4204 

Snow water volume (m3 in 4204 ha) 8690175 9147553 

   
mean daily flow at Lookout Creek, WY 1950-2018 (cfs) 122  
m3/s per cfs 0.028316847  
mean daily flow at Lookout Creek, WY 1950-2018 (m3/s) 3.45  
seconds per day 86400  
Lookout Creek, m3 per 24 hours of mean daily flow, WY 1950-2018 
(m3/s) 298482  

   
N of days of mean daily flow of Lookout Creek equivalent to snow 
stored on March 17, 2022  29 31 

   
~1-year return flow at Lookout Creek (cfs) 1000  
m3/s per cfs 0.028316847  
~1-year return flow at Lookout Creek (m3/s) 28.32  
seconds per day 86400  
Lookout Creek, m3 per 24 hours at ~1-yr return period 2446576  

   
N of days of 24-hour flow of Lookout Creek at 1-yr-return period 
rate equivalent to snow stored on March 17, 2022  3.6 3.7 
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In addition to contributing to water supply, seasonal mountain snowpack plays an 

important part in the surface energy balance by increasing land surface albedo. The snow 

disappearance date, i.e. the day that snow disappears from the land surface, marks a shift in 

surface albedo. This study showed that snow disappeared on average 6 days earlier under 

forest than in openings created by roads. 

Tools such as lidar and automated snow stakes can help assess the spatiotemporal 

variability of snow and its response to forest cover and forest structure. Understanding how 

trees influence snowpack in this relatively warm, wet winter environment may influence how 

forests are managed, both on public and private lands. Results of this study confirm prior 

findings that forest management decisions such as clearcutting, selective thinning, and salvage 

logging, which create openings, have an impact on seasonal snowpack in the Cascades. The 

paired MS00701 snow stake data from 1994–2022 revealed that forests reduce snow 

accumulation by 62% on average when compared to openings (Table 16). However, this study 

also showed quite varied impacts of past forest management decisions on snow depth, SWE, 

and SDD in planted forests, depending on forest regeneration and forest structure. Continued 

research about forest effects on seasonal snowpack is needed as forested landscapes continue 

to change in response to forest management decisions and anthropogenic climate change.  

Remote sensing and modeling of snow enable snow metrics to be measured and 

estimated in areas where field measurements are rare or difficult to obtain. Measuring and 

modeling of snow in the transient snow zone is complicated by many factors, including 

precipitation phase partitioning and new snow density (Wayand et al., 2016). Much of the 

lower elevation seasonal snowpack is expected to shift to transient snowpack in the face of 

future climate warming. The snow simulation modeling in this study showed that snow 

accumulation and melt were quite sensitive to early snow season air temperature, suggesting 

that climate warming in November and December could reduce the snowpack. These findings 

are consistent with predictions (e.g., Nolin and Daly 2006 and Sproles et al., 2013).
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5.3   Limitations and recommendations  
 
5.3.1   Snow surveying 

 
The high spatial variability of snow within forests requires many samples to accurately 

represent snowpack behavior in space and time. Snow surveying is time consuming and can be 

dangerous. Mountain slopes are remote, steep, and prone to avalanches. Digging snow pits or 

using a Federal sampler is a time-consuming task that produces a few point measurements and 

point measurements in the field may obscure fine scale topographic effects on snow depth and 

density. Snow depth measurements at the road stakes may be influenced by edge effects with 

adjacent forests. SWE measurements taken with a Federal sampler are prone to error as snow 

slides out of the tube, dirt plugs the tube, or snow is melted by friction, while snow depth 

measurements taken with an avalanche probe frequently overestimate depth by penetrating 

underlying soils. 

 Nevertheless, many forested areas have roads that provide access with a good 4WD 

vehicle and a set of chains, and field snow survey may be the safest, least-cost and most precise 

and accurate method for these areas. In contrast, long-term snow monitoring sites, such as the 

meteorological stations in the Andrews Forest or SNOTEL sites, involve expensive equipment 

that requires frequent maintenance. A snow survey, such as the snow stake surveys in this 

study that accompany maintenance visits to a monitoring site can be a low-cost way to obtain 

high quality snow depth and SWE data.  

 

5.3.2. Lidar snow survey 
  

Lidar technology has advanced since the turn of the century, including higher precision, 

greater accessibility to the public, and lower costs. The technology is widely used. ‘Snow-on’ 

lidar surveys produce snow depth values at a 1 square meter resolution over a large area at one 

time. Furthermore, lidar surveys can retrieve data in remote locations that are difficult or 

dangerous to access. Lidar has potentially high value as a means to extrapolate snow cover 

from distributed field snow surveys and monitoring stations that collect SWE measurements.  
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Lidar-derived snow depth measurements had 200 to 300 mm of uncertainty, and 

sometimes, but not always, over-estimated snow depth measured in the field. Some of these 

differences may have been due to horizontal uncertainty of GPS coordinates for field sampling 

locations and/or lidar spatial errors, while others may be related to vertical errors associated 

with the sensing of the top of the snowpack or the bare earth, which was subtracted from the 

snowpack lidar image to obtain lidar-derived snow depth. Accuracy of scanning lidar is specified 

in the horizontal (x, y) and the vertical (z) (Deems et al., 2013). The error in horizontal accuracy 

is largely determined by errors in altitude measurement and the vertical accuracy is determined 

largely by errors in range measurement to target. Common sources of error in ALS systems 

arise from terrain geometry (occlusion), scattering, boresight offset, vegetation, and light 

absorption in the near surface snow layers in near infrared wavelengths. Sources of error in 

airborne lidar scanning applications over mountain terrain arise from the geometric 

relationship between aircraft dynamics, the scanning system, and the complex topography of 

the ground surface (Deems et al., 2013). One possibility, which deserves further exploration, is 

how the bare earth DTM for the Andrews Forest senses the top of the forest floor (i.e., the top 

of the litter and down wood layer) vs. the top of the mineral soil. If the lidar bare earth DTM 

primarily senses the top of the mineral soil, lidar-derived snow depths may also include forest 

floor, overestimating the snowpack.  

Airborne lidar surveys are expensive. The survey requires an aircraft, a survey team, a 

data processing team, and all the associated equipment. A ‘snow-on’ lidar survey produces a 

measurement at one point in time, but hydrologists are interested in how snow varies from day 

to day or week to week, and repeating airborne lidar surveys at frequency needed to measure 

accumulation and melt rates is not feasible. 

 

5.3.3   Snow modeling 
  

The complexity in the spatiotemporal variability of seasonal mountain snowpack is 

difficult to model. Hydrologic processes vary considerably with climate type. Using a modeling 

framework that includes commonly employed representations of hydrologic process, such as 

SUMMA, can help illustrate how each parameterization of a process affects snowpack. This can 
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help guide model decision selection when modeling snow across different climates and 

locations. 

Errors in a hydrologic simulation model can arise from the model boundary conditions 

and inputs, error associated with using an approximation of a real process, and error in the 

measurement of the variable being simulated. Furthermore, the equifinality principle suggests 

that there is no single correct representation of a system given normal limitations and 

characterization data, meaning there is no single correct representation of a processes in the 

hydrologic system (Beven, 2006). In this study, model output was compared to measured data 

from a provisional snow dataset that had an unknown number of potentially erroneous values. 

A visual check was made to remove anomalously high or negative values in the provisional 

dataset for snow depth measured by the acoustic depth sensor, but no formal QA/QC process 

has been completed on these data. Snow depth data early in WY 2016 were particularly full of 

errors, making model assessment of modeled snow depth impossible during that period and 

affecting reported NSE values. 

Representations of individual pieces of the hydrologic system within models are, at 

times, based on measurements from very few studies. For example, the process of canopy 

interception of snow within hydrologic models is largely based off empirical measurements 

from only two studies, Hedstrom and Pomeroy (1998) and Storck et al. (2002). A greater effort 

toward more intensive field campaigns to study forest canopy interception of snow in the 

maritime climate of the Andrews Forest could help improve equations in the SUMMA model. 
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6.   Conclusion 
 

This study applied contemporary modeling, measuring, and remote sensing of snow 

techniques to investigate effects of forest cover, topography, and microclimate on the 

variability of seasonal snowpack in the transient to seasonal snow zones (800 to 1400 m) of the 

H.J. Andrews Experimental Forest, western Cascade Range, Oregon, US.  

Long-term (1994 to 2022) paired snow stake data in openings along roads and under 

adjacent forests indicated that the canopy of the conifer forests of the Andrews Forest 

intercepts as much as 60% of snow over a winter season. The ratio of snow depth beneath 

forests relative to openings decreases with elevation. Mean snow density was similar (364 

kg/m3 and 366 kg/m3) across all elevations in forests and openings.  

A survey using airborne laser scanning (ALS) captured an image that was used to 

construct a snowpack surface covering >4000 ha of the upper-elevation portion of the Andrews 

Forest HUC on March 17, 2022. Lidar-derived snow depths had an error or +/- 200-300 mm 

compared to field measurements. Shaded slopes and temperature inversions contributed to 

greater snow depth on north and east facing slopes and along the valley floor of upper Lookout 

Creek, both in the lidar image and in field sampling during March 2023. 

High canopy density and associated interception and tree wells may explain lower snow 

depth under planted forest stands with closed canopies based on field sampling of snow in 

March 2023. However, forest canopy height did not explain lidar-derived snow depth in a 

limited sample of 60x60 m polygons in planted vs. adjacent mature/old-growth forest.  

Simulated snowpack using SUMMA somewhat accurately reproduced SWE at the 

meteorological station (1298 m) but overestimated snow depth beneath conifer forests 

compared to data from paired snow stakes in forest and openings at similar elevations. Further 

long-term snow measurement at paired forest/open sites and meteorological stations are 

needed to improve model snow interception parametrizations. More robust parametrizations 

of canopy interception of snow are needed for accurate snow simulation modeling in forests in 

maritime climates.  
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Overall, long-term observational data indicated that conifer forest canopy in the 

maritime climate of the H.J. Andrews Experimental Forest is capable of high amounts of 

interception, producing shallower snowpack under forest that was not replicated using a 

widely-used snow interception models. At the same time, a lidar-derived image of snow depth 

spanning elevations of 800 to 1600 m and >4000 ha in the landscape indicated that many other 

factors, including elevation, landscape position, and slope orientation created complex patterns 

of snow depth that were not consistently related to forest canopy height. Nevertheless, the 

lidar-derived estimated volume of water stored in the landscape on March 17, 2022 was 

equivalent to one month of mean daily flow at the mouth of Lookout Creek, which comprises 

the H.J. Andrews Experimental Forest. 

Overall, this study applies multiple snow measuring and modeling methods to 

investigate depth and density differences of snow in forests in the transient snow zone in a 

maritime climate. These findings reveal that multiple factors contribute to snow spatial and 

temporal variability. Results underscore the need for continued long-term monitoring and 

additional analysis of observational data from long-term snow stakes, meteorological stations, 

and process-based studies to develop more robust canopy interception of snow equations in 

the transient to seasonal snow zones of maritime snow climates. 
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Appendix A – Long-term snow stake data 
 
Table A-1. Summary of snow depths measured at snow stakes in forest and openings in dataset MS00701 (1994 to 2022). 
 

 Elevation (m) 
average snow depth 
(mm) SE (mm)   

snow stake open forest open forest open forest open - forest forest as % of open 

1994-2022 (MS00701)       
R506O6/F6 1125 1164 630 242 16 9 388 38 

R506O5/F5 970 1006 335 68 12 4 267 20 

R350O4/F4/E4 1387 1408 882 332 21 18 550 38 

R350O3/F3 1263 1233 665 287 16 10 378 43 

R350O2/F2 1063 1057 369 89 11 5 280 24 

R350O1/F1 892 919 138 61 7 4 77 44 

R320O4/F4 997 978 249 70 9 4 180 28 

R320O3/F3 916 935 291 133 10 6 157 46 

R320O2/F2 793 805 198 92 8 4 107 46 

R507O4/F4 1180 1193 683 259 18 11 424 38 

1994-2014         
R506O6/F6 1125 1164 866 302 54 32 564 35 

R506O5/F5 970 1006 358 107 35 18 251 30 

R350O4/F4/E4 1387 1408 1280 376 144 121 904 29 

R350O3/F3 1263 1233 1019 311 72 33 708 30 

R350O2/F2 1063 1057 548 97 44 16 451 18 

R350O1/F1 892 919 228 56 28 10 172 25 

R320O4/F4 997 978 347 89 24 10 257 26 

R320O3/F3 916 935 414 168 27 16 247 40 

R320O2/F2 793 805 318 104 22 11 214 33 
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R507O4/F4 1180 1193 913 305 119 64 608 33 

2014-2022         
R506O6/F6 1125 1164 598 235 17 9 363 39 

R506O5/F5 970 1006 331 63 12 4 268 19 

R350O4/F4/E4 1387 1408 870 331 21 18 539 38 

R350O3/F3 1263 1233 630 285 16 11 345 45 

R350O2/F2 1063 1057 349 88 12 6 262 25 

R350O1/F1 892 919 126 60 7 4 66 47 

R320O4/F4 997 978 226 65 10 4 161 29 

R320O3/F3 916 935 261 125 10 7 136 48 

R320O2/F2 793 805 170 89 8 5 81 52 

R507O4/F4 1180 1193 679 258 19 11 421 38 

         
1994-2022         
ave   444 163 13 8 281 37 

SE   79 33 1 1 48 3 

1994-2014         
ave   629 192 57 33 438 30 

SE   114 37 13 11 79 2 

2014-2022         
ave   424 160 13 8 264 38 

SE   80 33 1 1 49 3 
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Table A-2. Summary of SWE (mm) measured at snow stakes in forest and openings in dataset MS00702 (1978 to 2003). 
 

 Elevation (m) average SWE (mm) SE (mm)   
snow stake open forest open forest open forest open - forest forest as % of open 

1978-2003 (MS00702)        

RS03_O 978  240  35    

RS12_, RS12_O 987 987 203 108 45 23 95 53 

RS26_, RS26_O 1037 1037 199 92 57 17 106 46 

RS04_, RS04_O 1307 1307 481 153 38 20 328 32 

RS13_, RS13_O 1350 1350 571 211 34 19 360 37 

RS14_, RS14_O 1430 1430 485 291 40 24 194 60 

1978-2003         

ave   388 171 43 21 217 46 

SE   78 36 4 1 55 5 
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Figure A-1. Snow depth in openings increases significantly with elevation, and is greater relative 
to under forest based on long-term paired snow stakes in the Andrews Forest. (a) dataset 
MS00701 (1994-2022), (b) dataset MS00701 (1994-2014), periodic measurements, (c) dataset 
MS00701 (2013-2022), daily measurements, (d) MS00702 (1978-2003), periodic measurements.  
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Figure A-2. Complete measurement series of snow depth (mm) in openings and under forest at paired snow stakes, Andrews Forest, 
dataset MS00701, 1994 to 2022. 
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Figure A-3. Complete measurement series of SWE (mm) in openings and under forest at paired snow stakes, Andrews Forest (RS04, 
RS12, RS26) and Wildcat Mountain (RS13, RS14), dataset MS00702, 1978 to 2003. 
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Appendix B – Equations 
 
 

𝑠𝑝𝑒𝑐ℎ𝑢𝑚 = 𝑅𝐻 ∗ 𝑒(17.67(𝑇𝑎𝑖𝑟−𝑇𝑓𝑟𝑧)/(𝑇𝑎𝑖𝑟−29.65))/(0.263∗𝑃) 
 
 
Equation 1. Specific humidity for SUMMA forcing calculated by measured relative humidity, 
pressure, and air temperature (Lumbrazo personal communication).  
 
 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜

𝑡𝑇
𝑡=1 − 𝑄𝑜

𝑡 )^2

∑ (𝑄𝑜
𝑡𝑇

𝑡=1 − 𝑄𝑜
𝑡 )^2

  

 
 
Equation 2. Nash Sutcliffe Efficiency (Nash & Sutcliffe, 1970). 
 
 
NSE = =1-SUMPRODUCT((B2:B43801-C2:C43801)^2)/SUMPRODUCT((B2:B43801-H2)^2) 
 
Equation 2 continued. Nash Sutcliffe Efficiency Excel formula. 
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Appendix C – SUMMA code 
 
%pylab inline 
%load_ext autoreload 
%autoreload 2 
%reload_ext autoreload 
import pysumma.plotting as psp 
import seaborn as sns 
import matplotlib.pyplot as plt 
import sys 
import xarray as xr 
import numpy as np 
import pandas as pd 
import pysumma as ps 
 
# function to convert summa  
def convert_time_to_summa_string(t): 
    return ( 
        f'{t.dt.year.values[()]:04}' 
        f'-{t.dt.month.values[()]:02}' 
        f'-{t.dt.day.values[()]:02}' 
        f' {t.dt.hour.values[()]:02}' 
        f':{t.dt.minute.values[()]:02}' 
    ) 
 
attrs = { 
   'airpres':  {'units': 'Pa', 'long_name': 'Air pressure'}, 
   'airtemp':  {'units': 'K', 'long_name': 'Air temperature'}, 
   'spechum':  {'units': 'g g-1', 'long_name': 'Specific humidity'}, 
   'windspd':  {'units': 'Wind speed', 'long_name': 'm s-1'}, 
   'SWRadAtm': {'units': 'W m-2', 'long_name': 'Downward shortwave radiation'}, 
   'LWRadAtm': {'units': 'W m-2', 'long_name': 'Downward longwave radiation'}, 
   'pptrate':  {'units': 'kg m-2 s-1', 'long_name': 'Precipitation rate'} 
} 
name_lookup = { 
    'airpres':  'pressure_Pa', 
    'airtemp':  'temp_K',   
    'spechum':  'spechum',  
    'windspd':  'wind_ms',  
    'SWRadAtm': 'sw_mean_wm2',  
    'LWRadAtm': 'LW_40',  
    'pptrate':  'precip_PPT016', } 
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df = 
pd.read_csv('/Users/ianwhidden/pysumma/pysumma/summa_met_forcing/final_forcing/forci
ng_WY14_18_June.csv') 
df.index = pd.DatetimeIndex(df['datetime'], name='time') 
 
forcing_filename = 'uplo_station_forcing.nc' 
# Adding 1 hour to account for SUMMA being period-ending 
time_idx = df.index + pd.Timedelta('1H') 
shape = (len(time_idx), 1, ) 
dims = ('time', 'hru', ) 
coords = {'time': time_idx} 
 
met_data = xr.Dataset(coords=coords) 
met_data.time.encoding['calendar'] = 'standard' 
met_data.time.encoding['units'] = 'hours since 2013-10-01' 
for varname, varattrs in attrs.items(): 
    df_name = name_lookup[varname] 
    met_data[varname] = xr.DataArray( 
        data=df[df_name].values.reshape(-1, 1), 
        coords=coords, dims=dims, name=varname, attrs=varattrs 
    ) 
 
#met_data['airtemp'] += 273.16  # Convert to Kelvin, not needed if air in K 
met_data['pptrate'] /= 3600.0  # Convert to mm/s 
met_data['data_step'] = xr.Variable([], 3600.0) 
met_data.to_netcdf(f'./forcings/{forcing_filename}') 
 
with open('./forcings/forcing_file_list.txt', 'w') as f: 

f.write(f"'{forcing_filename}'\n") 
 
lat = 44.2072180256268 
lon = -122.119450090239 
elev = 1300 
local_attrs = xr.open_dataset('../summa_setup_template/params/local_attributes.nc').load() 
local_attrs['longitude'].values[:] = lon 
local_attrs['latitude'].values[:] = lat 
local_attrs['elevation'].values[:] = elev 
local_attrs['tan_slope'] = 10.0 #  
local_attrs['aspect'] = 72.0 
local_attrs['mHeight'] = 6.0 
local_attrs['vegTypeIndex'].values[:] = 1 # 1 is 'Evergreen Needleleaf Forest', 16 is 'Barren or 
Sparsely Vegetated' 
 
!./install_local_setup.sh 



 143 

 
summa_exe = 'summa.exe' 
file_manager = './file_manager.txt' 
# INITIATE (instantiate?) simiulation object 
s = ps.Simulation(summa_exe, file_manager) 
# Update file manager with start and end time 
s.manager['simStartTime'] = '2013-10-01 00:00' 
s.manager['simEndTime'] = '2018-09-29 23:00' 
 
t0 = met_data['time'].isel(time=0) 
t1 = met_data['time'].isel(time=-1) 
s.manager['simStartTime'] = convert_time_to_summa_string(t0) 
 
# OUTPUT Control , Add additional variables written to the output control file 
s.output_control['scalarSnowDepth'] = [1, 0, 1, 0, 0, 0, 0, 0] 
s.output_control['scalarSnowAlbedo'] = [1, 0, 1, 0, 0, 0, 0, 0] 
#'scalarCanopySnowUnloading' - unloading of snow from the vegetion canopy (kg m-2 s-1) 
s.output_control['SWRadAtm'] = [1, 0, 1, 0, 0, 0, 0, 0] 
s.output_control['scalarCanopyTemp'] = [1, 0, 1, 0, 0, 0, 0, 0] 
 
s.output_control['upperBoundTemp'] = [1, 0, 1, 0, 0, 0, 0, 0] 
 
# Set decision options 
s.decisions.set_option('soilCatTbl', 'ROSETTA') 
s.decisions.set_option('vegeParTbl', 'MODIFIED_IGBP_MODIS_NOAH') 
s.decisions.set_option('soilStress', 'NoahType') 
s.decisions.set_option('stomResist', 'BallBerry') 
s.decisions.set_option('fDerivMeth', 'analytic')  
s.decisions.set_option('num_method', 'itertive')  
s.decisions.set_option('LAI_method', 'monTable')  
s.decisions.set_option('cIntercept', 'storageFunc')  
s.decisions.set_option('f_Richards', 'mixdform')  
s.decisions.set_option('groundwatr', 'bigBuckt')  
s.decisions.set_option('hc_profile', 'pow_prof')  
s.decisions.set_option('bcUpprTdyn', 'nrg_flux')  
s.decisions.set_option('bcLowrTdyn', 'presTemp')  
s.decisions.set_option('bcUpprSoiH', 'liq_flux')  
s.decisions.set_option('bcLowrSoiH', 'drainage') 
s.decisions.set_option('veg_traits', 'CM_QJRMS1988')  
s.decisions.set_option('rootProfil', 'powerLaw')  
s.decisions.set_option('canopyEmis', 'simplExp') 
s.decisions.set_option('snowIncept', 'stickySnow') # lightSnow 
s.decisions.set_option('windPrfile', 'logBelowCanopy')  
s.decisions.set_option('astability', 'louisinv')  
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s.decisions.set_option('compaction', 'anderson')  
s.decisions.set_option('snowLayers', 'CLM_2010') 
s.decisions.set_option('thCondSnow', 'smnv2000')  
s.decisions.set_option('thCondSoil', 'funcSoilWet')  
s.decisions.set_option('canopySrad', 'noah_mp')  
s.decisions.set_option('alb_method', 'varDecay')  
s.decisions.set_option('spatial_gw', 'localColumn')  
s.decisions.set_option('snowDenNew', 'hedAndPom') 
 
# CANOPY 
# Forest 
s.global_hru_params['heightCanopyBottom'] = [ 2.0 , 1.0 , 3.0 ] 
s.global_hru_params['heightCanopyTop'] = [ 40.0 , 40.0 , 50.0 ] 
# Open 
s.global_hru_params['heightCanopyBottom'] = [ 0.0 , 0.0 , 0.0 ] 
s.global_hru_params['heightCanopyTop'] = [ 0.0 , 0.0 , 0.0 ] 
 
s.run('local') 
s.status 
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