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8.1 Introduction 

Modelling distributions of species is a key task for modern ecologists. Species distribution 

models (SDMs), aimed at quantitatively identifying factors driving occurrence and/or 

characterizing ecological niches (Guisan & Thuiller 2005), have replaced the largely 

descriptive investigations that dominated the discipline previously. SDMs have also become 

a key method for making predictions, usually of species distributions, under different future 

scenarios of environmental change and as such are important in conservation planning 

(Rodríguez et al. 2007). Similarly, spatially explicit modelling of communities has gained 

importance in ecology and conservation, with a progressive shift from a simple 

characterization of richness and diversity, to more nuanced investigations assessing the 

variation of functional, ecological and other life-history traits in relation to environmental 

drivers or time (Villéger et al. 2011; White et al. 2018). 

Distribution modelling over broad scales poses several challenges to researchers 

because of potentially altered equilibrium between distribution and environmental 

characteristics, resulting in non-stationarity in space and time (Guisan & Thuiller 2005), due 

to, for example, interspecific interactions, dispersal limitation, demographic dynamics, key 

resources not adequately represented in the available information, and several types of 

environmental filtering (Zurell 2017). Birds represent a particular challenge for distribution 

modelling (Engler et al. 2017). They are generally highly mobile, often displaying important 

seasonal changes in distributions and ecological niches (Ponti et al. 2020). Long-distance 

migrant species may be affected by the climate in their wintering and/or breeding areas, 

complicating the selection of factors influencing niches and therefore covariates used in 

distribution modelling (Eyres et al. 2017). They may also be subject to carry-over effects 

(conditions in one season that affect resources and/or survival in a subsequent season; Yu et 



 

 

al. 2010; Frey et al. 2016a; Latimer & Zuckerberg 2020). Furthermore, bird species respond 

to environmental drivers at different and potentially multiple spatial scales. Large raptors 

regularly roam over thousands of hectares, often travelling over several kilometres (and 

different valleys in mountain regions) in a single day, whereas small passerines may spend 

all their breeding season within one thousand square meters (a difference of several orders 

of magnitude). In addition, habitat selection in many bird species is a multi-scale process 

(Jedlikowski et al. 2016); this could be particularly true for mountain birds exploiting a 

habitat encompassing three-dimensions (e.g., Brambilla et al. 2010). Many bird species may 

require different habitats for the acquisition of various resources (Brambilla & Saporetti 

2014; D’Elia et al. 2015), further complicating the identification of the drivers of distribution. 

All of these issues result in complex decisions about the best scale(s) to use and lead to 

multi-scale approaches to modelling species distributions and communities (Mertes & Jetz 

2018; Brambilla et al. 2019a; Goljani Amirkhiz et al. 2021). 

The above complications are exacerbated in the case of mountain birds because of the 

characteristics of mountain ecosystems and the effects they have on such endothermic, 

mobile organisms (García-Navas et al. 2020). Endothermy allows birds to extend the range 

of temperatures they can tolerate. In particular, if resources are adequate, they can buffer 

against lower temperatures, which are particularly frequent in mountains. This implies that 

the limit of mountain bird distributions may be affected by resource availability, especially 

at the lowest extreme (Engler et al. 2017). High mobility enables species to exploit highly 

seasonal, almost ephemeral, habitats and resources in high elevation sites, and to cope with 

environments that are subject to marked and abrupt temporal variation (Barras et al. 

2021a). Multi-scale habitat selection may involve several drivers that are difficult to identify 

along the steep environmental gradients of mountain ecosystems, determined by the 

interaction between climate, topography and habitat. Key factors such as temperature, 

wind, humidity and solar radiation vary over much finer scales than in most other 

ecosystems. Finally, the harsh conditions found in high-elevation areas have resulted in a 

mix of adaptations (Barve et al. 2021; Chapter 2) and plasticity of organisms inhabiting such 

‘extreme’ habitats. Such difficult conditions, and especially the difficulty in accessing many 

mountain areas, also impede intensive sampling and data collection. The high mobility of 

birds, coupled with the complex interactions involving rapid turnover in vegetation, 

topography and micro-climate, make it difficult to collect data, but also to analyse them 



 

 

with a high degree of confidence when it comes to modelling distributions, community 

characteristics and monitoring mountain birds over time. 

In this chapter, we deal with crucial issues for modelling bird distribution and diversity 

in mountains. Given that modelling species distributions is often undertaken at fairly large 

spatial scales, we consider a broad definition of mountain habitats that can encompass all 

vegetation zones (see Chapter 1, Table 1.1). We discuss the role of environmental 

constraints at different scales, the importance of interactions between species and among 

drivers in impacting bird distributions, and the factors shaping bird communities. We point 

out the major challenges for modelling distributions and community structure. We keep a 

prevalent focus on temperate mountains, given that a specific chapter of the book is 

dedicated to tropical mountains (Chapter 9). We conclude by discussing potential solutions 

to the main challenges, implications for research and conservation, and future steps that 

could be envisioned to fill the remaining gaps in our knowledge of avian distribution and 

communities in mountain ecosystems. 

 

8.2 Modelling Distributions of Mountain Birds 

 

8.2.1 Environmental Constraints 

Since the work of Alexander Humboldt (von Humboldt & Bonpland 1807), mountains have 

been used as model systems to study the geographical distributions of species, specifically 

with respect to ecological niches. Their steep environmental gradients enable examination 

of species range limits without the need to cover large geographical distances. These steep 

environmental gradients have conferred similar potential benefits to bird species under 

climate change, as the potential exists for birds to disperse to locations that become 

suitable in terms of environmental niche. Indeed, upward shifts in the distribution of both 

avian and non-avian species towards mountain summits have been widely observed across 

mountain ranges of the world (Sheldon et al. 2011; Neate-Clegg et al. 2021), even if a lack of 

tangible shifts is also frequent (Chapter 6). Furthermore, bird species distributions have 

often shifted more slowly than would be expected based on temperature change alone, 

likely because of other environmental constraints (Scridel et al. 2018). 



 

 

Climate-envelope models relate species distributions to climatic (and often other 

environmental) variables and then project future distributions based on expected climate 

change over the coming decades (Thomas et al. 2004; Jantz et al. 2015; Scridel et al. 2021). 

Many of these models predict that mountain birds will lose habitat rapidly, and become 

imperilled under future climate warming as ‘sky islands’ shrink in size (Şekercioğlu et al. 

2008, 2012). Shifting upslope often comes with the risk of extirpation or extinction, as 

habitat area shrinks with increasing shifts toward mountain peaks, although such effects 

vary according to the physical form of a mountain (Elsen & Tingley 2015; Chapter 6). The 

orientation and topographical complexity of mountains (concave ‘bowls’, convex ‘mounds’, 

gullies etc.) often results in complex thermal properties across elevations, with potential for 

‘microrefugia’ that may buffer species from the effects of climate change, at least 

temporarily (Dobrowski 2011; Wolf et al. 2021). Therefore, species may not necessarily shift 

upwards under climate change – cooler patches may occur at lower elevations due to cold-

air drainage (Pypker et al. 2007), or on pole-facing slopes where mountainsides receive less 

solar radiation due to shading (Feldmeir et al. 2020). This may lead to shifts toward ‘cold 

spots’ that are not necessarily upslope (Frey et al. 2016b). Distribution modelling of 

mountain birds should thus ideally include rather fine-scaled, temperature-relevant 

environmental information next to or instead of widely used, broader topographical 

variables serving as proxies for temperature (elevation, inclination, orientation). 

Modelling the fundamental niche of a species, and thus its potential to adapt to 

changing climatic conditions, may be limited by the difficulty to approximate its ‘true’ 

fundamental niche as the current species distribution does not cover its overall climatic 

range. This may be due to species ranges moving more slowly than temperatures, e.g., due 

to site fidelity in many species. For long-lived species in particular, this may lead to an 

extinction debt at the trailing (retreating) edge of a species’ niche (Devictor et al. 2008; 

Lehikoinen & Virkkala 2016). Furthermore, current species distribution is often limited by 

historical habitat loss or by former persecution, both of which lead to an underestimation of 

climate suitability for the species (Ratcliffe 2010; Brambilla et al. 2021). 

Even when the fundamental niche is known, the capacity of bird species to follow it as 

the climate shifts will depend upon a number of important factors, few of which have been 

included in modelling efforts to date. First, the structural components of the habitat itself 

(e.g., forest type) must be present in the new area, otherwise nesting substrate or foraging 



 

 

surfaces will not be available. Second, interspecific interactions may limit the capacity of 

species to move (Section 8.2.2). If a more dominant competitor already occupies the new 

niche locations, colonization may not occur. Finally, the species must have the capacity for 

finding new habitat as the climate shifts. Birds use a variety of behaviours to find new 

habitat during natal or breeding dispersal, with some approaches more effective than 

others. For instance, using personal experience can be time consuming (Danchin et al. 

2004), in comparison to social information (i.e., using information about the breeding 

success of others), which can be a very efficient mechanism for finding habitat under 

changing conditions (Betts et al. 2008). 

In species distribution modelling, the broad environmental gradients afforded by 

mountain landscapes allow sampling across wide ranges of both climatic and vegetation 

predictor variables. Incorporating the full climatic and vegetation niches of species is likely 

to make models more transferable to other regions and future time periods (Yates et al. 

2018). 

 

 

8.2.2 The Importance of Biotic Interactions 

Species distributions and abundances are not only shaped by abiotic (Burner et al. 2020), 

but also by biotic factors, which could significantly contribute to setting bird elevational 

range limits (e.g., Jankowski et al. 2013; Freeman et al. 2019). Interspecific interactions, 

such as competition, facilitation, prey availability or predation influence where species can 

persist and how abundant they are. Biotic interactions are, however, often neglected in 

SDMs (Guisan & Thuiller 2005; Zurell 2017). To obtain a better ecological understanding of 

spatial occurrence, it often makes sense to include the presence or absence (or probability 

of occurrence) of other species which are either advantageous or disadvantageous for the 

focal species. Some biotic interactions may involve food availability (e.g., earthworms for 

ring ouzel Turdus torquatus, Barras et al. 2021b), and providers of or competitors for a 

certain resource (e.g., common blackbirds Turdus merula as competitors for ring ouzels, von 

dem Bussche et al. 2008; woodpecker holes as nesting resources for different owl species, 

Heikkinen et al. 2007; Brambilla et al. 2020a). Interactions with potential predators may also 

be important. For example, in the boreal region, black grouse Lyrurus tetrix were more 

abundant further from nests of the northern goshawk Accipiter gentilis, a main predator 



 

 

(Tornberg et al. 2016). However, the proportion of black grouse hens with broods was 

higher close to goshawk nests, indicating that they may also have an indirect facilitation 

effect on black grouse by reducing the number of corvids which prey on their nests. 

Therefore, including biotic interactions in distribution models is of great importance for 

understanding the ecological responses of species and their spatial distribution. In mountain 

systems, these models may shed light on the factors that promote zonation and species 

replacement observed along elevational gradients, and allow inferences about the 

occurrence of interactions that are otherwise difficult to disclose (such as competition and 

facilitation). This is normally performed by correlative models fitting species distribution and 

environmental data with patterns of co-occurrence among species (Zurell 2017). These 

correlative models look for excesses (possibly indicating positive interactions such as 

facilitation or mutualism) and deficits in co‐occurrence (possibly indicating negative 

interactions, such as competition or predation; Dorman et al. 2018). Excesses and deficits 

are normally established based on null models of species distribution following abiotic and 

habitat factors alone. Among correlative models, joint species distribution models (jSDMs) 

infer the role of species associations in the residuals of the model, after controlling for 

abiotic and habitat factors (Pollock et al. 2014). 

Bastianelli et al. (2017) used jSDMs to study the influence of interspecific competition in 

determining the spatial turnover between two pipit species (water pipit Anthus spinoletta 

and tree pipit A. trivialis) and two bunting species (yellowhammer Emberiza citrinella and 

ortolan bunting E. hortulana) in the Cantabrian Mountains, each species pair being made up 

of one relatively high and one relatively low elevation species along the gradient. The jSDMs 

for pipits highlighted divergent climate and habitat requirements, but also negative 

correlations between species not explained by environmental variables. Evidence from 

modelling was then compared with experimental evidence of interference competition 

obtained by means of playback experiments, but no evidence of interspecific aggressiveness 

was found. The significant residual correlation of jSDMs therefore possibly reflected forms 

of competition other than direct interference, or the influence of unmeasured 

environmental predictors. The jSDMs for buntings indicated shared habitat preferences, but 

a possible limitation to dispersal as a cause of the parapatric distribution of these 

congeneric species. 



 

 

As an alternative to jSDMs, the sources of variation in species abundance can be 

modelled by taking into account environmental suitability and the occupancy and detection 

probabilities of other species (e.g., N-mixture models; Joseph et al. 2009). Using this 

approach, Brambilla et al. (2020a) modelled the potential distributions of black woodpecker 

Dryocopus martius, boreal owl Aegolius funereus, tawny owl Strix aluco and Ural owl Strix 

uralensis in montane and subalpine forests of the entire region of the European Alps, and 

tested whether the spatial patterns of the more widespread species were shaped by 

interspecific interactions. Models revealed an effect of interspecific interactions on current 

species abundance, especially in boreal owl (positive effects of black woodpecker because 

boreal owls breed in woodpecker holes; negative effects of tawny owl, which can prey on 

boreal owls and compete with them for nest holes and prey). Climate change is altering the 

pattern of co-occurrence and hence the potential interspecific relationships. For example, 

boreal owl is predicted to share a greater proportion of its range with tawny owl in the 

future, especially due to the latter’s expansion along the elevational gradient, mainly 

promoted by warming temperatures (Brambilla et al. 2020a). 

All this evidence suggests that ignoring interspecific interactions could hamper the 

ability of SDMs to predict species distributions. There are limitations on the inferences 

about interactions that can be drawn from these methods, and fundamental problems 

remain. Patterns in species distributions and abundances can often be explained by factors 

that suggest different underlying processes. Without detailed knowledge of the processes 

occurring, or subsequent experiments to confirm the hypotheses suggested by correlative 

methods, it is often difficult, or even impossible, to distinguish between the effects of biotic 

interactions and those of environmental covariates not included in the model (Dormann et 

al. 2012, 2018). 

 

 

8.2.3 Challenges in Quantifying Micro-climate and Microhabitat 

Although some mountain bird species have exhibited range shifts in response to climate 

change (Tingley et al. 2009), many species have not been observed to track their climatic 

niche by adjusting their spatial distributions (Neate-Clegg et al. 2021; Chapter 6). One 

hypothesis for this mismatch between bird-climate envelope predictions and observed 

responses is that the climate data used to define suitable envelopes are collected at 



 

 

resolutions much coarser than those perceived and used by organisms in habitat selection 

(Plate 6, Storlie et al. 2014). Most temperature data are collected at scales 104-fold larger 

than the territory sizes of focal organisms (Potter et al. 2013), and there is high potential for 

hidden micro-climate variation within broader regional patterns. This hidden microclimatic 

variation and its potential to affect distribution dynamics is often overlooked (Riddell et al. 

2021), but is considered to be particularly relevant to mountain vertebrates. Additionally, 

lack of high-resolution climate data, particularly understorey temperatures (Scherrer et al. 

2011), has prohibited effective testing of the role of micro-climate in fine-scale distribution 

dynamics. In forests, measuring climate below the canopy is particularly important because 

this is the environment experienced by most bird species (Frey et al. 2016a) and likely has 

implications for their population trends (Betts et al. 2019). 

Thankfully, micro-climate is increasingly quantified in population and community 

ecology studies of mountain landscapes (de Frenne et al. 2021). However, quantification of 

micro-climate involves substantial challenges. Because micro-climate is so variable, and can 

be driven by a host of variables including microtopography and forest structure (Plate 6), 

data loggers must be deployed in large numbers to enable spatial extrapolation of 

temperature and humidity variables. Data loggers are often relatively inexpensive, but the 

logistics of data download, storage and handling can be considerable. Recent advances 

indicate that micro-climate can be estimated even without extensive on-the-ground devices, 

by means of highly refined downscaling based on the information of fine-scale variation in 

solar radiation, albedo, vegetation, topography and coastal effects (Maclean et al. 2019; 

Kearney et al. 2020). If effective, such micro-climate modelling approaches could result in an 

explosion of new micro-climate studies that use existing long-term bird distribution or 

abundance data along with back-cast micro-climate predictions. 

It is important to note that even studies that purportedly quantify micro-climate may 

not necessarily do so at scales relevant to the species or individuals under study. Frequently, 

loggers are deployed at a set level above the ground (e.g., 1.5 m; Frey et al. 2016b) which is 

not necessarily relevant to birds nesting or foraging either at ground level or in the canopy. 

Indeed, there is still substantial climatic variability even within the forest canopy if one 

considers tree cavities, sun spots and shaded areas that are available for highly mobile birds, 

thereby enabling a behavioural buffering against weather and climate conditions (Shaw & 

Flick 1999). Micro-loggers are already available to track the body temperatures and ambient 



 

 

conditions surrounding the animal (air temperatures) for larger bird species (Kerr et al. 

2004; Chmura et al. 2018). When it becomes available, such technology will shed new light 

on micro-climate habitat use by smaller birds. Other potential advances include use of 

thermal imaging to determine micro-climate availability in forests (Kim et al. 2018) along 

with radio-telemetry (Hadley & Betts 2009) to quantify habitat selection in relation to very 

fine-scale micro-climate features. 

All these advances will also make it easier to investigate the short-term (i.e., within the 

same season) adjustments in species’ distribution (Betts et al. 2008), with those occurring 

within the breeding season being of particular importance for conservation in hilly and 

mountain areas (Brambilla & Rubolini 2009). Likely because of the strong gradients and 

seasonality of mountain environments, within-season changes in local or regional 

distribution of breeding birds have been observed in forests (Frey et al. 2016a), meadows 

(Brambilla & Pedrini 2011) and along broad habitat gradients, spanning from subalpine 

forest to high-elevation alpine grassland and rocky habitats (Ceresa et al. 2020). 

Finally, it will be important to link micro-climate use and bird distributions to key avian 

demographic stages such as reproduction and survival. To our knowledge, few, if any, 

studies have linked micro-climate use by mountain birds to overall population dynamics 

across space, but there are studies that relate it to some key demographic variables, 

highlighting, for example, that inclement weather may have varying stage-specific impacts 

on offspring development (and hence on breeding success) among alpine songbirds with 

diverging traits (de Zwaan et al. 2020). Long-term studies on avian population trends will 

also be hugely beneficial as they integrate these demographic parameters to address the 

direct and indirect effects of mountain climate change on bird populations (e.g., Strinella et 

al. 2020; Kim et al. 2022). 

 

 

8.2.4 Challenges and Opportunities for Modelling Distribution and Abundance in 

Mountain Birds 

Advances in the spatial, temporal and thematic resolution of remote sensing data may 

prove to be particularly useful for modelling mountain bird distributions in the future. 

Mountain habitats can be snow covered for long periods, and frequent cloud cover can limit 

the collection of data with optical sensors from airborne or satellite platforms. High revisit 



 

 

frequencies of satellite platforms are therefore particularly important to provide full data 

coverage to enable mapping of mountain habitats or the monitoring of changes in 

vegetation and phenology. Several recent and planned satellite missions have high revisit 

frequencies, high spatial resolutions and spectral channels suitable for mapping and 

monitoring vegetation (Feilhauer et al. 2013; Rapinel et al. 2019). High revisit frequencies 

should also result in greater availability of multi-temporal imagery in frequently cloud-

covered areas. Furthermore, the reflectance of vegetation varies temporally due to changes 

in the chemical compositions of plants, the structure of the plant tissue and the structure of 

the canopy (Lillesand et al. 2008; Thenkabail et al. 2011). Such temporal variation can be 

captured by multi-temporal imagery and can improve the accuracy with which habitat 

classes can be mapped (Wakulinska & Marcinkowska-Ochtyra 2020). Studies using data 

from airborne or satellite platforms in upland and mountain habitats have already shown 

the potential for mapping vegetation at the high thematic and spatial resolutions relevant 

for bird distribution modelling (Bradter et al. 2011; Wakulinska & Marcinkowska-Ochtyra 

2020). 

Another potentially major limitation to species modelling is the lack of knowledge of 

how species are affected by ecological processes. Species distributions emerge from the 

underlying demographic processes determining reproduction, survival, immigration and 

emigration, which in turn are affected by abiotic and biotic conditions and interactions. Due 

to the often difficult logistics, the ecology of many mountain birds is less well studied 

compared to some species in more accessible regions (Chamberlain et al. 2012; Chapter 1). 

Whether a lack of ecological knowledge limits the modelling of mountain bird 

distributions depends on the aim of the study. If the aim of modelling is to produce a map of 

the distribution or abundance of a species for the area and time in which sample data were 

collected (interpolation), incomplete knowledge of ecological processes does not necessarily 

result in less accurate mapping. Well-performing distribution maps can be produced by 

using spatial predictors to substitute unknown abiotic or biotic processes (Bahn & McGill 

2007), for example using distance-based eigenvectors (Borcard & Legendre 2002; Dray et al. 

2006). Therefore, mapping applications to facilitate conservation planning or prioritization 

can often produce the desired results despite some of the limitations highlighted above. 

If the aim of the study is to identify ecological processes from observed patterns, a lack 

of ecological knowledge may hamper progress. As discussed above, selected covariates in 



 

 

correlative analysis methods express associations, not necessarily causation (Dormann et al. 

2012; Hawkins 2012). The realism of associations between a species and abiotic or biotic 

covariates suggested by models needs to be assessed through the filter of ecological 

knowledge or verified by independent experiments and are otherwise often better seen as 

suggested hypotheses of potential associations. Moreover, a lack of knowledge of relevant 

ecological processes can lead to specifying a covariate wrongly, for example at an incorrect 

spatial scale, which can lead to biased regression coefficients, and consequently biased 

conclusions, even if spatial models are used to eliminate residual spatial autocorrelation (de 

Knegt et al. 2010). 

Lack of ecological knowledge can be a limitation for the increasingly important field of 

projecting distributions into the future, or to other areas (Wenger & Olden 2012; Urban et 

al. 2016; see below). Some other disciplines make greater use of process-based or 

mechanistic models avoiding the limitations of correlative approaches. However, they 

require comprehensive ecological knowledge and population data (Urban et al. 2016; Singer 

et al. 2018), often acquired from intensive studies. Usually, such intensive data collection is 

less feasible in logistically challenging mountain areas. 

 

8.3 Modelling Bird Diversity in Mountains 

Many fundamental concepts of ecology, biogeography and evolution, such as species 

richness-environment relationships, species turnover across life zones and speciation, 

originate from models of species diversity in montane regions, often with birds as the target 

system (McCain 2009). Modelling diversity serves two major functions (Scheiner et al. 2011). 

The first is to produce quantitative estimations related to α-, β- and/or γ-diversity for 

descriptive comparisons, for instance among different mountain chains, habitats or time 

periods. The second is to explore the causes of different diversity patterns, i.e., to 

understand the ecological, stochastic and historical processes underlying diversity 

relationships. Linking diversity metrics to environmental and climatic parameters is key to 

understanding changes in avian communities in response to climate and habitat changes, 

providing further insights into the understanding of biodiversity drivers in mountains, and 

providing knowledge complementary to that relative to species distributions for 



 

 

conservation. Modelling diversity in a mountain environment requires disentangling the 

complex interactions among drivers along the elevational and topographical gradients.  

Species richness, a common measure of bird diversity, is estimated as the number of 

species for a particular spatial or temporal grain. It generally shows a monotonic decline 

with elevation, reflecting the effect of temperature and productivity on species abundance 

(Laiolo et al. 2018). The grain and the sampling design can have important effects on the 

observed patterns, and should be formulated a priori to respond to different questions. 

Here, we will focus on the conceptual and methodological aspects of diversity modelling. 

The methods used for field sampling may also affect results, an issue that is dealt with in 

Box 8.1. The spatial decomposition of species richness into α-, β- and γ-diversity has been 

the subject of a rich literature (Whittaker 1960; Tuomisto 2010). Briefly, α-diversity refers to 

the diversity of local communities and γ- diversity to the total species diversity of all local 

communities. β- diversity encompasses many aspects of compositional heterogeneity, from 

species turnover to community nestedness (Anderson et al. 2011; Tuomisto 2010).  

 

 

 

 

 

 

 

 

 

 



 

 

Box 8.1 Collecting and analysing observations of birds in mountain regions 

 

Modelling the distribution and diversity of species requires data on the occurrence or 

abundance of species, often over large areas. Many countries collect data each year 

through systematic bird monitoring programmes that follow specific survey designs and 

protocols to produce representative and comparable data, specifying when, what, where, 

how, and how often, to survey and to report (Chapter 5).  

National bird monitoring protocols may be tailored to the specific requirements and 

logistical challenges of a country, but mountain ranges are often shared by multiple 

countries. Differences across national survey protocols can include the recording units 

(pairs or individuals) or the survey type (point count stations or line transects). A simple 

way to analyse data collected with different protocols is to degrade the data to a common 

standard, such as conversion from counts to the detection or non-detection of a species. 

However, this involves the loss of potentially valuable information. Alternatively, 

modelling methods can increasingly account for differences in data characteristics 

(Bowler et al. 2019; Isaac et al. 2020).  

An alternative type of data comprises species observations collected without a survey 

protocol. Such opportunistic data are often referred to as Citizen Science data, although 

this term may also refer to systematic data collected by volunteers. Opportunistic data 

are increasingly available for regions and species for which little or no systematic data 

exist (Hochachka et al. 2012; Amano et al. 2016). Common breeding bird monitoring 

programmes often collect relatively little data for rarer species or those occurring in 

localized areas. On the other hand, bird watchers are often particularly interested in the 

rarer species. For example, for the Eurasian dotterel Charadrius morinellus in Norway (Fig. 

B8.1), the number of records from the Norwegian breeding bird monitoring programme 

Norsk hekkefuglovervåking (co-ordinated by the Norwegian Institute for Nature Research 

and BirdLife Norway) is small (309 records) compared to records available from the 

Norwegian Citizen Science portal Artsobservatjoner during the same time period (c. 1250 

records for the period 1st June – 10th July 2006 – 2020). 

Opportunistic data may reflect large variation in recording intensity in time and 

space, and in observer skills, and often are spatially biased towards areas that are easily 

accessible or popular (Mair & Ruete 2016; Tye et al. 2017). Species records may have 



 

 

 

The definitions above are suited to species richness data, but may also include 

variation beyond this component of diversity. Diversity descriptors can be calculated by 

weighting the contribution of each species to richness by its abundance, biomass or other 

adaptive phenotypic traits, or by phylogenetic relatedness. These functional and 

phylogenetic facets of diversity, reflecting, respectively, the diversity of morphological, 

physiological and ecological traits, and the diversity of biogeographic histories, have been 

complementary information on species non-detections and recording intensity, or may be 

unstructured without this information (Sullivan et al. 2009). Appropriate data preparation 

and modelling increasingly account for the challenges of opportunistic data (Jackson et al. 

2015; Bradter et al. 2018; Johnston et al. 2018, 2021). Additionally, methods to model 

jointly systematic and opportunistic data to combine the strengths of both are being 

developed (Fithian et al. 2015; Fletcher et al. 2019). Habitat suitability is commonly 

modelled based on unstructured detection-only records with presence-background 

methods such as MaxEnt (Phillips et al. 2006; Elith et al. 2011; Yackulic et al. 2013). 

However, the inclusion of species non-detection data is preferable (Royle et al. 2012; 

Bradter et al. 2018, 2021; Johnston et al. 2021). Occurrence probability can only be 

estimated from detection-only data if randomly sampled in space, and from detections 

paired with the background or non-detections if the data reflect the prevalence of the 

species (Elith et al. 2006; Royle et al. 2012). Occupancy models can account for imperfect 

detection in both systematic and opportunistic data, but require repeat observations and 

suitable information on the reporting intensity to account for the reporting bias of 

opportunistic data (MacKenzie et al. 2003; Kéry et al. 2010a, b; Isaac et al. 2014; Bradter 

et al. 2021).  

Figure B8.1 Eurasian dotterel 

Charadrius morinellus (Photo: Ute 

Bradter). 

 

 

 

 

 



 

 

used to predict biodiversity contributions to ecosystem functions. Models assume, for 

instance, that functional diversity equates to resource use complementarity, so that 

differences in how species gain resources is the variation represented by functional diversity 

(Petchey & Gaston 2002). Foraging birds exert important ecosystem functions (e.g., seed 

dispersal by frugivorous birds; pest control by insectivorous birds and birds of prey, nutrient 

recycling by avian scavengers), thus bird functional diversity can represent the diversity of 

services birds can provide, and be associated with their economic value (Şekercioğlu et al. 

2016). Quantifying these metrics may serve to track temporal changes in bird functional 

contributions to the (alpine) ecosystem (García-Navas et al. 2020), or the occurrence of 

spatial or habitat barriers to specific bird functions (Altamirano et al. 2020), and geographic 

patterns of phylogenetic and functional structure of bird communities (Boyce et al. 2019). 

Notably, scale can also affect results when evaluating functional traits (Laiolo et al. 2017). 

 

 

8.4 Assessing and Predicting Impacts of Environmental Changes and 

Implications for Conservation 

 

8.4.1 Working with Relevant Scales and Drivers 

The widespread occurrence of steep gradients in mountains represents a challenge in 

modelling bird distributions at high elevation. In part, this is due to restrictions on data 

availability at appropriate spatial and temporal scales (Section 8.2.3), but also due to the 

high mobility and multi-scale habitat selection of birds. Distribution models integrating 

multiple scales could help identify the individual spatial scales at which the ecological 

responses by mountain birds are most likely (Mertes & Jetz 2018; Brambilla et al. 2019a). 

Nevertheless, approaches based on univariate evaluation of the scale-dependency in the 

effect of single predictors may lead to a partial or an incorrect view of their ecological and 

spatial relevance (Brambilla et al. 2020b). Here, the use of PCA-based methods (Bettega et 

al. 2020) or multi-scale approaches (e.g., Bradter et al. 2013) may help. For some species 

that require different resources for different purposes, the use of approaches based on the 

partition of the ecological niche into functional habitats may greatly help both modelling 

and conservation (Brambilla & Saporetti 2014; D’Elia et al. 2015). However, detailed data 



 

 

allowing such an approach are rarely available. When high-resolution data are available, in 

terms of the accuracy and spatial and temporal precision of bird records, microhabitat and 

micro-climate modelling may provide more direct ‘mechanistic’ assessments of habitat use 

by mountain birds (e.g., Frey et al. 2016a; Barras et al. 2020), allowing deeper insights into 

species’ ecology. Assessing the effect of distribution drivers at the relevant scale is key to 

identifying robust relationships (e.g., de Knegt et al. 2010), and for obtaining meaningful 

model extrapolations to other geographical or temporal contexts. The covariation of climate 

and other, sometimes more direct, environmental traits may lead to an overestimation of 

the importance of climate, and this risk likely grows as the discrepancy increases between 

the spatial scale at which a predictor is evaluated (and entered into models) and the scale at 

which it actually affects a species. Large-scale evaluation of climatic drivers of occurrence or 

distribution in mountain birds, based on environmental predictors measured over sample 

units of several square kilometres, is unlikely to capture accurately the true nature of 

species-climate relationships, with consequences for estimates of potential future impacts 

of climate change (Trivedi et al. 2008; Randin et al. 2009; Meineri & Hylander 2017). 

Assessments over different spatial scales may be needed to pinpoint robust, causal effects, 

or alternatively to identify (and hence discard) non-causal, indirect impacts of other 

potential drivers of occurrence.  

Scale is an essential feature when assessing species-environment relationships, as these 

are often relevant only at particular spatial scales, especially in birds (e.g., Jedlikowski et al. 

2016). Direct effects of climatic features on species should be consistent across all, or most, 

spatial scales. For indirect associations between a species and climate, the modelled 

species-variable relationships are much more likely to show scale-dependent variations 

(Brambilla et al. 2019a). Furthermore, species-specific differences in the relevance of spatial 

scales may also complicate the use of jSDMs, where variables are considered over the same 

scale(s) for all species. For a species for which a direct effect of a climatic predictor could be 

expected, the modelled effects should be consistent across scales, and the predictions well 

outside the study area should be accurate (as for the white-winged snowfinch Montifringilla 

nivalis, Box 8.2). 

 



 

 

Box 8.2 Modelling the ecology and distribution of the white-winged snowfinch  

 

For some species particularly adapted to cold, high-elevation habitats, the link with 

climatic parameters (especially with temperature) and climate-sensitive habitats and 

resources may be evident through different spatial scales (Brambilla et al. 2019a). In 

recent years, the white-winged snowfinch is likely one of the species that has gathered 

the highest interest of ornithologists studying the impacts of climate change on mountain 

birds in the Old World. Several research initiatives have addressed habitat selection and 

habitat use over different spatial scales, breeding phenology, demography, social 

behaviour and distribution at regional and continental (European) scales.  

Fine-scaled models describing habitat use during the critical nestling-rearing phase 

have revealed an association with snow patches (Brambilla et al. 2017a, 2019b; Resano-

Mayor et al. 2019; Schano et al. 2021) and other climate-sensitive habitats, such as low-

sward alpine grassland (Brambilla et al. 2018a, b). Microhabitat selection has also been 

shown to be affected by micro-climate, with foraging individuals adjusting habitat use 

according to air temperature (Alessandrini et al. 2022). All of these results have provided 

support for fine-scale associations with rather cold habitats which are perfectly mirrored 

at a larger scale by consistent effects of temperature on the broad species distribution: 

models developed at different spatial scales, from a 100 m radius to 2 x 2 km cells, have 

revealed a consistent link with low temperature (Brambilla et al. 2020c; de Gabriel-

Hernando et al. 2021), which remained constant outside the areas used for model 

calibration (Brambilla et al. 2016, 2017b), to the point that distribution models performed 

well even when projected to distant areas (Brambilla et al. 2022).  

Adult survival was also found to be affected by climate, with female mortality 

increasing during warm and dry summers (Strinella et al. 2020). Snowfinch ecology and 

behaviour also appear to be particularly related to temperature outside the breeding 

season (Bettega et al. 2020; de Gabriel-Hernando et al. 2021; Delgado et al. 2021). The 

use of fine-tuned, presence-background models based on heterogeneous data sources (a 

combination of research data and Citizen Science) proved successful in predicting the 

white-winged snowfinch distribution across its European range (Brambilla et al. 2020c). 

 



 

 

Figure B8.2 White-winged 

snowfinches Montifringilla nivalis 

(Photo: Mattia Brambilla). 

 

 

 

 

 

 

 

 

 

For territorial species during the breeding season, the territory scale is likely to be a 

highly relevant scale, because territory holders need to find many relevant resources within 

the limited area that they actively defend and exploit (Jedlikowski et al. 2016). Studies 

working at such a scale based on high-resolution records have provided biologically reliable 

and ecologically relevant results for birds in complex mountain habitats (e.g., Chamberlain 

et al. 2013, 2016; Brambilla et al. 2016; Jähnig et al. 2018; Barras et al. 2021b), but could still 

miss some potentially relevant ecological patterns taking place at other scales (Lenoir et al. 

2017). Integrating micro-climate/microhabitat measurements with downscaled 

macroclimate/macrohabitat patterns would likely provide a definitive perspective for the 

analysis of species-environment relationships, with relevant implications for modelling 

distributions and the relative dynamics of communities (Zellweger et al. 2019). 

The temporally dynamic nature of mountain bird communities and habitats also present 

a challenge to modelling. Communities vary in their composition and structure not only 

within the year, but also within the breeding season, because of the progressive settlement 

of species with different phenologies: as an example, at high elevation in the European Alps, 

rock ptarmigan Lagopus muta may initiate territoriality at the beginning of April, while 

several songbirds do not occupy their breeding sites before mid-May, or even later in the 

case of prolonged snow cover. This means that for community studies, it is essential to focus 

on the most relevant breeding season period, within which all the breeding species are likely 

to have settled and before species enter their post-breeding phase. The use of data from 



 

 

multiple years may contribute to overcoming limitations due to dynamic patterns resulting 

from short-term responses to varying environmental conditions when pairing avian data 

with climatic predictors. Nevertheless, matching as precisely as possible bird and climate 

data would provide more accurate and robust insights into the potential effects and 

importance of climatic predictors (Lembrechts et al. 2019; Perez-Navarro et al. 2021; 

Section 8.2.3). The increasing availability of spatially and temporally accurate datasets and 

methods for local estimation of micro-climate (Hannah et al. 2014; Kearney et al. 2020) 

would definitely promote accuracy in distribution modelling (He et al. 2015; Lembrechts et 

al. 2018). Scaling-up from fine-scale to regional or even macroecological levels is particularly 

important for birds in mountain regions, for all the previously mentioned reasons. We likely 

need to capitalize on the continuous spatio-temporal information that remote sensing 

provides for many factors key to avian distribution (Randin et al. 2020). The occurrence and 

hence distribution of many mountain bird species is affected simultaneously by climatic, 

topographic, land-cover and biotic interactions (Braunisch et al. 2014; Barras et al. 2021b; 

Chamberlain et al. 2016; Brambilla et al. 2020a, b). A proper evaluation of relevant 

environmental predictors is crucial to understand the impact of global change: if a relevant 

driver is not taken into account, then the importance of the others could be overestimated, 

and their effect inaccurately modelled.  

A first requirement for correctly modelling the effects of determinants of species 

distribution or abundance in complex mountain environments is therefore to consider 

simultaneously the potential impact of multiple drivers. More advanced approaches causally 

link the effect of micro-climate and vegetation by means of structural equation modelling 

(Duclos et al. 2019), disentangling the direct effects of climate from those mediated by the 

vegetation characteristics, which are largely affected by climate. There are only a few 

studies that explicitly aim to disentangle the direct impacts of climate on birds (e.g., by 

effects on habitat selection, phenology or thermoregulatory behaviour) from the indirect 

impacts, especially through the effect of climate on habitat via an impact on vegetation 

compositional and structural features. As an example, Ceresa et al. (2021) showed the 

predominant effect of vegetation over temperature for several species along an elevation 

gradient in the Alps. This approach is important because species distribution changes and 

shifts in elevation can be due to climate tracking in the case of direct effects, or to habitat 

tracking in the case of indirect effects. In addition, there may also be synergies between 



 

 

direct and indirect effects. This has obvious implications for our understanding of ongoing 

and future changes; studies considering the unique and synergistic effects of climate and 

land-use changes will better predict variation in abundance of several species than of 

climate alone (e.g., Betts et al. 2019). These synergistic effects could be particularly relevant 

for mountain birds. 

 

 

8.4.2 Possible Reasons for Deviations of SDMs from Observed Patterns in the Real World 

SDMs have proved to be an important tool for many real-world applications, providing 

useful information for fieldwork, conservation, evaluation of potential interactions, and 

predictions of range variations, among others (Engler et al. 2017), and of course this is also 

the case for mountain birds. However, being models, SDMs may sometimes diverge from 

the ’true’ distribution (i.e., observed patterns in the real world). Thorough model evaluation 

should be part of any SDM project. Model evaluation regarding realism, accuracy and 

generality is a broad research field (Araújo et al. 2019), which goes beyond the scope of this 

chapter. We refer the reader to specific literature (Araujo & Guisan 2006; Fourcade et al. 

2018). 

There are several possible reasons why predicted distributions may diverge from 

observed patterns in the field: inappropriately chosen variables for particular species, both 

in terms of predictors and responses; the wrong spatial or temporal scale; species that are 

in a non-equilibrium state with their environment; and, spatial autocorrelation. Such 

divergence may have implications for the potential use of SDMs for conservation, planning 

and research, and hence understanding some of the causes of divergence may be useful to 

improve our ability in modelling mountain bird distributions. In the following, we explore 

several potential solutions to the above issues, which we consider particularly relevant for 

mountain birds. 

 

Species-specific environmental variables 

Poor model performance may arise due to inappropriate environmental input variables for a 

given species, in particular when the same set of variables is applied across all species. 

Interactions are also important. For predictive studies, information on expected (i.e., 

modelled) climate change and land-use change needs to be integrated (Sirami et al. 2017; 



 

 

Vincent et al. 2019). Direct, physiological effects of climate change may be altered indirectly 

by (possibly less-responsive) habitat variables (Braunisch et al. 2014; Crase et al. 2014), such 

as lagged treeline shifts (Gehrig-Fasel et al. 2007; Duclos et al. 2019).  

The development of species-specific habitat variables has not always received sufficient 

attention. Sometimes, the selection of habitat variables is driven simply by their availability 

in (accessible) databases (Araujo & Guisan 2006; Braunisch et al. 2013). In most cases, and 

especially when aiming for an ecological understanding of the distribution rather than for a 

descriptive pattern, SDMs profit from the inclusion of species-specific variables (Mod et al. 

2016), and this could be particularly true in the case of mountain birds. As an example, the 

distribution of ring ouzel in Switzerland is affected not only by climate and land-cover, but 

also by low-productivity pasture and the number of solitary trees (Barras et al. 2021b). 

Brambilla et al. (2020c) found that, depending on species, next to climate and habitat, 

human management may be important to model species adequately, with red-backed 

shrike Lanius collurio and Eurasian skylark Alauda arvensis being sensitive to the occurrence 

of grazing and ski-pistes, respectively, in mountain grassland in central Italy. 

The development of species-specific variables may be challenging, but they are 

essential to ecologically understand (also in a quantitative way) the factors determining the 

distribution of species (Fourcade et al. 2018). For mountain birds, this can include grassland 

type (Hotta et al. 2019) or the progress of melting of snow fields as a surrogate for food 

availability (Tipulidae larvae for white-winged snowfinch, Resano-Mayor et al. 2019; 

earthworms for ring ouzel, Barras et al. 2021b). Also, environmental variables specific to 

periods other than the breeding season may be relevant (de Gabriel Hernando et al. 2021), 

including human disturbance in winter (e.g., black grouse and winter outdoor sports; 

Braunisch et al. 2011).  

 

Novel remote sensing environmental data 

Remote sensing has provided new environmental data (e.g., satellite images) that are 

helpful to distinguish new habitats (He et al. 2015; Randin et al. 2020), and to model the 

distributions of mountain birds (e.g., rock ptarmigan in Austria, Zohmann et al. 2013), down 

to very fine scales. As an example, Alessandrini et al. (2022) evaluated foraging habitat 

selection in white-winged snowfinches, highlighting a preference for intermediate 

vegetation cover, snow patches and higher heterogeneity, and an avoidance of extremely 



 

 

warm or cold micro-climates. Results matched previous knowledge based on accurate field 

measurements, and highlighted behavioural buffering against ‘hot’ conditions. Air-borne 

lidar-data has great potential to get novel spatial information on habitat structure, and has 

important explanatory power in SDMs (e.g., in mountain forest birds; Zellweger et al. 2013; 

Huber et al. 2016). Such data may also help model three-dimensional habitats, e.g., species 

breeding in rocky habitats (Brambilla et al. 2010). Often, satellite data are provided to global 

databases, meaning they are particularly helpful for studies encompassing many countries 

(He et al. 2015). 

 

Finer scales of resolution 

Fine-grained, ecologically functional species-habitat relationships are particularly valuable in 

a mountain context where environmental conditions change markedly over small spatial 

scales (e.g., Barras et al. 2021b). Sun-exposed and pole-facing slopes may be very different, 

but there are also less evident (but still important) habitat changes for mountain birds 

induced by topography or geology. Grain size of spatial models can be decisive in 

determining which environmental variables are important for the distribution of a species 

(Guisan et al. 2007; Brambilla et al. 2019a), and modelling may be useful to better 

understand spatial patterns (Jombart et al. 2009; Revermann et al. 2012). Fine-scaled 

modelling approaches, e.g., at the territory scale (Hotta et al. 2019; Barras et al. 2021a), 

shed additional light on species-environment relationships and species interactions. 

 

Non-equilibrium state with the environment 

SDMs assume that a species occupies its environmental niche wherever this niche is 

present. However, empirical studies show that this equilibrium state with the environment 

is the exception rather than the norm (Araujo & Pearson 2005). Species may be in a non-

equilibrium state with their environment for multiple reasons (Ewing et al. 2020), with some 

populations in their breeding range limited by drivers other than environmental factors. 

Populations may be in decline due to deteriorating habitat on migration or overwintering 

areas (Vickery et al. 2014, Zurell et al. 2018; Marcacci et al. 2020), hunting or persecution 

(Pernollet et al. 2015), diseases or additional factors. On the contrary, species in a non-

equilibrium state may have undergone a population decline in the past for any of the above-

mentioned reasons and are now recovering, i.e., a species has an expanding population that 



 

 

has not yet occupied all suitable habitat (e.g., bearded vulture Gypaetus barbatus; Hirzel et 

al. 2004; Schaub et al. 2009; Margalida et al. 2020). Additionally, in many cases, missing 

important environmental (habitat) variables that describe the spatial patterns of species 

may also add to a non-equilibrium model. 

 

Spatial autocorrelation 

Spatial autocorrelation is inherent in most ecological data and the effects of ignoring it in 

SDMs has received considerable attention (Segurado et al. 2006; Dormann 2007; Guélat & 

Kéry 2018). Five categories of factors can drive the presence of spatial autocorrelation in 

model residuals: ecological data and processes, scale and distance, missing variables, 

sampling design, and assumptions and methodological approaches (Gaspard et al. 2019). 

Considering spatial variables (e.g., Moran’s eigenvectors maps) that account for spatial 

autocorrelation may be of particular importance when modelling future climate impacts 

(Crase et al. 2014) and failure to include them may have dramatic effects (Guélat & Kéry 

2018). Conditional autoregressive (CAR) models (Besag et al. 1991) and geoadditive models 

(Kammann & Wand 2003), which use splines to model spatial structure, have performed 

well in complex simulations (Guélat & Kéry 2018). Recently, penalized 2D splines were 

successfully implemented to model spatial autocorrelation both in regional (Knaus et al. 

2018) and continental (Keller et al. 2020) bird distribution atlases that included many 

mountain birds. Including such spatial variables in modelling may account for missing 

environmental variables, although whether this is desirable depends on specific study goals. 

Modelling the spatial structure (i.e., considering spatial autocorrelation) might be a feature 

required by atlas projects which aim mainly to describe the distributional patterns found in 

the field. Studies aimed at understanding the spatial ecology of species should possibly try 

to generate species-specific environmental variables rather than spatial variables for their 

models. This is especially true when studies are focussed on species conservation and/or the 

development of management strategies (Hoffmann et al. 2015; Brambilla et al. 2017b, 

2020b). In these cases, model transferability would be highly relevant to ensure likely 

effectiveness over broader scales. 

 

 

8.4.3 Implications for Predicting Future Changes 



 

 

Climate envelope models (Section 8.2.1) explicitly or implicitly assume niche conservatism 

(i.e., the ecological niche of the species does not change with time). In addition to the issues 

relating to distribution modelling already noted (e.g., Sections 8.2.3 and 8.4.2), such an 

approach is also underpinned by various assumptions about whether or not species will be 

able to keep pace with niche shifts. Although climate envelope models have been successful 

to some degree in predicting bird species range shifts in mountains and across latitudes 

(Illán et al. 2014), predictions do not always correlate well with observed trends (Betts et al. 

2019). These ‘fall-downs’ in model prediction success may have severe consequences for 

species conservation planning as the climate changes, thus identification of priority areas or 

candidate species may be flawed. 

How can models that predict the fate of birds in mountain landscapes under climate 

and land-use change be improved? The sections above have foreshadowed the suggestions 

here. First, modelling bird responses to climate change will need to include more of the key 

non-environmental, biological parameters known to influence species distributions and 

demography. Particularly important will be models that incorporate information about the 

distributions of competitors, mutualists and other elements of the biotic environment. New 

jSDMs are now available to incorporate these aspects, but a number of important 

challenges remain (Poggiato et al. 2021). Dispersal and habitat selection are also critical 

parameters to include in order to enable more accurate forecasting of avian distributions 

under climate change. ‘Process-based’ models that incorporate dispersal have been 

available for some time (Morin et al. 2007). Models that account for imperfect detection, 

including dynamic occupancy models (MacKenzie et al. 2003), open-population Dail-Madsen 

models (Dynamic N-mixture Models; Dail & Madsen 2011; Hostetler & Chandler 2015) and 

multi-state dynamic occupancy models (MacKenzie et al. 2009) are often used to explicitly 

include population processes. Some of these would allow for the spatially explicit modelling 

of dispersal processes (Sutherland et al. 2014; Broms et al. 2016). These models were 

developed to model dynamic processes in abundance and occurrence of unmarked 

populations, hence they have their own limitations for estimating demographic parameters 

that would be available from a marked population study (i.e., true mortality/survival, 

fecundity, immigration and emigration). More recent developments even enable emigration 

to be distinguished from survival and reproduction, although restrictive assumptions about 

dispersal capability remain (Zhao et al. 2017). Given the wide range of uncertainty about the 



 

 

scale(s) and drivers associated with bird dispersal and other demographic processes, such 

highly parameterized models can still be a challenge to produce for many species, 

particularly migratory species. Only now are we seeing the first models that incorporate 

changes in habitat and climate across the full annual cycle (breeding, migration and 

wintering locations; Culp et al. 2017; Rushing et al. 2020). The ecology of natal dispersal and 

breeding dispersal processes of long-distance migrant species remains as a big gap in our 

knowledge of population processes for many smaller migratory species. 

Increasing accessibility to Bayesian approaches, combined with developments in 

hierarchical, multilevel models, would open more windows for explicitly modelling 

processes that could improve prediction for occupancy or abundance of mountain birds in 

the future (Kéry & Royle 2015, 2020). Nevertheless, these ‘mechanistic’ or ‘process-based’ 

models would require well-thought designs that can address the potential biases and errors 

associated with mountain environments. Additional field data collection is critical for 

improved analysis of relationships between distributions of mountain bird species and the 

ecological processes that drive them, and hence better predictions. In this context, 

elevational gradients are crucial to predict the effect of climate change, as they provide a 

potential space-for-time substitution, which is frequently needed because of the 

widespread lack of historical data to determine rates of change in elevational distributions. 

Of course, such space-for-time data come with the assumption that mechanisms operating 

across space adequately reflect the same mechanisms over time. 

A robust approach must therefore include, as some of its irreplaceable features: 

1. elevational gradients and microtopography (i.e., aspect, slope, elevational position), 

along with other variables of interest, such as vegetation and micro-climate; 

2. the temporal gradient, as the phenology of plants and animals in the mountain 

environment changes along the elevational gradient and across different topographies; 

3. stratified sampling to take into account potential biases, elevation and topography; 

4. the interactions among species and among biotic and abiotic environmental drivers; 

5. a range of climate change and land-cover change scenarios, which would be necessary 

to predict potential range change and available habitat change in the future. 

 

 

8.4.4 Implications for Conservation 



 

 

Distribution, habitat and community modelling are powerful tools for conservationists. 

However, as described in this chapter, the complexities and challenges of modelling avian 

species in mountains make the use of such tools potentially more difficult in these 

environments and call for additional caution. Evaluating the ecological realism of models 

and their transferability over independent data (ideally, distant areas) may give indications 

about their potential reliability and robustness in the face of the complexities that 

characterize mountain systems. Reliable models should show both realistic evaluations of 

the species-environment relationships and the ability to predict distributions based on 

independent data. Such models are likely to be the most useful to predict distributions 

under different scenarios (e.g., future climates) and hence for conservation, when it comes 

to identify potential climate refugia (Brambilla et al. 2022) or future conflicts with human 

activities (Brambilla et al. 2016). Disentangling the effects of climate and other 

environmental changes is very important (Ceresa et al. 2021), not only for modelling and 

predicting current and future impacts, but also for conservation-oriented management of 

mountain environments, because climate change is a particular concern for mountain 

ecosystems (Nogués-Bravo et al. 2007). Long-term monitoring data can help distinguish the 

effects of climate change from other environmental changes. If birds are tracking habitat 

rather than climate, then ad hoc habitat management (e.g., Brambilla et al. 2018a) or 

targeted habitat conservation or restoration (e.g., Braunisch et al. 2016) may greatly 

enhance their persistence probabilities under a changing climate. However, if birds are 

mostly affected by climate, modelling trends of relevant climatic variables becomes crucial 

to conservation because of their direct effect (e.g., impact of heat waves on model species 

and the non-uniform spatio-temporal patterns at the regional scale, Cunningham et al. 

2013).  

Scales also matter: if micro-climate and microhabitats play a crucial role in driving 

distributions of mountain species (e.g., Frey et al. 2016b; Ceresa et al. 2020), fostering 

generalizable models at fine scales could promote conservation too, by allowing the 

identification of the characteristics (and their spatial arrangement) that make a site suitable 

for a species (e.g., Barras et al. 2020; Alessandrini et al. 2022). On the other hand, at the 

landscape level, potential climate refugia (Morelli et al. 2020), and the main ‘corridors’ 

connecting them from current to future occurrence sites (Brambilla et al. 2017b), represent 

key elements for conservation planning at this larger scale (Morelli et al. 2017). These 



 

 

elements provide significant advances compared to static visions of sites of conservation 

relevance, and can be used to test for the robustness of networks of protected areas in the 

face of climate change (e.g., Scridel et al. 2021). Combining modelling outcomes from 

multiple scales may allow prediction of local priority areas for conservation, i.e., suitable 

microhabitats, micro-climates and fine-scale refugia, within landscape units that are, and/or 

will be, suitable for a target species or community under current and future conditions, i.e., 

‘landscape-scale’ refugia (Brambilla et al. 2022). 

Ideally, such approaches, usually based on (multiple) species-specific models, should be 

complemented with models describing the likely changes of species diversity and 

community traits. This would allow development of conservation strategies aimed at 

maintaining highly diverse and functionally unique species assemblages. 
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