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Abstract
Urgency of Precipitation Intensity-Duration-Frequency (IDF) estimation using the most recent data has grown significantly

due to recent intense precipitation and cloud burst circumstances impacting infrastructure caused by climate change. Given

the continually available digitized up-to-date, long-term, and fine resolution precipitation dataset from the United States

Department of Agriculture Forest Service’s (USDAFS) Experimental Forests and Ranges (EF) rain gauge stations, it is

both important and relevant to develop precipitation IDF from onsite dataset (Onsite-IDF) that incorporates the most recent

time period, aiding in the design, and planning of forest road-stream crossing structures (RSCS) in headwaters to maintain

resilient forest ecosystems. Here we developed Onsite-IDFs for hourly and sub-hourly duration, and 25-yr, 50-yr, and

100-yr design return intervals (RIs) from annual maxima series (AMS) of precipitation intensities (PIs) modeled by

applying Generalized Extreme Value (GEV) analysis and L-moment based parameter estimation methodology at six

USDAFS EFs and compared them with precipitation IDFs obtained from the National Oceanic and Atmospheric

Administration Atlas 14 (NOAA-Atlas14). A regional frequency analysis (RFA) was performed for EFs where data from

multiple precipitation gauges are available. NOAA’s station-based precipitation IDFs were estimated for comparison using

RFA (NOAA-RFA) at one of the EFs where NOAA-Atlas14 precipitation IDFs are unavailable. Onsite-IDFs were then

evaluated against the PIs from NOAA-Atlas14 and NOAA-RFA by comparing their relative differences and storm fre-

quencies. Results show considerable relative differences between the Onsite- and NOAA-Atlas14 (or NOAA-RFA) IDFs at

these EFs, some of which are strongly dependent on the storm durations and elevation of precipitation gauges, particularly

in steep, forested sites of H. J. Andrews (HJA) and Coweeta Hydrological Laboratory (CHL) EFs. At the higher elevation

gauge of HJA EF, NOAA-RFA based precipitation IDFs underestimate PI of 25-yr, 50-yr, and 100-yr RIs by considerable

amounts for 12-h and 24-h duration storm events relative to the Onsite-IDFs. At the low-gradient Santee (SAN) EF, the PIs

of 3- to 24-h storm events with 100-yr frequency (or RI) from NOAA-Atlas14 gauges are found to be equivalent to PIs of

more frequent storm events (25–50-yr RI) as estimated from the onsite dataset. Our results recommend use of the Onsite-

IDF estimates for the estimation of design storm peak discharge rates at the higher elevation catchments of HJA, CHL, and

SAN EF locations, particularly for longer duration events, where NOAA-based precipitation IDFs underestimate the PIs

relative to the Onsite-IDFs. This underscores the importance of long-term high resolution EF data for new applications

including ecological restorations and indicates that planning and design teams should use as much local data as possible or

account for potential PI inconsistencies or underestimations if local data are unavailable.

Keywords Regional frequency analysis � Forest service experimental forests � Headwater catchments � Design discharge �
Road-stream crossing structures � NOAA Atlas 14

1 Introduction

Flooding induced by extreme precipitation events has a

major impact on road-stream crossing infrastructure across

the United States (US), resulting in a re-evaluation of theirExtended author information available on the last page of the article
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design codes (Adeel et al. 2020; Doyle and Ketcheson

2007; Neary and Leonard 2019; Wright et al. 2019). The

US Department of Agriculture Forest Service (USDAFS) is

responsible for managing approximately 595,700 km of

roads and thousands of road-stream crossing structures

(RSCS) within the National Forest System (NFS), with the

goal of providing both flood resilience and aquatic organ-

ism passage (Coffman et al. 2005; Heredia et al. 2016).

Accurate estimation of design storm discharge, defined as

the peak discharge for a given storm frequency, from

watersheds is critical for design of RSCS and stream

restoration practices. The importance of developing accu-

rate site-specific Precipitation Intensity-Duration-Fre-

quency (IDF) estimation with the latest data has increased

substantially due to present extreme precipitation and cloud

burst conditions occurring in last few decades as a conse-

quence of climate change (Fowler et al. 2021; Westra et al.

2014). Design storm discharge can be determined by the

precipitation-runoff relationship, which is dependent on

several factors such as precipitation intensity, storm dura-

tion, land-use or land cover, antecedent soil-moisture

conditions, soil–water storage, and geomorphology of a

watershed (Berghuijs et al. 2016).

The road-stream crossing structures (RSCS), such as

fords, culverts, and bridges are designed based on the

hydraulic capacity of the structure to convey a specific

peak discharge over an assumed life span (Donahue and

Howard 1987; Rasmussen et al. 2018) to reduce the risk of

flood damage and catastrophic failure. The peak discharge

is calculated based on precipitation intensity (PI) of storm

events of a specific duration depending on time of con-

centration (tc), and frequency (Liu et al. 2022; Martel et al.

2021; USDA 1986). In addition, PI of a specific duration

and frequency is needed for mapping erosion vulnerability

(Knox et al. 2015; Panda et al. 2022), which is a critical

parameter for identifying the ecoregions that are most

vulnerable to post-fire flash flooding, landslides, and

structural failures due to sediment deposition, causing

disruption to forest operations (Borga et al. 2014; Ebel

et al. 2012; Thomas et al. 2021).

Precipitation IDF analysis of storm events is useful for

determining the frequency of occurrence of floods that can

cause structural damage to RSCS, lead to debris jams and

potential erosion in road networks and headwater valleys

(Jakob et al. 2020; Mamo 2015). Most of the RSCS on

USDAFS land are in headwater forested catchments with

small drainage areas (\ 1000 ha), usually with sub-daily tc
(USDA 1986; Corbin et al. 2021; Yochum et al. 2019;

Walega et al. 2020). Therefore, the use of PI estimates at

daily timescale for calculation of design discharge rates in

small watersheds (Wright et al. 2019) may lead to under-

estimation of flood potential of those regions.

Rational Method (Kuichling 1889) is one of the widely

used flood discharge models used in design of the RSCS in

small catchments; the duration of a largest PI causing a

flood of given return interval (RI) is chosen based on tc.

Accordingly, the tc for flow in such small catchments

would likely be small in the sub-daily scale (Hayes and

Young 2006; Zolghadr et al. 2022). Furthermore, roads and

their drainage ditches on smaller watersheds can also sig-

nificantly increase the magnitude of peak discharges by

routing water quickly to the streams (Wemple and Jones

2003). Accordingly, PIs of a duration shorter than the daily

time-scale are generally recommended to estimate design

flood discharges for these watersheds smaller than 1 km2

(Amatya et al. 2021). However, due to a lack of long-term

historical precipitation records at a fine temporal resolution

(sub-hourly and sub-daily timescales), the RSCS on

USDAFS lands and similar other landscapes are commonly

designed using coarser daily resolution or, if available, the

sub-hourly and sub-daily PIs provided by the National

Oceanic and Atmospheric Administration (NOAA) Atlas

14, hereafter, referred to as ‘NOAA-Atlas14’. NOAA-

Alas14 precipitation IDFs are calculated based on the

regional temporal distribution of precipitation (Perica et al.

2018).

There are multiple caveats and limitations pertaining to

the application of precipitation IDF from NOAA-Atlas14.

Although NOAA-Atlas14 may serve as a general guideline

for structural design, site specific accuracy of their published

interpolated valuesmay decline with distance from available

NOAA rain gauge locations being considered (Perica et al.

2018). This is a major limitation of using NOAA-Atlas14

precipitation IDFs for design of remote, forested RSCS.

Climate change induced localized rain and cloud bursts

require site specific precipitation records for developing

precipitation IDF to support forest RSCS design and other

forest ecological management decision support systems

(Rosenzweig et al. 2019). This issue is especially problem-

atic where the spatial heterogeneity of precipitation is large,

such as in complex, mountainous terrain, which is common

on federal forests (Basist et al. 1994; Preece et al. 2021; Wu

et al. 2020; Yu et al. 2020). In addition, irregularly spaced

observation sites in the National Weather Service’s (NWS)

Cooperative Observer Program (COOP) network, like many

other data networks, can leave substantial data gaps in

sparsely observed locations, potentially introducing error by

assuming spatial homogeneity, thereby inherently ignoring

local variations in topography and land use (Jalowska et al.

2021). Furthermore, sub-hourly and hourly pointwise pre-

cipitation IDFs from NOAA-Atlas14 are not available for

the entire US, especially in states located in Northwestern

US, including Idaho, Montana, Oregon, Washington, and

Wyoming (Perica et al. 2018), where large percentages of the

lands are federal forests.
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Importantly, the length and recency of the data used to

estimate precipitation IDFs by NOAA-Atlas14 varies

among regions, and often do not account for contemporary

changes in precipitation extremes, such as those docu-

mented in the Southeastern US (Bonnin et al. 2006). Most

precipitation IDFs have not been updated since 2006,

missing almost 15 years of some very intense precipitation

events (Kunkel and Champion 2019; here authors

acknowledge the September 2022 NOAA announcement of

the upcoming release of updated Atlas15, planned for

2026). In some regions NOAA-Atlas14 precipitation IDFs

are calculated based on data collected through 2013 and in

Texas through 2017. Overall, the NOAA-Atlas14 does not

include the more recent changes in precipitation extremes

necessary for addressing the effect of climate change in

stormwater infrastructure adaptations plans developed by

EFs and other agencies. As such, in a changing climate,

concepts like ‘‘100-year precipitation event’’ based on the

NOAA-Atlas14 can be misleading. Particularly, PIs linked

to a 100-yr RI based on the outdated NOAA-Atlas14 data

may actually be linked to PIs with a frequency of less than

100-yr RI based on data that encompasses the most recent

time period. USDAFS-RSCS, are commonly designed to

accommodate flood flows of specific RIs or estimated using

PIs obtained from the NOAA-Atlas14, but may be under-

estimating the risk of structural failures arising from under

sizing of culverts and stream crossings (Donahue and

Howard 1987). Consequently, any policy formation linked

to an underestimated frequency of extreme precipitation

storm events is likely to impact the monitoring-systems

built for supporting the resilience of forest ecosystems, and

the critical economic and environmental services they

provide (Rustad et al. 2012).

Precipitation IDF curves are graphic representation of

parametric, mathematical relationships between the PI, the

reciprocal of non-exceedance probabilities (i.e., return

periods or storm frequency), and a scale (i.e., storm dura-

tion) of temporal averaging of the precipitation intensities

(which is a design value; Wanielista et al. 1996; Kout-

soyiannis et al. 1998). To derive these mathematical rela-

tionships, NOAA-Atlas14 primarily uses the regional

frequency analysis (RFA) methodology with L-moments

(Hosking and Wallis 1997). In addition, NOAA-Atlas14

precipitation IDFs are derived from the annual maximum

series (AMS; series of the largest single events that

occurred in each year) of PIs, accessible from NOAA’s

gauge stations. As an alternative to the NOAA’s gauge

records, long-term, sub-hourly to sub-daily precipitation

records are available from some of the USDAFS EFs

within the NFS (Amatya and Walega 2020; Amatya et al.

2021;) for developing the precipitation IDFs. It is evident

that the use of the sub-hourly and sub-daily precipitation

IDFs obtained using onsite rain gauge station data in

hydrological models could produce more accurate design

discharge on small headwater watersheds (Amatya et al.

2021; Petroselli and Grimaldi 2018;). Despite the available

alternatives to NOAA-Atlas14 precipitation IDFs, only a

few studies have compared the precipitation IDFs pub-

lished by NOAA to those derived from onsite precipitation

records (Amatya et al. 2021; Butcher et al. 2021; Eldardiry

and Habib 2020; Ombadi et al. 2018).

In this study, we conduct a comprehensive statistical

analyses and estimation of onsite precipitation IDFs using

ground-based observations of sub-hourly, sub-daily, and

daily long-term precipitation records from rain gauges on

multiple USDAFS EFs located in different climate regimes

of the US, a novelty of this study, and compare these to

standard NOAA-Atlas14 precipitation IDFs (Fig. 1a). The

major novelty of this study rests in two areas: (1) RFA for

the state of Oregon, where the HJA experimental forest is

located and NOAA has not yet provided precipitation IDF

estimates for the region, and (2) this is the first study of its

kind to assess PIs using long-term and high resolution data

for small, wooded headwater watersheds in very different

eco-climatological zones across the United States.

Our specific objectives include:

(1) regional precipitation IDF estimation at EF locations

where data from multiple onsite gauges are available

and investigate the impact of varying topography on

the precipitation IDFs at those locations,

(2) evaluating onsite precipitation IDFs from long-

term high-resolution sub-hourly, sub-daily, and daily

PIs and comparing them with NOAA-Atlas14 and

NOAA-RFA based precipitation IDFs, and

(3) Assessing the uncertainties in design precipitation

IDFs associated with estimating parameters of the

extreme value distribution,

Overall, we believe that the findings of this study can

help guide and inform forest land managers and design

engineers who are accustomed to using the NOAA pre-

cipitation IDFs, with an alternative choice of Onsite pre-

cipitation IDF (hereafter referred to as Onsite-IDF) for

application in reliable design of RSCS and ecological

applications, as well as future flood risk assessment in

forested watersheds within the selected EFs and beyond on

ungauged watersheds in the region.

2 Materials and methods

2.1 Study sites

Onsite-IDFs are estimated using long-term fine resolution

historical records of precipitation data obtained for six

Experimental Forests (EFs): Horace Justin Andrews (HJA),
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Oregon; Santee (SAN), South Carolina; Coweeta Hydro-

logic Laboratory (CHL), North Carolina; Alum Creek

(ALC), Arkansas; Fraser (FRS), Colorado; and Hubbard

Brook (HBR), New Hampshire. The locations of the study

watersheds, rain gauge stations, and major RSCS for all six

EFs are illustrated in Fig. 1a. A detailed description of the

study sites is provided by Amatya et al. (2021) and Harder

et al. (2007) for SAN; Caldwell et al. (2016) and Laseter

et al. (2012) for CHL; Adams and Loughry (2008) for AC;

Likens (2013) and Campbell et al. (2021) for HBR; John-

son et al. (2021) and Fredriksen (1970) for HJA; and

Alexander and Watkins (1977) for FEF. Shuttle Radar

Topography Mission (SRTM) global digital elevation

model (DEM) data (from https://earthexplorer.usgs.gov/),

available at 1 m and 10 m (for CHL and FRS) resolution

were obtained for the selected EF’s and watersheds as

illustrated in Fig. S1-S6.

2.2 Data compilation

Long-term onsite precipitation data were compiled for the

six EFs selected in the study (Fig. 1a). The EF name, rain

gauge ID, time-period used in the study, finest temporal

resolution, location coordinates, mean annual precipitation,

and station-elevations are listed in Table 1. The finest

temporal resolution and length of contiguous digital

records of precipitation varied across the selected EFs and

rain gauge stations. Long-term sub-hourly precipitation

data were available for only two EFs, – for HJA (three rain

gauge stations; station ID: HJA-H15MET, HJA-PRIMET,

and HJA-UPLMET), and for HBR (one rain gauge, station

ID: HBR-RG01). A previous study reported on the influ-

ence of topography on hourly to daily precipitation IDFs by

analyzing data from three rain gauges at various elevations

in the CHL EF region (Amatya et al. 2021). In this study,

we further investigated the impact of variable topography

on the (sub-hourly to daily) onsite and NOAA-based pre-

cipitation IDFs. We selected three rain-gauge stations at

the HJA (Table 1; station ID: HJA-H15MET, HJA-PRI-

MET, and HJA-UPLMET; Daly et al. 2019), and three rain

gauges in the CHL (Table 1; station ID: CHL-RRG06,

CHL-RRG41, and CHL-RRG31) which were used in

Amatya et al. 2021 (Fig. 1a). Continuous digital records of

hourly precipitation were available starting in 2003 for

SAN (station ID: SAN-MET25), 1976 for CHL (station ID:

CCHL-RRG06), 1997 for ALC (station ID: AC (04)), and

2004 for FRS (station ID: FRS-HQTRS). Following

Amatya et al., (2021), missing sub-daily precipitation data

for the period, 1977–1994, at the SAN-MET25 were

obtained directly from the nearest Lotti gauge (also within

the same Santee experimental forest), located 1.73 km

southeast of and at the same elevation as MET25 station

within the WS80 watershed. Similarly, missing data for the

1995–2002 period, were obtained from a NOAA station at

Charleston airport. To maintain consistency in the assess-

ment of precipitation IDFs among the EFs with the longest

available records, such as SAN, CHL, and HBR, we used

the same data period, 1977–2021 (45 years) for the pre-

cipitation IDF analysis (Table 1) in contrast with Amatya

et al (2021) that used data through 2015 for the SAN, CHL,

and ALC. For the remaining two EFs (ALC, and FRS), the

full available data period was used in the analysis. Detailed

procedures of onsite data collection and digitization for the

CHL, Santee, and ALC are provided by Amatya et al.

(2021).

NOAA Atlas-14 estimated precipitation IDFs for rain

gauge locations at each of the EFs were downloaded from

the Precipitation Frequency Data Server (Perica et al.

2018). However, for HJA, pointwise estimates of precipi-

tation IDFs are not available in the NOAA Atlas-14.

Therefore, we derived NOAA precipitation IDFs for this

site employing Regional Frequency Analysis (RFA) using

rain gauges in the Oregon with hourly precipitation data

(Fig. S7), available from NOAA’s National Climatic Data

Center (https://www.ncei.noaa.gov/access/metadata/land

ing-page/bin/iso?id=gov.noaa.ncdc:C00313). NOAA’s

hourly precipitation data were obtained for the stations

with the minimum data coverage (1979–2013) to match, as

closely as possible, with the longest data record available

for the HJA (station, HJA-PRIMET: 1979–2018). We

obtained 109 such NOAA stations in Oregon. Finally, 63

NOAA stations (listed in Table S1 of Supplementary

Information) were selected based on three additional cri-

teria (Fig. S7) – (1) number of non-zero records per year

should be more than 50, (2) number of years with zero

precipitation should be zero, and (3) number of missing

values per year should be less than 20. SRTM global dig-

ital elevation model data for the Oregon state, available

from the USGS earth explorer (https://earthexplorer.usgs.

gov/), was used as a covariate for spatial interpolation of

NOAA PIs.

2.3 Regional frequency analysis (RFA)
of precipitation intensities using L-moments

In this study, we performed the RFA analysis using the

‘‘lmomRFA’’ R-package (Hosking 2022), based on Hosking

and Wallis, (1997) that reflects the same methodology

as used in NOAA-Atlas14 (Perica et al. 2018). AMS of PIs

was constructed for each available NOAA station by taking

the highest PIs for a particular storm duration (1-, 2-, 3-, 6-,

bFig. 1 a Locations of the study EFs within a National Forest, major

RSCS, selected onsite rain gauge stations for all six EFs included in

the study, and b flow diagram illustrating the methodology
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12-, and 24-h) in each calendar year within the 1979–2013

period. The AMS of PIs is calculated by normalizing pre-

cipitation depth with the selected storm durations. Simi-

larly, AMS for the three stations each from the HJA and

CHL EF (Table 1) were included for the RFA using the

onsite precipitation data. The precipitation IDFs estimated

with these onsite datasets and RFA are hereafter referred to

as Onsite-RFA precipitation IDFs in this study. Our

approach adheres as closely as possible to the way in which

the NOAA-Atlas14 precipitation IDF estimates are deter-

mined. Specifically, in most cases, precipitation IDF esti-

mates in the NOAA-Atlas14 stem from the RFA, derived

by fitting a generalized extreme value (GEV) distribution

to the AMS. It should be noted that prior to estimating the

precipitation IDFs, the AMS were detrended using the

Sen’s slope (Cho and Jacobs 2020; Sen 1968).

The RFA using L-moments was performed with the

index rainfall method, where the quantile function, Qi Fð Þ
of the cumulative distribution function F at a site, i

(i = 1,2, …N), is given as (Hosking and Wallis 1997),

Qi Fð Þ ¼ liq Fð Þ ð1Þ

where, li is the index-rainfall calculated as the mean of the

on-site rainfall series, and q Fð Þ is a dimensionless quantile

function also known as the regional growth curve estimated

with the RFA. Once the regional growth curve was

obtained for a region using the L-moment statistics, the

site-specific quantiles were estimated with Eq. (1). A

detailed discussion of the calculation of L-moment statis-

tics (e.g., sample mean, scale, L-kurtosis, and L-skewness)

and L-moment ratios (sample L-moment coefficient of

variation (L-CV)) can be found in Hosking and Wallis

(1997).

The homogeneous regions were selected by performing

a cluster analysis based on site characteristics for the sta-

tions selected in the RFA. We selected 109 NOAA rain

gauge stations in Oregon based on data availability. The

identified clusters were treated as preliminary homoge-

neous regions, and a heterogeneity test was performed to

validate the homogeneity of the cluster using a hetero-

geneity measure. Preliminarily, the three USDAFS onsite

gauges in each of the HJA and CHL EF were assumed to

constitute a single homogenous region due to their prox-

imity. A detailed discussion on the methodology used in

the selection of homogeneous regions and the hetero-

geneity testing is provided in the Supplementary Material

(Text S1).

To maintain consistency with the NOAA-Atlas14

methodology, we selected the GEV distribution to fit the

AMS derived from the NOAA’s rain gauge records. This

choice was also necessary and consistent with Amatya

et al. (2021) for comparing the EF’s Onsite-IDFs with

NOAA precipitation IDFs since NOAA fits GEV distri-

bution using the AMS of PIs. To determine how well the

sample data fit the GEV distribution, we performed a

goodness-of-fit (GOF) test following the same procedure

described in Hosking and Wallis (1997) which uses the

Z-statistics. The GEV distribution was considered suffi-

cient for fitting the AMS if it satisfied |Z |B 1.64 (Hosking

and Wallis 1997).

Once the fit of the GEV distribution was deemed

acceptable, the precipitation quantiles were then derived

Table 1 Onsite rain gauge coordinate locations, elevations (AMSL—above mean sea level), available rainfall data period, and their temporal

resolution for the six EFs included in the study

Name of EF (or

Study Sites)

USDAFS Station ID

(abbreviation used in the

manuscript)

Time-period used for the

study

Finest temporal

resolution

available

Coordinates (degrees) Elevation

(AMSL)

Start

year

End

year

Number

of years

Longitude

(W)

Latitude

(N)

HJ Andrews

(HJA)

PRIMET (HJA-PRIMET) 1979 2018 40 5-min - 122.255941 44.211893 436

H15MET (HJA-H15MET) 1984 2018 35 5-min - 122.173782 44.26425 909

UPLMET01 (HJA-UPLMET) 1995 2018 24 5-min - 122.119763 44.207097 1284

Coweeta

Hydrologic

Lab. (CHL)

RRG06 NC (CHL-RRG06) 1976 2021 46 1-h - 83.4301 35.060411 687

RRG41 NC (CHL-RRG41) 1976 2021 46 1-h - 83.4287 35.055308 776

RRG31 NC (CHL-RRG31) 1976 2021 46 1-h - 83.468122 35.032747 1366

Santee (SAN) MET25 (SAN-MET25) 1977 2021 45 1-h - 79.883 33.1488 6

Alum Creek

(ALC)

AC04 (ALC-AC04) 1976 2015 40 1-h - 93.0245 34.70672 300

Fraser (FRS) HQTRS (FRS-HQTRS) 2004 2021 18 1-h - 105.883897 39.904814 2743

Hubbard Brook

(HBR)

RG01 (HBR-RG01) 1977 2021 45 15-min - 71.724837 43.95212 478
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for each region using the rainfall index method, which is

analogous to the flood index method proposed by Dal-

rymple, (1960). We focus on the 25-yr, 50-yr, and 100-yr

RIs for estimation of PI quantiles due to their significance

and frequent application in the RSCS design discharge

calculation, and ecological implications (Hecht et al. 2021;

Jakob et al. 2020). Text S2 provides a detailed discussion

on the methodology used for the GOF test and the esti-

mation of precipitation intensity quantiles in this study.

The confidence intervals (CIs) associated with the quan-

tile estimates were defined by 90% confidence level and

calculated with Monte Carlo simulations (a 1,000 repeated

samplings). A detailed discussion on the procedure followed

for the estimation of the population parameters of the fitted

distribution, regional and site-specific precipitation quan-

tiles, and associated CIs is provided in Hosking and Wallis

(1997). After the station-based PI quantiles were estimated,

we applied the universal kriging interpolation methodology

by using elevation of the Oregon region as covariate in the

‘‘gstat’’ R-package (Pebesma 2004) to spatially interpolate

the PI quantiles across Oregon.

2.4 Onsite precipitation IDF analysis

Onsite precipitation IDF analysis was performed based on

Extreme Value Analysis (EVA; Coles 2004) using the

‘‘extRemes’’ R-package (Gilleland and Katz 2016) for the

AMS of PIs. In this study, the Onsite-PIs were evaluated

for the 25-yr, 50-yr, and 100-yr RIs for the reason stated

above. Onsite-PIs from the available record of the EF

gauging stations (Table 1) were obtained for short (15-min

and 30-min), intermediate (1-h, 2-h, and 3-h), and long (6-

h, 12-h, and 24-h) duration storms. AMS of short-to-long

duration storm intensities (or PIs) were derived using the

Block Maxima (BM) methodology (AghaKouchak and

Nasrollahi 2010; Hawkes et al. 2008; Katz et al. 2002; Li

et al. 2015; Madsen et al. 1997).

In EVA theory, AMS is typically modeled by fitting a

GEV distribution (Coles 2001; Nerantzaki and Papalexiou

2022; Emmanouil et al. 2020). The following section

provides a detailed description of the AMS-based precipi-

tation IDF analysis performed in the study.

In AMS based precipitation IDF analysis, the GEV

distribution is fit to the AMS. The GEV is a three-param-

eter distribution comprised of the location (l), scale (r),
and shape (e) parameters whose theoretical cumulative

distribution function is given as (Coles 2001),

FGEVðxjl; r; eÞ ¼ exp � 1þ e
r
ðx� l

� ��1=e
� �

; l

2 R; r[ 0; e 6¼ 0 ð2Þ

The p-quantile of the GEV distribution is then estimated

as,

qp ¼ � 1

ln 1� pð Þ

� �e

�1

� �
� r

e
þ l; e 6¼ 0ð Þ ð3Þ

where, (1-p) is the non-exceedance probability.

In this study, the parameters of the GEV distributions

were estimated based on L-moments methodology (Hosk-

ing et al. 1985). The L-moments methodology is shown to

outperform the Method of Moments (Ossiander and Way-

mire 2000; Langousis and Veneziano 2007; Nerantzaki and

Papalexiou 2022). In addition, the L-moments method is

also consistent with the methodology adopted by NOAA-

Atlas14 (Perica et al. 2018). The L-moments method has

several advantages, especially in case of small sample size

of precipitation series fitted to the EV distribution. The

L-moments methodology also produces lower estimation

bias and are less susceptible to outliers in extreme data

as compared to other commonly used parameter estimation

methodologies, such as maximum likelihood estimation,

and method of moments (Nerantzaki and Papalexiou 2022).

The 10–90% confidence intervals (CIs) of the parame-

ters are estimated with parametric bootstrapping from 1000

samples selected randomly using the ‘‘extRemes’’ R-pack-

age (Gilleland and Katz 2016).

2.5 Comparison between onsite and NOAA
Precipitation IDFs

Precipitation IDF curves derived from the USDAFS onsite

rain gauges were evaluated against NOAA precipitation

IDFs. For HJA, the Onsite-IDFs were evaluated against the

precipitation IDFs derived with RFA using NOAA’s hourly

precipitation data (hereafter, referred as NOAA-RFA pre-

cipitation IDFs) because NOAA-Atlas14 PIs are unavail-

able for Oregon. In this study, the comparison of

precipitation IDFs was performed by evaluating—Onsite-

PI against NOAA PIs for a given duration and return

interval (RI; frequency), and the onsite storm RI against

NOAA’s 25-yr, 50-yr, and 100-yr RIs as a baseline.

Detailed descriptions of these procedures are discussed

below.

2.5.1 Evaluation of onsite-PIs against NOAA

This evaluation was performed for all storm durations and

frequencies selected in the study based on the percentage

relative difference, which is defined as follows:

Relative Differencef ;d ¼
PIOnsitef ;d � PINOAAf ;d

PINOAAf ;d

 !
� 100%

ð4Þ

where, f represents the frequency, e.g., 25-, 50-, and 100-yr

RIs used here, and d denotes the storm durations for which

Stochastic Environmental Research and Risk Assessment

123



the relative differences are calculated. This method is an

adequate performance measure since it is normalized and,

therefore, not sensitive to the absolute values of rainfall

(Amatya et al. 2021; Ombadi et al. 2018)

2.5.2 Evaluation of the onsite storm frequencies against
NOAA

Precipitation storm frequencies (or RIs) for given dura-

tions, obtained from the onsite USDAFS rain gauge sta-

tions (Table 1) were evaluated against NOAA’s 25-, 50-,

and 100-yr RIs (Perica et al. 2018). Onsite-PIs for specific

durations were first calculated for RIs ranging between 1-yr

and 500-yr. Finally, the Onsite-PI magnitudes that match

with NOAA’s 25-, 50-, and 100-yr PI magnitudes were

obtained and the corresponding RIs, derived from the

onsite precipitation frequency estimates, were extracted.

For example, a given precipitation storm event whose

Onsite-PI magnitude amounts to the same as that of

NOAA’s 100-yr PI is deemed to be more frequent based on

the Onsite-IDF estimates, if the Onsite-PI corresponds to a

RI\ 100-yr. In that case, using NOAA’s 100-yr PIs will

lead to undersizing of the RSCS, and potentially increase

risks for structural and ecological failures (disruption of

stream connectivity and aquatic passage). Importantly,

previous studies have reported significant increases in the

occurrence of heavy precipitation storm events in a

changing climate (Cheng and AghaKouchak 2014; Fowler

et al. 2021; Mamo 2015; Simonovic and Peck 2009). This

type of comparison emphasizes the frequency of occur-

rence (the RI) of a storm event of a given intensity, pro-

viding an opportunity for forest land-managers and design

engineers to choose between the Onsite, and NOAA pre-

cipitation IDFs specific to 25-yr, 50-yr, and 100-yr storm

events, which are of main interest for design of RSCS in

the NFLs. In addition, the evaluation also provides a test

for the reliability of the stationarity assumption used in

NOAA precipitation IDF estimation.

3 Results and discussion

3.1 Comparison between onsite-RFA and NOAA-
RFA Precipitation IDFs for HJ andrews EF

A regional frequency analysis (RFA) was performed to

estimate precipitation IDFs using NOAA’s hourly precip-

itation data from several stations located in Oregon due to

unavailability of NOAA-Atlas14 precipitation IDF esti-

mates for the State of Oregon (Perica et al. 2018). The

location of NOAA’s rain gauge stations and identified

homogenous regions used in the NOAA-RFA, and results

from spatial interpolation of PI quantiles are illustrated in

Fig. S7-S9 and Table S1 (Supplemental Information). The

results of the heterogeneity test, and GOF test used for

NOAA-RFA are presented in Table S2. Location, scale,

and shape parameter of the fitted regional GEV distribution

and site-specific scale parameters for the homogeneous

regions (Region 1, 2, 3, and 4) selected from the available

NOAA stations are shown in Table S3. AMS of PIs and

linear trends in the PIs for all the selected stations are

shown in Fig. S11-S20. The p-values obtained from Mann–

Kendall trend test (a = 0.05) are also shown, where a trend

is considered statistically significant if p-value (shown in

red) is found to be less than 0.05. The AMS of PIs exhibit

stationarity with non-significant trends for most or all

storm durations at HJA-H15MET, HJA-UPLMET, CHL-

RRG06, CHL-RRG41, CHL-RRG31, SAN-MET25, ALC-

AC04, and FRS-HQTRS (Fig. S11-S20).

Onsite precipitation IDFs were estimated using RFA

considering the three selected stations within HJA, HJA-

PRIMET, HJA-H15MET and HJA-UPLMET. The loca-

tion, scale, and shape parameter of the fitted regional GEV

distribution and site-specific scale parameters are shown in

Table S4. The Onsite-RFA precipitation IDFs were com-

pared to the NOAA-RFA precipitation IDFs at these three

stations. Considerable disparities are evident between the

Onsite-RFA and NOAA-RFA based precipitation IDF

estimates (Fig. 2; Table 2, and Table S5-S7). Specifically,

relative to the Onsite-RFA, the NOAA-RFA underestimate

PIs of 25-yr, 50-yr, and 100-yr RIs for the longer duration

([ 6-h) storms at the HJA-H15MET and HJA-UPLMET

stations, and overpredicts for all durations at the lower

elevation HJA-PRIMET station (Fig. 2). For example, at

the HJA-H15MET station, NOAA-RFA underestimates PI

of 25-yr, 50-yr, and 100-yr RIs by 26%, 18%, and 11% for

the 12-h duration, and 33%, 30%, and 26% for the 24-h

duration storm event. Similarly, at the HJA-UPLMET

station, NOAA-RFA precipitation IDFs underestimate PI

of 25-yr, 50-yr, and 100-yr RIs by 21%, 13%, and 6% for

the 12-h duration, and 35%, 30%, and 25% for the 24-h

duration storm event. Interestingly, the relative differences

exhibit a similar dependence on storm durations for these

two stations. At both stations, NOAA-RFA overpredicts PI

for 25-yr, 50-yr, and 100-yr RIs for the shorter duration

storms, and underpredicts for the longer duration storms

with a shift in the inflection point from shorter (2-h) to

longer (6-h) duration storms for increases in RIs from 25-yr

to 100-yr (Fig. 2d, and f). On the other hand, at HJA-

PRIMET stations, the NOAA-RFA overpredicts PIs for all

duration storms and RIs. The uncertainty (shown by the

90% CIs) in Onsite-RFA precipitation IDFs are comparable

with those of NOAA-RFA precipitation IDFs for the 25-yr,

50-yr, and 100-yr RIs (Fig. 2c). For shorter storm dura-

tions, the uncertainty range of PIs is narrower for the lower

elevation station, HJA-PRIMET compared to the higher

Stochastic Environmental Research and Risk Assessment

123



elevation stations, HJA-H15MET, and HJA-UPLMET

which can be attributed to the longer data record available

for the HJA-PRIMET station (1979–2018).

Overall, these results agree with the general types of

storms that the Pacific Northwest region receives, much of

which are large regional storm systems, with smaller per-

centage of precipitation coming from convective storms or

short-term events (Greenland et al. 2003; Waichler and

Wigmosta, 2003). About 70% of the available sixty-three

NOAA stations in Oregon, used for the NOAA-RFA, are

located at elevation lower than 500 m (Table S1). As such, it

can be concluded that not only does NOAA-RFA under-

predict the long duration PIs but also it does not capture well

the regional storm PIs at higher elevation stations, HJA-

H15MET (elevation of 909 m), and HJA-UPLMET (eleva-

tion of 1284 m). Therefore, to prevent from under-designing

of culverts near these locations, use of Onsite-RFA based PIs

should be prioritized in the higher elevation ([ 500 m) sta-

tions, particularly for longer ([ 6-h) duration storms for

USDAFS RSCS design in the HJA EF.

Fig. 2 Precipitation IDF curves (left panel), and relative difference

(%), shown by bar-plots, between Onsite-RFA and NOAA-RFA

precipitation IDFs (right panel) for three selected rain gauge stations

in HJA. The shading and error-bars in panels a, c and e indicate the

90% CIs of PIs estimated with the Onsite-RFA, and NOAA-RFA,

respectively. The x- and y-axis of the precipitation IDF curves are on

the logarithmic scales
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3.2 Comparison between onsite-RFA and NOAA-
Atlas14 precipitation IDFs for coweeta
hydrological laboratory EF

Onsite precipitation IDFs were estimated using RFA con-

sidering the three selected rain gauge stations in CHL,

CHL-RRG06, CHL-RRG41, and CHL-RRG31. The loca-

tion, scale, and shape parameter of the fitted regional GEV

distribution and site-specific scale parameters are shown in

Table S8. The Onsite-RFA precipitation IDFs were com-

pared to the NOAA-Atlas14 precipitation IDFs at these

three stations. There is little difference between the Onsite-

RFA and NOAA-Atlas14 based precipitation IDF estimates

for all three stations (Fig. 3; Table 2; and Table S9-S11).

NOAA-Atlas14 slightly overpredicts the PIs at the CHL-

RRG06, and CHL-RRG41 stations for all storm durations

Table 2 Onsite, and NOAA-based 1-h and 24-h PIs for 25-yr, 50-yr, 100-yr return intervals

Name of

EF

USDAFS station

ID

1-h PI (cm/hr) 24-h PI (cm/hr)

25-yr 50-yr 100-yr 25-yr 50-yr 100-yr

HJA HJA-PRIMET 1.38 (1.28, 1.5) 1.5 (1.37, 1.65) 1.6 (1.44, 1.8) 0.33 (0.31,

0.37)

0.36 (0.33, 0.4) 0.38 (0.34,

0.44)

2.04 (1.79,

2.43)*

2.43 (2.05,

3.01)*

2.9 (2.37, 3.79)* 0.5 (0.46,

0.57)*

0.57 (0.51,

0.66)*

0.64 (0.55,

0.75)*

HJA-H15MET 1.72 (1.59,

1.87)

1.86 (1.7, 2.04) 2 (1.78, 2.23) 0.59 (0.54,

0.66)

0.65 (0.58,

0.72)

0.69 (0.62,

0.78)

2.04 (1.75,

2.47)*

2.5 (2.06,

3.17)*

3 (2.44, 4.1)* 0.45 (0.4, 0.5)* 0.5 (0.44,

0.57)*

0.55 (0.47,

0.64)*

HJA-UPLMET 1.71 (1.58,

1.88)

1.85 (1.68,

2.07)

1.99 (1.77, 2.25) 0.66 (0.6, 0.74) 0.71 (0.64,

0.81)

0.77 (0.67,

0.88)

2.05 (1.79,

2.43)*

2.45 (2.06,

3.04)*

2.93 (2.39, 3.86)* 0.49 (0.44,

0.55)*

0.55 (0.49,

0.63)*

0.61 (0.53,

0.72)*

CHL CHL-RRG06 5.94 (5.33,

6.69)

6.85 (5.99,

7.95)

7.86 (6.67, 9.45) 0.77 (0.72,

0.84)

0.83 (0.76,

0.92)

0.89 (0.79, 1)

7.24 (6.45, 8)* 8.31 (7.39,

9.22)*

9.4 (8.28, 10.44)* 0.83 (0.76,

0.89)*

0.93 (0.85,

1.01)*

1.04 (0.94,

1.13)*

CHL-RRG41 5.93 (5.3, 6.67) 6.85 (5.96,

7.93)

7.86 (6.64, 9.37) 0.77 (0.71,

0.84)

0.83 (0.75,

0.92)

0.89 (0.78,

1.01)

7.26 (6.48,

8.03)*

8.36 (7.42,

9.27)*

9.42 (8.31,

10.49)*

0.83 (0.76,

0.9)*

0.93 (0.86,

1.01)*

1.04 (0.95,

1.13)*

CHL-RRG31 6.41 (5.769,

7.23)

7.4 (6.51, 8.54) 8.49 (7.26, 10.11) 0.98 (0.9, 1.07) 1.05 (0.95,

1.17)

1.12 (1, 1.27)

7.82 (6.99,

8.66)*

9.02 (8, 10.03)* 10.19 (8.97,

11.35)*

0.94 (0.87,

1.02)*

1.06 (0.97,

1.16)*

1.19 (1.07,

1.3)*

SAN SAN-MET25 7.81 (6.77,

8.97)

8.61 (7.23,

10.28)

9.4 (7.6, 11.73) 0.98 (0.75,

1.26)

1.19 (0.84,

1.67)

1.44 (0.93,

2.22)

8.36 (7.72,

8.99)*

9.5 (8.74,

10.21)*

10.59 (9.68,

11.4)*

0.81 (0.74,

0.89)*

0.93 (0.85,

1.02)*

1.06 (0.96,

1.16)*

ALC ALC-AC04 6.24 (5.33,

7.21)

6.84 (5.69,

8.19)

7.41 (5.97, 9.25) 0.7 (056, 0.86) 0.81 (0.61,

1.05)

0.93 (0.66,

1.28)

7.29 (6.02,

8.71)*

8.05 (6.50,

9.78)*

8.81 (6.88,

10.95)*

0.81 (0.69,

0.95)*

0.92 (0.77,

1.09)*

1.04 (0.84,

1.26)*

FRS FRS-HQTRS 2.39 (1.44,

3.61)

3.09 (1.59,

5.26)

4.02 (1.73, 7.88) 0.16 (0.13,

0.21)

0.18 (0.14,

0.24)

0.2 (0.14, 0.29)

3.91 (2.92,

5.31)*

4.60 (3.38,

6.35)*

5.33 (3.76, 7.54)* 0.23 (0.18,

0.30)*

0.26 (0.2,

0.35)*

0.3 (0.22,

0.40)*

HBR HBR-RRG01 4.39 (3.52,

5.43)

5.16 (3.89,

6.86)

6.02 (4.22, 8.71) 0.49 (0.43,

0.57)

0.55 (0.45,

0.66)

0.6 (0.48, 0.77)

4.57 (3.48,

5.87)*

5.18 (3.84,

6.76)*

5.82 (4.17, 7.8)* 0.55 (0.43,

0.69)*

0.62 (0.48,

0.79)*

0.7 (0.52,

0.92)*

The numbers in the parenthesis indicate the 90% confidence intervals of PIs and the NOAA-based PIs are denoted with asterisks
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and RIs. On the other hand, NOAA-Atlas14 slightly

underpredicts the PIs at the CHL-RRG31 station for longer

duration storms (C 12-h) for the 25-yr and 50-yr RIs. For

instance, at the CHL-RRG06 station, the PI of the 25-, 50-,

and 100-year RIs is overpredicted by NOAA-Atlas14 by

18%, 18%, and 16% for storm events lasting 1-h, and by

6%, 10%, and 14% for storm events lasting 24-h. Similar to

this, NOAA-Atlas14 precipitation IDFs at the CHL-RRG41

station overestimate PI of 25-, 50-, and 100-year RIs by

18%, 18%, and 17% for the 1-h duration, and by 7%, 11%,

and 15% for the 24-h duration storm events (Fig. 3b, and

3d). It is interesting to note that both these stations are

located within a 0.5-mile (CHL-RRG06) and 1-mile (CHL-

RRG41) radius of the single available NOAA rain gauge

station (COWEETA EXP STN) within the CHL EF region

(Fig. S10). More importantly, these two stations are located

at about the same elevation (CHL-RRG06: 687 m; and

CHL-RRG41: 776 m) as the NOAA rain gauge station

(685 m).

At the CHL-RRG31 station, however, NOAA-Atlas14

underpredicts PIs by 4–5% for 25-yr RI, and overpredicts

by 1% and 5% for the 50-yr and 100-yr RIs for longer

duration storms (C 12-h; Fig. 3f). These results indicate

that the difference in Onsite-RFA and NOAA-Atlas14 PIs

at the CHL-RRG31 station are very dissimilar from that

observed at the CHL-RRG06, and CHL-RRG41 stations.

This disparity may be due to the considerable difference in

elevation of the CHL-RRG31 station (elevation of 1366 m)

from the nearest (within 3-mile radius) available NOAA

rain gauge station (COWEETA EXP STN: elevation of

776 m). The uncertainty (shown by the 90% CIs) in Onsite-

RFA precipitation IDFs are comparable with those of

NOAA-RFA precipitation IDFs for the 25-yr, 50-yr, and

100-yr RIs. The uncertainty range of PIs is, however,

slightly narrower for the lower elevation stations, com-

pared to the higher elevation station, CHL-RRG31.

It is important to note that these results are contrastingly

different from the PIs estimated in Amatya et al., (2021) for

the same rain gauge stations with the data used throughout

the year 2015. This is perhaps due to the additional 7 years

of data set (1976–2021) used in the current study for all

three stations. The Onsite-PIs are found to increase for the

higher elevation station during the most recent period

(2016–2021; Fig. S14-S16). In addition, this study uses

L-moment based parameter estimation methodology,

whereas Amatya et al., (2021) used Bayesian parameter

estimation to calculate the precipitation IDFs. L-moment

based parameter estimates are found to be more robust for

relatively smaller sample sizes (46-year period) compared

to Bayesian parameter estimation methodology Nerantzaki

and Papalexiou (2022). This is reflected in the narrower

uncertainty range of PIs estimated in this study as

compared to those obtained using the Bayesian parameter

estimation methodology (Amatya et. al., 2021).

3.3 Comparison between onsite-LMOM
and NOAA-Atlas14 precipitation IDFs for four
EFs

precipitation IDFs estimated with Onsite-LMOM analysis

for four USDAFS stations at Santee (SAN-MET25), Alum

Creek (ALC-AC04), Fraser (FRS-HQTRS), and Hubbard

Brook (HBR-RG01) EF are compared with precipitation

IDFs obtained from NOAA-Atlas14, as shown in Figs. 4

and 5 (also refer to Table 2; Table S12-S19 for PIs and

parameters of the GEV distribution). Relative differences

between the PIs are also evaluated for these stations as

shown by the bar-plots in Figs. 4 and 5.

Considerable disparities are evident between the Onsite-

and NOAA-Atlas14 based precipitation IDFs estimates at

multiple stations (Fig. 4). At the SAN-MET25 station, the

uncertainties in PI estimates are considerably higher than in

the NOAA-Atlas14 based PIs. NOAA-Atlas14 underesti-

mates the PI for 25-yr, 50-yr and 100-yr RIs for all but 1-h

duration storms. The relative differences between the PI for

1-h 25-yr, 50-yr, and 100-yr RIs are 5%, 9% and 11%,

respectively, indicating an increasing trend for increasing

RIs. At the ALC-AC04 station, the uncertainty range of the

Onsite-PIs is comparable with those of NOAA-Atlas14,

likely due to the record period of the NOAA-Atlas14 was

through 2013, unlike only through 2006 for the SAN-

MET25 station. However, NOAA-Atlas14 overpredicts PI

for 25-yr to 100-yr RIs by only 5–11% for all duration

storm events. For the FRS-HQTRS station, the uncertainty

range of the Onsite-PIs is considerably higher than those of

NOAA-Atlas14, which may be due to the limited number

of years (18 years; 2004–2021 period) with data records

available for this station (Fig. 5). Moreover, NOAA-

Atlas14 overpredicts the PIs for 25-yr, 50-yr, and 100-yr

RIs by more than 25% for all duration storm events. At the

HBR-RG01 station, the uncertainty range of the Onsite-PIs

is comparable with that of the NOAA-Atlas14 (Fig. 5).

NOAA-Atlas14 PIs are also comparable with the Onsite-

LMOM PIs for the 30-min, 1-h to 24-h durations and 25-yr,

50-yr, and 100-yr RIs. Except for the PI for 1-h 100-yr RI,

NOAA-Atlas14 overpredicts the PIs for 25-yr to 100-yr RIs

by 1% to 17% for the 30-min to 24-h storm durations.

The results of this study are in close agreement with a

previous study that included similar analyses with the AMS

data at the SAN-MET25 (ALC-AC04) stations and showed

that NOAA-Atlas14 precipitation IDFs underestimated

(overestimated) PIs when compared to estimates using

onsite data only through 2016 from these stations and the

percent differences increased for longer RIs and storm

durations (Amatya et al. 2021). However, the relative
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differences in PIs from NOAA-Atlas14 and onsite data at

SAN-MET25 were reported to be as high as 60% which is

considerably higher compared to our results. Such dispar-

ities can be attributed to the difference in the length of data

period and (L-moment based) parameter estimation

methodology used in this study compared to that in Amatya

(2021) which used relatively shorter duration of precipi-

tation dataset and Bayesian parameter estimation

methodology.

3.4 Comparison between onsite and NOAA
precipitation frequency

We evaluated the specific frequencies of PIs related to

25-yr, 50-yr, and 100-yr RIs provided by NOAA-RFA (for

HJA) and NOAA-Atlas14 (for SAN, CHL, ALC, and

HBR) against those estimated with the most updated

(through year, 2021) USDAFS onsite rain gauge station

dataset (based on Onsite-RFA for HJA, and CHL; and

Fig. 3 Precipitation IDF curves (left panel), and relative difference

(%), shown by bar-plots, between Onsite-RFA and NOAA-Atlas14

precipitation IDFs (right panel) for three selected rain gauge stations

in CHL. The shading and error-bars indicate the 90% CIs of PIs

estimated with the Onsite-RFA, and NOAA-RFA, respectively. The

x- and y-axis of the precipitation IDF curves are on the logarithmic

scales
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Onsite-LMOM for SAN, ALC, FRS, and HBR) used in this

study (see Methods). The comparison for precipitation

IDFs is shown in Fig. 6. For multiple stations, PIs of storm

events with RIs of 25-yr, 50-yr, and 100-yr based on

NOAA-RFA and NOAA-Atlas14 precipitation IDFs cor-

respond to PIs of storm events with less than 25-yr, 50-yr,

and 100-yr RI, respectively, based on Onsite-IDFs. For

instance, at the HJA-H15MET and HJA-UPLMET stations,

PIs of 3-h, 6-h, 12-h, and 24-h duration storms with 25-yr

RI based on NOAA-RFA correspond to PIs of more fre-

quent storm events with less than 25-yr (10-yr) RI based on

Onsite-RFA estimated precipitation IDFs (Fig. 6a). At the

higher elevation station, CHL-RRG3, PIs of 3-h, 12-h and

24-h with 25-yr RI based on NOAA-Atlas14 correspond to

PIs of storm events with less than 25-yr RI based on

Onsite-RFA estimated precipitation IDFs. At the SAN-

MET25 station, PIs of 2-h to 24-h specific to 25-yr RI

based on NOAA-Atlas14 correspond to PIs of storm events

with less than 25-yr RI based on Onsite-LMOM estimated

precipitation IDFs, consistent with Amatya et al., (2021).

Similarly, PIs of 12-h and 24-h storm events with 100-yr

RIs correspond to PIs of more frequent storm events with

Fig. 4 Precipitation IDF curves, and relative difference (in %; shown

by bar plots) between Onsite-LMOM precipitation IDF and NOAA-

Atlas14 precipitation IDF estimates at (a-b) SAN-MET25, and (c-d)

ALC-AC04 station. The shading and error-bars in the precipitation

IDF curves indicate the 90% confidence intervals of PIs correspond-

ing to the Onsite-LMOM, and NOAA-Atlas14, respectively. The x-

and y-axis of the precipitation IDF curves are on the logarithmic

scales

Stochastic Environmental Research and Risk Assessment

123



10–25-yr RI at HJA-H15MET; 6-h, 12-h and 24-h events

with 100-yr RI correspond to events with 50- to 100-yr, 25-

to 50-yr and 10- to 25-yr RI, respectively, at HJA-

UPLMET; 2-h, and 3- to 24-h events with 100-yr RIs

correspond to events with less than 100-yr, and 25–50-yr

RI at SAN-MET25; and 1-h events with 100-yr RI corre-

spond to events with less than 100-yr RI at the HBR-RG01

station.

4 Summary and conclusions

We evaluated Onsite precipitation Intensity-Duration-Fre-

quencies (referred to as Onsite-IDFs) using 40 ? years of

high resolution precipitation data at six long-term USDA

Forest Service (USDAFS) Experimental Forests (EFs)

against the precipitation IDFs published by NOAA

(NOAA-Atlas14 precipitation IDFs; Perica et al., (2018)).

Based on the results of this analysis we suggested/recom-

mended the use of the NOAA PIs or more local onsite and

regional precipitation IDF measurements, where possible,

Fig. 5 Precipitation IDF curves, and relative difference (in %; shown

by bar plots) between Onsite-LMOM precipitation IDF and NOAA-

Atlas14 precipitation IDF estimates at (a-b) FRS-HQTRS, and (c-
d) HBR-RG01 station. The shading and error-bars in the precipitation

IDF curves indicate the 90% confidence intervals of PIs correspond-

ing to the Onsite-LMOM, and NOAA-Atlas14, respectively. The x-

and y-axis of the precipitation IDF curves are on the logarithmic

scales
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in hydrologic models for determining associated design

storm discharge rates from watersheds. This research is

motivated by the recent increase in extreme precipitation

events, which have the potential to threaten forest road

cross drainage structures and, for that matter disrupt

transportation as well as ecological systems. We hypothe-

sized added benefits and guidelines of using Onsite-IDF

over the NOAA-Atlas14 precipitation IDFs, where appli-

cable in this study, which can aid in the design, and

planning of resilient road crossing infrastructure at head-

water forest catchments. Accordingly, this study attempted

to evaluate the precipitation IDFs based on annual maxima

series (AMS) for onsite sub-daily and daily precipitation

intensities (PIs) by comparing them with precipitation IDF

estimates provided by NOAA.

Considerable disparities were observed between the

onsite and published NOAA Atlas-14 precipitation IDFs. In

the case of the precipitation IDFs estimated with Onsite-

RFA, these disparities in PIs exhibited their strong

dependence on the storm durations and elevation of sta-

tions, particularly in Horace Justin Andrews (HJA) and

Coweeta Hydrological Laboratory (CHL) EFs. Onsite PIs

estimated for higher elevation stations were greater than

PIs of low-elevation stations for all duration storm events,

and were greater than NOAA-Atlas14’s PI estimates for

longer duration storm events. This contrasts with what

Amatya et al. (2021) found earlier in the CHL EF. Amatya

et al. (2021) used data up to 2015 to estimate precipitation

IDFs while the last seven years of the period 1976–2021,

used in this study, saw an increase in PIs at the higher

elevation station compared to the lower elevation stations

of CHL. Additionally, this study used the L-moment, a

different approach of parameter estimation as compared to

Amatya et al. (2021), which is more reliable for fitting data

with small sample sizes and is widely used in NOAA-

Atlas14. This is reflected in the Onsite-IDFs computed in

this work, which have a lower uncertainty range.

On the other hand, some of our findings are consistent

with those of Amatya et al. (2021), who utilized onsite data

from the low-gradient SAN EF up until 2015 and reported

a similar underprediction of NOAA-Atlas14 PIs, particu-

larly for longer duration storm events. The return interval

of storms with identical PIs was also examined in this study

between precipitation IDFs estimated using onsite data and

those provided by the NOAA-Atlas14. It has been noted

that storms with the same PIs and longer durations reported

by NOAA-Atlas14 are estimated to show higher frequency

or lower RI estimates based on the Onsite-LMOM and

Onsite-RFA at HJA-H15MET, HJA-UPLMET, and SAN-

MET25 stations. At the majority of other USDAFS rain

gauges and storm durations, NOAA overpredicts the PIs.

Therefore, design discharge estimation at those sites should

be done using NOAA-based PIs, even if this can result in a

minor overdesign of the RSCS. However, somewhat

overdesigning the RSCS for flood protection is reasonable

to ensure that the structure is able to withstand the poten-

tially unforeseen increase in future flood event, which can

lead to property damage and other ecologic and economic

Fig. 6 Comparison between NOAA-based RI (25-yr, 50-yr, and

100-yr) and Onsite-based storm frequency (RI; unit: year). Storm

durations and stations for which the Onsite-LMOM and Onsite-RFA

based RIs (Onsite frequency) are higher than those of NOAA-based

RIs, are indicated by stippling
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losses that can be often much higher than any overdesign

costs. Additionally, overdesigning an RSCS to some pos-

sible extent can help to maximize its lifespan, allowing it to

provide protection for many years to come.

The increase in anthropogenically caused climate

change, which has the potential to disrupt the stationarity

of the precipitation series, necessitates annual adjustments

to the precipitation IDF estimations (Easterling et al. 2017).

This is an important caveat that should be taken into con-

sideration with the upcoming NOAA-Atlas14 historical

precipitation IDF updates as well as updates that would

consider future rainfall data derived from downscaled

global climate models (e.g., Jalowska et al., (2021)).

However, it should be noted that Extreme Value Analysis

demands more research on the selection of covariates in the

estimation of distribution parameters, especially in com-

plex mountainous terrains such as H. J. Andrews, Fraser,

and Hubbard Brook EFs, and eastern temperate forests,

such as in Santee and Coweeta EFs, where extreme pre-

cipitation storms led by tropical storms/hurricanes and

atmospheric rivers are a common phenomenon (Dhakal

and Jain 2020; Mukherjee and Mishra 2021; Ren et al.

2019). One of the scopes of further improvements in this

study will be to reduce the statistical variability that leads

to the coexistence of negative and positive shape parameter

estimates (upper bound) which defies the physical nature of

rainfall extremes (Emmanouil et al. 2020). Furthermore, to

deal with challenges arising from limited spatial coverage

of gauges and the complex heterogeneity of precipitation,

especially in the mountainous terrain (Basist et al. 1994;

Preece et al. 2021; Wu et al. 2020; Yu et al. 2020) Onsite-

IDFs can be evaluated against precipitation IDFs derived

using satellite-based rainfall products (Ciabatta et al. 2016)

and precipitation estimates deduced from soil moisture

measurements (Brocca et al. 2013), which will certainly be

another future scope of this work. Most of the USDAFS

rain gauge’s long-term high-resolution datasets, such as

those used in this manuscript as well as the remaining

stations, are still undergoing digitization from paper charts

recorded for historic precipitation dataset, which is

resource intensive (Amatya et al. 2021). We used our best

efforts to use data by digitizing the historic charts-based

data for three of the six stations used in this study. As a

future scope of the work, we intend to use a greater number

of rain gauges across many USDAFS lands.

Overall, the results of this study highlight the value of

long-term high-resolution precipitation records from the

USDAFS Experimental Forest network of rain gauges for

evaluating extreme PIs. Many EF sites, beyond those

examined here, have long-term data that would be more

appropriate for analyses, needing onsite climate data even

though historical charts have to be digitized in some cases

as was done for this study. The use of those data will be

more reliable than the use of data from more distant

NOAA stations or from different topography. Given the

study’s findings, the authors recommend using Onsite-IDF

estimates, especially for longer duration storm events, in

rainfall-runoff and hydrologic models, used for estimating

design storm discharge rates to size resilient road culverts

and crossings at higher elevation catchments in HJA, CHL

EF, and low-gradient ones in SAN EF.
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