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Abstract 
In the United States (US), the frequency and duration of surface water in a stream channel 

(i.e. stream permanence) determines if a stream is subject to regulation under the Clean Water Act. 

While stream permanence is important for policy implementation, quantifying streamflow and water 

quantity through observation and modeling has been the primary focus of water resource managers. 

The most comprehensive dataset of stream permanence classifications for the US is the National 

Hydrography Dataset (NHD), which gives classifications of perennial, intermittent, or ephemeral for 

most stream reaches. NHD stream permanence classifications were made during topographic map 

field surveys that occurred from approximately 1920-2000 and have been shown to exhibit high rates 

of disagreement with more recent stream permanence observations. Thus, there is currently not an 

available stream permanence dataset with sufficient accuracy for regulatory determinations. I present 

three studies to assess the influence of climate in NHD stream permanence disagreements, implement 

a monthly water balance model (MWBM) to create dynamic stream permanence estimates for 

headwater streams in the NHD network, and apply the Watershed Erosion Prediction Project (WEPP) 

hydrologic model to simulate stream permanence in gauged and ungauged watersheds. 

Analysis of NHD stream permanence disagreements with other stream permanence 

observations indicates that differences in climate conditions between the years observations were 

made contributes to the probability of disagreement. This finding supports the need for dynamic 

simulation of stream permanence based on climate conditions. Dynamic stream permanence estimates 

for NHD headwater reaches are then calculated using the MWBM, which incorporates climate inputs 

and hydrological processes to simulate runoff and streamflow permanence. Results from application 

of the MWBM indicate that more stream permanence data are needed to properly assess process-

based models at regional extents. On 40% of headwater streams no MWBM parameter sets were 

greater than 65% accurate when compared to observations. However, on other headwaters streams 

MWBM simulations did show some promise for simulating stream permanence. Additional data 

would encourage and inform further model development. WEPP simulations produced daily stream 

permanence accuracies up to 93% and annual stream permanence accuracies up to 87% but different 

parameter sets performed better for daily and annual time steps. These results indicate that, when 

implemented for stream permanence simulation, assessment of physically-based models should 

include both daily and annual accuracies. Additionally, future stream permanence data collection 

methods and methodologies should be strategically planned to capture the spatiotemporal dynamics 

of stream permanence that are required to effectively develop and evaluate models. 
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Chapter 1: Introduction 
Stream permanence, the likelihood a stream will maintain surface water throughout a given 

year, has long been identified as an important hydrological and ecological characteristic (Datry et al., 

2014, 2016; Vander Vorste et al., 2020). As the United States Geological Survey (USGS) began a 

campaign to comprehensively map the landscapes and features of the contiguous United States 

(CONUS) in the early 1900s, identifying and mapping permanent (maintain surface water throughout 

a year) and nonpermanent (periodically cease to maintain surface water) streams was one of the 

explicit goals (Beaman, 1928). While much research has focused on quantifying and simulating the 

quantity of water in streams, less attention has been granted to identifying the presence and duration 

of surface water in streams. And while water quantity studies provide important information for 

identifying and responding to water surpluses and shortages, policy and regulation of streams is based 

on the presence of surface water. Indeed, streams subject to regulation under US Clean Water Act 

(1972) are determined based on the duration of surface water in a stream channel during a normal 

year (US Army Corps of Engineers and US Environmental Protection Agency, 2020). 

The most comprehensive resource for identifying stream permanence in the CONUS is the 

National Hydrography Dataset (NHD), a line network describing the location and stream permanence 

classification (perennial, intermittent, or ephemeral, where perennial streams are permanent and 

intermittent and ephemeral are nonpermanent) for most streams in the US. The NHD is derived from 

the USGS map surveys that began in the early 1900s (Johnston et al., 2009). Geographic data 

describing stream location in the NHD network are frequently updated as new topographic and aerial 

data become available but many NHD stream permanence classifications maintain the values 

assigned during the initial cartographic survey (Hafen et al., 2020). Unsurprisingly, multiple studies 

have documented substantial disagreement between NHD stream permanence classifications and 

more recent stream permanence observations, especially on low-order and headwater streams (Fritz et 

al., 2013; Nadeau et al., 2015). Disagreements in NHD classifications are expected to arise because 

the static NHD classifications do not accurately capture surface water extents and duration, which can 

change year to year based on annual climate conditions (Godsey and Kirchner, 2014). Because of 

these disagreements the US Environmental Protection Agency and the US Army Corps of Engineers 

have deemed that NHD stream permanence classifications are not adequate to determine regulator 

status under the US Clean Water Act (https://www.epa.gov/sites/production/files/2020-

01/documents/nwpr_fact_sheet_-_mapping.pdf).  

To represent the dynamic nature of stream permanence in space and time (Godsey and 

Kirchner, 2014), recent efforts have utilized observations of surface water presence and absence to 
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develop statistical and physically-based models that simulate stream permanence (Gendaszek et al., 

2020; Jaeger et al., 2019; Jensen et al., 2018; Sando and Blasch, 2015; Ward et al., 2018; Williamson 

et al., 2015). Models have been developed at both regional (e.g. Jaeger et al., 2019) and local extents 

(e.g. Williamson et al., 2015) and model accuracies range from approximately 70% to 90%. However, 

in comparison to data available from stream gages, there are very few data describing surface water 

presence (e.g. Jaeger et al., 2019). Most modeling studies implement sparse data over large (103 km2) 

spatial extents (e.g. Jaeger et al., 2019) or record higher resolution data (both temporally and 

spatially) at small (1 km2) extents (Jensen et al., 2018; e.g. Ward et al., 2018; Williamson et al., 

2015). Gendaszek et al., (2020) did develop statistical models, with good success, at the 100 km2 

extent based on relatively dense array of sensors, and Ward et al., (2020) a model that was validated 

at the 1 km2 extent to a 600 km2 watershed. 

Physically-based models have been widely implements across spatial extents to simulate 

streamflow magnitude and the initial success of similar models to estimate stream permanence is 

promising. However, current implementation of physically-based models for stream permanence 

simulation have only been validated over small spatial extents (e.g. Ward et al., 2018; Williamson et 

al., 2015). Therefore, performance of these, and similar, models at larger extents is largely unknown. 

Recent development of stream permanence sampling protocols (Jaeger et al., 2020) and methods to 

record surface water presence from automated sensors (Arismendi et al., 2017; Blasch et al., 2002) 

are providing the necessary underlying data to evaluate performance of additional physically-based 

models at multiple spatial extents. Furthermore, streamflow permanence data are often collected in 

locations that lack streamflow records (Gendaszek et al., 2020; Jaeger et al., 2019; Sando and Blasch, 

2015), which enriches current hydrologic understanding across landscapes. Surface water presence 

data present new opportunities for model assessment and calibration that may allow model validation 

and development in regions that previously had too few data to evaluate model results.  

The overarching objective of this work is to advance stream permanence modeling by 

incorporating surface water presence observations into physically-modeling workflows and 

evaluations. Subsequent chapters in this document meet this objective by establishing the accuracy of 

current stream permanence mapping products, calibrating and evaluating the precision of a monthly 

water balance to simulate stream permanence at a regional extent, and evaluating the accuracy of the 

Watershed Erosion Prediction Project (WEPP) hydrological model to simulate stream permanence 

when calibrated with traditional streamflow data and surface water presence observations. Each of 

these studies provides new insight to methods for classifying and simulating stream permanence. 
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Chapter 2, herein, identifies the effect of annual climate differences on disagreements 

between NHD stream permanence classifications and surface water presence observations. These 

findings help establish the importance of modeling efforts to account for the dynamic effects of 

climate on stream permanence. Additionally, Chapter 2 establishes the accuracy of NHD stream 

permanence observations in the Pacific Northwest Region (PNW) of the United States when 

compared to in situ surface water presence observations. This provides an important benchmark value 

to which model results can be compared.  

Chapter 3 applies a widely implemented monthly water balance model (MWBM) to the 

PNW. Instead of calibrating the MWBM after the traditional manner using streamflow observations, 

parameter sets are identified based on their accuracy when compared to surface water presence 

observations. This study demonstrates how surface water presence observations may be used to 

inform process-based models at regional extents.  

Chapter 4 presents two case studies of simulating stream permanence with the WEPP model 

in arid and humid watersheds using both streamflow observations and surface water presence 

observations for calibration and validation. These case studies provide examples of how validation 

with different data types over different time periods can influence accuracy of simulated stream 

permanence classifications at daily and annual time steps. Additionally, this study demonstrates how 

a surface water presence time series may be used to calibrate and evaluate performance of a 

physically based model. Results also point to the spatial and temporal resolution that are needed for 

surface water presence observations to be most useful in stream permanence modeling. 
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Chapter 2: The Influence of Climate Variability on the Accuracy of NHD 

Perennial and Non-perennial Stream Classifications 
 

Hafen, KC, KW Blasch, A Rea, R Sando, and PE Gessler. 2020. The Influence of Climate Variability 

on the Accuracy of NHD Perennial and Nonperennial Stream Classifications. Journal of the American 

Water Resources Association (JAWRA) 56:903-916. https://doi.org/10.1111/1752-1688.12871 

Abstract 

National Hydrography Dataset (NHD) stream permanence classifications (SPC; perennial, 

intermittent, and ephemeral) are widely used for data visualization and applied science, and have 

implications for resource policy and management. NHD SPC were assigned using a combination of 

topographic field surveys and interviews with local residents. However, previous studies indicate that 

field-based, non-NHD streamflow observations (NNO) frequently disagree with NHD SPC. We 

hypothesized that differences in annual climate conditions between map creation years and the years 

NNO were collected contributed to disagreement between NNO and NHD SPC. We compared NHD 

SPC to 10,055 NNO (classified as ‘wet’ or ‘dry’) collected in the Pacific Northwest (PNW) between 

1977 and 2015. Annual climate conditions were described with the Palmer Drought Severity Index 

(PDSI). Stream order was added as a covariate to account for different effects along the stream 

network. NHD SPC agreed with 80.5% of NNO. ‘Dry’ NNO were 5 times more likely to disagree 

with NHD than ‘wet’ NNO (p<0.0001). Disagreement was greatest on first order streams. When 

NHD SPC were collected during a wetter period than NNO the probability of disagreement increased 

by a factor of 1.17 (p<0.0001) per unit difference in PDSI. The influence of climate on disagreements 

between NNO and NHD SPC provides support for the continued development of dynamic models 

representing SPC as opposed to static NHD classifications. 

Introduction 

Distinction between streams that flow continuously (perennial), and those that periodically 

cease to flow (intermittent and ephemeral), is important to understand the cumulative ecology and 

hydrology of stream networks and the potential impacts of climate fluctuations and anomalies on 

stream reaches and watersheds. Stream permanence (i.e. the likelihood a stream will remain flowing 

throughout a given year) is often spatially (e.g. streams may have both permanent and non-permanent 

sections) and temporally variable, yet it is most often represented by static maps that classify stream 

reaches as either perennial or non-perennial (i.e. intermittent or ephemeral). For the United States 

(US), the National Hydrography Dataset (NHD; U.S. Geological Survey, National Hydrography 
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Dataset. Accessed October 1, 2019, https://www.usgs.gov/nathydro) provides the most 

comprehensive classification of perennial, intermittent, and ephemeral streams (Nadeau and Rains, 

2007). NHD is used extensively for cartography, study design, monitoring, and modeling at local, 

regional, and national extents (Hill et al., 2016; Isaak et al., 2016; Macfarlane et al., 2017; National 

Rivers and Streams Assessment, 2008-2009; Sheng et al., 2007; Stanislawski, 2009; Stoddard et al., 

2005), and such applications frequently use the NHD stream permanence classifications (i.e. NHD 

“hydrographic categories” of perennial, intermittent, and ephemeral) (Benstead and Leigh, 2012; Roy 

et al., 2009). Comparison of NHD stream permanence classifications (hereafter referred to as SPC) to 

non-NHD, in-situ streamflow observations (hereafter referred to as NNO) indicate that 

misclassification of stream class by the NHD can be an issue, particularly for headwater streams 

(Caruso and Haynes, 2011; Fritz et al., 2013; Nadeau et al., 2015; Nadeau and Rains, 2007). This 

classification inaccuracy can place limitations on studies and decisions that leverage the NHD. 

Inaccuracies deriving from cartographic methodologies associated with the NHD have been well 

documented (Caruso and Haynes, 2011; Chorley and Dale, 1972; Leopold, 1994; Nadeau and Rains, 

2007), but the influence of annual climate fluctuation on NHD SPC has received less attention 

(Nadeau et al., 2015). We assess how differences in annual climate conditions when NHD SPC were 

developed and annual climate conditions when NNO were collected may influence the accuracy of 

NHD SPC. 

NHD is a vector line network of streams in the contiguous United States (CONUS), Alaska, 

Hawaii, Guam, American Samoa, Puerto Rico, the US Virgin Islands, and the Northern Mariana 

Islands. Medium- and high-resolution versions of the NHD (NHD-MR and NHD-HR, respectively) 

are available. NHD-HR stream segments were derived from streamlines on US Geological Survey 

(USGS) 7.5-minute quadrangle (1:24,000-scale) maps (7.5-min maps), which cover most of the 

CONUS. Seven and one half minute maps were surveyed by field crews between 1881 and 2000 with 

the majority of the surveys conducted between 1955 and 1990. Streamlines on 7.5-min maps were 

created from topographic field surveys, aerial imagery, or a combination of both (Beaman, 1928; 

Drummond, 1974; Fritz et al., 2013; Mark, 1983, p. 83). NHD-MR stream segments were derived 

from USGS 1:100,000 scale maps, most of which were developed from the 7.5-min maps (Johnston 

et al., 2009). However, at the time the 1:100,000-scale maps were developed, 7.5-min maps did not 

exist for the entire CONUS. To fill in these potential data gaps, 1:62,500-scale maps that predated the 

7.5-min maps were also used to create NHD-MR (Johnston et al., 2009). Each NHD-HR streamline 

was assigned a SPC of perennial, intermittent, ephemeral, or designated as an artificial path (flowlines 

through features represented by polygons such as large rivers, reservoirs, and wetlands).  

https://www.zotero.org/google-docs/?Me9eJ9
https://www.zotero.org/google-docs/?Me9eJ9
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SPC for 7.5-min maps were assigned during topographic field surveys (usually conducted 

between April 15 and November 15), or interviews with local residents (Personal communication 

from Keven Roth, USGS National Mapping Division, to K. Hafen, November 14, 2018), between 

1881 and 2000 (Beaman, 1928). Perennial streams were defined as containing “water throughout the 

year, except for infrequent periods of severe drought”, intermittent streams as containing “water for 

only part of the year, but more than just after rainstorms and at snowmelt” and ephemeral streams as 

containing “water only in direct response to precipitation” (Guptill, 1990; NHD User’s Guide. 

Accessed February 13, 2020, https://nhd.usgs.gov/userguide.html ). SPC designations made by survey 

crews were intended to represent stream permanence conditions across a normal range of climatic 

conditions, not just the conditions observed during the survey year (Personal communication from 

Keven Roth, USGS National Mapping Division, to K. Hafen, November 14, 2018 and from Stephen 

Aichele, USGS National Geospatial Program, to K. Hafen, December 6, 2020). Locations of NHD 

streamlines were sometimes revised where aerial imagery was available, but these updates could only 

be applied to streams visible from above, which prevented updates for many headwater streams where 

riparian vegetation masked the channel or where the image resolution was too coarse to identify the 

presence or absence of water. When updates were made, it was rare to change SPC because the 

temporal resolution of aerial images was generally not adequate to provide more information than the 

original field survey (Personal communication from Keven Roth, USGS National Mapping Division, 

to A. Rea, March 30, 2020). Thus, for most small, headwater streams, NHD SPC represent conditions 

during the year (or recent past in the case of resident interviews) of the topographic field survey, or 

resident interview, and are a static classification based on observation during a specific time period. 

Topographic field surveys of 7.5-min maps spanned several decades; therefore, the annual climate 

conditions during the field survey may have affected the NHD SPC accuracy. 

Multiple studies have observed that stream permanence is a dynamic process attributed to 

changes in land use, wildfire, and climate fluctuations, especially in headwater streams (Fritz et al., 

2013; Godsey and Kirchner, 2014; Sando and Blasch, 2015). Static hydrology data products, such as 

NHD, do not always accurately represent observed variability (Fritz et al., 2013). The accuracy of 

NHD SPC can be highly variable, especially for headwater streams (Caruso, 2014; Colson et al., 

2008; Nadeau et al., 2015; O’Connor et al., 2014; Stoddard et al., 2005; Wood et al., 2009). 

Specifically, NHD-MR is likely to overestimate stream permanence in arid areas (Nadeau et al., 

2015) and NHD-HR SPC disagreed with NNO for ~50% of observed headwater streams in select 

areas of the Pacific Northwest (PNW), USA (Fritz et al., 2013; Nadeau et al., 2015). SPC accuracy 

differs considerably between some adjacent 7.5-min maps (Colson et al., 2008) with differences 

attributed to subjective cartographic methods, which resulted in variability between cartographic 
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analysts (Caruso and Haynes, 2011; Fritz et al., 2013; Nadeau et al., 2015). Differences could also be 

attributed to climatic fluctuations including variable precipitation and temperature conditions (i.e. 

drought conditions) (Cooper et al., 2018) during the years adjacent 7.5-min maps were field surveyed 

because of the broad time period over which topographic field surveys were conducted (e.g. for two 

maps that share a boundary one may have been surveyed during a wet year and the other during a dry 

year). In the PNW, NHD-HR accuracy differs spatially based on climate characteristics (Nadeau et 

al., 2015). However, the effect of conducting 7.5-min map topographic field surveys (i.e. making 

SPC) and collecting NNO under different annual climate conditions, potentially decades apart, has 

not been considered. Given the dynamic nature of stream permanence, differences in annual 

precipitation and temperature at the time of these observations may explain some of the observed 

differences between NHD SPC and NNO.  

Our objective is to demonstrate that the broad time frame over which 7.5-min maps were 

field surveyed has effects on the accuracy of NHD SPC, and that effects are related to the climatic 

conditions under which topographic field surveys were conducted. Specifically, we hypothesize that 

disagreements between NHD-HR SPC and NNO are related to differences in annual climatic 

conditions between the years when maps were surveyed and the years NNO were made. We quantify 

the effect of annual climatic differences between 7.5-min map validation years and a large (10,055 

observations) database of wet/dry NNO in the PNW (McShane et al., 2016). Along with other studies 

(Caruso, 2014; Caruso and Haynes, 2011; Chorley and Dale, 1972; Colson et al., 2008; Leopold, 

1994; Nadeau et al., 2015; Nadeau and Rains, 2007), our results help establish the limitations of static 

SPC and support inclusion of climatic variables to develop statistical and process-based models that 

dynamically estimate stream permanence (Jaeger et al., 2019; Williamson et al., 2015). 

Methods and Materials 

Study Area 

We examine two spatial extents in this study. First, at the extent of the CONUS, we show 

patterns in the spatial distribution of annual climate conditions and years during which topographic 

field surveys were conducted for 7.5-min maps. Second, at the extent of the PNW, an existing dataset 

of NNO (McShane et al., 2016) is used to assess the effect of annual climate conditions on the 

accuracy of NHD SPC. 

The PNW region, as defined by this study, is concurrent with NHD Hydrologic Unit Code 

(HUC) 17, and includes the Columbia River, its major tributaries, and coastal watersheds in Oregon 

and Washington (Figure 2.1). This region spans the majority of Idaho, Oregon, and Washington and 

includes smaller portions of California, Montana, Nevada, Utah, and Wyoming near the boundary 
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perimeter. Elevations range from sea level along coastlines of the Pacific Ocean to over 4000 m (in 

the Cascade Range). Annual precipitation ranges from 200 mm in arid regions east of the Cascade 

Mountains to over 5000 mm in the Oregon Coast Range and Olympic Peninsula (Jaeger et al., 2019). 

The region includes arid and semi-arid uplands, snow-dominated alpine zones, and temperate 

rainforests (Leibowitz et al., 2016). Physiographic and ecosystem diversity makes the PNW a good 

area to test the accuracy of NHD and the effect of annual climate on NHD classifications over a wide 

range of environments. 

Data 

7.5 Minute Quadrangle Maps 

Extents of each 7.5-min map were retrieved for the CONUS from the US Topo and Historical 

Map Collection (“USGS US Topo and Historical Topographic Map Collection”). In this dataset, the 

topographic field survey year was associated with the extent of each 7.5-min map. Topographic field 

survey year was used to identify the year NHD-HR SPC were made for stream segments within the 

boundaries of each 7.5-min map. Maps that did not have a value for topographic survey year were 

excluded from analyses. 

National Hydrography Dataset 

Both NHD-MR and NHD-HR were used for different analyses at the spatial extent of the 

PNW. NHD SPC were divided into two groups: perennial (perennial and artificial path 

classifications) and non-perennial (intermittent and ephemeral) classifications (Figure 2.1). Artificial 

paths represent flowlines through large rivers, reservoirs, ponds, wetlands, etc., and such features may 

be either perennial or non-perennial. Artificial path features were joined to the NHDArea attribute in 

the NHD database, which provides additional information about the features represented by artificial 

paths, and artificial paths associated with intermittent or ephemeral features were changed to non-

perennial.  

Non-NHD in-situ Streamflow Observations (NNO)  

NNO were collected and recorded by multiple agencies throughout headwater streams in the 

PNW between 1977 and 2016 and a large number of these observations (n=24,316) have been 

consolidated and merged into a single dataset (McShane et al., 2017). The NNO dataset was obtained 

by consolidating observations from 11 sources that included data from aquatic habitat surveys, 

channel mapping, reconnaissance surveys, and modeling studies (Jaeger et al., 2019; McShane et al., 

2017). From information provided by the data collectors, McShane et al. (2017) classified each 

observation as ‘wet’ or ‘dry’ and aligned observations to NHD-MR stream grid pixels with drainage 

areas greater than 0.09 km2. ‘Dry’ points include observations of “dry channel, no flow, intermittent, 
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and ephemeral” and ‘wet’ points include observations “such as a wet or flowing stream” (McShane et 

al., 2017). Jaeger et al. (2019) used the results of McShane et al. (2017) to statistically model stream 

permanence. 

We joined each NNO point to the appropriate NHD-MR flowline with the grid identification 

number (which represents unique, rasterized stream segments) from the NHD-MR stream grids. 

Points that were not associated with a NHD-MR grid identification number (i.e. points that occurred 

on stream segments that were not mapped during topographic field surveys) were excluded from the 

analysis. NNO points were then snapped to the nearest NHD-HR flowline. We manually inspected all 

NNO points where the nearest NHD-HR flowline was greater than 20 m from the point’s original 

coordinates (prior to snapping) to ensure points were associated with correct flowlines. Where 

available, NHD stream names were used for clarification. If the correct flowline for a given point 

could not be determined the point was excluded from analyses. Snapping points to the NHD flowlines 

assumes that the NNO coordinates accurately represent the NNO location and that the stream reach 

represented by the NNO is also represented by the NHD (i.e. the stream reach was excluded or 

omitted from the NHD). Any NNO that was farther than 100 m from the nearest NHD-HR flowline 

was excluded from the analysis. 

Wet NNO did not necessarily represent perennial streams because wet observations could 

have been made on a non-perennial stream during periods of precipitation, snowmelt, or an elevated 

water table. To help identify wet observations that may not accurately represent stream permanence 

for a given year, we plotted the number of wet and dry observations by month. The number of dry 

observations increased considerably from July to August, indicating August may be the month when 

most intermittent streams in the PNW become seasonally dry (Figure 2.2).  Across most of the PNW 

precipitation is generally the lowest during the months of July through September reducing the 

likelihood of ephemeral and intermittent streamflow events. Thus, we excluded all wet NNO that did 

not occur in August or September (last two months of a water year), or for which no month was 

recorded, from our analyses because they may not be accurate indicators of annual stream 

permanence. All dry observations were included. NNO within the extent of 7.5-min maps for which a 

topographic survey year was not recorded were also excluded from the analyses. No NHD reach 

coincided with multiple NNO. 

Metadata records for each NHD reach where a NNO occurred were checked to ensure the 

NHD SPC had not been updated after development of the topographic maps. The Strahler stream 

order (Strahler, 1952, 1957) of the reach on which each NNO was located was obtained from the 

NHD-HR attributes. Strahler stream order assigns stream reaches a value 1 to n based on position in 
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the drainage network. Segments that have no tributaries receive a stream order value of one (first 

order). A second-order stream is formed at the confluence of two first-order streams, and so on. NNO 

occurred on stream orders ranging from one to nine. All NNO on stream orders greater than seven 

were classified as ‘wet’ and did not add any information to determining stream permanence, so they 

were excluded from the analysis. In all, 10,055 NNO points (2,701 ‘dry’ and 7,354 ‘wet’) were used 

for analyses in this study (Table 1). Of the NNO, 8220 were associated with perennial NHD-HR 

reaches and 2240 were associated with non-perennial NHD-HR reaches. 

Table 2.1. Number of ‘wet’ and ‘dry’ non-NHD in situ streamflow observations (NNO) for each high-resolution 
National Hydrography Dataset (NHD-HR) stream permanence classification (SPC). 

NNO  NHD SPC  
  Perennial  Non-perennial  
Wet  6682  672  
Dry  1360  1341  
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Figure 2.1. The spatial extent of the Pacific Northwest study area showing A) stream permanence classifications 
for the High Resolution version of the National Hydrography Dataset (NHD-HR) and B) non-NHD streamflow 
observations made between 1977 and 2016. Gray, internal borders show state boundaries.  
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Figure 2.2. Non-National Hydrography Dataset streamflow observations (NNO) in the Pacific Northwest by 
month. A wet classification indicates surface water was present in the channel, a dry classification indicates 
surface water was not present in the stream channel. 

Climate Indices 

Palmer Drought Severity Index (PDSI) (Wells et al., 2004) and precipitation percentile were 

used to describe the annual climate conditions for each 7.5-min extent and each NNO. 

PDSI is a convenient drought metric because it incorporates precipitation, temperature and 

evapotranspiration to assess water availability against water demand (i.e. drought) (Palmer, 1965). 

The self-calibrated version of PDSI (used herein) overcomes issues of spatial standardization with 

local calibration to make values more comparable (Alley, 1984) and can be implemented at the extent 

of the CONUS (Wells et al., 2004). Monthly PDSI values were obtained from the Western Regional 

Climate Center (Accessed October 1, 2019, https://wrcc.dri.edu/) as 4 km grids and averaged for each 

water year (October 1 of the preceding year through September 30 of the current year) from 1896-

2016. Averages were calculated by water year because much of the precipitation in the PNW (and 

many other portions of the CONUS) accumulates as snow in October, November, and December and 

influences streamflow as it melts the following spring. The PDSI value for each 7.5-min map was 

obtained by averaging the PDSI grid cells in the map extent for the water year in which the 

topographic field survey occurred. The PDSI for each NNO was calculated as the PDSI at the 

observation location for the water year in which it was recorded. 
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Precipitation was also used as an indicator of climate conditions for 7.5-min map field survey 

years. Because precipitation varies greatly across the PNW and CONUS we standardized 

precipitation values as percentiles over the 1896-2016 water years, where a higher percentile indicates 

a wetter year (e.g. 100% indicates the water year with the most precipitation for the period of record). 

Precipitation values were acquired from the PRISM Climate Group (“PRISM Climate Group, Oregon 

State University”). Precipitation percentile for each 7.5-min map was determined by summing total 

precipitation at each grid cell for each water year (1896-2016) and calculating the percentile at each 

grid cell for each year from the mean and standard deviation of total water year precipitation. The 

percentile for each map extent was obtained by averaging the percentile of grid cells within the map 

extent for the map survey year. 

Data Analysis 

Data were analyzed at two different spatial extents, the CONUS and the PNW. At the 

CONUS extent, only data describing 7.5-min maps were used for visual analysis of the climate 

conditions during topographic field surveys. At the PNW extent, disagreements between NNO and 

NHD SPC were assessed and evaluated based on climate conditions. 

Climate during 7.5-minute Quadrangle Map Surveys in the CONUS 

We calculated and mapped PDSI and precipitation percentile for the field survey year of each 

7.5-min map in the CONUS. Five 7.5-min map extents, surveyed before 1896, were excluded because 

PDSI and precipitation data were not retrieved prior to the 1896 water year. All five of these maps 

represented regions of the State of Maine. Spatial and temporal variation in annual climate conditions 

between map validation years were visually assessed with maps of validation year, PDSI, and 

precipitation percentile (Figure 2.3). The overall distributions of validation years and annual climate 

conditions were assessed with histograms (Figure 2.3). 

Comparison of NHD and NNO in the PNW 

We identified disagreements between NHD-MR and NHD-HR SPC and NNO in the Pacific 

Northwest. NNO and NHD were determined to disagree when a wet NNO collected in August or 

September occurred on a stream reach classified as non-perennial in NHD, or a dry NNO occurred on 

a stream reach classified as perennial in NHD. We report the overall percentage of agreement 

between NNO and NHD-MR and NHD-HR SPC and the percentage of disagreements that occur on 

perennial and non-perennial NHD reaches. It is important to note that a wet NNO on a non-perennial 

NHD reach does not guarantee a disagreement, because the NNO represents a single point in time, 

thus, the stream reach may have been dry before or after the observation was made. With the same 

reasoning, a wet observation on a perennial reach does not guarantee agreement. Identifying 
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agreements and disagreements is also complicated by the NHD definition of perennial streams, which 

allows an exception for, but does not define, ‘years of extreme drought’. For analyses herein, we 

classify disagreements as defined above, with no exceptions. 

Effects of Climate Differences on Disagreement Between NHD SPC and NNO in the PNW 

The hypothesis that differences in climate conditions between topographic field survey years 

of 7.5-min maps and NNO years influence disagreement between NNO and NHD SPC was tested 

with logistic regression using the Generalized Linear Model (glm) function in R statistical software 

version 3.6.0 (R Core Team, 2019). The probability that a field observation disagreed with the 

associated NHD SPC was modeled as a function of the observation type (OT; wet or dry), PDSI 

difference (dPDSI) between the 7.5-min map field survey year and the NNO year, and Strahler stream 

order (SO). This analysis was only considered for NHD-HR stream classifications because 

topographic field survey years were only obtained for 7.5-min maps, and some regions of the NHD-

MR were based on a different set of maps (as mentioned above). Negative dPDSI values indicate a 

7.5-min map was surveyed in a drier year than a NNO and positive dPDSI values indicate the 7.5-min 

map was surveyed in a wetter year than a NNO. dPDSI values near zero indicate a small difference in 

climate conditions between 7.5-min map survey year and NNO year. As dPDSI values increase and 

decrease from zero, the magnitude of PDSI difference between map survey year and NNO year 

increase. The relation between OT and dPDSI was modeled as an interaction because it was possible 

for the effect of dPDSI to depend upon whether a NNO was wet or dry. For example, there may be a 

lower probability of disagreement for wet NNO with positive dPDSI values than for dry NNO with 

similar dPDSI values.  

To allow for potential, nonlinear effects of dPDSI (i.e. different effects when NNO were 

collected in a wetter year than NHD versus a drier year than NHD), we represented dPDSI as a spline 

(e.g. Ruprecht et al., 2016) with a knot at zero. A spline model treats dPDSI values less than zero 

(dPDSI<0) and dPDSI values greater than or equal to zero (dPDSI≥0) as separate variables, allowing 

different behavior (i.e. parameter estimates) on either side of zero. For example, this model 

parameterization allows the probability of disagreement to decrease (negative slope) as dPDSI 

increases, for values less than zero, and the probability of disagreement to increase as dPDSI 

increases (positive slope), for values greater than zero. The final logistic regression model took the 

form 

𝑂𝑂𝑑𝑑 = 𝑂𝑂𝑂𝑂 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑<0 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑≥0 + 𝑑𝑑𝑂𝑂 + (𝑂𝑂𝑂𝑂 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑<0) + (𝑂𝑂𝑂𝑂 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑≥0) + (𝑂𝑂𝑂𝑂 ∗ 𝑑𝑑𝑂𝑂) 
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where OT*dPDSI<0 and OT*dPDSI≥0 are the interaction between OT and dPDSI when dPDSI is less 

than and greater than or equal to zero, respectively, and Od is the log (natural) odds of disagreement 

between NNO and NHD SCP. Using logistic regression, a parameter value was estimated for the 

effect of each term on the right side of the equation (Table 2). The probability of disagreement (Pd) 

between NNO and NHD SCP can then be calculated as 

𝑑𝑑𝑑𝑑 =
𝑒𝑒𝑒𝑒𝑒𝑒(𝑂𝑂𝑑𝑑)

1 +  𝑒𝑒𝑒𝑒𝑒𝑒(𝑂𝑂𝑑𝑑)
 

Logistic regression model parameters were assessed for significance by p-value using the 

Wald test, where p < 0.05 (95% confidence level) indicated a statistically significant effect. Analyses 

described herein consider if disagreement between streamflow permanence observations and NHD 

SPC was affected by OT, SO and/or dPDSI, or interactions between these variables. 

Data Availability 

Data used for the analyses herein are publicly available from the ScienceBase data catalog at 

the URL https://doi.org/10.5066/P9Z6XZP0. 

Results 

Climate During 7.5-min Map Surveys in the Contiguous United States 

Seven and one half minute map field surveys in the CONUS occurred between 1881 and 

2000 and exhibited spatial and temporal climatic trends (Figure 2.3a). In general, 7.5-min maps east 

of the Mississippi River (except for Maine and New Hampshire) were surveyed in earlier years than 

western states, and the majority of surveys occurred between 1925 and 1975. Most 7.5-min maps in 

western states were surveyed between 1965 and 2000 (except for California). The temporal 

distribution of 7.5-min map topographic field survey years was approximated by a normal 

distribution, with very few surveys occurring before 1930 and the majority occurring between 1960 

and 1980. It is important to note that 7.5-min maps located relatively close together (or even adjacent 

to each other) may have been surveyed as many as 40 years apart (Figure 2.3). Thus, the spatial 

proximity of topographic maps does not equate to temporal proximity. PDSI in the CONUS during 

7.5-min map field validation year ranged from -6.2 to 7.2 and was also approximated by a normal 

distribution (Figure 2.3b). In general, topographic field surveys of 7.5-min maps in the southwestern, 

south-central, east-northeast states were conducted during periods of drought while areas of the 

northwest, upper-midwest, and southeast states were surveyed during wetter periods. Precipitation 

percentile ranged from 0.3 to 99.9 and was uniformly distributed (i.e. not normal) across all 

percentiles (Figure 2.3c). Similar to PDSI, precipitation shows wetter conditions during topographic 
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field surveys in the northwest and southeast and drier conditions in the east-northeast. Overall, 

topographic field surveys occurred across a broad spectrum of climatic conditions and multiple 7.5-

min maps adjacent or near to each other were surveyed under different annual climate conditions.     

 

Figure 2.3. A) Topographic field survey year, B) mean self-calibrated Palmer Drought Severity Index (PDSI), 
and C) precipitation percentile for 1:24,000-scale (7.5-minute quadrangle) maps in the conterminous United 
States. Topographic field survey year is the year in which stream permanence classifications (e.g. perennial, 
intermittent, ephemeral) were made by survey crews. 

Comparison of NHD and Streamflow Observations in the Pacific Northwest 

In the PNW, 80.8% of NHD-HR, and 80.2% of NHD-MR, SPC agreed with NNO. Of the  

total NNO, 13.8 and 16.2% occurred when a ‘dry’ observation fell on a perennially classified NHD 
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reach for NHD-HR and NHD-MR, respectively. A ‘wet’ (August or September) observation fell on a 

non-perennially classified NHD reach for 5.3 and 3.6% of NNO, for NHD-HR and NHD-MR (Figure 

2.4). Overall, 33% of NNO on non-perennial streams resulted in disagreements and 17% of NNO on 

perennial streams resulted in disagreements (Table 1). Disagreements between NHD-HR and NNO 

decreased as stream order increased (Figure 2.5). Disagreements were spatially distributed throughout 

the PNW, but some areas exhibited a greater density of disagreements (Figure 2.6). When 

disagreements were mapped with dPDSI, there was qualitative evidence that many disagreements, 

occurred in areas with relatively high or low dPDSI values. For example, a cluster of disagreements 

in northern Idaho appear to correlate with negative dPDSI values and disagreements along the Idaho-

Montana border appear correlated with positive dPDSI values (Figure 2.6).  

 

Figure 2.4. Agreement and disagreement between the high resolution and medium resolution versions of the 
National Hydrography Dataset (NHD-HR and NHD-MR, respectively) and non-NHD streamflow observations 
(NNO) in the Pacific Northwest during the years 1977-2016. 
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Figure 2.5. Disagreement between non-NHD streamflow observations (NNO) and High Resolution National 
Hydrography Dataset (NHD-HR) perennial/non-perennial classifications in the Pacific Northwest grouped by 
NHD-HR stream order. 
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Figure 2.6. A) Disagreement between non-NHD streamflow observations (NNO) and High Resolution National 
Hydrography Dataset (NHD-HR) perennial/non-perennial classifications and B) the difference in the self-
calibrated Palmer Drought Severity Index (PDSI) between the year the NHD stream permanence classification 
was made (i.e. the year of the topographic field survey for a 7.5-minute USGS quadrangle map) and the year 
the NNO was collected.  



22 
 

   
 

Effects of Climate on NHD-NNO Disagreement in the Pacific Northwest 

Results from logistic regression analysis indicate that disagreements between NNO and 

NHD-HR SPC increase with increasing dPDSI and decrease with increasing stream order (Table 2; 

Figure 2.7). On first-order streams, wet NNO were seven-fold more likely to disagree with NHD-HR 

SPC than dry NNO (p<0.0001), and the probability of disagreement increased as dPDSI≥0 increased 

(p<0.0001; Table 2). There was a not a significant effect of dPDSI<0 (p=0.2856). The probability that 

a dry NNO disagreed with the NHD-HR SPC increased for stream orders two (p<0.0001) through six 

(p<0.0001), with a slight decrease from stream orders six to seven (p=0.0301). This slight decrease is 

likely explained by small numbers of dry observations on larger stream orders (Figure 2.7). These 

trends can be observed in Figure 2.7, which shows decreased probability of wet NNO disagreeing 

with NHD-HR SPC as SPC were surveyed in wetter conditions (i.e. as dPDSI becomes increasingly 

positive) than NNO were collected. Conversely, Figure 2.7 shows the probability of a dry NNO 

disagreeing with NHD-HR SPC increasing as SPC were surveyed in wetter conditions than NNO. 

Interactions between OT and both dPDSI≥0 and SO are also supported (Table 2). As annual climate 

during topographic field surveys became increasingly wetter than the climate during the year of a 

NNO, the probability of a wet observation disagreeing with the NHD-HR SPC decreased. For wet 

NNO, the probability of disagreement with NHD-HR also decreased for SO greater than one (Table 

2). 
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Table 2.2. Parameter estimates for a logistic regression model to estimate the probability that a streamflow 
observation disagreed with the High Resolution National Hydrography Dataset (NHD-HR) stream permanence 
classification (perennial or non-perennial) for a given reach. Model parameters are observation type (OT; wet or 
dry), difference in Palmer Drought Severity Index (dPDSI) between the year of an observation and the year of 
the NHD topographic field survey for a reach separated by positive (dPDSI<0) and negative (dPDSI≥0) values, 
and Strahler stream order (SO; 1-7).  

Parameter  
Estimate   
(log odds)  p-value  

Intercept  -1.368  <0.0001  
OT(wet)  1.988  <0.0001  
dPDSI<0  -0.038  0.2856  
dPDSI≥0  0.171  <0.0001  
SO(2)  0.921  <0.0001  
SO(3)  1.530  <0.0001  
SO(4)  1.644  <0.0001  
SO(5)  1.867  <0.0001  
SO(6)  2.066  <0.0001  
SO(7)  1.849  0.0301  
OT(wet)*dPDSI<0  0.065  0.2803  
OT(wet)*dPDSI≥0  -0.301  <0.0001  
OT(wet)*SO(2)  -3.039  <0.0001  
OT(wet)*SO(3)  -5.106  <0.0001  
OT(wet)*SO(4)  -6.008  <0.0001  
OT(wet)*SO(5)  -5.493  <0.0001  
OT(wet)*SO(6)  -5.951  <0.0001  
OT(wet)*SO(7)  -5.572  <0.0001  
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Figure 2.7. Probability that a non-NHD streamflow observation (NNO) disagreed with a High 
Resolution National Hydrography Dataset (NHD-HR) perennial/non-perennial classification in the Pacific 
Northwest. Results shown are from a logistic regression model that includes covariates of  NNO type (wet or 
dry) and the difference in Palmer Drought Severity Index (PDSI) between the year the NHD-HR stream 
permanence classification was made (i.e. the year of the topographic field survey for a 7.5-minute USGS 
quadrangle map) and the year the NNO was made. Red and blue open circles show disagreement/agreement of 
individual NNO with NHD-HR. Red and blue lines show the modeled (logistic regression) probability of 
disagreement for dry and wet NNO, respectively.  

Discussion 

Overall, we observed approximately 20% disagreement between NNO and NHD SPC. 

Disagreement was highest on first-order streams (approximately 50%), which was similar to 

disagreement rates of other studies in the PNW (Fritz et al., 2013; Nadeau et al., 2015). We also 

observed an effect of differences in annual climate on the probability of disagreement. When field 

surveys of 7.5 min maps were conducted in a wetter year than NNO were collected, greater annual 

climate differences resulted in a greater probability of disagreement. These results indicate that 

perennial streams may be overestimated by NHD, especially when 7.5-min maps were field surveyed 

in wetter than normal years. The probability of disagreement was highest on first order (headwater) 

streams (Figure 2.5; Figure 2.7). Our observation of 45% disagreement on first order streams is 

consistent with other studies in the Pacific Northwest that observed similar (~50%) disagreement 

rates (Fritz et al., 2013; Nadeau et al., 2015).  
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Herein we only consider the effect of PDSI on disagreements between NHD SPC and NNO, 

but there are other factors that may contribute to this disagreement. On average, NNO occurred 30 

years after 7.5-min map field validation (range=11 years before to 68 years after; SD=14 years); thus, 

watershed land-use and water-use could have changed substantially between the time of topographic 

field surveys and NNO. NNO with known regulation (such as dams or diversions) upstream were 

excluded from the final dataset (McShane et al., 2017), but other flow regulations including, but not 

limited to, beaver dams, log jams, or groundwater withdrawals, all of which occur frequently in the 

PNW, may also alter streamflow patterns in some streams (Gibson and Olden, 2014; Hough-Snee et 

al., 2014; Konikow and Kendy, 2005). Considerable land-use/land-cover changes, related to logging, 

wildfire, urbanization and conversion to agriculture, have occurred throughout much of the PNW 

since 1950 and have important impacts on streamflow (Black et al., 1998). Additionally, cartographic 

methods for creating 7.5-min maps may have influenced accuracy of NHD-HR SPC. For example, 

some 7.5-min maps did not go through the entire quality control process and were released as 

‘provisional’ maps (p-maps). These p-maps were still used in the creation of NHD. None of the NNO 

within the extents of p-maps disagreed with NHD SPC in the PNW study area. Nevertheless, p-maps 

could contribute to disagreement between NHD and observations in other parts of CONUS.  

In addition, the definition used to define non-perennial and perennial streams on the 7.5-min 

maps has changed through time. The definition of perennial and intermittent streams in the original 

USGS mapping instructions (Beaman, 1928) were “one that flows throughout the year” and “one that 

is dry for a considerable time each year, say for three months or longer,” respectively. In a subsequent 

USGS report, Rowland (1955) distinguishes between perennial and intermittent water features as, 

“Intermittent streams, lakes, and ponds are those that are usually dry at least 6 months of the year. All 

others are perennial.” In another USGS report describing early efforts to digitize topographic maps, 

Guptil (1990) gives the definition of perennial and intermittent streams currently used by the NHD 

(U.S. Geological Survey, NHD User’s Guide. Accessed February 13, 2020, 

https://nhd.usgs.gov/userguide.html) as “containing water throughout the year (except for infrequent 

periods of severe drought)” and “containing water only part of the year, but more than just after 

rainstorms and at snowmelt”, respectively. Personal communication from Keven Roth (USGS 

National Mapping Division, to K. Hafen, November 14, 2018) establishes that the USGS topographic 

mapping guidelines, based on Beaman (1928), were updated through time without formal publication 

and that the current perennial/intermittent definitions were implemented in 1961. Thus, it is possible 

that different SPC definitions have created inconsistency in NHD SPC between 7.5-min maps. 

Nevertheless, regardless of the SPC definition used during topographic field surveys, NHD SPC are 

based on the observations of the survey crews. Only 3.1% (313 of 10,055) of NNO used in this study 
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occurred on 7.5-min maps that were field surveyed prior to 1961, so these inconsistencies would 

likely play a minor role in our analyses. 

The NNO dataset provides over 10,000 observations throughout the PNW but also introduces 

uncertainty due to inconsistencies in data collection methods. Inconsistent NNO collection methods 

could have led to different ‘wet’ or ‘dry’ classification on similar reaches. For example, if a stream 

was not flowing but had isolated pools it could potentially be characterized as ‘wet’ or ‘dry’ 

depending on the methodology. We do not have explicit knowledge of the methods used; thus, there 

may be methodological differences we have not accounted for in this study. Additionally, some of the 

studies that contributed observations potentially used NHD for site selection. For example, an aquatic 

species study may have used NHD to target only perennial streams. Therefore, NNO from this study 

would only give observations on streams classified as perennial by NHD, and a consequence could be 

that no NNO were made on streams classified as non-perennial by NHD. Examples like these may 

have potentially introduced sample bias into the NNO data. Some evidence of this may be seen in the 

NNO dataset as there are about 2.5 times more ‘wet’ observations than ‘dry’ observations and about 

half of the ‘dry’ observations occurred on streams classified as perennial by NHD. Nevertheless, this 

study (and previous studies, e.g. Jaeger et al., 2019) illustrates the usefulness of simple, easy to 

collect wet/dry point observations for regional studies. Standardization of data collection procedures 

would result in greater consistency between observers and potentially create opportunities for data 

collection by citizen scientists.  

Despite the inconsistencies inherent with data collected from various sources over a wide 

time span, we observed a significant effect of PDSI difference between NNO and NHD SPC on the 

disagreement between NNO and the NHD. Other studies have documented NHD accuracy across 

space and over short time periods in the PNW (Fritz et al., 2013; Nadeau et al., 2015), but have not 

considered the annual climate differences between topographic field survey years and NNO years as a 

factor affecting accuracy and have not made quantifications at the extent of the entire PNW. The 

influence of climate on disagreements between NNO and NHD provides support for the continued 

development of statistical and process-based models that dynamically estimate SPC (Jaeger et al., 

2019; Sando and Blasch, 2015; Williamson et al., 2015) as opposed to static NHD classifications. 

Additionally, practitioners are wise to exercise when using NHD SPC for decision making. This is 

especially true for perennial streams, which we found to be overestimated by NHD, particularly when 

topographic field surveys were conducted during wetter climate periods. From our analysis, NHD 

SPC are most accurate for non-perennial streams. Because NHD is widely used for a variety of 

purposes (including management and policy decisions), understanding the potential error in the NHD 
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SPC, and the factors (e.g. climate) that influence errors dynamically, are essential to properly using 

NHD within its limits.
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Chapter 3: Precision of headwater stream permanence estimates from a 

monthly water balance model in the Pacific Northwest, USA 
 

Abstract 

The presence and duration of surface water in streams has important biological and ecological 

implications. It is also the metric that determines as stream’s regulatory status in the United States. 

However, there are currently no models or products adequately describe surface water presence well 

enough for regulatory determinations. We modified the widely implemented Thornthwaite monthly 

water balance model (MWBM) with a flow threshold parameter to estimate flow permanence and 

evaluated the model’s accuracy and precision on over 1.3 million headwater streams in the United 

States’ Pacific Northwest (PNW). Stream reaches were assigned to one of eight calibration groups by 

unsupervised classification based on sensitivity to MWBM parameters. MWBM stream permanence 

estimates were benchmarked against the accuracy of National Hydrography Dataset (NHD) stream 

permanence classifications (SPC) on headwater streams, as determined by previous studies, and 

model precision was assessed for parameter sets that were at least as accurate as NHD SPC. 

Parameter sets that met benchmarks were identified for five of eight calibration regions (60% of 

streams). MWBM stream permanence estimates exhibited low precision for approximately 20% of 

headwater streams, resulting in 40% of the 1.3 million headwater stream reaches in the PNW that 

exhibited high precision and met accuracy benchmarks. Results point to the need for increased 

collection of surface water presence observations to improve calibration and assessment of stream 

permanence models. Additionally, implementation of MWBM indicates potential for process-based 

models to predict stream permanence condition with future development. 

Introduction 

In the United States, stream permanence classifications (i.e. perennial, intermittent, 

ephemeral) are a primary consideration to determine stream regulatory status under the Clean Water 

Act and are also an important indicator of environmental conditions and biodiversity (Fritz et al., 

2008; Nadeau et al., 2015; Vander Vorste et al., 2020). Currently, the National Hydrography Dataset 

(NHD) is the most comprehensive dataset describing stream permanence for the contiguous United 

States (CONUS; Nadeau and Rains, 2007). However, NHD stream permanence classifications (SPC) 

have been shown to exhibit up to 50% disagreement with in situ observations (Fritz et al., 2013; 

Nadeau et al., 2015) and the highest disagreement rates occur on headwater streams (Hafen et al., 

2020). The US Environmental Protection Agency and Army Corps of Engineers have determined that 
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NHD SPC derived decades in the past are not always adequate for regulatory determinations, and that 

more reliable SPC mapping products are required that consider dynamic changes in climate and land 

use in headwater and low stream order environments 

(https://www.epa.gov/sites/production/files/2020-01/documents/nwpr_fact_sheet_-_mapping.pdf). 

A primary reason for the uncertainty of NHD SPC is that designations originated from observations 

made by topographic survey crews throughout the 1900s (Beaman, 1928; Fritz et al., 2013; Hafen et 

al., 2020). This classification method incorporates first-hand knowledge of stream reaches but is 

limited to climatic conditions during the survey year (or recent past). Thus, climatic conditions during 

the survey year may not have represented long-term average conditions, and observations may not 

have captured the full range of variability for surface water conditions at a stream reach (Godsey and 

Kirchner, 2014; Hafen et al., 2020). Another reason for uncertainty is the SPC designations 

themselves. The definitions for perennial, intermittent, and ephemeral streams have changed through 

time, and were not given definitions that could be accurately assessed by survey crews over a short 

period of time (Beaman, 1928; Guptill, 1990; Hafen et al., 2020). For example, perennial streams 

were defined as “streams that flow continuously except in periods of extreme drought”, but extreme 

drought is not defined (Guptill, 1990). Additionally, surveys for adjacent topographic maps were 

often made multiple years apart. Thus, SPC designations for part of watershed could have been made 

under very different climate conditions than other parts of the same watershed (Hafen et al., 2020). 

Uncertainties in NHD SPC also arise from representing surface water presence, which is a 

dynamic occurrence (Godsey and Kirchner, 2014), with a static classification. Multiple efforts have 

sought to add additional context to NHD SPC by modeling streamflow for NHD stream reaches 

(McKay et al., 2012; Miller et al., 2018). Two efforts include the NHD enhanced runoff method 

(EROM), which is a unit hydrograph approach that is integrated into the NHDPlus itself (McKay et 

al., 2012), and a machine learning approach developed by the U.S. Geological Survey (Miller et al., 

2018; hereafter referred to as the “Miller data” or “Miller streamflow model”). Key to both modeling 

efforts were runoff estimates that are generated from the USGS  

Thornthwaite Monthly Water Balance Model (MWBM; McCabe and Markstrom, 2007). The MWBM 

has been implemented in multiple studies to evaluate various components of the hydrological cycle, 

water supply, and water demand for the CONUS (Bock et al., 2016, 2018; McCabe and Wolock, 

2007, 2008, 2011). While these efforts address runoff and streamflow, they do not necessarily inform 

surface water presence.  

Both EROM and the Miller streamflow models are calibrated to gauged streamflow time-

series, which is the general standard for hydrological modeling. However, results can only be 
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evaluated where continuous gaging stations exist. In the United States stream gages are strategically 

placed to primarily monitor water supply and flood risk (Hester et al., 2006). As a result of these 

priorities the majority of stream gages are located on larger-order rivers and streams, with very few 

gages in headwater catchments (DeWeber et al., 2014). It is in headwater catchments where the 

greatest uncertainty of NHD SPC is documented and where few continuous records of streamflow 

exist to inform traditional modeling efforts. As a result, performance (e.g. accuracy and uncertainty) 

of regional- and national-extent models in headwater streams is largely unknown. Assessing model 

performance in headwater streams is especially salient because more than 50% of all stream reaches 

are classified as headwaters (Lowe and Likens, 2005). 

 To increase the spatial coverage of calibration and validation data from fixed stream gages, 

some statistical and process-based models have used simple surface water presence observations 

(SWPO) to develop and evaluate stream permanence estimates (Gendaszek et al., 2020; Jaeger et al., 

2019; Jensen et al., 2017; Ward et al., 2018; Williamson et al., 2015). Surface water presence 

observations are easy to collect and represent more spatial locations than streamflow gages (Beaufort 

et al., 2019). While SWPO represent many different locations, they are often not repeated over time 

and, thus, have much lower temporal resolution than stream gage data (Beaufort et al., 2019). 

Nevertheless, SWPO have been used to develop statistical models at local (Gendaszek et al., 2020; 

Jensen et al., 2017) and regional extents (Jaeger et al., 2019; Yu et al., 2018) and process-based 

models (Ward et al., 2018, 2020; Williamson et al., 2015) at local extents where existing stream gage 

networks did not provide sufficient information to model stream permanence on headwaters and other 

small tributary streams.  

Recently, stream intermittence was assessed in Australia with a daily water balance model 

calibrated and validated with stream gage data (Yu et al., 2018, 2020). These results indicate that the 

MWBM may be useful for modeling stream permanence, especially since the MWBM can easily be 

applied at regional, continental, and even global extents. On the other hand, the structure of the 

MWBM also suggests it may not be suitable for modeling stream permanence, particularly in 

headwaters and small tributaries. Runoff estimates from the MWBM are generated at the spatial 

resolution of input climate data, usually 1-4 km (1-16 km2, depending on the data source). Thus, the 

spatial resolution of runoff estimates is coarse compared to the drainage area of headwater 

catchments, which are mostly smaller than 2 km2. Additionally, flow processes in the MWBM are 

partitioned into direct runoff (i.e. infiltration excess flow) and all other flow (e.g. saturation excess 

flow, baseflow, lateral flow). The MWBM does not explicitly represent saturation excess flow, 
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baseflow, or lateral flow, which can be important components for estimating streamflow in headwater 

streams (Fischer et al., 2015; Kosugi et al., 2006).  

 Due to the MWBM’s usefulness for large extent studies, and the ability to incorporate 

changing climate inputs (Ward et al., 2020), it is a reasonable starting place for modeling dynamic 

stream permanence at a regional extent. Our primary objective is to determine if the MWBM can 

generate dynamic SPC estimates with accuracy similar to NHD SPC (e.g. 60-65%; Fritz et al., 2013; 

Hafen et al., 2020). To accomplish this objective, we first assess the accuracy of annual stream 

permanence estimates generated from the MWBM on headwater streams to identify parameter 

combinations that perform at least as well as NHD SPC. Then, with the suitable parameter 

combinations, we calculate the precision of MWBM SPC on headwater streams throughout the 

United States’ Pacific Northwest (PNW). Information from this study will help establish how the 

MWBM can be used to assess stream permanence at large spatial extents and identify where more 

data and different modeling approaches may be necessary to improve stream permanence estimates. 

Methods 

Monthly Water Balance Model 

The MWBM has been previously implemented at global and CONUS extents. Monthly runoff 

values are generated by estimating the magnitude of hydrologic processes that supply and demand 

water. Equations governing hydrological processes are explained in detail by McCabe and Markstrom 

(2007). The basic model logic progresses as follows and is similarly explained by Bock et al. (2016).  

Model inputs are mean monthly temperature (T), total monthly precipitation (P), and soil water 

holding capacity. Monthly estimates of P and T were obtained from PRISM (~4 km) data (PRISM 

Climate Group, Oregon State University). Soil water holding capacity estimates were obtained from 

STATSGO polygons (Schwarz and Alexander, 1995). STATSGO polygons were intersected with the 

extents of PRISM grid cells to obtain the water holding capacity corresponding to the footprint of 

each PRISM grid cell. The MWBM allows precipitation to occur as rain or snow, determined by T. 

Snowfall accumulates from month to month to form a snowpack, which melts as temperatures warm. 

Rainfall can be converted to direct runoff, evapotranspiration (ET), soil moisture storage, and surplus 

water. Monthly potential evapotranspiration (PET) is determined by T and latitude per the Hamon 

equation (Hamon, 1961). When the sum of rainfall and snowmelt for a month is less than PET, actual 

evapotranspiration (AET) is the sum of rainfall, snowmelt, and the portion of water that is evaporated 

from the soil. When the sum of rainfall and snowmelt is greater than or equal to PET, AET is equal to 

PET. Water remaining after AET recharges soil water storage. Water in excess of AET and soil water 

storage becomes surplus. A specified proportion of surplus is converted to runoff each month, and the 
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remaining surplus is temporarily held in storage. Thus, water is lost through AET and total runoff is 

the sum of direct runoff and surplus runoff (Figure 3.1). Runoff was summed for each NHDPlus HR 

catchment and multiplied by catchment area to arrive at a runoff volume for each month. Runoff 

volumes were converted to mean monthly flow (volume/s). 

In addition to ET, water fluxes in the MWBM are modulated by five parameters (Table 1). Rain 

temperature (TR) is the temperature above which all precipitation falls as rain. Snow temperature 

(TS) is the temperature below which all precipitation falls as snow. When T is less than TR and 

greater than TS the proportion of rain to snow is determined by linear interpolation. Snow-melt 

coefficient (MC) is the maximum proportion of snow storage that can melt in a single month. Direct 

runoff (DR) is the proportion of precipitation and snowmelt that becomes overland runoff. Runoff 

factor (RF) determines the proportion of watershed storage that is converted to runoff each month. 

We also added precipitation factor (PF) and temperature addition (TA) parameters to adjust climate 

inputs to the MWBM. PF and TA were included in sensitivity and calibration analyses to identify the 

impact of climate inputs on MWBM performance. Descriptions, units, and value ranges of model 

parameters are presented in Table 3.1. 

To convert MWBM runoff estimates to permanent or nonpermanent stream classifications, we 

added the flow threshold parameter (FT). Streams were classified as permanent for a month (model 

time-step) when mean monthly streamflow was greater than FT and non-permanent for a month when 

mean monthly streamflow was less than FT. Flow threshold has been used in previous stream 

permanence modeling studies to identify surface water presence and absence (Yu et al., 2020; Ward 

et al., 2018). We classified a stream to be permanent for a calendar year (annual permanence) when 

the MWBM predicted a stream to be permanent for each month of the year. Streams the MWBM 

predicted to be dry at least one month of a calendar year were classified as non-permanent for the 

calendar year. We determined stream permanence at an annual time-step to align with the 

observational data available for calibration. Additionally, the current best data describing stream 

permanence for headwater streams use perennial, and non-perennial classifications which describe 

permanence at a minimum time-step of one year. 
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Figure 3.1. Diagram of the monthly water balance model. Bold parameter abbreviations correspond to the 
parameter descriptions and ranges in Table 1. Adapted from McCabe and Markstrom, 2007. 

Table 3.1. Parameters assessed in sensitivity analysis and calibration of the monthly water balance model. 

Parameter Name ID Description Units Range 
Runoff Factor RF Proportion of catchment storage that is 

converted to streamflow each month 
- 0.0 - 1.0 

Direct Runoff Factor DR Proportion of precipitation that is 
converted to streamflow without 
infiltrating or evaporating 

- 0.0 - 0.5 

Snow Temperature TS Temperature below which all 
precipitation is snow 

°C -10.0 - 2.0 

Rain Temperature TR Temperature above which all 
precipitation is rain 

°C 0.0 - 10.0 

Snow-melt Coefficient MC The maximum proportion of snow water 
equivalent that can melt in a single 
month 

- 0.0 - 1.0 

Flow Threshold FT Mean monthly flow above which a 
stream segment is considered permanent 

L/s 0.0 - 14.2 

Precipitation Factor PF Multiplier for input PRISM precipitation - 0.1 - 2.0 

Temperature Addition TA Value added to increase or decrease 
mean monthly temperature 

°C -2.0 - 2.0 

 



37 
 

   
 

Study Area 

 The study area consisted of the Pacific Northwest region of the United States (PNW; Figure 

3.2). We define the PNW as Hydrographic Region 17 of the United States as defined by Seaber et al, 

(1987). PNW is bounded on the north by the USA-Canada border, the West by the Pacific Ocean, and 

the interior by the boundaries of the Columbia River Basin, coastal watersheds, and several endorheic 

basins. Elevations in the region range from sea level in the coastal regions to over 4,000 m in the 

Cascade Mountain Range east of the Pacific Ocean. Annual precipitation ranges from 200 mm in the 

rain shadow of the Cascade Mountains to over 5,000 mm in the coastal regions. Previous studies have 

examined stream permanence in this region through field observation and modeling, resulting in a 

rich dataset of publicly available surface water presence observations that are imperative for this 

modeling study (Hafen et al., 2020; Jaeger et al., 2019, 2020; McShane et al., 2017).    

 

Figure 3.2. Location of in situ observations of surface water presence or absence on headwater streams in the 
Pacific Northwest from 1977-2019. 

Model Application 

Stream catchments and flowlines in the Pacific Northwest were represented by the High-

Resolution version of the National Hydrography Dataset with added attributes (NHDPlus HR; Moore 

et al., 2019). The MWBM was applied to headwater streams. We defined headwater streams and 

catchments as those with no upstream segments or tributaries. With the MWBM we calculated total 

monthly runoff within each headwater catchment in the PNW at the resolution of the input PRISM 

grid (~4 km; Figure 3.3). Total monthly runoff volume for headwater catchments was calculated by 

multiplying MWBM runoff depth by catchment area. When catchments intersected multiple PRISM 
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grid cells, the volume was calculated for each intersecting area and summed to obtain the total 

volume. We calculated the mean monthly flow rate (L/s) at the outlet of each headwater stream 

segment as the catchment’s total monthly runoff volume divided by the number of seconds in a given 

month. Thus, MWBM results represent runoff estimates at the outlet (most downstream point) of each 

headwater stream in the PNW. 

Monthly stream permanence was determined with the FT parameter. When mean monthly flow 

was less than FT the stream reach was classified as non-permanent for that month. When mean 

monthly flow was greater than or equal to FT the stream reach was classified as permanent for that 

month. Stream reaches that were classified as permanent every month of a calendar year were 

classified as permanent for that year. Any stream reach that was classified as non-permanent for least 

one month during a calendar year was classified as non-permanent for that year. This analysis 

grouped both intermittent and ephemeral streams into the non-permanent category. 

We implemented the MWBM as presented by Markstrom and McCabe (2007) in the Python 

programming language in order to adapt the MWBM to headwater streams and scale millions of 

model runs on a super computer. All MWBM model runs were completed on the USGS Yeti 

supercomputer (USGS Advanced Research Computing). 



39 
 

   
 

 

Figure 3.3. Catchments and streams that show the geospatial fabric to which the monthly water balance model 
was applied. The grid shows the extent of individual PRISM grid cells (~4 km) 

Observation Data 

Model calibration and precision analyses were conducted with observational data that 

described presence or absence of surface water in headwater streams. Because few stream gages exist 

on headwater streams these observations of surface water presence provide the best spatial coverage 

of headwater streams in the PNW. Observational data were primarily acquired from a dataset 

compiled as part of the Probability of Stream Permanence (PROSPER; Jaeger et al., 2019) modeling 

effort in the PNW (McShane et al., 2017). These data were supplemented with more recent 

observations collected with the FLOwPER application (Jaeger et al., 2020). Surface water presence 
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observations were made by a variety of agencies, including the Sauk-Suiattle Indian Tribe, Idaho 

Department of Environmental Quality, Oregon Department of Fish and Wildlife, US Bureau of Land 

Management, US Forest Service, USGS, and the US Environmental Protection Agency. Observations 

spanned the years 1977-2019. Each observation recorded the date (some older observations only 

specified the year) the observation was made, the geographic coordinates of the observation location, 

and the presence (wet) or absence (dry) of surface water in the observed stream channel.  

All dry observations were used to represent streams that were annually non-permanent. Only 

wet observations made in August or September were used to represent annually permanent streams. 

An observation point was assumed to represent the entire flowline (i.e. headwater stream reach). Each 

observation was joined to the nearest NHDPlus HR flowline. Observations farther than 50 m from a 

flowline were excluded from the analysis. All observations greater than 20 m from a flowline were 

manually inspected to ensure they were associated with the correct flowline. Similar methodologies 

were implemented by Hafen et al, (2020) and Jaeger et al, (2019) to identify observations for stream 

permanence assessment and modeling. In all, 2,804 observations (1,120 dry and 1,684 wet) were used 

for model calibration (Figure 3.2). Though the MWBM produces runoff and stream permanence 

estimates at a monthly time-step, we assessed the model on annual permanence because 

approximately half of the dry observations only specified the year of the observation and not the day 

and month. 

Sensitivity Analysis 

We assessed the relative sensitivity of annual stream permanence classification from the 

MWBM to each of the eight model parameters with the Fourier Amplitude Sensitivity Test (FAST) 

over the period 1977-2019. Sensitivity analysis was conducted with the SALib Python module 

(Herman and Usher, 2017). In all we tested 1,200 parameter combinations for ~1.3 million headwater 

catchments in the PNW. Parameter values were selected from uniform distributions displayed in 

Table 1. For many stream reaches, the sensitivity analysis produced not-a-number values. Upon 

inspection of the model runs we observed that most of the not-a-number results occurred on stream 

reaches where greater than 95% of simulations predicted the same outcome (i.e. permanent, non-

permanent) for all years. This indicated low sensitivity to model parameters for these stream reaches. 

To represent this sensitivity in further analysis, the sensitivity value for stream reaches where the 

initial FAST result produced not-a-number, but where greater than 99% of FAST simulations 

produced the same result, was set to 0.01. 
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Model Precision Analysis 

Parameter Regionalization 

Parameters for headwater stream reaches were regionalized by grouping reaches that 

responded similarly to changes in model parameters (e.g. Beck et al., 2016; Bock et al., 2016). We 

performed an unsupervised, K-means classification (Pedregosa et al., 2011) based on MWBM 

parameter sensitivities to assign stream reaches to calibration regions, or groups. Each headwater 

stream reach, as defined by NHDPlus HR, was classified based on its sensitivity to the eight MWBM 

parameters as calculated in the previous section. We selected the number of calibration groups by 

qualitatively balancing the K-means classification error (squared distance of each point to the class 

center) with the number of observations available for each group. The number of observations for 

each group decreased as the number of calibration groups increased. We tested the K-means 

classification for 2-15 groups and determined that eight calibration groups best minimized K-means 

classification error while simultaneously maximizing the number of observations in each group. 

Physical characteristics, parameter sensitives and number of observations for each calibration group 

are presented in the Results section. 

Parameter Set Selection 

We evaluated model accuracy for one million randomly selected (Monte Carlo) parameter 

sets from the same uniform distributions with the same ranges used for sensitivity analysis (Table 1). 

For parameter set selection, we only ran simulations for the stream reaches where observations were 

located. The accuracy of a parameter set was evaluated against the surface water presence 

observations as the sum of simulated stream permanence classifications that agreed with observations 

divided by the total number of observations. We used previous studies that quantified the accuracy of 

NHD SPC on headwater streams to range from 50-65% (e.g. Fritz et al., 2013; Hafen et al., 2020; 

Nadeau et al., 2015) as benchmarks to identify parameter sets that produced a good model ‘fit’ in 

each calibration region. Therefore, we required suitable parameter sets to have greater than 65% 

overall accuracy against all observations and greater than 60% accuracy against wet or dry 

observations individually. All parameter sets that produced suitable accuracy results in a calibration 

region were retained to assess model precision. 

Precision Analysis 

Model results were calculated for each suitable parameter set in each calibration region. 

Model precision was assessed by agreement of simulated stream permanence classifications between 

adequate parameter sets. High model precision was exhibited when all suitable parameter sets 

simulated the same permanence classification. Model confidence decreased as different parameter 
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sets predicted different permanence classifications for the same stream. We represented model 

precision as the proportion of parameter sets resulting in a permanent classification. Model precision 

values ranged from 0.0-1.0 where values of 0.0 and 1.0 indicated all parameter sets simulated non-

permanent (0.0) and permanent (1.0) classifications, respectively. A value of 0.5 indicated that half of 

the parameter sets simulated permanent and the other half simulated non-permanent, resulting in low 

model precision. 

Results 

Sensitivity Analysis 

Generally, parameter sensitivities were low for interior mountain ranges, moderate for coastal 

mountain ranges, and high on the interior plains and plateaus (Figure 3.4). Most headwater streams 

exhibited some degree of sensitivity to the RF and FT parameters. This is expected as RF is the main 

parameter controlling monthly flow rates and FT is the primary parameter controlling the model 

result (permanent or non-permanent). 
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Figure 3.4. Spatial distribution of stream permanence classification (permanent or nonpermanent) to the 
monthly water balance model parameters presented in Table 1. 

Model Precision Analysis 

Parameter Regionalization 

The K-means classification f parameter sensitivities and the number of observational data 

points available for each group best supported eight calibration groups (Table 2). Headwater streams 
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in groups 1-5 exhibited relatively high sensitivity to RF and FT and moderate sensitivity to all other 

parameters (Figure 3.5). Streams in group 6 exhibited highly variable sensitivities to FT and PF and 

low sensitivities to all other parameters. Headwater streams in groups 7-8 showed high sensitivity to 

all parameters, especially FT. Observations were not distributed equally between calibration groups 

(Table 2). The majority of observations occurred on stream reaches in calibration groups 1 and 8. 

Most headwater streams in Idaho fall in these calibration groups and the majority of observations 

were located in Idaho. Only 2.4% of headwaters stream reaches were assigned to calibration group 4, 

and only 18 observations fell in this group. 

Table 3.2. Number of wet and dry observations used to calibrate the monthly water balance model for each 
calibration group. 

ID %HW Observations 
Dry Wet 

1 26.7 425 525 
2 13.6 41 119 
3 13.2 25 145 
4 2.4 3 15 
5 17.1 98 202 
6 13.8 42 68 
7 8.2 102 100 
8 5.0 192 255 
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Figure 3.5. Sensitivity of streamflow estimates to each parameter in Table 1 for each calibration group. 

Calibration groups also exhibited geographical similarities and spatial autocorrelation (Figure 

3.6). Group 8 tended to represent mountainous regions of the interior and some mountainous, coastal 

regions. Groups 2, 3 and 5 tended to represent coastal mountains. Groups 1, 6, and 7 tended to 

represent headwater streams in the plains, foothills, and plateaus of the interior. While geographical 

similarities are apparent within calibration groups it is also apparent that headwater streams near to 

each other may exhibit different sensitivities to model parameters. 
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Figure 3.6. Spatial occurrence of stream reaches in each calibration group as determined by the parameter 
regionalization methods. 

Calibration groups displayed some physiographic differences. Drainage areas for groups 2-6 

were quite small (<0.25 km2), but these groups were separated by differences in elevation and annual 

precipitation (Figure 3.7). While there is overlap in catchment area, maximum elevation, and annual 

precipitation between the eight calibration groups, it is also apparent that the groups are somewhat 

distinct from each other. For example, Group 8 contained the largest catchments and had the greatest 

average maximum elevation. Group 4 primarily represented small, arid catchments. Groups 3 and 5 

were similar in catchment size and elevation and had only slightly different precipitation distributions 

(Figure 3.7). 
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Figure 3.7. Distributions of drainage area, maximum elevation, and total annual precipitation for headwater 
catchments in each calibration group. 

Parameter Set Selection 

We identified multiple (n = 13-92), suitable parameter sets for calibration groups 2-6 (Table 

3). Overall accuracy ranged from 65-90%. The highest accuracy was simulated for group 4, which 

only contained 18 observations. No parameter sets met accuracy constraints for calibration groups 1, 

7, and 8 (Table 3). The majority of surface water presence observations occur in 1, 7, and 8 and these 

groups represent 39.9% of headwater streams in the PNW. 
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Suitable parameters values for groups 2-6 occurred across nearly the entire distribution for 

each parameter, with some distinctions between calibration groups (Figure 3.8). The exception was 

FT, which tended to values near zero. RF values tended to be less than 0.5, except for group 5 where 

a more uniform distribution was observed between 0.3 and 1.0. TS for groups 2 and 6 tended towards 

zero, while the distribution was relatively uniform for the other calibration groups. Overall, the 

relatively uniform distributions of suitable parameters appear to indicate a high degree of equifinality 

in model parameterization.  

Table 3.3. Number and accuracy range of parameter sets for each calibration region that met accuracy 
constraints for annual and monthly simulations. 

ID n Annual Accuracy 
Dry Wet Overall 

1 0 - - - 
2 32 0.61 - 0.78 0.61 - 0.72 0.65 - 0.70 
3 13 0.60 - 0.76 0.64 - 0.74 0.65 - 0.73 
4 92 0.67 - 1.0 0.67 - 0.93 0.67 - 0.89 
5 41 0.60 - 0.74 0.61 - 0.75 0.65 - 0.71 
6 19 0.67 - 0.79 0.60 - 0.68 0.65 - 0.69 
7 0 - - - 
8 0 - - - 
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Figure 3.8. Distributions of parameter values for parameter sets that met benchmark constraints. The x-axis 
represents the sample range of parameter values (Table 1), except for FT, which is subset to 0.0-2.0 L/s to 
represent the full range of suitable values determined during calibration. 

Model Precision 

Model precision for permanent and non-permanent streams varied with climate conditions. In 

general, model precision was higher for permanent streams in wet years and for non-permanent 

streams in dry years (Figure 3.9). Through time, model precision was highest and most stable for 

calibration group 6 (Figure 3.10). Group 3 exhibited a high amount of variability year-to-year. 

Precision was higher for permanent streams in groups 2-5 than for non-permanent streams. Group 6 

showed slightly higher precision for non-permanent streams but was more balanced overall. 
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Figure 3.9. Model precision estimates for headwater streams in the Pacific Northwest during a drier than normal 
year (1987), approximately normal year (1990), wetter than normal year (1997), and the average for the 
modeled period (1977-2019). 
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Figure 3.10. Estimated model precision for each calibration group during each year of the study period, where n 
is in the number of suitable parameter sets tested for each calibration group. 

For the entire PNW region, model precision was generally higher for permanent 

classifications than non-permanent classifications. However, precision for non-permanent streams 

was less variable (Figure 3.10). Overall, the percentage of headwater streams in the PNW where 

model precision exceeded 90% ranged from 28-45%. Forty percent of headwater streams in the PNW 

did not have suitable parameterization so, each year, 15-32% of modeled stream reaches had 

questionable precision (Figure 3.11). These results only describe how well different model 

parameterizations agreed with each other and not the accuracy of each parameterization.  
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Figure 3.11. Estimated model precision summed for the entire study area (PNW) for each year of the study. The 
black line is the total percentage of headwater streams with greater than 90% precision. That is, the sum of the 
two darkest red and darkest blue areas on the plot. 

Discussion 

The primary objective of this study was to evaluate if the MWBM could generate SPC estimates 

with similar accuracy to NHD SPC, but that were annually dynamic instead of static. Previous studies 

that calibrated the MWBM to discharge data from stream gages produced good results for large 

streams over regional and national extents (e.g. Bock et al., 2016; McCabe and Wolock, 2011). These 

previous results indicated the MWBM has potential for modeling stream permanence over similar 

spatial extents for headwater streams but needed observational data to validate this possibility. 

Additionally, by adding a parameter to the MWBM we were able to generate dynamic stream 

permanence estimates for all headwater streams in the PNW. Our methods and results highlight 

important considerations for future collection of SWPO and stream permanence modeling. 

MWBM accuracy was best for calibration groups with smaller catchments. The largest 

headwater catchments in the PNW were represented by calibration groups 1, 7, and 8 and no suitable 

parameter sets were identified for any of those calibration groups (Table 3). Meanwhile, multiple 

parameter sets produced overall accuracies greater than 65% for calibration groups 2-7, when 

compared to SWPO. The maximum catchment area for groups 2-7 was about 0.5 km2. Groups 1, 7, 

and 8 all had catchments greater than 2 km2. Calibration groups 1, 7, and 8 also represented greater 

ranges of catchment area than groups 2-6. 
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Stream permanence estimates generated from the suitable parameter combination had high 

precision for approximately 40% of headwater stream reaches in the Pacific Northwest (Figure 3.11). 

Of the remaining headwater reaches, suitable parameter combinations were not found for 40% and 

approximately 20% had low, or variable, precision. Precision was more variable for calibration 

groups 2, 3, and 5. These groups exhibited higher annual precipitation, and a greater range of annual 

precipitation, than groups 4 and 6 (Figure 3.6).  

Better estimates for calibration groups that represented smaller ranges of catchment area and 

annual precipitation may indicate that more calibration groups would result in better parameterization. 

Accuracy and precision results were best for calibration groups 4 and 6, which, generally, represented 

small, arid catchments. Calibration groups 2, 3, and 5, which represented small catchments across a 

wide range of annual precipitation, had good accuracy results, but more variable precision estimates. 

The spatial scale of PRISM data (~4 km) may not account for important heterogeneity in climate 

inputs at the scale of some headwater catchments. As shown in Figure 3.3, one PRISM grid cell often 

represented temperature and precipitation for multiple headwater catchments. Because topography is 

not an input to the MWBM, catchments are represented by climatic conditions and area. Other studies 

have also indicated that PRISM data do not always capture climatic heterogeneity in mountainous 

regions (Blasch et al., 2006; Strachan and Daly, 2017). Thus, differences in catchment morphology 

could be an important factor contributing to stream permanence, and incorporation of downscaled 

climate data or other remotely sensed data may aid in stream permanence classifications in headwater 

catchments. 

Calibration groups were determined by how catchments responded to changes in model 

parameters (i.e. parameter sensitivity). Given these results, it would be useful to test a regionalization 

method based on physiographic characteristics of catchments. For example, grouping catchments 

based on a suite of factors like geology, temperature, and precipitation regime. We did not take this 

approach because, while a thorough dataset of physiographic variables has been linked to NHDPlus 

(medium resolution) catchments (Hill et al., 2016), a similar dataset does not yet exist for NHDPlus 

HR catchments, which better represent headwater streams. This could be an area of important future 

research that would aid in regional and continental hydrologic studies. Additionally, the number of 

calibration groups we considered was limited by the number of available SWPO available for 

accuracy assessment in each calibration group. Increasing the number of SWPO would make it 

possible to consider additional calibration groups that are more similar. 

Sparse SWPO may have also prevented adequate MWBM calibration for some calibration 

groups. While SWPO represented many more headwater locations than stream gages, there were no 
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repeat observations at SWPO locations. This results in a space-for-time substitution, which assumes 

observations made in different locations account for the range of conditions stream reaches 

experience through time and assumes that catchment physiography and climate variability are well 

represented. As noted above, calibration groups representing larger ranges of catchment area and total 

annual precipitation had poorer performance than those with narrower ranges, indicating catchment 

physiography and climate variability were not well represented by SWPO in each calibration group. 

Furthermore, SWPO were collected by multiple agencies for multiple uses using different 

methods. Observations were often obtained as ancillary information to other objectives and, thus, 

studies were not designed to create a robust dataset for modeling purposes. Because few SWPO were 

available we did not conduct a cross-validation accuracy assessment for each calibration group, but 

instead used multiple suitable parameter sets to assess model precision. A larger SWPO dataset would 

support and encourage more robust accuracy assessment. Indeed, other stream permanence modeling 

efforts, conducted over smaller spatial extents, were able to achieve high accuracies with fuller 

underlying datasets. This points to the need for increased collection of surface water presence data to 

support future NHD SWP modeling efforts.  

Some hydrological processes and topographic features that influence surface water presence are 

not explicitly represented by the MWBM. Specifically, baseflow is often the major contribution to 

summer streamflow, especially in mountainous regions. However, in the MWBM, baseflow is 

lumped into the RF parameter, which also includes runoff contributions from lateral flow and 

saturation excess flow. Timing of water delivery to the stream channel is different for each of these 

mechanisms. With a monthly time step it may be reasonable to lump lateral flow and saturation 

excess flow, but the MWBM may benefit from explicit representation of baseflow for estimating 

stream permanence. Additionally, there is no representation of valley-bottom width, depth, or 

topography in the MWBM. Valley-bottom geomorphology and soil characteristics control the ability 

to transport water in the subsurface. Valley-bottom representation should be an important inclusion in 

future stream permanence models.  

While the MWBM produced precise results for only 40% of headwater streams in the PNW it is 

important to consider these results in context. Ungauged headwater streams can be difficult to model 

even when abundant data are present to characterize the catchment (Wagener et al., 2004). The fact 

that the MWBM generated precise results for 40% of headwater catchments indicates the potential for 

development of regional stream permanence models. Inputs to the MWBM are precipitation, 

temperature, and soil water holding capacity. While the simple MWBM has its shortcomings for this 

application, results indicate potential for future development of simple, stream permanence models. 



55 
 

   
 

The shortcomings identified for this particular use of the MWBM highlight important considerations 

and processes to include in future modeling efforts. Development of predictive stream permanence 

models is extremely important for assessment of how changes to land cover and climate may 

influence stream regulation and stream ecology in the United States and worldwide. 

Conclusion 

The sheer number of headwater streams in the US precludes data collection on each individual 

stream. Thus, dynamic estimates of stream permanence in the headwaters will require modeling 

approaches to assess locations where data cannot be collected. We modified a MWBM by adding a 

simple flow threshold model to estimate stream permanence on over 1.3 million headwater streams in 

the PNW, then benchmarked MWBM stream permanence estimates against observed accuracies of 

NHD SPC to assess precision of the MWBM estimates. 

For three of eight calibration groups – about 40% of headwater streams – no parameter 

combinations produced stream permanence results at least as accurate as NHD SPC. Precision of 

MWBM estimates for suitable parameter sets was low on an additional 20% of headwater streams. 

Thus, the MWBM may be suitable to estimate stream permanence for approximately 40% of 

headwater streams in the PNW, given the data and methods used in this study. MWBM precision was 

best for calibration groups with narrow ranges for catchment area and total annual precipitation.   

More SWPO that are intentionally collected for modeling studies could greatly improve model 

development and calibration. The number of SWPO available for this study was much less than the 

number of modeled stream reaches. Thus, the characteristics of some stream reaches may not have 

been represented by the observational data used to calibrate the MWBM and assess its accuracy. 

Additionally, the MWBM does not explicitly represent baseflow and valley-bottom processes which 

can be important for stream permanence determinations. Future modeling efforts should consider the 

effect of these processes. 

Use of a simple MWBM with primary inputs of monthly precipitation and temperature produced 

precise results with comparable accuracy to the NHD standard for 40% of headwater streams in the 

PNW. While these results indicate the MWBM is not suitable to consistently estimate stream 

permanence for headwater streams, they do indicate potential for predictive models to produce 

reliable stream permanence estimates. Lessons learned from this modeling application will aid in 

development of future stream permanence models over large spatial extents. 
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Chapter 4: Estimating Stream Permanence with the Watershed Erosion 

Prediction Project Model: Implications for Surface Water Presence 

Modeling and Data Collection 
 

Abstract 

Process-based models have been widely useful to simulate how water quantity may be 

influenced by various drivers at local, regional, national, and global extents. Results from these 

models are valuable for water resources management but are less helpful for determining the 

regulatory status of streams, which depends on surface water presence, not quantity. Application of 

process-based models to simulate stream permanence has only occurred at local scales and models 

have been validated on data from just a handful of stream reaches. Herein, the Watershed Erosion 

Prediction Project (WEPP) hydrological model is applied to watersheds in the humid H. J. Andrews 

Experimental Watershed (HJA) and the more arid Willow and Whitehorse watersheds (WW), both in 

Oregon, to simulate daily and annual stream permanence. One thousand parameter combinations were 

tested to calibrate WEPP to observed streamflow in HJA watersheds and one-hundred parameter 

combinations were tested to calibrate WEPP to observed surface water presence time-series in WW 

watersheds. When calibrated to observed streamflow, WEPP correctly classified annual stream 

permanence for 83% of HJA stream reaches. In the WW, WEPP simulations correctly classified 63–

82% of daily stream permanence observations and 59-87% of annual stream permanence 

classifications. Inclusion of a dry-day threshold (the maximum number of days a stream reach could 

be modeled ‘dry’ but still classified as permanent for the year) improved annual accuracy in three of 

four WW watersheds. Parameter sets producing the best daily accuracies in WW did not produce 

suitable annual accuracies. Results indicate the importance of evaluating process-based models on 

both permanent and nonpermanent streams at daily and annual time scales. Additionally, results 

suggest that strategic collection of surface water presence observations will be essential for robust 

calibration of process-based models to simulate stream permanence moving forward. 

Introduction 

The majority of land surface area in any watershed drains to headwater streams (Downing et al., 

2012). Because of this, water quality regulation in headwater streams has important implications for 

land use practices and downstream water quality and quantity (Alexander et al., 2007). Throughout 

the last century, research related to water resources has focused on modeling and characterizing 

various components of water quantity in larger basins. More recently, the ecological importance of 
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water resources has received attention with respect to maintaining habitats for sensitive, threatened, 

and endangered species. Once again, the focus has been on maintaining an appropriate quantity and 

quality of water for organisms to survive. However, the policies that govern whether a stream 

receives regulatory protection (i.e. is subject to water quality standards) under the US Clean Water 

Act is determined by the presence or absence of surface water in a stream reach, not by the quantity 

of water. 

In the US, the majority of data quantifying surface water in streams comes from the USGS 

stream gage network. The primary priorities of this network are to assess water availability, flood 

risk, and climate-related trends (DeWeber et al., 2014; Hester et al., 2006). As a result, larger rivers 

are disproportionately represented, while fewer data exist on smaller, headwater streams (DeWeber et 

al., 2014). Experimental watersheds and long-term ecological research sites complement the USGS 

gage network by collecting long-term data over smaller spatial extents that are more representative of 

headwater systems. Like the USGS gages network, these experimental stations are generally designed 

to quantify surface water by monitoring streamflow magnitude at gauged locations. The type of data 

collected at stream gages, and their geographic locations, have largely influenced model development 

by determining data and spatial scales available for model validation. Of course, data collection and 

modeling are driven by the important need to forecast flooding, drought, and water availability. As a 

likely result of the more pressing need to understanding water availability, fewer data collection 

efforts and modeling studies have focused on identifying when and where surface water is present and 

the duration of surface water presence in stream channels (Hammond et al., 2020; Jaeger et al., 2019; 

Jensen et al., 2018; Williamson et al., 2015). 

The National Hydrography Dataset (NHD) is the most comprehensive dataset describing stream 

permanence in the US (Nadeau and Rains, 2007). However, NHD stream permanence classifications 

(i.e. perennial, intermittent, and ephemeral) are not well structured to represent the dynamic nature of 

streamflow presence and may exhibit error rates up to 50% on headwater streams (Fritz et al., 2013; 

Hafen et al., 2020; Nadeau et al., 2015). In the last decade, many data collection and modeling efforts 

have begun to focus on quantifying, estimating, and predicting stream permanence. 

To date (2021), most stream permanence models can be grouped into one of two general 

categories: 1) regional studies that use sparse data (in relation to the number of streams modeled) to 

make stream permanence estimates over large spatial extents (e.g. Jaeger et al., 2019; Sando and 

Blasch, 2015); and 2) local studies that intensively monitor and model streams in small watersheds 

(e.g. Jensen et al., 2017, 2018; Ward et al., 2018; Williamson et al., 2015). Models in both categories 

suffer from data-based limitations. At regional extents predictions or estimates are generated for 
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millions of stream reaches based on only a few observations (Jaeger et al., 2019; Sando and Blasch, 

2015). At local scales models are tested with data that quantitively detail only a small number of 

stream reaches (Ward et al., 2018; Williamson et al., 2015). Gendaszek et al, (2020) may be the first 

to produce results at the mesoscale (e.g. 1-10 km2) with a spatial statistical network model assessing 

stream permanence at over 200 monitored stream reaches.  

Regional and mesoscale stream permanence modeling efforts have largely used statistical 

methods to identify relationships between climatic and physiographic variables that influence the 

presence of surface water in a particular location during a specific time period (Gendaszek et al., 

2020; Jaeger et al., 2019; Sando and Blasch, 2015). These methods identify variables that influence 

stream permanence but the models are not readily adaptable to new locations and time periods. By 

contrast, implementation of physically-based models to estimate stream permanence has primarily 

occurred in a few small (<100 ha) watersheds. Theoretically, by representing the physical processes 

that govern streamflow, physically-based models could be readily applied to new locations, though 

parameterization is often also necessary. Furthermore, many hydrological models are becoming 

operationalized on cloud-based platforms making them accessible for use by land and water 

managers. While physically-based models have shown promise for representing stream permanence 

over small spatial extents, they have not been widely tested over larger extents. This is partially due to 

lack of time-series data available to adequately validate performance of simulated stream permanence 

from physically-based models over these larger extents (Jensen et al., 2018; Ward et al., 2018; 

Williamson et al., 2015). 

The purpose of this work is to assess the performance of the cloud-based version (WEPPCloud) 

of the physically-based Watershed Erosion Prediction Project (WEPP) hydrological model (Flanagan 

et al., 2001; Flanagan and Nearing, 1995) to estimate stream permanence in both humid and arid 

environments of the United States. WEPP was selected because it has shown potential to generate 

accurate streamflow estimates in ungauged basins (Brooks et al., 2016) and has been implemented to 

model hydrology in a variety of environments including the hydrological effects of land surface 

disturbances (Dun et al., 2009; Srivastava et al., 2020, 2013; Zheng et al., 2020). Stream permanence 

estimates from WEPP are validated with a combination of time-series data from sensors and human 

observations in the arid Willow and Whitehorse watersheds in the Great Basin of southeast Oregon 

and in the humid HJ Andrews Experimental Watershed in the Cascade Mountains of western Oregon 

(Gendaszek et al., 2020; Jones and Grant, 1996; Schultz et al., 2017; Ward et al., 2020). This study 

presents evaluation of a physically-based hydrological model to estimate stream permanence at the 

mesoscale. 
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Methods 

Study Areas 

Two sets watersheds in Oregon, which represent different climates, were selected for this 

watershed. The humid climate of the western Cascades was represented by eight (HJA01, HJA02, 

HJA03, HJA06, HJA07, HJA08, HJA09, HJA10) of the ten gauged watersheds in the H. J. Andrews 

Experimental Forest of northwestern Oregon (Figure 1). The HJA has a rich history of hydrological 

experimentation, research, and debate and equally rich datasets to facilitate future research (Jones and 

Grant, 1996; Thomas and Megahan, 1998; Ward et al., 2020). Streamflow for all eight watersheds has 

been continuously gauged since 1995. Drainage areas of the eight gauged watersheds range from 9 ha 

(HJA09) to 101 ha (HJA03). Despite their small size, all gauged watersheds support perennial flow at 

the gage sites, though portions of upstream channels and tributaries regularly go dry in summer 

months. Elevations of the HJA watersheds range from 400-1200 m above sea level. Annual 

precipitation in the area averages 2300 mm and mean annual temperature is 9.2 deg. C (Ward et al., 

2020). The HJA is heavily forested with Douglas fir (Pseudotsuga menziesii), western hemlock 

(Tsuga heterophylla) and western red cedar (Thuja plicata) with red alder (Alnus rubra) occupying 

open riparian areas (Frady et al., 2007; Jones and Grant, 1996). Comprehensive descriptions of HJA 

climate, morphology, logging experiments, and geology are well described by others (Dyrness, 1969; 

Jones et al., 2000; Swanson and Dyrness, 1975; Swanson and James, 1975). 
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Figure 4.1. Watersheds in the H. J. Andrews Experimental forest where data collection and modeling occurred. 

The Willow and Whitehorse watersheds (WW) in southeastern Oregon provide a stark 

climatological difference to the HJA watersheds. Four watersheds representing portions of Willow 

and Whitehorse creeks and their tributaries (WW01, WW02, WW03, WW04) were considered for 

this study (Figure 2). Watersheds were selected to be small enough for easy modeling with WEPP but 

large enough to represent as many data locations as possible (available data are described below). 

Areas of the modeled watersheds ranged from 1,594 ha (WW01) to 4,433 ha (WW03). Many WW 

streams are nonpermanent while a few maintain permanent flow each year (Schultz et al., 2017). 

Surface water presence was monitored at multiple sites in the WW watersheds from 2011-2017 as 



65 
 

   
 

part of studies assessing habitat for Lahontan cutthroat trout (Gendaszek et al., 2020; Schultz et al., 

2017). At around 400 mm, average annual precipitation in the WW is nearly 2,000 mm less than in 

the HJA. Elevation in the WW watersheds ranged from 1,600-2,400 m and mean annual air 

temperature is 8.1 deg. C. Vegetation in the area is primarily composed of sagebrush (Artemisia spp.) 

with patches of aspen (Populus tremuloides) at higher elevations and willow (Salix spp.) occurring in 

riparian areas. Comprehensive details of climate, geology, and landcover of WW are provided 

elsewhere (Dunham et al., 2003; Gendaszek et al., 2020; Schultz et al., 2017). 

 

Figure 4.2. Watersheds in the Willow-Whitehorse basin where thermistors were deployed and modeling 
occurred. 
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Streamflow Data 

 Streamflow for all eight HJA watersheds considered in this study was recorded at 15-minute 

intervals for multiple decades. Minimum, maximum, and mean daily streamflow values were 

calculated using the 15-minute time series. Based on recommendation of HJA scientists, streamflow 

data prior to the year 2000 (when the stage-discharge relationships were most recently updated) were 

not used. Streamflow data were not available for the WW watersheds.  

Surface Water Presence Data 

During the summer and autumn of 2020 observations of surface water presence were made 

on stream reaches in gauged HJA watersheds using the USGS Flow Permanence data collection 

application (FLOwPER). Locations for FLOwPER observations were determined randomly and most 

locations were observed on two different dates. However, September wildfires prevented access to 

HJA watersheds during autumn 2020. With FLOwPER, observers designate a point on a stream reach 

to have ‘continuous flow’ if surface water is present in the stream channel 10 m upstream and 

downstream of the observer’s location, ‘discontinuous flow’ if water is present but the stream channel 

also contains channel-spanning segments without surface water, or ‘no flow’ if there is no surface 

water present in the stream channel. Locations of FLOwPER observations are presented in Figure 1. 

In addition to FLOwPER observations, surface water presence was monitored using 

temperature sensors (thermistors) in HJA gauged watersheds during the summer and autumn of 2020 

(Figure 1). The stream reaches where thermistors were placed were randomly selected and 

thermistors were placed in locations on the stream reach that were expected to go dry at some point 

during the summer or autumn. Two thermistors were deployed at each site; one in the stream channel, 

to record water temperature, and one adjacent to the stream channel to record air temperature. Surface 

water presence is derived from hourly temperature time series by comparing the magnitude and 

fluctuation of the in-channel thermistor and out-of-channel thermistor (where one exists), or the in-

channel thermographs where an out-of-channel sensor was not deployed (Arismendi et al., 2017; 

Blasch et al., 2002; Gendaszek et al., 2020). 

Surface water presence in the WW watersheds was also recorded with thermistors. 

Thermistors were deployed between 2011 and 2017. Thermistors were initially deployed to evaluate 

and model temperature and surface water presence for trout habitat in the watershed (Gendaszek et 

al., 2020; Schultz et al., 2017). Surface water presence in WW watersheds was derived from 

temperature time series following the same methods used for HJA watersheds. 
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To avoid potential misclassifications of surface water presence from thermistor data due to 

frozen streams, only thermistor observations recorded between April 1 and October 31 (inclusive) 

were used in this study. Hourly thermistor time-series were converted to daily values. Any day a 

thermistor location was determined to be dry for any hour that day was classified as ‘dry’, or absent 

surface water. Data were aggregated at the spatial scale of WEPP stream reaches (described below). 

All thermistor and FLOwPER data on each stream reach for each date were combined so that if any 

observation indicated absence of surface water at any location on any day the reach was classified as 

non-permanent, or ‘dry’ on that day. Any reach that had at least one ‘dry’ observation between April 

1 and October 31 was classified as non-permanent for that year. 

No thermistor observations in HJA recorded surface water absence. However, FLOwPER 

observations on the same stream reaches as thermistors (but at different locations) recorded 

‘discontinuous flow’ or ‘no flow’ conditions on these reaches on the same dates. For the most 

accurate annual classification of stream permanence in HJA, we considered all FLOwPER and 

thermistor observations. Any stream reach where ‘discontinuous flow’ or ‘no flow’ was observed was 

classified as non-permanent for 2020. Because surface water presence time series from thermistors 

did not record any days without surface water, only annual stream permanence was considered in the 

HJA. Thermistors in the WW recorded sites which had both permanent and non-permanent surface 

water presence throughout a year. Both daily and annual stream permanence were considered for the 

WW. No FLOwPER data were collected in the WW. 

WEPP Modeling 

WEPP models were generated using the University of Idaho’s online implementation of 

WEPP, named WEPPCloud (https://wepp.cloud/weppcloud/). WEPPCloud automates much of the 

acquisition and formatting of the topographic, soil, land cover, and climate data required by WEPP to 

create the WEPP input and run files. 

To setup and run a WEPP model using WEPPCloud a user specifies the input digital elevation 

model (DEM) resolution, both 10 m and 30 m nationally available DEM products are available. This 

study used a 10 m DEM to better represent topography in small, headwater catchments. After the 

DEM resolution is selected, and a study area is located, WEPP implements the TOPAZ (Garbrecht 

and Martz, 2004) software to delineate channels. Only channels with a drainage of area of at least 3 

ha and greater than 70 m in length were modeled. The user then selects a basin pour-point, after 

which TOPAZ delineates sub-catchments and hillslopes. Land cover (from the National Land Cover 

Database, NLCD) and soil data (from the Soil Survey Geographic Database (SSURGO; Soil Survey 
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Staff) or State Soil Geographic Database (STATSGO; Schwarz and Alexander, 1995) if SSURGO is 

not available) are summarized for each hillslope. 

Climate inputs for WEPPCloud are also summarized by hillslope and can be gathered from a 

variety of sources including GRIDMET (Abatzoglou, 2013), PRISM (PRISM Climate Group, Oregon 

State University, http://prism.oregonstate.edu), and Daymet (Thornton et al., 2017). GRIDMET was 

used for this study because it was the only climate dataset available in WEPPCloud that had coverage 

for 2020 (at the time of model development), the year stream permanence data were collected in the 

HJA for this study.   

WEPPCloud allows users to alter other WEPP-specific parameters. These parameters were left 

at the default values for the initial WEPP run. After the initial run we downloaded the WEPPCloud 

project to a local machine for further parameter calibration and analysis. The watershed size of a 

WEPPCloud run is limited so servers are not overwhelmed with model requests for very large areas. 

Thus, we constrained the size and location of the four WW watersheds to be small enough to run with 

WEPPCloud while also modeling areas in the Willow and Whitehorse watersheds with the greatest 

sensor densities (Figure 2). Limiting the size of WW watersheds was also necessary to efficiently test 

multiple parameter combinations for WEPP. Individual WEPP models were established for each of 

the eight HJA watersheds and each of the four WW watersheds. Mean daily streamflow was 

generated from WEPP for the period spanning the 2000-2020 water years in HJA watersheds and the 

2010-2017 watersheds in the WW watersheds.  

WEPP Calibration 

In the HJA watersheds, each WEPP model was calibrated to observed streamflow over the 

2000-2019 water years. HJA streamflow data for the 2020 water year had not been finalized at the 

time of this study. The purpose of this study was to evaluate the accuracy of stream permanence 

classifications generated by WEPP streamflow estimates. To this end, we used the entire period of 

record for calibration to determine the accuracy of stream permanence estimates when the best 

streamflow calibration was used. Based on previous studies, and the results of initial WEPP runs, we 

identified four WEPP parameters to alter for streamflow calibration. The deep seepage coefficient 

(KS), which controls how much water recharges a deeper aquifer or leaves the watershed via lateral 

groundwater flow, and baseflow coefficient (KB), which determines the rate of the linear baseflow 

recession curve, were found to be important in a previous WEPP implementations in the northwest 

US (Brooks et al., 2016; Srivastava et al., 2020). Additionally, based on observations from 

preliminary model runs that WEPP was underestimating annual water yield and flood peak magnitude 

we also adjusted the vertical conductivity of the restrictive layer (KR), and the crop coefficient (KC), 

http://prism.oregonstate.edu/
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a multiplier of Penman-Monteith evapotranspiration, which have also been adjust by calibration in 

WEPP applications (Srivastava et al., 2020). Parameter units and ranges are presented in Table 1. 

WEPP was run 1,000 times for each HJA watershed. For each run, the set of four parameters 

was randomly selected from a uniform distribution, bounded as indicated in Table 1. Percent bias 

(PBIAS), Nash-Sutcliffe Efficiency (NSE), and NSE for the natural log of daily streamflow estimates 

(log Q), which gives a better metric for model fit during periods of low flows, were recorded for the 

results of each parameter set when compared with observed streamflow data. 

Evaluating the fit of each WEPP run based on PBIAS, NSE, and NSE (log Q), a single 

parameter set was identified to represent streamflow for each HJA watershed. To identify the best 

parameter set, all model runs with PBIAS < 25% and NSE > 0.3 were selected. From these runs the 

parameter set that produced the greatest value of NSE (log Q) was selected to represent streamflow 

for a watershed. PBIAS values < 25% and NSE values > 0.3 represent satisfactory results in many 

streamflow modeling studies (Brooks et al., 2016; Foglia et al., 2009; Moriasi et al., 2007). NSE (log 

Q) was maximized because identifying non-permanent channels is dependent upon accurate simulated 

streamflow during low flow periods. In the event no parameter combinations fit values where PBIAS 

< 25% and NSE > 0.3 the parameter set with the greatest value of NSE (log Q) was selected for 

streamflow modeling. 

WEPP calibration was conducted differently in the WW because there were no streamflow 

data available for calibration. Instead, WEPP was calibrated to best fit the daily and annual stream 

permanence observations. In essence the calibration and evaluation steps were combined for the WW 

watersheds to evaluate the performance of WEPP. Without streamflow data for calibration only the 

KB and KC parameters were adjusted for WW. Without streamflow data it is difficult to identify, 

which parameters need to be adjusted to create a good model fit. Logically, the shape of the baseflow 

recession and the amount of ET are important parameters that could influence stream permanence 

predictions. Additionally, the larger WW watersheds required much more time for WEPP to run. By 

limiting calibration to two parameter the parameter space could be represented effectively with 100 

model runs. 
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Table 4.1. WEPP parameters and their samples ranges for HJA and WW watersheds in comparison to the 
default WEPPCloud parameters. Parameter abbreviations are as follows: baseflow coefficient=KB, deep 
seepage coefficient=KS, vertical conductivity of the restrictive layer=KS, and crop coefficient=KC. 

Study Area 
KB 

days-1 

KS 

days-1 

KR 

mm hr-1 

KC 

- 

HJA 0.0 – 0.1 0.0 – 0.1 0.0 – 0.5 0.8 – 1.2 

WW 0.0 – 0.1 - - 0.8 – 1.2 

Default 0.04 0.0 144.0 0.95 

 

WEPP Evaluation 

WEPP model simulations produced estimates of average daily streamflow for each modeled 

stream reach. To match the time period of thermistor data, only WEPP streamflow estimates between 

April 1 and October 31 were used. Daily streamflow estimates were converted to wet or dry 

classifications for each day. Any stream reach where the modeled streamflow value was zero was 

classified as dry. Any stream reach where the modeled daily streamflow was greater than zero was 

classified as wet. Any stream reach that was modeled as dry for at least one day was classified as non-

permanent for the April-October period of a given year. Streams that were not modeled dry for any 

days were classified as permanent for the April-October period of a given year. Classifications were 

made for both WEPP streamflow estimates using the best parameter set (as described above) and the 

default WEPPCloud parameters (Table 1). 

As described above, no dry observations were recorded at thermistor locations in HJA 

watersheds. However, at different locations on the same reaches, FLOwPER observations recorded 

dry conditions. Any reach in the HJA where a dry condition was observed in 2020 was classified as 

non-permanent. Any reach where a dry observation was not made was classified as permanent. WEPP 

stream permanence classifications were evaluated based on their agreement with stream permanence 

classifications made from FLOwPER and thermistor observations. Agreement was determined by 

dividing the number of stream reaches that agree in classification by the total number of stream 

reaches. In total, stream permanence classifications were made for 18 stream reaches in the HJA. 

Daily and annual stream permanence classifications from WEPP streamflow estimates were 

determined for WW stream reaches in the same manner as HJA stream reaches. Because surface 

water presence and absence were both recorded at many WW thermistor sites, daily accuracy of 

WEPP wet/dry classifications was analyzed for the WW in addition to annual accuracy. Since 

observed streamflow data were not available for WW watersheds, the best WEPP parameter set was 
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identified by comparison to thermistor data. For results from each WEPP run, the accuracy of WEPP 

results for dry observations, wet observations, and all observations was assessed. This assessment was 

done for both daily surface water presence observations and annual permanent and non-permanent 

classifications. In addition to the accuracy values an adjusted accuracy value, which ranged from –1.0 

to 1.0, was calculated as 

𝐴𝐴𝑑𝑑𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑑𝑑 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑂𝑂𝑂𝑂𝑒𝑒𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − |𝑊𝑊𝑒𝑒𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑑𝑑𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴| 

Where wet accuracy is the accuracy on days thermistors recorded surface water presence (or the 

accuracy on observed permanent streams when considered annually), dry accuracy is the accuracy on 

days thermistors recorded surface water absence (or the accuracy on observed non-permanent streams 

when considered annually), and overall accuracy is the total number of days, or years, the WEPP 

classification matched the observed classification. Adjusted accuracy was used to give equal weight 

to surface water presence and absence observations (from thermistors) because overall accuracy is 

biased towards the category with more observations. For example, a site may be dry for 20 days out 

of a 200-day period. If the model predicts all 200 days to be wet the overall accuracy would be 90% 

(or 0.9) but the model would not have correctly classified any dry observations. Adjusted accuracy 

penalizes model results for over-predicting one category in relation to the other. Stream permanence 

simulations from the WEPP parameter sets that produced the highest adjusted accuracy values were 

used to assess the performance of WEPP stream permanence estimates. 

A threshold for the number of dry days (dry-day threshold) allowed before a stream reach 

was classified as non-permanent was also tested for WW watersheds. For example, with a dry-day 

threshold of zero, WEPP would need to simulate surface water to be present in a stream channel 

every day from April 1 to October 31 for a stream reach to be classified as permanent. With a dry-day 

threshold of three, a stream reach with three or fewer simulated dry days would still be classified as 

permanent. Other studies (e.g. Ward et al., 2018; Williamson et al., 2015) have implemented flow 

thresholds, where modeled flows below the threshold are classified as dry even when the model 

estimates water in a stream channel, which adjust models that overpredict the number of wet days. 

The dry-day threshold serves the opposite purpose, to adjust WEPP in the event it overpredicts too 

many streams to be annually non-permanent. Dry-day thresholds of 0-20 days were tested against all 

parameter sets and the combination of the dry-day threshold value and parameter set that produced 

the highest adjusted accuracy was selected for further analysis. 
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Results 

WEPP Calibration 

With calibrated parameters (Table 2) WEPP satisfactorily modeled streamflow in most HJA 

watersheds (Figure 3). No parameter set for HJA08 and HJA09 met both the PBIAS and NSE 

constraints of 25% and 0.3, respectively. PBIAS was quite large for both watersheds and indicated 

WEPP greatly underestimated annual water yield. This may result from the 4 km resolution of the 

GRIDMET climate data, which may not have accurately represented precipitation for the small 

watersheds. The best PBIAS values for HJA08 was -49% and for HJA09 was -42%. It was also 

apparent that WEPP underpredicted or missed flood peaks in several of the watersheds. However, the 

NSE (log Q) values indicate that WEPP satisfactorily modeled low-flow periods, which are most 

important for identifying when (or if) surface flow may cease. The receding limbs of flood peaks also 

match relatively well between observed and modeled streamflow time series. Additionally, NSE 

values were greater than 0.3 for all watersheds except HJA09 over the 2000-2019 water years, 

indicating satisfactory streamflow simulation. 
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Figure 4.3. Comparison of observed (blue) and simulated (dashed orange) streamflow in HJA watersheds. 
Percent bias (PB), Nash Sutcliffe Efficiency (NSE), and NSE calculated on the natural log of discharge values 
(log Q) represent model fits over the 2000-2019 water years. 
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Table 4.2. WEPP parameters determined by calibration to observed streamflow for ach HJA watershed. The 
default WEPP parameters are also shown for reference. KC=crop coefficient, KR=vertical conductivity of the 
restrictive layer, KS=deep seepage coefficient, and KB=baseflow recession coefficient. 

WS KC KR KS KB 

HJA01 0.912 0.206 0.0123 0.0072 

HJA02 0.934 0.083 0.0067 0.0077 

HJA03 1.029 0.180 0.0072 0.0113 

HJA06 1.048 0.027 0.0090 0.0046 

HJA07 1.091 0.111 0.0129 0.0037 

HJA08 0.810 0.049 0.0013 0.0022 

HJA09 0.946 0.074 0.0025 0.0011 

HJA10 1.006 0.074 0.0089 0.0034 

Default 0.950 144.0 0.0000 0.0400 

 

WEPP Stream Permanence Classification Accuracy 

H. J. Andrews Classification Accuracy 

With the default WEPPCloud parameters, stream permanence classifications from WEPP 

streamflow estimates were only 39% accurate (Figure 4). In the upper reaches of the larger HJA 

watersheds (HJA01, HJA02, HJ03) and in three of the smaller watersheds (HJA06, HJA08, HJA10), 

WEPP predicted permanent conditions on non-permanent streams. Additionally, WEPP predicted the 

mainstem reaches of HJA01 and HJA02 (two segments) to be non-permanent when they were 

observed to be permanent. However, based on observations from other studies (Ward et al., 2018) the 

main stem reaches of HJA01 and HJA02 go dry in some places nearly every year (Sherri Johnson and 

Steve Wondzell, personal communication). Assuming those stream segments also had dry patches in 

2020 the accuracy of the WEPPCloud default parameters would be 56%.  
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Figure 4.4. Accuracy of modeled (WEPP) permanent (P) and nonpermanent (NP) streams for each HJA 
watershed with default WEPP parameters where n is the number of modeled stream reaches in each watershed. 

The WEPP model calibrated to observed streamflow performed considerably better for 

stream permanence classification than with the default WEPPCloud parameters, resulting in 61% 

accuracy with observed stream permanence classifications (Figure 5). Most errors occurred in the 

small HJA06, HJA07, and HJA08 watersheds. Once again, the WEPP estimates classified the main 

stem reaches of HJA01 and HJA02 as non-perennial when no dry observations were made on those 

reaches in 2020. As noted above HJA scientists observe dry portions of these stream segments nearly 

every year. It is important to note that the FLOwPER observations of these stream reaches did not 

survey the entire reach, but just the conditions in the stream channel within 10 m of a point. Two 
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FLOwPER observations were made on the mainstem reach of HJA01 and one observation on each of 

the two mainstem segments of HJA02. It is possible that the FLOwPER observations were made prior 

to a portion of the stream reach drying, or on a portion of the stream reach that didn’t dry, while 

portions upstream of the observation or location point were dry. Assuming these three stream 

segments were non-permanent during 2020, as indicated by previous observations of HJA scientists, 

the accuracy of the calibrated stream permanence estimates would be 83%. 

 

Figure 4.5. Accuracy of modeled (WEPP) permanent (P) and nonpermanent (NP) streams for each HJA 
watershed with WEPP parameters calibrated to streamflow where n is the number of stream reaches modeled in 
each watershed. 
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Willow-Whitehorse Classification Accuracy 

Maximum accuracy of daily WEPP estimates differed by watershed and ranged from 70% in 

WW02 to 100% in WW04 (Figure 6). However, it was apparent that maximum accuracies were 

inflated by a greater number of wet observations. Daily overall accuracies corresponding to the 

maximum adjusted accuracy were lower, ranging from 63% in WW01 to 82% in WW04. As 

indicated by Table 3, maximizing adjusted accuracy identified parameter sets that maximized the 

accuracy for both wet and dry classifications. However, accuracy of annual (permanent and 

nonpermanent) classifications was poor for parameter sets with the best daily adjusted accuracy with 

less than 50% of permanent stream reaches being classified correctly (Table 3). The discrepancies in 

daily and annual accuracy occur primarily on permanent streams, which were modeled as non-

permanent, indicating the daily calibrations simulate too-many dry-days on permanent streams and 

indicate support for inclusion of a dry-day threshold. 
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Figure 4.6. Daily accuracy of modeled (WEPP) surface water presence with different parameter sets when 
compared with observed surface water presence at each WW watershed where n is the sum of observed days at 
all thermistor sites in a watershed. Each vertical set red, blue, and black points indicates values for a different 
parameter set. 

  



79 
 

   
 

Table 4.3. Daily and annual accuracy of the WEPP parameter sets, calibrated to daily surface water presence 
observations, with the highest adjusted accuracy value for each WW watershed. WAcc and DAcc describe the 
modeled accuracy when compared to wet and dry surface water presence observations, respectively. PAcc and 
NPAcc describe annual modeled accuracy when compared to permanent and nonpermanent locations, 
respectively. KC is the crop coefficient parameter and KB the baseflow recession coefficient parameter. 

 Daily Accuracy Annual Accuracy WEPP params 

WS Acc WAcc DAcc Acc PAcc NPAcc KC KB 

WW01 0.63 0.63 0.61 0.20 0.00 1.00 1.139 0.030 

WW02 0.66 0.65 0.66 0.67 0.07 1.00 1.076 0.052 

WW03 0.64 0.65 0.62 0.47 0.00 1.00 1.153 0.064 

WW04 0.82 0.82 0.82 0.60 0.57 1.00 1.105 0.014 

 

Maximum overall accuracy of annual (non-permanent and permanent) WEPP estimates 

ranged from 60% in WW03 to 95% in WW04. As with daily accuracies, the maximum annual 

accuracies were inflated due to a greater number of observed permanent years than non-permanent 

years (Figure 7). Overall annual accuracies corresponding to the maximum adjusted accuracy were 

lower, ranging from 56% in WW03 to 85% in WW01 (Table 4). WEPP parameters corresponding to 

the best daily adjusted accuracy (Table 3) and best annual adjusted accuracy (Table 4) were different 

for all WW watersheds. This is an important finding because it indicates that a parameterization 

designed to maximize daily accuracy may not maximize annual accuracy and the annual permanence 

classification may be incorrect. 
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Figure 4.7. Annual analysis of WEPP accuracy for all tested parameter sets in WW watersheds where n is the 
number of years with observed data summed across all thermistor locations in each watershed. 

Inclusion of the dry-day threshold was supported for three of the four WW watersheds. 

WW02 achieved its greatest annual adjusted accuracy when permanent streams were represented as 

streams with eight or fewer dry days, WW03 with three or fewer dry days, and WW04 with two or 

fewer dry days (Figure 8). WW01 achieved greatest annual adjusted accuracy with no dry-day 

threshold. Inclusion of the dry-day threshold improved accuracy only marginally for WW02 and 
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WW03 (2% and 3%, respectively). However, the dry-day threshold improved accuracy for WW04 by 

10% (Table 4). This finding is similar to other studies (Ward et al., 2018; Williamson et al., 2015) 

that determined a daily streamflow threshold was necessary to eliminate incorrectly classified dry 

observations and indicates that WEPP (and potentially other models) may require an opposing 

threshold to adjust for permanence classifications at an annual time step. 

 

Figure 4.8. Annual accuracy values for the best WEPP parameter set for each dry-day threshold value in each 
WW watershed. 
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The WEPP parameterizations that produced the best annual accuracies for WW04 stayed 

consistent with addition of the dry-day threshold. However, WW02 and WW03 parameters changed 

with inclusion of the dry day threshold. KC and KB both increased slightly for WW02 while KC had 

a slight decrease and KB a slight increase for WW03 (Table 4). 

Table 4.4. Annual WEPP accuracy (Acc) in each WW watershed (WS) with and without a dry-day threshold, 
and the corresponding values for crop coefficient (KC) and baseflow recession coefficient (KB). 

 Without Dry-day Threshold With Dry-day Threshold 

WS Acc KC KB Acc Days KC KB 

WW01 0.85 1.018 0.026 0.85 0 1.018 0.026 

WW02 0.58 0.869 0.029 0.60 8 0.913 0.030 

WW03 0.56 1.087 0.025 0.59 3 0.906 0.029 

WW04 0.77 0.828 0.018 0.87 2 0.828 0.018 

 

Analysis of daily and annual accuracies presented above indicates that high daily accuracies 

do not always result in correct permanent and non-permanent classifications for a year. Figure 9 

through Figure 12 show the annual and daily overall accuracy (unadjusted) at each WW observed 

reach for each observed year as modeled with the best annual parameter set. These results show that 

time periods and locations with high daily accuracy may still be classified incorrectly annually (e.g. 

Figure 9) while time periods and locations with low accuracy may still be classified correctly (e.g. 

Figure 10). It is important to note that the level of daily accuracy for a correct non-permanent 

classification varies. For example, a non-permanent stream reach could be dry for 10 or 100 days 

during a year. The model only needs to simulate enough dry days to be greater than the dry-day 

threshold (if one is used) to correctly simulate the annual condition. On the other hand, permanent 

stream reaches require the model to correctly simulate all wet days (if no dry-day threshold is used) to 

produce the correct annual classification. 
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Figure 4.9. Annual accuracy of permanent (P) and non-permanent (NP) classifications from the parameter set 
with the best annual accuracy for WW01. Numbers inside the grid show the corresponding daily accuracy 
(proportion) of wet and dry observations. Numbers on the Y-axis correspond the reach identifiers on which the 
thermistors are located (map). 
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Figure 4.10. Annual accuracy of permanent (P) and non-permanent (NP) classifications from the parameter set 
with the best annual accuracy for WW02. Numbers inside the grid show the corresponding daily accuracy 
(proportion) of wet and dry observations. Numbers on the Y-axis correspond the reach identifiers on which the 
thermistors are located (map). 
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Figure 4.11. Annual accuracy of permanent (P) and non-permanent (NP) classifications from the parameter set 
with the best annual accuracy for WW03. Numbers inside the grid show the corresponding daily accuracy 
(proportion) of wet and dry observations. Numbers on the Y-axis correspond the reach identifiers on which the 
thermistors are located (map). 
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Figure 4.12. Annual accuracy of permanent (P) and non-permanent (NP) classifications from the parameter set 
with the best annual accuracy for WW04. Numbers inside the grid show the corresponding daily accuracy 
(proportion) of wet and dry observations. Numbers on the Y-axis correspond the reach identifiers on which the 
thermistors are located (map). 

Discussion 

This work presents a case study of stream permanence modeling using the WEPP model in 

both a humid and an arid study area. Assessment of stream permanence classifications was performed 

at daily and annual time steps using continuously recorded values from thermistors and observations 

from human observers. Both data types have been used in previous modeling studies. Results indicate 

the importance of evaluating model simulations based on both daily and annual accuracy, assessing 

model performance on both permanent and non-permanent streams, and the need for targeted data 

collection to accurately describe the permanence condition of stream reaches. 

Previous studies that examined the utility of physically-based models to simulate stream 

permanence have focused intensive data collection efforts on a small number of nonpermanent stream 

reaches (Ward et al., 2018; Williamson et al., 2015). Data for this study represented 40 unique stream 

reaches (18 in HJA and 32 in WW) but did not describe reaches in the same detail as other studies 

have. One advantage of this approach is that both permanent and nonpermanent streams are 

represented. Without data for both permanent and nonpermanent streams model utility is uncertain 

because a single daily miscalculation on a permanent stream reach can result in an annual 

classification error. Assessment of annual permanence classification accuracy is also important to 



87 
 

   
 

temper daily accuracy assessment which can be biased from unequal occurrence of wet and dry days. 

Results also show that correct annual classifications can be modeled even with lower daily accuracies. 

In the HJA watersheds WEPP performed much better after streamflow estimates were 

calibrated to observed streamflow than with the default WEPPCloud parameterization. However, very 

few areas have the gage density of HJA, potentially making this a limited approach. Calibrated 

parameters were relatively similar between the gauged HJA watersheds but did display some 

variation. This indicates that a single parameterization based on streamflow on a larger stream reach 

may also produce suitable results. Future research could assess WEPP stream permanence estimates 

when WEPP is calibrated to streamflow on a larger stream, typical of most gage sites.  

Misclassification of two non-permanent streams, one in HJA01 and one in HJA02, point to 

the uncertainty associated with using data from point observations to make reach-scale classifications. 

The HJA misclassifications may also help explain high uncertainty of another model (the PROSPER 

regional model) in the western portions of the Pacific Northwest Region (Jaeger et al., 2019). Despite 

relatively high-density data in this area the PROSPER model predictions were largely inaccurate. A 

similar phenomenon in the data driving PROSPER, where wet observations were made on non-

permanent stream reaches without also recording dry observations, could describe these 

inconsistencies. These examples indicate that data collection for classifying stream permanence will 

be most effective when focused in areas where stream reaches are most likely to go dry. Features of 

these locations include wide valley-bottoms with deep alluvial soils where subsurface water flow 

capacity is likely high (Ward et al., 2018) or deep coarse bed sediments in sub alpine stream channels 

(Sando and Blasch, 2015). Dry observations indicate, with certainty, a stream reach was not 

permanent (for a given time period) while wet observations only serve to support the hypothesis that 

the stream is permanent but cannot confirm this hypothesis unless spatially and temporally continuous 

observations are made.  

This study implemented a unique approach by using surface water presence observations to 

calibrate WEPP in the WW watersheds where streamflow data were not available. Overall, the 

calibration produced good results in WW01 and WW04 and moderate results in WW02 and WW03 

for both daily and annual accuracy. Calibration to surface water presence observations could be useful 

for future development of physically-based streamflow models because collection of surface water 

presence/absence data are easier and less costly to acquire than continuous records of streamflow 

data. The drawback to this method, as previously mentioned, is that surface water sensors record the 

condition at a point and may not necessarily be indicative of a stream reach, the spatial scale that is 

important for regulatory determinations. Focusing data collection at locations that are more 
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representative of a stream reach (as mentioned above), along with reach scale classification from on-

the-ground surveys and remotely sensed products will help narrow this knowledge gap. The 

application of WEPP with stream permanence observations would also be advantageous to describe a 

watershed to select the optimal installation of more permanent but costly continuous hydrological or 

ecological monitoring equipment.   
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Chapter 5: Conclusion 
Surface water presence in streams is a spatially and temporally dynamic occurrence related to 

climate conditions (Godsey and Kirchner, 2014) that is not well-represented by static classifications 

(Hafen et al., 2020). Thus, incorporating climate variables into stream permanence classifications will 

be essential to generating dynamic stream permanence products. This work further establishes the 

importance of climatic variables for stream permanence classification by identifying relationships 

between NHD disagreements and climate conditions. Additionally, results from the modeling studies, 

herein, highlight the need for continued data collection and further development of data collection 

methods to quantify stream permanence at broader spatial extents with increased temporal frequency. 

Modeling efforts also speak to important practices for evaluating model errors and flow processes that 

may be important for stream permanence modeling. 

Stream permanence modeling on headwater streams using the USGS Thornthwaite Monthly 

Water Balance Model, which has been extensively implemented to simulate hydrology over large 

spatial extents with satisfactory results (Bock et al., 2016, 2018; McCabe and Wolock, 2008, 2011), 

produced mixed results. Implementation of MWBM runoff estimates to drive additional streamflow 

models linked to the National Hydrography Dataset (NHD) stream network (McKay et al., 2012; 

Miller et al., 2018; Moore et al., 2019) indicated that it may also be useful to simulate stream 

permanence at regional (and potentially larger) extents. However, application of the MWBM to 

simulate stream permanence on headwater streams in the Pacific Northwest (PNW) failed to produce 

satisfactory results on 40% of headwater streams. In total, 28-45% of headwater streams exhibited 

satisfactory model precision depending on the year. These results highlight three important 

considerations for future regional modeling.  

First, current surface water presence datasets may not be extensive enough to support 

regional modeling. The number of observations is far less than the number of modeled stream 

reaches. Even though surface water presence observations (SWPO) are often more evenly distributed 

across stream networks than streamflow gage stations, each SWPO represents only a single point in 

time and space and repeat SWPO at the same location are uncommon. Therefore, only low confidence 

can be given to a SWPO representing a stream channel as ‘wet’ because the conditions upstream, 

downstream, and in the future are unknown. This study utilized the most extensive data set of SWPO 

available in the US (at the time) with 2,804 observations on headwater streams. This dataset was not 

large enough to adequately perform error analysis (thus, model precision was considered instead) for 

the 1.3 million headwater streams in the PNW study area. Future data collection to support regional 
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models should focus on characterizing surface water presence at the stream-reach scale with multiple 

observations each year.  

Second, the MWBM’s ability to represent processes governing baseflow conditions in small 

catchments is largely unknown. Timing of runoff estimates from the MWBM are governed by a 

parameter controlling direct runoff and another that specifies the proportion that of stored water that 

is converted to lateral flow, baseflow, and saturation excess flow, which are lumped together in a 

single runoff value. As indicated by WEPP parameter values (Chapter 3) baseflow characterization 

can be important for correctly identifying no-flow periods. Altering the MWBM to explicitly 

represent additional flow processes, specifically baseflow, may improve stream permanence 

simulation accuracy. 

Third, the MWBM’s monthly time step may not provide adequate temporal resolution to 

identify nonpermanent streams. The number of days a nonpermanent stream does not contain surface 

water can vary from just a few days to the majority of a year (Beaufort et al., 2019; Jaeger et al., 

2019; Sando and Blasch, 2015; Ward et al., 2018; Williamson et al., 2015). It is possible the monthly 

MWBM simulations may not capture streamflow variation within a month well enough to identify 

months with a small number of dry days. However, this remains to be tested and will require 

additional data collection that includes repeat observations to identify the limits of the MWBM for 

stream permanence simulation. 

Implementing WEPP to simulate stream permanence for stream reaches presented results that 

add to the current body of knowledge regarding stream permanence modeling with physically-based 

models. The best parameter sets for daily simulations resulted in poor annual classifications of 

permanent and nonpermanent streams indicating that accuracy metrics from time-series data should 

be tempered by the annual outcome. Such inconsistencies arise from greater numbers of SWPO 

representing wet periods than dry periods. Using a metric like adjusted accuracy can help identify 

parameter sets or model runs to balance accuracy between the different observation categories but, as 

demonstrated in Chapter 3, can still be misleading of the accuracy for annual permanence 

classifications.  

Misclassification of permanence status based on observations in the H. J. Andrews 

watersheds highlights the need for continued development of data collection procedures and methods 

to quantify stream permanence at reach scales. Future research could focus on identifying the portions 

of stream reaches where surface water is most likely to disappear during dry months and focus 
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sampling at those locations. This would increase confidence that observations of surface water 

presence are indicators of stream permanence at reach scales. Additionally, new analytical methods 

could be developed to evaluate SWPO as probabilities instead of categories to account for uncertainty 

of how surface water presence may change at locations spatially and temporally. Probability of 

detection methods have been applied to evaluate stream permanence classifications (Beaufort et al., 

2019) and applying these methods to the input data could, at a minimum, improve uncertainty 

estimates for model outputs.   

Stream permanence modeling is currently in the exploratory phases as the utility of the 

comprehensive NHD stream permanence classifications have been questioned for regulatory purposes 

and new methods for identifying stream permanence are developed and evaluated. Models have been, 

and are being developed, but these efforts are somewhat limited by data availability and limited 

understanding of the data burden required to calibrate and validate models that can simulate stream 

permanence with the desired accuracy over desired extents. While gauged streamflow data that have 

been used for decades to support hydrological studies are useful for modeling stream permanence, 

data that are fundamentally different than streamflow time series at points are required to effectively 

assess stream permanence estimates through time and space. Current stream permanence models 

(including efforts herein) do provide important information to guide future data collection and model 

development. Results from these stream permanence studies may be useful for identifying where 

more data are needed and the spatial and temporal scales at which data collection is necessary to 

provide a calibration and validation base for improved models. Additionally, model development and 

application aids in determining processes and techniques that are required for effective stream 

permanence modeling. To date, hydrological sciences have invested substantial time and resources to 

quantifying when, where, and how much water is available for different purposes. Now it is time to 

devote more resources to focus on when and where water is present. 
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