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I Abstract

The behaviour of the atmospheric boundary layer (ABL) during weak-wind situa-
tions is still not completely understood, mainly due to the existence of so-called
submeso motions. Thus, further research on the typical phenomena during weak-wind
situations and their physical mechanisms is required. For this purpose, during the
Advanced Resolution Canopy FLow Observations experiment (ARCFLO), data were
collected at four different sites located in Oregon, USA. Those sites cover a variety of
terrain complexities and vegetation densities, especially focusing on different forest
architectures. The following work focusses on evaluating the data obtained in the
series of ARCFLO experiments and comparing the different sites.
After an introduction to the typical approaches for investigating turbulence in the
ABL and a description of the study sites and our data, a way of determining an
objective threshold velocity for the weak-wind regime is elaborated. This is done
using a scatter plot of the friction velocity u∗ in dependence of the mean wind velocity
uskal. Using a segmented linear regression with two segments, a transition point can
be found, where the mean behaviour of the friction velocity changes from nearly
independent from the mean wind velocity to a linear dependency. This threshold can
be identified for all four sites. The identified thresholds vary from uthr = 0.25 m

s at
the grassland site to uthr = 1.03 m

s most densely forested site.
Subsequently, it is investigated how the weak-wind threshold is influenced by the
landscape and vegetation. We find that a denser vegetation leads to a higher threshold
velocity. Thus, we test the hypothesis that in the weak-wind regime, the subcanopy
is inherently decoupled from the above canopy. However, this hypothesis can not be
confirmed.
In the next section, meandering is analysed. Meandering is one of the typical phe-
nomena during weak-wind situations. We develop a novel method for identifying
meandering periods using the difference between vector averages and scalar averages.
The results from this new method are compared to those from a commonly applied
method from literature. This other method makes use of the special form of the
autocorrelation function of the horizontal wind components in meandering situations.
For the detected meandering periods we analyse the typical inherent time scales by
means of the autocorrelation function as well as by using wavelet analysis. We find a
broad range of meandering time scales at all 4 sites with a preference of shorter time
scales. The average time scale during the night is slightly longer than that during
the day.
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II Zusammenfassung

Das Verhalten der atmosphärischen Grenzschicht während Schwachwindsituationen
ist bisher noch nicht vollständig verstanden. Der Grund dafür sind sogenannte, vor
allem bei Schwachwind auftretende, submesoskalige Strukturen. Daher ist es nötig,
die typischen Phänomene während Schwachwindsituationen und deren physikalische
Mechanismen weiter zu untersuchen. Dazu wurden im Rahmen des ’Advanced
Resolution Canopy FLow Observations’ Experiments (ARCFLO) an vier verschiede-
nen Standorten in Oregon, USA, Messungen durchgeführt. Diese Standorte umfassen
eine große Bandbreite an Komplexität bzgl. des Geländes und an Vegetationsdichten.
Die folgende Arbeit konzentriert sich darauf, die Daten der ARCFLO Experimente
auszuwerten und die verschiedenen Standorte zu vergleichen.
Nach einer Einführung in die typischen Ansätze zur Analyse von Turbulenz in der at-
mosphärischen Grenzschicht und einer Beschreibung der Standorte und der Messdaten
wird eine Methode entwickelt, um einen objektiven Grenzwert der Windgeschwindigkeit
für das Schwachwindregime zu bestimmen. Dazu wird ein Streudiagramm der Schub-
spannungsgeschwindigkeit u∗ in Abhängigkeit von der skalar gemittelten Wind-
geschwindigkeit ūscal erzeugt. Anschließend wird eine abschnittsweise definierte lineare
Funktion mit zwei Abschnitten an die Daten im Streudiagramm angepasst. Es kann
ein Übergangspunkt gefunden werden, wo das mittlere Verhalten der Schubspannungs-
geschwindigkeit von nahezu unabhängig von der mittleren Windgeschwindigkeit in
eine lineare Abhängigkeit übergeht. Dieser Grenzwert kann an allen vier Standorten
identifiziert werden. Die gefundenen Grenzwerte variieren zwischen uthr = 0, 25 m

s am
unbewaldeten Standort und uthr = 1, 03 m

s im dichtesten der untersuchten Wälder.
Anschließend wird untersucht, wie der Schwachwindgrenzwert von der Landschaft und
der Vegetation beeinflusst wird. Es stellt sich heraus, dass eine dichtere Vegetation
zu einer höreren Grenzgeschwindigkeit führt. Es wird die Hypothese getestet, dass
während Schwachwindsituationen der Stammraum von der Luftschicht oberhalb der
Baumkronen entkoppelt ist. Diese Hypothese kann jedoch nicht bestätigt werden.
Im nächsten Abschnitt wird das Phänomen des Mäandrierens analysiert. Mäandi-
reren is eines der Phänomene, die typischerweise während Schwachwindsituationen
auftreten. Wir entwickeln eine Methode, um Intervalle zu indentifizieren, während
denen mäandieren auftritt. Dazu von dem Unterschied zwischen einem vektoriellen
und einem skalaren Mittelwert wird Gebrauch gemacht. Die Ergebnisse dieser neuen
Methode zum Detektieren von Mäandireren werden mit einer Methode verglichen,
welche in der Literatur häufig angewendet wird. Diese zweite Methode nutzt die
spezielle Form, die die Autokorrelationsfunktion der horizontalen Windkomponenten
während Mäandriersituationen annimmt.
Für die Intervalle, für die Mäandrieren festgestellt wurde, analysieren wir die typi-
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II Zusammenfassung

scherweise auftretenden Zeitskalen mit Hilfe der Autokorrelationsfunktion sowie mit
Hilfe einer Waveletanalyse. Es zeigt sich, dass an allen vier Standorten eine große
Bandbreite an Mäandrierzeitskalen auftritt, wobei kürzere Zeitskalen bevorzugt sind.
Die mittlere nächtliche Mäandrierzeitskala ist etwas länger als die während des Tages.
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1 Introduction

The stable atmospheric boundary layer plays an important role in weather and
climate models, for this is where the exchange of energy happens (Holtslag 2006;
Holtslag et al. 2013). Also diffusion of airborne pollutants, formation of fog and
the estimation of the potential of forests to act as a carbon sink are determined by
phenomena in the stable atmospheric boundary layer (Duynkerke 1999; Acevedo et al.
2009; Vickers et al. 2012; Thomas et al. 2013; Kristensen et al. 1981). Yet, the
stable atmospheric boundary layer is still not very well understood. Particularly the
very stable weak-wind boundary layer that often develops during the night due to
radiative cooling still offers a large amount of unanswered questions (Mahrt, 2014).
In stable weak-wind situations, submesoscale motions prevail like cold air drainage,
solitons, gravity waves or two-dimensional motions like meandering (Mahrt, 2014). It
is hypothesized that submeso motions are actually always present in the atmosphere,
but only during those weak-wind cases they appear so clearly because then they are
not superimposed by other, stronger flow modes. Submeso motions are phenomena
with a typical size smaller and more short-lived than that of mesoscale motions but
bigger and more long-lived than the typical turbulent scales (Mahrt et al., 2009).
They are mostly two-dimensional, often intermittent, non-local and they neither obey
the common similarity laws nor Taylor’s hypothesis (Thomas 2011; Belušić & Mahrt
2008). Because of the failure of Taylor’s hypothesis, spatial observations collected
from a network of sensors are necessary in order to properly investigate submesoscale
motions (Thomas, 2011). Thus, considerable experimental challenges have to be met.
So far mostly only case studies exist (Mahrt et al., 2009).
The first step in studying weak-wind phenomena is of course finding a proper defini-
tion for what determines a weak-wind situation. Some authors determine all wind
speeds lower than 1.5 m

s as weak wind (Anfossi et al. 2005; Mortarini et al. 2013;
Cava et al. 2017). Others have attributed a ’low wind speed’ situation if the mean
wind speed u is less than the root-mean-square of the horizontal turbulent velocity
fluctuations σu (Deaves & Lines, 1998).
Sun et al. (2012) showed that the turbulence intensity only starts to depend linearly
on the mean flow starting from a certain minimum wind speed. This minimum
wind speed can be taken as the transition point between the strong-wind regime
and the weak-wind regime (Mahrt et al., 2015). The transition point was shown to
be site-dependent (Mahrt & Thomas, 2016) as well as height-dependent (Sun et al.,
2012).
We will use this classification scheme with the friction velocity as an indicator for the
turbulence strength following Mahrt & Thomas (2016). This way, a site-dependent
weak-wind threshold can be identified. Next we will analyse the dependence of the
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1 Introduction

weak-wind threshold on the properties of the site. We will further look if low wind
speeds are connected to a decoupling of the lower layers of the atmosphere (i.e. the
subcanopy at the forested sites) (Thomas et al., 2013). Decoupling means that no
transport of momentum or of any other scalars like e.g. CO2 happens between the
decoupled layers and the air above. As an indicator for coupling or decoupling, we
use the dependence of the standard deviation of the vertical wind component σw in
the subcanopy from the one above the canopy. A smaller slope in this dependence
should indicate a decoupled state of the subcanopy while during a coupled situation
the subcanopy turbulence should be driven by the above canopy turbulence. This
should result in a greater slope.
One of the typical submesoscale phenomena mainly present during low wind-speed
conditions is meandering. There is no exact physical definition on what is meant by
meandering, but typically it is described as a low frequency oscillation of the wind
direction over a wide variety of angles, or as sudden, horizontal wind direction shifts
(Mahrt 2007; Belušić & Mahrt 2008). Those drastic changes of wind direction lead to
a failing of all models describing dispersion in low wind speeds, as a gaussian plume
cannot be applied any longer. Thus in meandering conditions it can for example not
be predicted correctly, how a pollutant will spread.
According to Anfossi et al. (2005), meandering starts to prevail when wind speed
decreases below 1 to 2 m

s but also exists for higher wind speeds. It may have many
different causes and can be triggered by surface pressure perturbations above the
boundary layer, by pulsating cold air drainage, by solitons etc. (Mahrt, 2007). Oettl
et al. (2005) and Goulart et al. (2007) showed that meandering even is an inherent
solution of the Navier-Stokes equation in low wind speed conditions with negligible
turbulent forcing and with the flow being almost being in geostrophic balance.Thus a
specific trigger for meandering is not even necessary.
For detection of meandering, the Eulerian autocorrelation function has proven to be
useful (Anfossi et al. 2005; Mortarini et al. 2016b). This is based on the negative lobe
that the horizontal velocity component’s autocorrelation functions frequently show
during low wind speed conditions (Oettl et al., 2001). Anfossi et al. (2005) attributed
the negative lobe to the occurence of large-scale eddies with a vertical axis and found
an analytical form for this autocorrelation function. In this analytical form two
time scales are present. One of them describes the time scale of the slow horizontal
directional changes and the other one of them describes the decorrelation if the flow
due to turbulence. The ratio of those two times scales can be used for identifying
meandering situations (Mortarini et al., 2013). Unfortunately, determining those two
time scales for every interval includes considerable computational effort. Furthermore,
with more wave modes being present simultaneously, the fit of the autocorrelation
function, which is necessary for deciding whether or not an interval is meandering,
fails (Cava et al., 2017).
We will develop another method for identifying meandering that is more straight-
forward and where a complete timeseries can be analysed at once without having
been split into single intervals first. The new method makes use of the constancy,
which quantifies how symmetric the wind directions are distributed over the full

2



range of 360◦ during a specific interval (Singer 1967; Mahrt 2007). Comparison of
the new method to the autocorrelation method shows promising results for clearly
meandering intervals. The new method performs better than the autocorrelation
method for detecting intervals with a superposition of different time scales. However,
with the new method, great care has to be taken to avoid misinterpreting turbulent
fluctuations for meandering.
For analysing the time scales of the meandering, either the time scale the autocorre-
lation functions can be used or wavelet analysis can be applied (Thomas & Foken
2005; Cava et al. 2017). We use both methods and compare the results. Again it
becomes clear that in case of a superposition of different scales, the results from the
autocorrelation function are not very reliable. However, if one scale clearly dominates,
both methods agree very well.
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2 Data and site descriptions

We analyse data from sensor networks at four different sites with different vegetation
density and terrain complexity. In this chapter we will first describe the sensors
and the data they provide for the analysis and then the study sites. For the site
descriptions, we start at the site with the least dense vegetation and then go on to
the more and more densely vegetated ones.

2.1 Measuring devices and data

On each of the study sites, a network of 12 SUbcanopy Sonic ANemometer (SUSAN)
units was deployed over a period of one to two months in late summer. Each SUSAN
unit consists of one sonic anemometer (Model 81000VRE, R.M. Young, Traverse City,
MI, USA) and one Vaisala HMP Thermohygrometer (models 155 and 45c) (Drake
et al., 2012a). The SUSAN units will be called SUSAN A1 to A4, B1 to B4 and C1
to C4. All sensors heights will be given in height above ground.

Figure 2.1: Photo of a SUSAN unit
at the Botany and Plant Pathology site.
The sonic anemometer is attached to
the right and the thermohygrometer
to the left side of the metal crossbar.

Measured parameters
time stamp t

wind velocity us
wind velocity vs
wind velocity ws

sonic temperature Ts
temperature T

vapour pressure e

Table 2.1: List of the parameters
measured by a SUSAN unit

A picture of a SUSAN unit is shown in figure 2.1. Both measurement devices are
attached to a cross bar (thermohygrometer left, sonic anemometer right). The sonic
anemometer reports three wind velocity components us, vs and ws and the sonic
temperature Ts, while the thermohygrometer gives back the temperature T and

4



2.1 Measuring devices and data

the vapour pressure e (see tab. 2.1). For measuring the wind velocity, the sonic
anemometer sends ultrasonic pulses back and forth between its transducers and
measures the transit time of the pulses. The difference in the transit times for the
opposite directed pulses depends on the velocity of the air in the path between the
transducers.
The wind velocity along the transducer axis u12 is given by

u12 =
d

2

(
1

t12
− 1

t21

)
(2.1)

where d is the distance between the transducers. t12 and t21 are the transit times of the
ultrasonic pulse in opposite directions (Aubinet et al., 2012). As there are three pairs
of transducers at the sonic anemometers of the SUSAN units, a three-dimensional
wind speed can be calculated if the orientation of the three acoustic paths is known.
The resolution for the wind speed measurements is 0.01 m

s in a range from 0 to 40 m
s .

The accuracy is su = ±1%± 0.05 m
s . For the wind direction, the resolution is 0.1◦

with an accuracy of sφ = ±2◦ (Manual, 2017).
Apart from that, the sonic anemometer can also measure the speed of sound c by

c =
d

2

(
1

t12
+

1

t21

)
(2.2)

The speed of sound depends on the temperature and the water vapour content of the
air by

c2 = 402 · T
(

1 + 0.32
e

p

)
= 402 · Ts (2.3)

with the actual air temperature T , water vapour pressure e and pressure p (Kaimal
& Businger, 1963). Ts is the sonic temperature which is output by the anemometer.
The sonic temperature is approximately equal to the virtual temperature Tv ≈ Ts.
The virtual temperature is the temperature that dry air would have, if its density and
pressure were the same as that of the regarded moist air. The virtual temperature is
used e.g. for calculating the buoyancy of an air parcel. The resolution of the sonic
temperature is 0.01 ◦C with an accuracy of sTs = ±2 ◦C (Manual, 2017).
The thermohygrometer uses a Pt100 resistance sensor for the temperature measure-
ment and a capacitive thin film polymer sensor for measuring the relative humid-
ity RH. The accuracy of the thermohygrometer at measuring the temperature is
sT = ±(0.226 ◦C −0.0028T ), the accuracy for the relative humidity is sRH = ±1 %
for RH ≤ 90 % and sRH = 1.7 % for strong humidity 90 % < RH ≤ 100 % (Vaisala,
2012). From the relative humidity and the temperature, the water vapour pressure e
is calculated by the data logger according to Lowe (1977).
The data is output with a frequency of f = 20 Hz for the three forested sites
(chap. 2.3 - 2.5) while for the Botany and Plant Pathology site (chap. 2.2) the output
frequency is fBPP = 10 Hz. The response time of the thermohygrometer however is
Tresponse = 60 s for a response of 90 % (Vaisala, 2012). The data is stored in hourly
files on a permanent storage archive at the btgmm6 -server.
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2 Data and site descriptions

2.2 Botany and Plant Pathology site

The only unforested site of our analysis is the Botany and Plant Pathology site (BPP).
This site is located in the Willamette river valley, 3 km east of Corvallis, Oregon,
USA at 67 m above sea level (44.57◦N, 123.24◦W). The only slightly undulating
landscape around this site is mainly used by agriculture and thus covered by a mix
of orchards, hedges, crops and a few small buildings (Zeeman et al., 2015). The main
study site is situated on grassland within a shallow depression that is about 20 m
across, 50 m long and 1-2 m deep (Mahrt & Thomas, 2016). At the main site, 8
SUSAN stations (SUSAN A1 to A4 and SUSAN C1 to C4) were deployed during
a period from 23 August to 14 October 2011. In addition to that, 2 further sonic
anemometers (METEK USA-1) were deployed at the main site (model USA-1, Metek

C2, 3.2 m 

A1, 12 m

 C4,  1 m C1, 7.5 m
Max, 3.2 m 
Moritz, 0.8 m 

A3, 1 m

C3, 1 m

A2, 1 m

A4, 1 m

6.1 m 6.1 m

12.5 m

6.5 m

6.1 m 6.1 m

10 m

9 m

N

S

tower

Figure 2.2: Locations of the 10 sensors (8 SUSANs and 2 extra METEK sonic
anemometers at the main site at BPP (Drake et al., 2012b).

GmbH, Elmshorn, Germany), which are called Max and Moritz (fig. 2.2). Other
instruments were deployed at the site as well but we will only analyse data from the
SUSAN units and the two additional sonics Max and Moritz. The measurement area
is about 38 m long and 12 m wide and the longitudinal axis has an azimuth of 6◦.
The sensors are arranged on tripods in a ground network at one meter height above
ground (A2-A4, C3, C4). Additionally there is a tower with four sonic anemometers
up to a height of hA1 = 12 m for profile measurements and one sensor at hC2 = 3.2 m
above the sensor A2 (see fig. 2.2). The distances between the single sensors can
be learned for the picture at the right in figure 2.2, where the sensor locations are
marked with small crosses.
Apart from the main site, there is an additional smaller site at a distance of about
1 km to the north-north-east which is called the Moritz site. Also the Moritz site
is situated on grassland. To the north of this secondary site runs a small river with
dense shrubs at the banks. On the other sides, there is the same mix of scattered
trees and grassland as at the main site.
At the Moritz site, the remaining four SUSAN units (SUSAN B1-B4) are deployed
with slightly bigger distances between the individual sensors than at the main site.
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2.2 Botany and Plant Pathology site

B4, 0.9 m

(Moritz SODAR)

B2, 0.9 m

Top: B3, 6 m
Bottom: B1, 1 m

81.5 m

74.4 m
25.5 mtower

azimuth 267 °

azimuth 82 °
azimuth 318 °

Figure 2.3: Spatial distribution of the four remaining SUSAN units at BPP that
were deployed at the Moritz site in a distance of 1 km from the main site (Drake
et al., 2012b).

Figure 2.4: Satellite image of the surround-
ing landscape at the BPP main site.

Two of the SUSAN units are deployed on a small tower in a height of hB1 = 1 m and
hB3 = 6 m above ground (fig. 2.3). The others are situated on tripods at a height of
hB2 = hB4 = 0.9 m. Thus, there is data from a ground network at about 1 m height
above ground from the Moritz site at BPP, too.
Figure 2.5 shows the typical behaviour of the wind velocity and the static stability
at the BPP main site at two different heights during the course of the day as well
as a distribution of wind directions. For calculating the plots, wind velocities and
temperatures and wind directions from the Bmmflux program are used. This program
computes, amongst others, a time series of the wind velocity, temperature and wind
direction with a temporal resolution of one minute from the original 10 Hz data (see
chap. 3).
For the wind velocity, the ensemble-averaged value as well as the standard deviation
is calculated for each minute during a period of one month (i.e. the average velocity
and standard deviation for all the minutes between 00:00 and 00:01 during one month,
the average velocity and standard deviation for all the minutes between 00:01 and
00:02, etc.). Taking a longer period than one month does not make sense due to the
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Figure 2.5: Top left: Diurnal course of the wind speed at 0.8 m (, bottom, Moritz
sensor) and at 12 m (, top, A1 sensor). Top right: Diurnal course of the static
stability measured by the temperature difference between 0.8 m and 3 m (, bottom,
Moritz and Max sensor) and between 7.5 m and 12 m(, top, C1 and A1 sensor).
Bottom left: Distribution of wind velocities and wind directions at 0.8 m height
(Moritz sensor). Bottom right: Distribution of wind velocities and wind directions at
12 m (A1 sensor).

annual course, as this only increases the standard deviation but changes nothing on
the general course of the graph except for a constant offset (not shown).
The diurnal course calculated this way is shown in the top left plot of figure 2.5 for
the Moritz sensor a t 0.8 m and the A1 sensor at 12 m height above ground. For
visual clarity, only two points per hour are depicted. The standard deviations during
the depicted minutes is indicated by a grey or blue background, respectively. As
expected, the wind speed at the top sensor is higher than the one at the bottom sensor
throughout the day. The speed at the bottom is lower due to the closer proximity
to the ground which slows down the flow because of the surface drag. Furthermore,
wind speeds are higher during the day than during the night for both sensors. This
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2.2 Botany and Plant Pathology site

is reasonable as during the night there is no forcing due to the solar radiation. The
basic form of the wind speed’s diurnal course however is the same for both heights.
At the top sensor, the average wind speed during the day goes up to 3 m

s and only
rarely reaches beyond 4 m

s . At night, the average wind speed at the top sensor is
slightly higher than 1 m

s . For the bottom sensor, wind speeds during the night are
rarely higher than 1 m

s while the average wind speed during the day is around 1.5 m
s .

In literature, situations with wind speeds lower than 1.5 to 2 m
s are frequently called

weak-wind situations (Anfossi et al. 2005; Mortarini et al. 2013). It is thus evident
from figure 2.5 that the BPP site is perfectly fit for analysing weak-wind situations
on open grassland sites.
For the diurnal course of the static stability, the difference between the potential
sonic temperatures of two sensors on top of each other is used.

∆θs = θtop − θbottom (2.4)

The sonic potential temperature can be calculated from the sonic temperature by

θs = Ts

(
p0

p

) R
cp

(2.5)

with the gas constant of air R and the specific heat capacity at constant pressure
cp. The sonic temperature Ts is given by the sonic anemometers (see chap.2.1). The
potential temperature is the temperature an air parcel of pressure p had if it was
adiabatically compressed to the reference pressure p0, which is the pressure at sea level.
The sonic temperature then takes into account the effect of different humidities on
the buoyancy. This rescaled measure of temperature is used so that the temperature
from air parcels at different heights and with different humidities can be compared.
For ∆θs > 0, the density of the air at greater height is smaller than at lower height,
which corresponds to a statically stable stratification and vice versa.
Figure 2.5 shows the diurnal course of the potential sonic temperature difference
between the Moritz sensor (hMoritz = 0.8 m) and the Max sensor (hMax = 3 m) as
well as between the C1 sensor (hC1 = 7.5 m) and the A1 sensor (hA1 = 12 m). As
expected, statically stable situations prevail at night because of the radiative cooling
that happens at the ground. During the day stratification is always unstable because
also during the day, the radiative transfer happens right at the ground. This is also
the reason, for the larger diurnal variations at the bottom sensors (i.e. closer to the
ground where the transfer happens) compared to the sensors located aloft.
The two bottom plots of figure 2.5 show the distribution of wind directions for the
Moritz sensor (hMoritz = 0.8 m) at the left and the A1 sensor (hA1 = 12 m) at the
right. The length of the bars in the circular histogram represents the frequency of
the single wind directions with each group spanning an angle of 10◦. Additionally,
the two plots show very roughly the distribution of wind velocities. This is done by
dividing the bars of the different wind directions into up to 6 differently coloured
sections. The different colours indicate different intervals of wind velocities. From
the right one of the two wind roses one can thus for example conclude that in about
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2 Data and site descriptions

1.5% of all cases, the wind comes from the north with a wind velocity less than 1 m
s .

All in all, the probability of the wind coming directly from the north for this sensor
is slightly more than 4.5%.
Just like the diurnal course of the wind velocity at the two sensors, also the wind
roses show that wind speeds at the A1 sensor are generally higher than at the Moritz
sensor. Wind speeds higher than 4 m

s never occur at the Moritz sensor and wind
speeds higher than 2 m

s only occur for northerly or southerly winds. This corresopnds
also to the preferred wind directions. Winds from the east or the west, occur less
frequently and generally have speeds less than 1 m

s . This might be caused by the
shallow depression in which the sensors are located, which channels the flow.
At the upper sensor, the preference of northerly or southerly winds is less pronounced
because this sensor is situated above the shallow depression. Instead, there is
an additional wind direction that occurs very frequently from the west-northwest
(φ = 240◦). This indicates quite frequently happening directional shear of the wind.
Nevertheless, also for the upper sensor, winds from the east or the west are on the
whole lower than the ones from north or south.

2.3 Metolius Ponderosa Pine site

The Metolius Ponderosa Pine site (MP) is located on the east of the Cascade
Mountains near Sisters, Oregon, USA at an elevation of 1253 m above sea level
(44.451◦N, 121.558◦W). The site is covered by a sparse ponderosa pine forest with
a tree density of approximately 325 trees ha−1 and a very low leaf area index of
LAI ≈ 2.8 m2

m2 (Irvine et al., 2008). The canopy extends from 10 m to 16 m above
ground. The understorey is sparse and consists of few 1 m tall shrubs. Because of
the sparse tree density, understorey as well as forest floor can be reached directly
by sunlight during the day and are open to the sky at night which results in a large
diurnal cycle of stability of the air within the subcanopy (Vickers et al., 2009). The
MP site is part of the AmeriFlux network (US-Me2).
The sensor network is located at a flat saddle which is about 500 m wide. The
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which is shown for the sake of completeness.
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Figure 2.7: Top left: Diurnal course of the wind speed for the MP site at 1 m
height (, bottom, C2 sensor, within subcanopy) and at 30.7 m height (, top, B1
sensor, above canopy). Top right: Diurnal course of the static stability measured
by the temperature difference between 1 m and 3 m (, bottom, C1 and A1 sensor)
and between 16.8 m and 30.7 m height (, top, B2 and B1 sensor). Bottom left:
Distribution of wind velocities and wind directions at 1 m height (C2 sensor). Bottom
right: Distribution of wind velocities and wind directions at 30.7 m height (B1 sensor).

surrounding topography however is very anisotropic, rising to the northwest, west
and southeast, flat to the southwest and east and falling to the north, south and
northeast (Vickers et al., 2012).
Also at the MP site, there is a ground network of sensors at 1 m height above ground
arranged approximately in a rectangle (SUSAN C sensors, see fig. 2.6). The SUSAN
A sensors are located exactly above the C sensors and form a second network at a
height of 3 m. The SUSAN B sensors are all placed on a tower which is situated on
the eastern side of the rectangle. Their heights above ground are hB1 = 30.65 m ,
hB2 = 16.75 m, hB3 = 5.8 m and hB4 = 0.125 m. Thus, the B4 sensor measures the
flow directly above the ground, the B3 sensor in the middle of the clear bole space,
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2 Data and site descriptions

the B2 sensor at the top of the canopy and the B1 sensor about 14 m above the
canopy top.
The measurements at the MP site were conducted in the period from 25 June to 5
August 2014.
The diurnal courses of the wind velocity as well as static stability and the wind
roses shown in figure 2.7 were produced as described in chapter 2.2. For the diurnal
course of the wind speed, data are used from the C2 sensor ( hC2 = 1 m) for the
ground network and from the B1 sensor ( hB1 = 30.7 m) for the above canopy. Large
differences in the flow statistics between the C2 sensor and the B1 sensor become
evident. The B1 sensor shows a clear diurnal cycle with the maximum wind velocities
in the early afternoon. The average diurnal cycle goes up to around 3.5 m

s but the
standard deviation is quite large so that wind speeds up to nearly 5 m

s may happen.
During the night, wind velocities are around 2 m

s and rarely fall below 1 m
s . Thus,

wind velocities at the high B1 sensor at MP are higher than the wind speeds of the
upper sensor at the BPP site, especially during the night.
At the ground network however, wind speeds are generally very weak. Within the
range of the standard deviation even the wind velocities during the afternoon never
exceed 1 m

s . With the axis range necessary for showing the diurnal cycle of the upper
sensor, a maximum of the wind speed at the C2 sensor during the day cannot even
be seen due to its small amplitude. Actually there is a small maximum around noon,
albeit not a very pronounced one. All in all, at the MP site, the upper sensor shows a
very clear diurnal cycle with a strong maximum while the wind speeds at the ground
network sensor stay very low all the time so that the cycle is not very distinct.
The reason for this different behaviour compared to the BPP site is mainly the
presence of a canopy between the two sensors used for the analysis, which acts as a
barrier and a momentum sink. Additionally, the distance between the upper and the
lower sensor is much bigger at the MP site than at BPP.
The presence of the canopy is also responsible for a difference in the diurnal course
of the stabilities at the MP site compared to BPP. As at BPP, both, within the
subcanopy and above the subcanopy, stable stratification prevails at night while
unstable stratification can be found during the day. However, at MP, the diurnal
cycle of the ground network is much less pronounced than the one above the canopy.
This is caused by the exchange of energy partly happening within the canopy and
by the canopy slightly acting as a insulator despite its sparseness. The behaviour
described here can be observed independent of which subcanopy sensors are taken for
determining the subcanopy stability. For the plot above, sensors C1 and A1 are used.
For the above canopy, sensors B2 and B1 are used as these are the two highest ones.
The wind roses at the bottom of figure 2.11 indicate a preference for winds from the
west at the sensor C2 within the subcanopy. This presence can also be found at the
other subcanopy sensors, even if it is somewhat less distinct at the C4 sensor (not
shown). Above the canopy (sensor B1), the preferred direction is slightly shifted to
the south with an additional peak for winds from the north. Thus, also at MP some
directional shear can be found during most of the times. Within the subcanopy winds
rarely get higher than 0.5 m

s and are thus much lower than the winds at the ground
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2.4 H. J. Andrews Experimental Forest site

network of the BPP site. Above the canopy it is remarkable that the strongest winds
are associated with south-westerly wind directions, which also corresponds to the
preferred wind direction. This is probably caused by a channelling of the flow due to
the surrounding topography (falling to the northeast and flat to the southwest).

2.4 H. J. Andrews Experimental Forest site

The third study site lies within the HJ Andrews Experimental Forest (HJA). The
HJA is a Long Term Ecological Research site and is located on the western slope of
the Cascade Mountains in Oregon, USA. Elevations in the HJA range from 412 m
above sea level to 1627 m above sea level within an area of 6400 ha (Daly et al.,
2010). The site is distributed over Watershed 1, which is a steep basin ranging from
400 m to 900 m above sea level with slopes nearly up to 40◦ (see left plot, fig. 2.8).
At the bottom of Watershed 1, there is a big reservoir. In this study, HJA is the
site with the most extreme topography. We expect this to lead to a strong nocturnal
drainage flow when synoptic forcing is absent (Drake et al., 2012a). The basin was
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Figure 2.8: Left : Topographic map of Watershed 1 in the HJA (taken from Drake
et al. (2012a)) The coloured lines indicate the height above sea level from 400 m
(blue) to 900 m (dark red); Right : Spatial distribution of the sensor network; The
blue line indicates the valley bottom.

logged in the 1960’s and has since then regrown a dense canopy mainly composed
of Douglas Fir with a canopy height ranging from hc = 19 m at the steep slopes
to hc = 28 m at the valley bottom. There is also a dense understorey composed
of rododendron, salal and Oregon grape with a height of approximately 1 m and a
mid-storey that e.g. contains big-leaf maple. The overall plant area index ranges
from PAI = 2.9 m2

m2 to PAI = 10.4 m2

m2 (Thomas et al., 2015) and is approximately
PAI ≈ 4 m2

m2 on average.
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Figure 2.9: Top left: Diurnal course of the wind speed at 2 m height (, bottom,
A3 sensor, within subcanopy) and at 38 m height (, top, WS1top sensor, above
canopy). Top right: Diurnal course of the static stability measured by the temperature
difference between 4 m and 15.8 m height (, bottom, WS1sub and A2 sensor) and
between 15.8 m and 38 m height (, top, A2 and WS1top sensor). Bottom left:
Distribution of wind velocities and wind directions at 2 m height (A3 sensor). Bottom
right: Distribution of wind velocities and wind directions at 38 m height (WS1top
sensor).

At HJA, the sensors are arranged in three groups mostly along the valley floor.
The valley floor is illustrated by the blue line in figure 2.8. At this site, the ground
network is located at 2 m height because of the dense understorey, which reaches up
to 1 m height.
Starting at the reservoir and moving up the watershed, the first group consists of the
SUSAN A sensors. Sensors A1-A3 are arranged along the valley floor while sensor
A4 measures the flow on a small clearing at the north-western slope. Sensor A2 is
located on the WS1 tower at the bottom of the canopy in a height of hA2 = 15.8 m.
On the WS1 tower, there are 2 additional sonic anemometers. The lower one (CSAT
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2.4 H. J. Andrews Experimental Forest site

3, Campbell Scientific, Logan, UT, USA) is called WS1sub and is located within
the subcanopy at a height of hWS1sub = 4 m. The higher one (R2, Gill Instruments
Ltd., Lymington, UK) is called WS1top and is fixed above the canopy at a height of
hWS1top = 38 m.
The second group is composed of the SUSAN B sensors, which are all part of the
ground network at 2 m height. Sensors B1-B3 form a cross-section of the valley, with
B1 at the north-western slope, B2 at the valley bottom and B3 at the south-eastern
slope. B4 is located a bit upstream of this cross-section at the valley bottom.
The last group consists of the SUSAN C sensors and is located even farther up in the
region of the bifurcation of the valley. Sensors C1 and C2 are both fixed on a tower
right at the bifurcation while sensor C3 is in the northern and C4 in the southern
branch.
The measurement period at HJA is from 14 July to 17 September 2012. In the first
month however there are a lot of gaps in the data of the SUSAN C sensors due to
problems with the power supply. Continuous data are available for SUSAN C starting
from 14 August 2012.
At HJA, within the subcanopy as well as above the canopy, weak winds around
u = 0.5 m

s prevail during the night (fig. 2.9, top left plot). They are probably mainly
determined by cold air drainage down the valley. During the day, wind speeds get
much higher, both within the subcanopy (sensor A3) and above the canopy (sensor
WS1_Top). In the diurnal course of the WS1_Top sensor, an additional small peak
can be seen in the wind speed at around 7 AM, which is not present in the diurnal
course of the subcanopy sensor. The time of occurence of this small bump coincides
approximately with the time of sunrise. Drake et al. (2012a) also note that additional
peak in the wind speed at HJA around sunrise that is present in the above canopy
data, but not in the subcanopy data. They attribute it to a speedup of the cold air
drainage flow or some larger scale mountain breeze. According to them, the speedup
lasts until around 9:30-10 AM, when the directional variability of the wind starts to
increase. This increase in directional variability during the day can be attributed to
strong local heating, as this can induce a up valley breeze.
The diurnal course of the static stability (top right plot, fig. 2.9) within the subcanopy
is calculated from the WS1_Sub sensor at hWS1_Sub = 4 m and the A2 sensor at
hA2 = 15.8 m. The one above canopy is calculated from A2 and WS1_Top at
hWS1_Top = 38 m. In the subcanopy, the nights are clearly dominated by neutral
stratification. This is caused by the cold air pool that lies within the valley during
the nights. During the day, stratification in the subcanopy at the bottom of the valley
becomes mostly stable. This is probably cause by the dense forest, as a big part of
the exchange of energy happens within the canopy. Only little of the sunlight can
actually reach and heat up the ground.
The diurnal course of the stability above the canopy looks quite peculiar, probably
because the lower one of the two sensors from which is was calculated lies within the
canopy instead of above. During the night, stratification is slightly unstable. This
might indicate that the well-mixed cold air pool that renders the subcanopy neutral
during the night does not reach up until above the canopy. Towards the morning,
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stratification becomes more and more neutral until around 7 AM. This indicates that
by morning, the cold air pool starts to grow up to this level. At the same time as the
peak in the wind speed above canopy can be seen (around 7 AM), the stratification
becomes suddenly unstable. Due to the temporal correlation of this drop in stability
to the increase in wind speed we can assume that it is caused by the same larger scale
mountain breeze as the peak in the wind speed. At the time when the small peak in
the wind speed disappears and the larger diurnal peak in the wind speed develops,
also the stratification gets more and more neutral again and stays neutral throughout
the day. However, there is a large variability to the stratification during the day.
Because of this and also due to the lower one of the two sensors for calculating the
stability being within the canopy, the course of the above-canopy static stability
during the day should not be overinterpreted.
The wind rose of a sensor within the subcanopy (A3 sensor, fig. 2.9, bottom left plot)
shows a strongly bidirectional distribution. This corresponds to the wind going either
up or down the valley. The wind rose thus represents the orientation of the valley
near the observed sensor. For the sensor above the canopy, still a strong preference
of the upvalley/downvalley direction can be recognized. It is however not as strong
as within the subcanopy, possibly because it is more easily influenced by large-scale
forcing.

2.5 Mary’s River Douglas Fir site

The site with the densest forest is the Mary’s River Douglas Fir site (MF). It is
located in the coast range of Oregon (44.646◦ N, 123.551◦ W) at a height of 310 m
above sea level. Like MP, this site is also part of the AmeriFlux Network (US-Fir).
The site is surrounded by moderately complex, slightly sloped terrain with a flat
saddle in the north-east at a distance of approximately 600 m.
The canopy is extremely dense with a plant area index of PAI = 9.4 m2

m2 and a mean
canopy height of hc = 28 m. The relatively sparse understorey consists mainly of
Salal and has a plant height of approximately 0.8 m. Between the understorey and
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Figure 2.11: Top left: Diurnal course of the wind speed at 2 m height (, bottom, C1
sensor, within subcanopy) and at 38.6 m height (, top, B1 sensor, above canopy). Top
right: Diurnal course of the static stability measured by the temperature difference
between 2 m and 14.4 m height (, bottom, B3/C3 and B2 sensor) and between
26.4 m and 38.6 m(, top, B4 and B1 sensor). Bottom left: Distribution of wind
velocities and wind directions at 2 m height (C1 sensor). Bottom right: Distribution
of wind velocities and wind directions at 38.6 m height (B1 sensor).

the canopy, there is a clear bole space which ranges approximately from 1 m to 15 m
agl.
Due to the understorey, also at MF, the ground network is at 2 m height. It consists
of the SUSAN C sensors which are arranged in a rectangle (side length around 50 m)
and the B3 sensor in de middle of this rectangle (see fig. 2.10). The rest of the
SUSAN B sensors is mounted on a tower which is located on the southern side of the
rectangle. The heights of the sensors at the tower are hB1 = 38.6 m, hB2 = 14.4 m
and hB4 = 26.4 m. Thus, in addition to the ground network, there is one sensor at
the lower end of the canopy, one sensor at the upper end of the canopy and one sensor
about 10 m above the canopy. The SUSAN A sensors were not operational at the
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MF site due to a lightning strike. The measurement period at the MF site is from 20
September to 2 November 2013.
At the MF site, we expect a different stability behaviour compared to the open MP or
BPP sites: Due to the dense canopy, radiative cooling happens mainly in the crown
space. The stratification during the day should be more stable than the one during
the night. On some days, stratification in the subcanopy might even be stable during
the day and unstable during the night (Vickers et al., 2009).
For the typical wind speeds at the MF site, data are taken from the C1 sensor
(hC1 = 2 m) for the subcanopy and from the B1 sensor (hB1 = 38.6 m) for above the
canopy (fig. 2.11, top left plot). As at the MP site, wind speeds are much lower within
the subcanopy than above due to the trees slowing down the flow. Within the canopy,
wind speeds higher than 1 m

s are very rare while above the canopy occasionally wind
speeds 4 m

s may happen. Compared to the MP site however, above canopy winds
are weaker at MF which is caused by topographic sheltering (Thomas et al., 2013).
Winds within the canopy are a little stronger at MF than at MP in spite of the MF
forest being much denser. This is caused by the MF site being situated at a slope
and thus influenced by cold air drainage. Furthermore, the bole space within MF
between is free leading to a smaller drag and thus the flow within the bole space can
develop more freely. At the MP site on the other hand, the crowns of the fewer trees
have branches that reach down very far and so flow is inhibited strongly in the bole
space. As a result, it is not surprising that the subcanopy flow is slightly stronger at
MF than at MP, although the tree density at MF is higher.
For the stability above the canopy, data are used from the B4 and the B1 sensors.
The expected diurnal cycle of stability is clearly visible (top right plot, fig. 2.11). It
shows stable stratification during the night due to radiative cooling and unstable
stratification during the day due to the solar irradiation heating up the canopy.
Unfortunately, there are no two sensors above each other in the subcanopy. As a
workaround for getting the static stability, the mean potential temperature of the
B3 and the C3 sensor is calculated (both at 2 m height). The static stability is then
calculated from this average potential temperature and the one from the B2 sensor
(hB2 = 14.4 m). The reason why the B3 and the C3 sensor are chosen out of all the
ground network sensors is that those are the two closest ones to the B2 sensor. The
result however doesn’t depend on which sensors are chosen for determining the static
stability within the subcanopy.
Figure 2.11 shows that there is very little diurnal variation in the static stability
within the subcanopy. The temperature difference in the subcanopy is 0.5 K over a
distance of 12.4 m. The same temperature difference can be found at the MP site
over a distance of only two meters. Thus, the temperature gradient at the MF is very
small and indicates a slightly stable to neutral stratification during all the day. The
temperature gradient is slightly more stable during the day than during the night.
The reason is that the exchange of energy happens mainly at the canopy as nearly no
sunlight reaches the ground. The solar irradiation thus first heats up the higher layers
of the subcanopy leading to a more stable stratification during the day. Similarly the
energy loss of the canopy during the night and the cooling of the higher layers within

18



2.5 Mary’s River Douglas Fir site

the subcanopy slightly diminishes the stability during the night. All in all however
the subcanopy is very well isolated and stays nearly isothermal.
The wind roses for of the MF site (bottom plots, fig. 2.11) are produced using the
data from the C1 sensor and the B1 sensor like the diurnal cycle of the wind speed.
The preferred wind directions in the subcanopy are from the north-west as well as
from the south east. There is again a directional shear as above the canopy there
are mainly easterly or westerly winds. As from the diurnal cycle of the wind velocity
we can also recognize from the colour code of the wind rose that the wind speed
within the subcanopy of MF is not lower than the one at MP. Instead, actually more
situations with wind speeds higher than 1 m

s can be found at the MF site in spite of
the denser canopy. The reason for this is the clear bole space between the subcanopy
and the canopy at MF, which enables the flow to speed up in this range. Furthermore,
the location of the measurement site on slightly sloped terrain might lead to cold air
drainage, which also leads to a speedup of the flow.
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3 Data evaluation strategies in the
atmospheric boundary layer

In order to get data on turbulence from the high-frequency wind and temperature
data measured by the sonic anemometers that is comparable to other experiments, a
number of methods typical in micrometeorology have to be applied. One of them is
the block averaging method. In the following section, we will discuss block averaging
and why it is necessary. Afterwards we will summarize the other methods that also
are applied to our data.

3.1 Reynolds averaging

Since Osborne Reynolds, the principal strategy for studying turbulent flows is to
separate the ’mean’ part of the flow from the ’randomly’ fluctuating part (Wyngaard,
2010). The mean portion is then treated deterministically, while for the turbulent
portion statistic techniques are applied (Lee et al., 2000). The separation of the
turbulent from the non-turbulent part can be written as

u(x, t) = ū(x, t) + u′(x, t) (3.1)

where u′ represents the fluctuating and ū the ’mean’ part of a flow, independent from
the way the mean is derived. The ideal way of getting the mean part is an ensemble
average

ū(x, t) = lim
N→∞

1

N

N∑
n=1

un(x, t) (3.2)

where un(x, t) is the time-dependent velocity field u(x, t) in the n’th realization of
an experiment (Finnigan & Shaw, 2008). The reason why ensemble averaging can be
considered the ideal way of dividing a turbulent flow in its mean and fluctuating part
is that it obeys the so-called Reynolds averaging rules. Only for an averaging operator
that obeys the Reynolds averaging rules, it is possible to fully separate the turbulent
and the non-turbulent part in non-linear equations. These rules are (de Fériet 1951;

20



3.1 Reynolds averaging

Monin & Yaglom 1971)

u+ v = ū+ v̄ (3.3)
c · u = c · ū if c = const (3.4)

c = c if c = const (3.5)

∂u

∂x
=
∂ū

∂x
(3.6)

uv = ūv̄ (3.7)

From eq. (3.7) it follows that
u = ū (3.8)

and from the equations (3.3) and (3.8)

u′ = u− u = 0 (3.9)

and finally from eq. (3.7) and (3.9)

uu′ = ūu′ = 0 (3.10)

Unfortunately, it is impossible to apply ensemble averages to data from measurements
in the atmosphere or to large simulations. The reason for ensemble averages not
being possible are the very variable and uncontrollable boundary conditions in the
atmosphere or the too high computational costs respectively. As a result, it is
necessary approximate the ensemble averages by either space (typical for simulations)
or time averages. For atmospheric measurements where data is only available from
very few fixed points, time averaging has to be chosen:

ū(x, t) =
1

Tp

t+
Tp
2∫

t−Tp
2

u(x′, t′)dt′ (3.11)

For statistically steady flows it is possible to choose very long averaging times Tp →∞
for which the conditions (3.3)-(3.7) are fulfilled. For atmospheric measurements
however, there will always be some non-stationarity due to the diurnal course, changing
cloud cover and many other factors, forcing one to choose a shorter averaging time
Tp � ∞. Therefore, the ergodic hypothesis has to be applied, which means that
for an averaging time Tp � TI the temporal average is assumed to be equal to the
ensemble average. TI is the integral time scale of the turbulence, a measure for the
memory of the flow (Finnigan & Shaw, 2008).
The most intuitive solution now would be to filter the raw data with a running
average of width Tp. Unfortunately, this is not possible, because for non-stationary
flows the running average does not satisfy the Reynolds averaging rules eq. (3.3) and
(3.7). Because of that, compared to the ensemble average, a running average leads
to additional terms when non-linear equations are averaged. The additional terms
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3 Data evaluation strategies in the atmospheric boundary layer

are a mixture of turbulent and non-turbulent quantities. This might be desirable
for some purposes (Finnigan & Shaw 2008; Germano 1987), but also complicates
the interpretation regarding the interaction of the mean flow and the turbulence
(Germano, 1992). Only for fully separated flows without (i.e. without mixed terms
that combine turbulent and non-turbulent quantities), the mechanisms by which
turbulent and non-turbulent quantities interact can be analysed directly.
Instead of the running average, it is common to use the block average. This means,
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Figure 3.1: Time series of the raw data
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running average (ūrun, pink), the reduced
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Figure 3.2: Magnitude of the frequency
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average and the perturbation.

the time series is cut into single adjoining but non-overlapping pieces of length Tp,
where Tp is called perturbation time scale. Each of these pieces is assumed to be
one stationary realisation of an ensemble of possible realisations. From each piece,
a single mean value (mean flow) is calculated as well as variances and covariances
representing the turbulence (Rannik & Vesala, 1999).
Block averaging is equivalent to applying the running mean filter of width Tp (pink
line in fig. 3.2), then retaining only one data point per Tp (black crosses). This
reduced time series is considered as the mean, non-turbulent flow. For calculating
the turbulent portion of the flow, it is assumed that the mean flow is constant for the
period of Tp

2 before and after each value of the reduced time series. This corresponds
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3.1 Reynolds averaging

to applying a Zero Order Hold to the reduced time series and shifting the new,
re-expanded series back by Tp

2 (purple line). The re-expanded time series will be
called ūblock,ZOH. It is then possible to get the turbulent perturbation by

u′ = u− ūblock,ZOH (3.12)

In chapter A, the procedure of Reynolds averaging is shown a bit more in detail.
From the time series of the perturbation (blue line, fig. 3.2), we can calculate statistical
quantities like variances (e.g. σ2

u = u′) and covariances (e.g. u′v′), which describe the
turbulence and the turbulent fluxes. These turbulent statistics are again calculated
by block averaging in order to obtain the same resolution we have for the mean flow.
This means, the Reynolds averaging process reduces the resolution of the time series
from its original 20 Hz (10 Hz for BPP) to 1

Tp
. In exchange for that we have gained

separate data describing the mean flow on the one hand and the turbulence on the
other hand. In the following, by x̄ we mean the block average of the quantity x and
by x′ we mean the deviation of quantity x from this block average.
In figure 3.1 each step of the process of separating the perturbation from the mean flow
is depicted. For this purpose, we use one velocity component (u) during an interval
of 15 min from the sensor SUSAN_C1 at the MP experiment. As perturbation time
scale and time constant for the moving average we use Tp = 1 min. In the original
time series (grey), we clearly see some rapid fluctuations. In addition to that, we
can distinguish a ’slow’ event with a duration of roughly τ ≈ 10 min. This slow
event is also visible in the filtered time series ūrun, ūblock and ūblock,ZOH. The rapid
fluctuations are suppressed in the filtered time series. In the perturbation u′, the
rapid fluctuations are visible but not the slow events.
Figure 3.1 suggests that the block average is able to capture the slow motions with
Tmotion � Tp. The high frequency motions with Tmotion � Tp are nicely captured by
u′ from eq. (3.12). Apart from that, we clearly see some jumps in the block averaged
signal after the expansion by the Zero Order Hold. Physically, the jumps don’t make
much sense, but they are unavoidable if we want to separate the turbulent fluctuations
from the mean flow in non-stationary conditions without any terms mixing those two
quantities.
In order to better understand how the block average with its somewhat non-physical
jumps affects the data, it is worth looking at its frequency response function H(f).
As we will work only with data that is already completely available, we are only
interested in the gain |H(f)| and will ignore the phase response of our filter.
For calculating the gain, one month of data from the SUSAN_C1 sensor at the MP
site is used. We use again only the u-component, but the result depends neither on
the component nor on the sensor or site chosen. For this period of time, an average
spectrum for the filtered and the unfiltered time series as well as for the perturbation
are calculated. This is done by dividing the time series of u into single periods of
four hours uk. For each complete four hour period, we calculate a spectrum Uk.

Uk(f) =
1√
2π

2h∫
0

uk(t) exp(−2πift)dt (3.13)
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3 Data evaluation strategies in the atmospheric boundary layer

In the end, we average over all the obtained spectra.

〈U〉(f) =
1

N

N∑
k=0

Uk(f) (3.14)

The averaged spectra of the filtered time series and the perturbation time series
are calculated in the same way. Subsequently, the frequency response function is
calculated by

|H(f)| = 〈Ufilter〉(f)

〈U〉(f)
(3.15)

where Ufilter can refer to the mean spectrum after any of the filtering steps.
In figure 3.2, the gain after the different filtering steps is shown. Additionally, the
frequencies 1

Tp
and 1

2Tp
are marked by a vertical line. As expected, the gain of the

running mean is

|Hrun| = | sinc(Tpf)| = |sin(Tpπf)

Tpπf
| (3.16)

with its first zero at 1
Tp
. The gain for the block average ūblock (fig. 3.2, black line) is

even higher than the one for the running average ūrun (pink line), at least within the
range where the gain is defined for ūblock. This is only the case up to 1

2Tp
due to the

reduced sampling frequency. As a result of the reduced sampling frequency, events
that take less than 2 minutes (or 2Tp) cannot be recognized in the time series of the
mean flow, because this corresponds to the Nyquist frequency. This is no problem
since for the mean flow we are only interested in phenomena with a duration of a
few minutes to hours. The reason for the gain of the block averages being higher
than the one of the running average filter is that by reducing the resolution, the
high-frequency part that remains after filtering with the running mean is aliased back
into the spectrum. This is discussed by Kaimal & Finnigan (1994).
Surprisingly, after the re-expansion, the block averaging filter has a quite similar
gain as the running mean. As we didn’t include new information but only artificially
streched the time series of the mean flow, the resulting gain for frequencies higher
than 1

2Tp
must be an artefact of the expansion. As this is only an intermediate step

in order to calculate the turbulent perturbation, this will not be further investigated.
For the perturbation, frequencies higher than 1

Tp
are transmitted almost perfectly

while frequencies much lower than 1
2Tp

are strongly dampened (blue line, fig. 3.2).
Frequencies 1

2Tp
. f < 1

Tp
however are still to a big extent contained in the signal of

the perturbation which should certainly be kept in mind when discussing time scales
of turbulent motions.
Naturally, the above discussed process of separating the turbulence from the mean
flow creates the problem of choosing the appropriate perturbation time scale Tp. By
choosing this time scale, one automatically determines, up to which size an event
is identified as turbulence and which events are recognized as part of the mean
background flow. If one chooses a too short perturbation time scale, one ignores
fluctuations at larger scales and may thus causes a systematic error. This is a problem
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3.2 Eddy Covariance technique

especially if the main interest is the turbulent fluxes (Lee et al., 2000, chap. 2). On
the other hand choosing a long time scale might include non-stationary in the single
intervals. Furthermore, the more one expands the time scale Tp for the separation of
turbulence and mean flow, the more the resolution is reduced of the time series of
the mean flow. All in all, it is certainly necessary to keep in mind the purpose of the
analysis when choosing the time-scale in order to find the best compromise (Vickers
et al., 2009).
We choose a perturbation time scale of Tp = 1 min based on the findings of Vickers
& Mahrt (2003). They find a gap in the cospectra of momentum flux and heat flux
around a time scale of Tgap ≈ 1 min and conclude that for scales larger than the gap
scale, submeso motions are the main mechanism of transport. Since our aim is to
study the influence of submeso motions on turbulence, it is necessary to separate
those submesoscale motions from the fluctuating part and include them to the mean
part of the flow. Hence we chose this comparatively short time scale knowing that
we coincidentally exclude the larger scale vertical fluxes.
The Reynolds rules and its implications don’t only apply to velocities, but also to
any scalar of interest (e.g. temperature, concentration). In the following, x̄ indicates
the block average of the quantity x(t) with a perturbation time scale of Tp = 1 min.
By x′, we mean the perturbations from the mean of the respective block.

3.2 Eddy Covariance technique

Apart from block averaging, a number of other methods have to be applied to the data
measured by the sonic anemometer in order to get meaningful results on turbulence
characteristics. They are all part of a method named Eddy Covariance technique.
The Eddy Covariance technique is a statistical method for computing vertical turbulent
fluxes by determining the correlation between the vertical wind velocity and any
scalar of interest. The reason why this approach of measuring fluxes is reasonable is
that in the atmospheric surface layer, where all our sensors are located, the turbulent
fluxes represent the main mechanism of transport (Aubinet et al., 2012). Before
eventually the covariances and thus the fluxes are determined, a number of corrections,
transformations and quality filtering need to be applied to the data.
Those corrections and calculations are all done by using the MATLAB program
bmmflux_process_mac.m which was written by Prof. Christoph Thomas. In the
following section, the corrections the program applies to our data are shortly described.
After loading the first file starting from a user-determined starting time, bmmflux
first controls the file for double or missing values and removes them or inserts NaNs
at the missing values respectively. Then, the plausibility of the single measurement
values is checked. The plausibility limits for this have to be predefined before in a
configuration file. For the three velocity components, we choose the plausibility range
of |uplaus| ≤ 30 m

s . For the temperature we choose −30◦ C < Tplaus < 50◦ C. All
values outside this plausibility range are replaced by NaN for the further calculations.
Subsequently, the data is despiked according to the method of Vickers & Mahrt (1997).
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3 Data evaluation strategies in the atmospheric boundary layer

This is necessary because random electronic spikes can be created for example when
water gathers at the transducers of the sonic anemometer during precipitation. For
the despiking algorithm, a window of length Tdespike = 5 min is shifted over the time
series. Within the window, the mean and the standard deviation are calculated. Every
point that deviates more than 6.5 standard deviations from the mean is considered
a possible spike. If less than four consecutive ’possible spikes’ are detected, the
identified data are replaced using a linear interpolation between the neighbouring
data points. If four or more ’possible spikes’ are detected in a row, they are considered
real events and the data points are not replaced (Vickers & Mahrt, 1997). The process
is repeated until no more spikes can be found with a maximum number of repetitions
Nrep, max = 5. The length of the sliding window, the maximum allowed standard
deviation and the maximum number of repetitions can be set in the configuration
file. The number of detected spikes, the number of data outside the plausibility limit
and the number of NaN that were already contained in the data before the quality
checks are then saved to a .csv-file and can be inspected for further control.
In the next step, the currently loaded file is divided into non-overlapping windows.
The length of those windows is the perturbation time scale, which is set to Tp = 1 min.
The perturbation time scale also has to be set in the configuration file. The following
steps are executed for the single averaging blocks individually. As soon as the final
block within the currently loaded datafile is reached, the next datafile is loaded and
all the corrections described above are applied again.
For the methods applied to the shorter intervals, first, a rotation of the coordinate
system according to the triple rotation method by Wilczak et al. (2001) is conducted.
This is necessary because the wind data from the sonic anemometer is aligned with
the coordinate system of the anemometer and has no physical meaning. Our aim
is now, to rotate our measurements to a coordinate system that is aligned with the
mean wind direction. For this purpose, the original coordinate system is first rotated
around its z-axis (vertical axis) so that

v̄ = 0 (3.17)

Next, the coordinate system is rotated around its y-axis until

w̄ = 0 (3.18)

Eq. 3.18 corresponds to applying the continuity equation by assuming that there can
be no net vertical flow. After the second rotation, the x-axis of the new coordinate
system is aligned with the mean wind direction. Both of the rotational angles for
rendering v̄ = 0 and w̄ = 0 are written to a .csv-file by the Bmmflux -program.
From now on, the coordinates x, y or z or the wind components u, v or w will
refer to this rotated coordinate system. The positive x-axis corresponds to the
streamwise direction, the positive y-axis to the lateral and the positive z-axis to the
vertical direction. This implies, that the orientation of our coordinate system can
change for every new averaging block. Whenever velocity components in another
coordinate system than the one rotated to the mean wind direction are meant, they
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3.2 Eddy Covariance technique

will be marked by a subscript (e.g. uNS, vNS and wNS when talking about velocity
components in the coordinate frame of the earth)
It is important to keep in mind that the rotation also affects the turbulence statistics,
mainly acting as a high-pass filter for the atmospheric covariances. A detailed
discussion of the consequences of the rotation can be found in Finnigan et al. (2003).
Finally, mean values, variances and higher order moments as well as covariances
of the three velocity components u, v, w (both, rotated and unrotated) and the
sonic temperature Ts are calculated according to the Reynolds averaging scheme and
written to the same .csv-file as the rotational angles. Additionally, many more typical
meteorological and site-specific quantities are saved in this file. Most of the following
work is based on some of the quantities calculated by the bmmflux -program.
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4 Weak-wind situations

The submesoscale motions we are interested in are assumed to be present in all
kinds of stabilities and for all wind speeds (Anfossi et al., 2005). However they are
dominant in stable weak-wind situations. Before analysing the different kinds of
motions, it is thus sensible to define what is meant by a ’weak-wind situation’. In the
following chapter we will develop a clear rule for deciding whether or not a given wind
speed belongs to a ’weak-wind situation’ by identifying a site-dependent weak-wind
threshold.

4.1 Identification of weak-wind situations

For defining the weak-wind threshold, we use the dependence of the friction velocity
u∗ on the mean wind speed.
A similar method for the identification of wind regimes has been introduced by
Sun et al. (2012), who used the dependence of the turbulent kinetic energy (TKE)
e =

√
σ2
u + σ2

v + σ2
w+) on the mean flow ū. They showed that in the low wind regime

during the night, there is only a weak dependence of the TKE on the wind velocity.
For stronger winds, the TKE starts to depend on the wind velocity ū much more
strongly. If the TKE is plotted in dependence of the mean flow, this behaviour of the
TKE results in a curve with a shape that reminds of a hockey stick: It has a very
small slope at for small winds, suggesting that at small wind velocities, the strength
of the turbulence doesn’t depend on the mean flow. At a certain velocity, there is
a sudden increase of the slope which indicates, that for higher wind velocities, the
turbulence intensity is determined by the mean flow. Sun et al. (2012) considered
the wind velocity where the sudden increase of the slope happens as the threshold
between two turbulence regimes.
Mahrt et al. (2015) showed, that also for many other turbulent quantities than the
TKE, e.g. the standard deviation of the vertical velocity component σw =

√
w′2 or

the friction velocity u∗ =
4

√
u′w′

2
+ v′w′

2, the hockey stick like dependence on the
mean flow can be found.
Mahrt & Thomas (2016) used the hockey stick curves of the friction velocity to
identify a weak-wind limit a three different grassland sites. One of those is the
grassland site BPP which is also used in this analysis. However, they used a different
perturbation time scale than our Tp = 1 min and also used only nighttime data.
In the papers cited above, the hockey stick method was only applied for grassland
sites, while we will also apply it to data from the subcanopy. This however has very
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4.1 Identification of weak-wind situations

recently also been done by Russell et al. (2016) who analysed the dependence of
turbulence on wind velocity, stability, wind direction and sensor height within the
canopy and day-or nighttime.
We will determine our site dependent weak-wind regime based on the hockey stick
method from Sun et al. (2012), using the friction velocity as indicator for the strength
of the turbulence. The friction velocity

u∗ =
4

√
u′w′

2
+ v′w′

2
=

√
τ

ρ
(4.1)

is a density-independent measure of the shear strain in the vertical direction in units
of a velocity. In turbulent flows, the shear is almost completely controlled by the
turbulent fluctuations. Here, τ is the shear strain and ρ is the density of the air,
which is e.g. dependent on the synoptic conditions.
Compared to the papers cited above, this work contains two novelties: First of all,
we will not differentiate between nighttime and daytime data for the determination
of the weak-wind threshold. The reason for this is the assumption, that submesoscale
motions also exist during the day, even if they are more strongly pronounced during
the night.
Apart from that we try using the scalar average wind speed

ūsc =
1

N

N∑
i=1

√
u2
i + v2

i + w2
i (4.2)
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Figure 4.1: Dependence of the friction velocity on the vector averaged (left) and
scalar averaged wind speed (right). The gray dots are the block averaged wind speeds
and friction velocities. The brightness of the single points indicates their density. The
red crosses are bin-averages of the single friction velocities and the red arrow roughly
marks the transition point between weak wind and strong wind. The data shown
here was measured by the SUSAN C2 station at the MP site during the complete
measurement period.
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4 Weak-wind situations

of the single 20 Hz data instead of the formerly used vector average

ū = ūv =

√√√√( 1

N

N∑
i=1

ui

)2

+

(
1

N

N∑
i=1

vi

)2

+

(
1

N

N∑
i=1

ui

)2

(4.3)

The vector average is, according to the Reynold’s decomposition, considered as
the mean, non-turbulent flow. On the contrary, the scalar averaged wind speed
is a measure for the average momentum contained in the flow (non-turbulent and
turbulent).
Here and in the following, when referring to the scalar average, this will be marked
by an index ’sc’ (i.e. ūsc) while we will continue calling the vector average ū.
Figure 4.1 shows a scatter plot of the friction velocity in dependence of the mean
vector averaged and scalar averaged wind speeds. To provide visual clarity despite
the huge number of data points, the dots are coloured according to their density
using a logarithmic colour axis. A color bar is shown in the right plot of figure 4.1,
demonstrating the logarithmic colouring of the points. The same scheme of point
colors will be used in all scatter plots where the number of points makes such a color
scheme necessary, without showing the color bar explicitly each time.
For visualizing the trend, figure 4.1 also shows bin averages of those data points. For
calculating the bin averages, the data are distributed into bins according to their
average wind speed (ū or ūsc) with a equidistant bin width of ∆ubin = 0.01 m

s . This
width corresponds to the resolution of the sonic anemometers (compare chap. 2.1).
The red crosses are the average of all friction velocities within the respective bins.
For visual clarity only every second bin average is depicted.
In the curve of the bin averages, there is a relatively flat region at small values of ū
and ūsc (see ca. ūsc = ū < 0.3 m

s ). At higher velocities (0.4
m
s . ū(or ūsc) . 0.7 m

s ),
there is another region with a quite constant slope. The constant, positive slope of u∗
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Figure 4.2: Dependence of the bin averaged friction velocity u∗ on the vector averaged
(left) and scalar averaged (right) mean wind speed for the four sensors of the ground
network at MP. The single bin values are connected by a line for visual clarity.
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4.1 Identification of weak-wind situations

in this region is the behaviour that is originally expected for all the data. It means
that a higher mean flow or a higher average momentum of the fluid respectively, lead
to stronger turbulence. In this region, the turbulence obeys the Monin-Obukhov
similarity theory (Liang et al. 2014; Monin & Obukhov 1954).
We hypothesize that submesoscale motions are responsible for the reduction of the
slope at low wind speeds, because they create additional turbulence. We will define
the lower limit of the strong-wind regime as the point where the sudden change of
slope happens. The approximate position of this threshold is marked with an arrow
in both plots of figure 4.1.
Figure 4.2 shows the bin averaged friction velocities for the four stations of the ground
network at the MP site. It is evident that within similar terrain, the trend of the
friction velocities for increasing wind speed looks very similar. This is particularly
pronounced for the scalar averaged version of the hockey stick plot (right plot in
fig. 4.2), but also true for the vector averaged one. Moreover, the wind speed at the
transition point seems similar in the vector averaged as in the scalar averaged case.
In contrast, figure 4.3 shows the bin averaged friction velocities of one ground
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Figure 4.3: Dependence of the bin averaged friction velocity u∗ on the vector averaged
and scalar averaged mean wind speed for one ground network sensors for each of the
four sites. The left plot contains the vector averaged wind speed, the right plot the
scalar averaged version.

network sensor for each of the sites. One sees that the different terrains lead to
strongly different hockey stick curves of the friction velocity. Not only the threshold
itself is strongly site-dependent, but also the slope in the weak-wind as well as the
strong-wind regime and the clarity of the transition point.
There is yet one site, at which also the single sensors show strongly different hockey
stick curves within the site, namely the HJA site. This is no wonder however, since
the HJA has a strongly variable topography. It even is possible to tell if a sensor
is located at the slopes or at the valley bottom just by looking at the bin averaged
hockey stick curves. On average, the turbulence is higher at the slopes (fig. 4.4, black
and purple lines) than at the valley bottom (fig. 4.4, blue, orange and yellow lines).
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Figure 4.4: Bin averaged hockey stick curves for five stations of the ground network
at HJA. Black and purple lines correspond to sensors at the side slopes, while the
sensors of the blue, orange and yellow lines were located at the valley bottom. The
left plot contains the vector averaged wind speed, the right plot the scalar averaged
version.

Besides, for the slope-based sensors, turbulence already starts to depend on the mean
flow at lower wind speeds (around 0.3 m

s to 0.5 m
s ) compared to the valley stations

(around 0.6 m
s to 0.8 m

s ).
Apart from that, at every site, the curves from the above-canopy stations look different
from the curves of the subcanopy stations (not shown). It is thus possible to conclude
that the form of the hockey stick curves as well as the transition point from weak-wind
to strong-wind regime are strongly influenced by the terrain and the vegetation.
The aim is now, to identify the transition point for every sensor by fitting a piecewise
defined linear function

u∗(usc) =

{
m1 · usc + t1 if usc ≤ uthr
m2 · usc + t2 if usc ≥ uthr

(4.4)

to the hockey stick data, using m1, m2, t1 and uthr as fit parameters. t2 is given by

t2 = (m1 −m2) · uthr + t1 (4.5)

because we postulate continuity. The threshold for the weak-wind regime is then
given by uthr. The same will be done using ū instead of ūsc.
There is however one difficulty in finding the transition point by this piecewise linear
fit. The problem is that at very low and at very high wind speeds, the curve of u∗
is curved to the right for some of the sites (see figure 4.1 - 4.3), which hinders the
fit. For the high wind speeds, this is the case for ū & 0.6 m

s (ūsc & 0.6 m
s ) at the MP

and the BPP site. The reduction of slope at high wind speeds is also visible for some
stations of the HJA site (stations A2, A3, A4 and C2, not shown). Here however, it
starts at much higher wind speeds than at the BPP and MP sites (ū & 1 m

s ). At the
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4.1 Identification of weak-wind situations

MF site, this behaviour is not observable at all. The reduction of the slope at high
wind speeds was also noted by Mahrt et al. (2015). Unfortunately they didn’t offer
an explanation for this behaviour.
The strong curvature to the right at weak winds is more pronounced in the case of
the scalar averaged wind speed, but also visible for the vector averaged case. This
is somewhat intuitive because the scalar averaged mean wind speed also contains a
turbulent component. That means, if the scalar average ūsc goes to zero, this implies
that not only the speed of the mean flow vanishes but also the turbulence. It is
thus clear that for ūsc → 0 also the turbulent quantity u∗ has to vanish causing a
downward turn. The downward bend at very weak winds is however also visible for
the vector averaged version of the plot. At those curves, the friction velocity doesn’t
bend down to zero completely, but still a curve is recognizable for at least some
stations at each of the sites. The strongest bend can be seen at the HJA site for
both, the vector averaged and the scalar averaged version. At this site, the bend also
reaches up to higher wind speeds (up to ūsc0.3 ≈ m

s for some stations) than at the
other sites, where it never reaches wind speeds higher than ū ≈ 0.1 m

s (ūsc ≈ 0.1 m
s ).

The problem is that for finding the transition point via fitting the piecewise defined
linear function, in is necessary to exclude the two areas curved to the right. This
however problematic since the physical reason for the additional curvature is unknown.
Furthermore, it is impossible to use the same range of wind speeds for fitting at all
the sites. This can be seen in figure 4.3. The transition point at the MF site lies
around ū ≈ 1 m

s (ūsc ≈ 1 m
s , black line). At this wind speed, the line of the bin

averages is already curved to the right and thus has to be excluded at the BPP and
MP site (blue and yellow lines). The transition at the BPP and MP site on the other
hand happens around ū ≈ 0.3 m

s (ūsc ≈ 0.3 m
s ) and thus in a region that has to be

excluded at some of the the HJA stations. The most problematic case is the HJA site.
While at the other sites, the same range of ū (ūsc) can at least be used for fitting all
the ground network stations, the strong differences between the slope stations and
the valley stations make this impossible at HJA.
But also for the other sites, it is necessary to adjust the fitting range for the sensors
located higher within or above the canopy compared to the ones within the subcanopy.
The ranges used for the fit can be seen in the appendix in tab. B.1. The fact that
sensors in similar terrain have identical ranges suitable for fitting while different sites
or sensor heights also have different fit ranges leads to the conclusion that also the
curvature to the right is caused by an interaction of the flow with the landscape.
The result of the fit for one station of every site can be seen in figure 4.5. It is
important to note that the fit was done using all the data points (grey dots) and not
only the bin averages. The resulting curve however coincides very well with the bin
averages, which confirms that the fit worked properly.
There are yet a few stations where no distinct threshold can be seen in the bin averaged
curves. At those curves, the slopes of both lines of the fit either are extremely similar
or the fitting function gives back a transition point at the very edge of the used fitting
range with the first slope often being greater than the second one. In the latter case
the fit probably identified one of the additional curved regions discussed above which
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Figure 4.5: Hockeystick curves with fits for all sites, vector averaged version (left)
and scalar averaged version (right). From top to bottom: BPP, MP, HJA, MF.



4.2 Which parameters impact the threshold velocity?

we actually intended to exclude by restricting the range of the fit. To be sure that
the identified threshold is the desired threshold and does not correspond to one of
the additional curved areas discussed above, we demand that the slope of the second
interval is positive and bigger than the slope of the first line by at least 10%. Using
this constraint, we successfully get a weak-wind threshold at 42 out of 44 stations
when using the scalar averaged version. For the vector averaged one the fit works
for 40 out of 44 stations. The only station that neither gives a threshold with the
vector averaged wind speed nor with the scalar averaged, is station B4 at the MP
site. This station however has a very special location at only 12.5 cm above ground.
It can be assumed that because of the special location, the B4 sensor misses the main
energy-containing turbulent eddies. It is thus no wonder that determining the weak
wind threshold by the amount of turbulence fails at this station.

4.2 Which parameters impact the threshold velocity?

Table 4.1 shows a list of the resulting weak-wind thresholds for the vector averaged
and the scalar averaged version. Besides, the table also contains the percentage of
weak-wind situations for both options and the percentage of data that is attributed
to a different regime when changing from vector to scalar average or vice versa.

station uthr (m
s ) (vect) ww (%) uthr (m

s ) (scal) ww (%) ∆ (%)
BPP, A1 0.92 27.8 0.98 28.75 1.8
BPP, A2 0.26 21.7 0.29 21.7 2.1
BPP, A3 0.27 24.1 0.19 14.07 10.1
BPP, A4 0.17 15.4 0.20 16.8 2.6
BPP, B1 0.38 31.9 0.40 28.3 5.0
BPP, B2 0.44 27.7 0.46 26.0 2.8
BPP, B3 0.63 36.6 0.55 26.4 10.13
BPP, B4 0.32 30.5 0.32 26.3 4.2
BPP, C1 0.87 31.8 0.70 22.7 9.1
BPP, C2 0.26 13.5 0.30 14.4 2.2
BPP, C3 0.33 23.5
BPP, C4 0.21 18.6 0.25 19.9 2.6
MP, A1 0.27 32.7 0.32 28.2 12.3
MP, A2 0.30 31.6 0.35 31.9 11.6
MP, A3 0.37 39.3 0.37 28.4 10.8
MP, A4 0.28 24.1
MP, B1 2.24 51.1 2.65 57.4 6.6
MP, B2 0.44 12.2
MP, B3 0.26 31.9 0.30 27.0 11.7
MP, B4
MP, C1 0.31 46.7 0.31 31.2 15.4
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4 Weak-wind situations

MP, C2 0.24 30.6 0.31 33.4 12.6
MP, C3 0.32 43.0 0.35 34.7 10.5
MP, C4 0.16 21.4 0.21 22.4 12.8
HJA, A1 0.63 75.5 0.70 79.9 4.8
HJA, A2 0.47 60.4 0.48 59.4 2.5
HJA, A3 0.56 57.0
HJA, A4 0.55 75.5 0.47 63.5 12.1
HJA, B1 0.32 58.6 0.28 45.8 12.4
HJA, B2 0.78 67.3 0.79 67.4 0.3
HJA, B3 0.52 77.7 0.57 81.8 4.8
HJA, B4 0.65 67.1 0.69 69.7 2.7
HJA, C1 0.61 70.0 0.62 68.0 2.1
HJA, C2 0.55 53.1 0.59 55.9 3.76
HJA, C3 0.34 62.6 0.40 61.2 2.4
HJA, C4 0.60 61.8 0.67 64.8 3.8
MF, B1 0.46 15.1 0.53 15.8 3.0
MF, B2 0.67 92.4 0.71 91.7 2.0
MF, B3 0.69 81.0 0.94 92.0 11.1
MF, B4 0.25 53.15 0.33 52.7 13.6
MF, C1 0.92 91.7 0.96 92.0 1.0
MF, C2 0.88 94.1 0.90 93.8 0.7
MF, C3 1.15 98.5 1.16 98.2 0.4
MF, C4 1.10 94.7 1.17 95.4 0.9

Table 4.1: Thresholds of the weak-wind regime (columns 2 and 4), percentage of
data that is weak wind (columns 3 and 5), percentage of data that is allocated to
different regimes depending on whether the vector average or the scalar average is
used (column 6) for all stations. Stations of the ground network are highlighted by a
grey background.

It is evident that the resultant speed for the weak-wind threshold is very similar for
scalar or vector averaged wind speed. Also the percentage of data classified differently
is low for most stations (6% on average). The biggest number of differently classified
data can be found at the MP site, although the threshold velocities are very similar.
This will be discussed in chapter 4.3 (see fig. 4.13).
It was already mentioned, that a difference in the sensor height also leads to a difference
in the hockey stick curve. This was also noted by Sun et al. (2012) who determined that
at their grassland site, the weak-wind threshold increases approximately logarithmic
with height. In order to compare this result to our data, figure 4.6 shows the
relationship between the sensor height and the weak-wind threshold for the BPP
(left) and the MF (right) sites. For both sites, the threshold value at the lowest height
shown in the plot corresponds to the ground network. It is calculated by taking the
average of all ground network stations of the respective site (marked grey in tab. 4.1).
The errors are estimated by using the standard deviation of all thresholds from the
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Figure 4.6: Relation between sensor height and threshold velocity of the weak-wind
regime for the vector averaged (black crosses) and the scalar averaged (red circles)
case. The left plot contains the results from the BPP site (grassland) while the right
plot shows the one from the MF site (dense forest). In the right plot, the approximate
extent of the canopy is marked grey.

ground network. All the other heights correspond to the threshold gotten from the
hockey stick fit of only one sensor because there is only one sensor at each respective
height except for the ground network. We assume that the uncertainty estimated
from the data of the ground networks is valid also for the other heights.
The plot for the BPP site confirms the finding from Sun et al. (2012), that a
greater height leads to a higher threshold wind speed of the weak-wind regime. The
logarithmic relationship that they found can however not be verified at the BPP site.
This might be due to the small number of sensors used for the profile and the large
scatter.
Neither at the MF site nor at any of the other forested sites, the general trend of a
higher weak-wind threshold with greater height can be seen. Instead, for MF, the
weak-wind threshold calculated from the ground network is higher than that of all
the three sensors at the tower. Within the dense canopy (marked in grey in fig. 4.6),
the transition point is shifted to lower wind speeds and rises again above the canopy.
Also at the MP site (not shown), the transition wind speed calculated by the scalar
average only starts to rise above the canopy. For the vector average at the MP site,
no reliable statement can be made because for the station at the top of the canopy the
fit for determining the threshold didn’t work. However, the vector averaged transition
wind velocity of the B1 sensor (height hB1 = 30.65 m) is similar to that of the scalar
average. Thus we can assume that also here, a similar increase of the transition wind
speed happens above the canopy. Also at the HJA site, the sensor A2 (hA2 = 15.8 m)
which is situated within the canopy shows a lower transition wind speed than the
surrounding stations of the ground network (A1 and A3). The threshold at the sensor
above the canopy (WS1_Top) is uthr = 0.75 m

s and thus again higher than the one
within the canopy
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In summary the canopy restricts the tendency of a higher weak-wind threshold at
greater heights. Above the canopy, this tendency seems to hold again.
Next, we compare our results of the BPP site to the one of Mahrt & Thomas
(2016) who used the data from the C3 sensor at the BPP site. For this sensor, they
determined the threshold wind velocity for the weak-wind regime using the vector
average. However, they used only night data and a much shorter perturbation time
scale of Tp = 6 s. For identifying the threshold they did not use a fit but roughly
estimated it from the bin averages. That way they identified the transition point for
the C3 sensor at umahrt = 0.3 m

s . This is very similar to the threshold wind speed
we get for the C3 sensor using the scalar average, namely uthr = 0.33 m

s . For the
vector average unfortunately the fit didn’t work at the BPP C3 station. Because of
the similarity between vector averaged and scalar averaged threshold however we can
assume that also with vector averaging the threshold would be around uthr ≈ 0.3 m

s .
The result from the C3 sensor thus suggests that neither including the data from
the day nor increasing the averaging time scale have an impact on the weak-wind
threshold from the hockey stick curve. In the scope of this master thesis however no
tests where conducted for proving or disproving that impression with other sensors
than the C3 sensor at BPP.
When comparing the thresholds of the ground networks between the different sites
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Figure 4.7: Relation between the Plant
area index PAI and the mean transition
wind speed at the ground network. The
dotted lines are the respective fits of eq. 4.6
to the vector and scalar averaged data.

from table 4.1 it seems that a denser forest is connected to a higher weak-wind
threshold. For testing that impression, we first plot the relationship between the
plant area index PAI (area of plants per area of ground) and the weak-wind threshold
calculated by averaging over all the the ground network stations of each respective site
(fig. 4.7). For the PAI data has to be taken from literature (see chap. 2). Unfortunately
we don’t have data on the plant area index of the BPP site, and thus can not include
it into the plot. At the HJA, the canopy density is very variable and ranges from
2.9 m2

m2 to 10.4 m2

m2 . This is indicated by the errorbar covering this range of plant
area indices. For the two other sites, the errorbar represents the range of plant area
indices found in literature which is probably due to different dates of measurement.
The errorbar in the weak-wind threshold is estimated by the standard deviation of
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4.2 Which parameters impact the threshold velocity?

the ground network thresholds.
In addition to the data points, the plot includes the fit of the function

uthr = a · PAI (4.6)

to the data. For the vector averaged case, the resulting parameter is av = (0.10±
0.01) m

s and for the scalar averaged case av = (0.11± 0.01) m
s . The indicated error

is the asymptotic standard error of the fit. When trying to add a constant so that
uthr = a · PAI + b, the resultant b is small compared to its error. Thus the version
without b is used. This equation shall however not imply any knowledge of the
physical processes determining the threshold velocity.
Despite the large uncertainty and the small number of data, the plot (fig. 4.7) reflects
the tendency that a denser vegetation leads to a higher weak-wind threshold.
Still we would like also to include the BPP site. For this reason, the plant area index
will now be replaced by the roughness length z0. This can calculate for all the sites
including BPP. Without large obstacles, the roughness length is given by the height
above ground, at which the mean wind speed becomes zero assuming a logarithmic
wind profile. For neutral stability, it can be calculated from the friction velocity u∗
and the mean wind speed ū at height z using the logarithmic wind profile. It is

z0 = z exp

(
−κū
u∗

)
(4.7)

with the Kármán’s constant κ = 0.41. With trees (or buildings) it is necessary to
take into account the displacement height d. This is the height by which the wind
profile is shifted upward because of the large obstacles. The displacement height then
becomes the effective ground level (Foken & Napo, 2008). Eq. (4.7) then becomes

z0 = (z − d) · exp

(
−κū
u∗

)
(4.8)

The displacement height can be approximated by d ≈ 2
3hc where hc is the canopy

height. At heights lower than the displacement height, the logarithmic wind profile
is not valid. This means, that it is only possible to calculate the roughness length
from sensors higher than the displacement height. This condition is fulfilled when
taking data from the highest sensor of every site. Thus, for computing the roughness
length we use A1 at hA1 = 12 m for the BPP main site, B3 at hB3 = 6 m at the BPP
Moritz site, B1 at hB3 = 30.65 m at the MP site, WS1_Top at hWS1_Top = 38 m at
the HJA site and B1 at hB3 = 38.6 m at the MF site .
Furthermore, the logarithmic wind profile of eq. (4.7) and (4.8) is only valid in neutral
stability. Thus we first have to identify when this was the case and only use those
intervals. For determining the stability, the Bulk Richardson number is used

RB =
g

θs
· ∆θs ·∆z

(∆uNS)2 + (∆vNS)2
(4.9)
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4 Weak-wind situations

with the gravity acceleration g. For calculating RB, two sonic anemometers one above
the other are necessary. This condition is fulfilled each of the sites. Then, ∆z is
the height difference between those two sensors. ∆uNS and ∆vNS are the differences
between the two sensor’s velocity components uNS and vNS respectively. The index
NS at the velocity components indicates that it is impossible to take the velocity
components from the coordinate system of the mean wind direction. one needs to
choose the fixed coordinate frame of the earth instead, in order to make sure that
for both sensors the same coordinate system is applied. uNS is oriented along the
east-west direction and vNS along the north-south direction. Finally, θs is the sonic
potential temperature

θs = Ts

(
p0

p

) R
cp

(4.10)

with the gas constant of air R, the specific heat capacity at constant pressure cp and
the sonic temperature Ts(see chap.2.2).
The Bulk Richardson number corresponds to the ratio of buoyancy to shear flow and
is a measure of the dynamic stability of a flow. This means that apart from the static
stability given by the temperature gradient it also takes into account the wind shear.
Thus, RB is a measure of how much turbulence is generated by the flow. We consider
the dynamic stability as neutral when

− 0.0625 < RB < 0.125 (4.11)

according to Skeib (1980) and Foken (1991). When this condition is met, the roughness
length z0 can be calculated by eq. 4.8. For calculating the roughness length, it is
necessary to choose a longer perturbation time scale Tp so that also the transport of
momentum at larger time scales is included. Furthermore, with the larger time scales,
turbulence is better in equilibrium with the mean flow (Mahrt & Thomas, 2016). For
this purpose, we choose Tp = 30 min.
We can now compute the roughness length z0 for every neutrally stable interval.
The result of this calculation for the A1 sensor at the BPP main site can be seen in
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Figure 4.8: Roughness length at the BPP
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figure 4.8. The results for the roughness length of the single intervals (black dots)
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4.2 Which parameters impact the threshold velocity?

are depicted in dependence of their respective wind direction. Thus the directional
dependence of the roughness length becomes evident. The maximum roughness length
can be found at a westerly wind direction (270◦). This corresponds to the direction
of a field with small trees (see fig. 2.2).
For all the sites, an average roughness length is computed. The site-specific mean
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site. For the BPP site there is a clear differ-
ence in the transition wind speed between
the main and the Moritz site so both are
depicted. The Moritz site corresponds to
the higher threshold. The dotted line is a
fit of a linear function to the data.

threshold wind speed for each site is then plotted in dependence of it’s roughness
length (fig. 4.9). The uncertainties of the roughness length and the weak-wind
threshold are estimated by the standard deviation of the roughness length and of the
different thresholds of the ground network within one site respectively.
The large variability of the roughness length partially result from it’s directional
dependence (see fig. 4.8). If only one direction is considered, there is actually less
uncertainty in the roughness length. The errorbars thus reflect the variability of the
terrain. This is actually desirable since the sensors of the ground network are spread
over the site and thus cover variable terrain. As there is only one sensor at the top
of the canopy for each site for calculating the roughness length it is good that the
variability of the terrain is represented by the uncertainty of the roughness length.
The largest variability of the roughness length can be found for the HJA site, which
also has the most variable terrain.
As with the plant area index, a trend of higher transition wind speeds with higher
roughness length can be seen. The result from the fit of a linear function

uthr = as · z0 + bs (4.12)

to the data supports that impression (see dotted line in fig. 4.9) with as = (0.10±
0.06) 1

s and bs = (0.21 ± 0.09) m
s . Still, also when taking the roughness length

instead of the plant area index as a proxy for the obstacle density, we cannot get
a clearer result than this rough tendency due to the small number of data and the
large uncertainty of the roughness length, especially that of the HJA site.
As the results when taking the vector average are very similar to that of the scalar
average, they are not included in the plot of the relationship between the roughness
length and the threshold of the low wind regime. The resultant fitparameters of
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the linear function when using the threshold from the vector averaged version are
av = (0.09± 0.06) 1

s and bv = (0.19± 0.08) m
s .

All in all we could show that the location of a sensor regarding both, the terrain
and the sensor height have a great influence on the weak-wind threshold. However it
became apparent that finding a parameter that describes the relationship between
the terrain and the weak-wind threshold is not an easy task.

4.3 Is the weak-wind regime connected to decoupling?

We now want to test if weak-wind intervals correspond to a decoupling of the subcanopy
air from the air above the canopy. This would explain why a denser canopy leads to
a higher threshold velocity. With a dense barrier impeding the vertical exchange it
would need higher wind speeds for a coupling of the subcanopy to the air above.
For the purpose of testing whether or not the subcanopy is decoupled, the dependence
of the turbulence below the canopy to the one above will be used. We use the standard
deviation σw of the vertical velocity component as an indicator of the turbulence
strength. Numerous works exist (Thomas et al. 2013; Oliveira et al. 2013) where the
authors state that for a coupled canopy, if the turbulence above the canopy increases,
the turbulence in the subcanopy is expected to increase as well. Vice versa they
conclude that, if the turbulence in the subcanopy does not increase with stronger
turbulence above the canopy, the two levels are likely to be decoupled from each
other. Consequently, for differentiating between a coupled and a decoupled canopy
regime they use a similar method as we did for identifying the weak-wind regime.
The point where the dependence between the two standard deviations changes is used
as transition point between coupled and decoupled regime.
We now test if the weak-wind cases correspond to a decoupled subcanopy. For this
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purpose, we need to check if there is a different relationship between the standard
deviation of the vertical wind component above the canopy σw,t and the one in the
subcanopy σw,b for weak-wind cases than there is for strong-wind cases. According to
the method described above, we expect a smaller slope of σw,b(σw,t) for the weak-wind

42



4.3 Is the weak-wind regime connected to decoupling?

top std <w;t (ms )
0 0.5 1 1.5

b
ot

to
m

st
d
<

w
;b

(
m s

)

0

0.05

0.1

0.15

0.2

0.25

0.3
weak wind bin avg
strong wind bin avg
weak wind std
strong wind std

top std <w;t (ms )
0 0.5 1 1.5

b
ot

to
m

st
d
<

w
;b

(
m s

)

0

0.05

0.1

0.15

0.2

0.25

0.3

top std <w;t (ms )
0 0.2 0.4 0.6 0.8 1

b
ot

to
m

st
d
<

w
;b

(
m s

)

0

0.05

0.1

0.15

0.2
weak wind bin avg
strong wind bin avg
weak wind std
strong wind std

top std <w;t (ms )
0 0.2 0.4 0.6 0.8 1

b
ot

to
m

st
d
<

w
;b

(
m s

)

0

0.05

0.1

0.15

0.2

top std <w;t (ms )
0 0.5 1 1.5

b
ot

to
m

st
d
<

w
;b

(
m s

)

0

0.05

0.1

0.15

0.2

0.25

0.3
weak wind bin avg
strong wind bin avg
weak wind std
strong wind std

top std <w;t (ms )
0 0.5 1 1.5

b
ot

to
m

st
d
<

w
;b

(
m s

)

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 4.11: Relationship between the standard deviation of the vertical wind
component below σw,b and above the canopy σw,t for the forested sites. Top row
corresponds to MP, middle row to HJA and lowest row to the MF site. In the left
column, the weak-wind regime was determined from vector averaged wind velocities,
in the right column from scalar averaged ones.
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4 Weak-wind situations

than for the strong-wind case, if weak wind corresponds to a decoupled subcanopy
layer.
At the MP site and the MF site, data is taken from the B1 sensor and at HJA from
WS1Top as the above canopy data. At the BPP site there naturally is no ’above
canopy sensor’, as there is no continuous canopy at this site. As a substitute, we use
the A1 sensor, which is the highest sensor at this site. For the subcanopy data we
would ideally like to take a sensor of the ground network fixed on the same tower as
the above canopy sensor. This is however not possible because at most of the sites
no ground network sensor is located at the main tower. As a substitute, we use the
average from the two ground network sensors closest to the tower. The sensors used
for this purpose are the A3 and A4 sensor at BPP, C1 and C4 at MP, A1 and A3 at
HJA and B3 and C3 at MF. From the respective two sensors of each site, the mean
of the vertical wind standard deviations for every interval is calculated.
For deciding whether or not there is a weak-wind situation, each of the two ground
network sensors is taken into account individually. Only when both sensors indicate
wind speeds below the weak-wind threshold of the respective site, an interval is
classified as a weak-wind situation. Similarly, a strong wind situation is, when both
sensors indicate a wind speed larger than the site-specific weak-wind threshold (see
chap. 4.1). Intervals, that are classified differently by the two ground network sensors
are excluded from the following analysis.
For looking at the dependence between σw,b and σw,t, again bin averages are calculated
(fig. 4.10 and fig. 4.11). This is done separately for the weak-wind and the strong-wind
cases. Contrary to the previously calculated bin averages, this time the bins don’t
have fixed edges, but each bin contains the same number of points. Thus, one can
directly see, if in a certain region of vertical wind standard deviations there are
particularly many weak-wind or strong-wind data points. Each of the bins contains
500 data points, except for the weak-wind bins at the BPP site and the strong wind
bins at the MF site. Here, one bin only corresponds to 100 data points due to the
small overall number of observations. Additionally, figure 4.10 and figure 4.11 also
show the standard deviations within the bins as a light blue or grey background,
respectively.
Figure 4.10 shows that at the BPP site, there actually is a very different dependence
of the ground network’s vertical wind standard deviation on the one of the top sensor
(A1), depending on whether there is a weak-wind or a strong-wind situation. The
difference between the weak-wind and the strong-wind regime is so distinct that even
the areas of the standard deviation hardly overlap. In figure 4.10, distinction between
regimes was done using the scalar averaged threshold. The plot however looks the
same, if the vector average is used instead.
One can see that weak-wind cases rarely exist with a top sensor standard deviation
higher than σw,t & 0.2 m

s . For lower σw,t . 0.2 at the top, the turbulence at the
ground network is generally weak in weak-wind situations compared to during strong-
wind situations. For the same amount of turbulence at the top sensor, the turbulence
at the bottom sensor is generally weaker in weak-wind situations. Furthermore, during
weak-wind situations, the vertical wind standard deviation at the ground network
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4.3 Is the weak-wind regime connected to decoupling?

is almost independent of the one at the top sensor. In contrast, during strong wind
cases, a higher standard deviation σw,t at the top sensor leads to a higher standard
deviation σw,b at the bottom sensor. According to the method from Thomas et al.
(2013) etc., we can thus conclude that at the BPP site, during weak-wind cases, the
air layer at the ground network (h = 1 m) is decoupled from the layer at the A1
sensor (hA1 = 12 m).
Figure 4.10 shows the same plot for all the forested sites. At the forested sites, there
is a slightly different picture than at the unforested BPP site. First of all, at the
forested sites, there are also weak-wind situations with a higher top sensor standard
deviation than at BPP σw,t & 0.2 m

s . This difference is due to the canopy acting
as a momentum sink, so that despite high turbulence and high wind speeds above
the canopy only little momentum actually persists at the ground network sensors
within the subcanopy. Thus, weak-wind situations can actually exist within the
canopy despite relatively high wind speeds above. At the grassland site, to have a
weak-wind situation at the ground network, there must also be relatively weak wind
at the highest sensor because there is no momentum sink between those two. Still,
as expected, the highest top sensor vertical wind standard deviations can be found
during strong-wind situations.
The main difference however is that at the forested sites, there is no different slope in
the dependence of σw,b on σw,t during weak-wind situations than during strong-wind
situations. Especially at the HJA and the MF sites (middle and bottom row, fig. 4.10),
the dependence of the turbulence within the canopy from that above the canopy
during weak-wind situations appears to be identical to the one during strong-wind
situations except for a constant offset. This observation is insensitive to the choice of
averaging method (vector or scalar average). Consequently, at those sites we can not
conclude that a weak-wind situation corresponds to a decoupled canopy.
Nevertheless, the amount of turbulence in the subcanopy at a certain above canopy
turbulence is much smaller during weak-wind situations than during strong wind
situations. The shaded areas, which indicate the typical amounts of subcanopy
turbulence at a given above canopy turbulence hardly even overlap. We can thus
conclude that during weak-wind situations, the canopy does act more efficiently as
a momentum sink than during strong-wind situations. However, an increase in the
above canopy turbulence leads to an increase of the subcanopy turbulence, which is
not the behaviour expected for a decoupled subcanopy.
The only forested site with at least small differences in the dependence of σw,b on σw,t
between weak-wind and strong-wind situations is the MP site. If the classification
into weak-wind and strong-wind regime is done with the scalar averaged threshold
velocity, only the strong wind data with a very small standard deviation σw,t above
canopy show a different trend. Here, a strong slope can be observed during the first
two to three strong-wind bins. Then the slope levels off immediately to the same slope
that can be observed in the weak-wind case. As every bin corresponds to the same
number of individual data points, it is evident that this different behaviour is only
the case for a very small portion of the overall data. To summarize, during a strong
wind situation, the turbulence strength within the canopy seems to be much more
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influenced by the turbulence above the canopy when the turbulence strength above is
weak than when it is strong. One possible reason for that would be that the subcanopy
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is actually decoupled from the above-canopy during weak-wind situations and coupled
during strong-wind situations, but the canopy prevents that vertical motions in the
subcanopy can grow above a certain limit. Thus, once the turbulence has reached a
certain threshold, the canopy hinders its further growth. This hypothesis is supported
by the fact that also at the HJA site, the bin averages of the vertical wind’s standard
deviation bend down a bit at very small turbulence intensities at the top σw,t < 0.1 m

s
(see fig. 4.11 and fig. 4.12). It could thus be that also at the HJA site, the subcanopy
turbulence strongly grows with increasing above canopy turbulence for σw,t < 0.1 m

s
and then levels off and that there is just not enough data in the weak turbulence
sector to properly see this behaviour. It is remarkable that the transition in slope of
the strong-wind subcanopy turbulence occurs at approximately the same amount of
subcanopy turbulence at the HJA site as at the MP site. This is also coincident to
the amount of subcanopy turbulence that can be found during the few strong-wind
situations at the MF site (see fig. 4.12). Furthermore, the slope at the strongly rising
section of the MP site’s strong-wind cases resembles the slope of the strong-wind case
at BPP (see blue circles and yellow crosses for σw,t < 0.2 m

s in fig. 4.12).
All this could indicate that also at the forested sites, the subcanopy air is actually
decoupled from the above canopy during weak-wind situations and coupled during
strong-wind situations, but the canopy prevents the vertical wind’s standard deviations
from growing beyond a certain limit. This is however only a guess and can not be
proven. Furthermore Vickers & Thomas (2014) showed that a canopy does actually
not strongly restrict vertical motions but rather the horizontal ones. This contradicts
the hypothesis of the canopy setting an upper limits for the vertical velocity’s standard
deviation. A detailed analysis of the different terms in the budget of the turbulent
kinetic energy could help in understanding whether or not the different behaviours of
σw,b(σw,t) in the strong-wind and the weak-wind regime indicate decoupling.
If the classification between weak and strong wind is done with the vector averaged
threshold, the MP site has one more feature that distinguishes it from the other
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forested sites. This feature is that during weak-wind situations at relatively strong
above-canopy turbulence (σw,t & 0.4 m

s ), the subcanopy turbulence suddenly shows
a much steeper slope (fig. 4.11 left column, top row). This is not the case if the
classification is done with the scalar averaged wind speed.
The MP site is the site with the highest percentage of data points that is classified
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Figure 4.13: Points allocated differently to weak-wind or strong-wind depending on
the averaging scheme used for the wind speed.

differently depending on whether the scalar or the vector averaged wind speed is used
for determining the regimes. As a result, is not surprising that MP is the only site
where there is a difference depending on which threshold is used for the classification.
In figure 4.13 there are again the hockey stick plots used for the determination of
the weak-wind regime at the MP site. This time however, the points that led to the
big difference between classification by vector or by scalar average are marked by
a turquoise ellipse. Apparently, at the MP site, there are some data points with a
very small velocity of the mean flow but a considerable amount of turbulence. Due
to the small velocity of the mean flow, with the vector average they are classified as
weak-wind data. The considerable amount of turbulence however leads to a significant
mean wind speed if the scalar average is used, as there is a significant amount of
momentum contained in the flow. Thus, those points are allocated to the strong-wind
regime when using the scalar average.
These points are very likely the ones that cause the larger slope for σw,t & 0.4 m

s
in the vector averaged case at the MP site (fig. 4.11 top row). With those points
being attributed to the strong-wind class in the scalar averaged case, the increase in
slope can not be seen. As they are the data points with the highest above canopy
turbulence of all the MP site’s weak-wind data, we can conclude that the additional
turbulence that causes the increased slope of σw,b likely is induced from above the
canopy.
This coherence is actually an argument for using the scalar averaged wind speed for
determining the weak-wind regime. The aim in separating the data of weak-wind
situations from the rest is finding the situations in which there is more turbulence
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than expected. Then, turbulence might have been generated by submeso motions.
This however is probably not the case if the turbulence actually originates from over
the canopy.
To summarize, it could not be confirmed that a weak-wind situation in the subcanopy
is synonymous with decoupling of the subcanopy from the above canopy air. The
only site where the dependence of the subcanopy turbulence from the above canopy
turbulence acknowledges a decoupling is the BPP site, the only site where there is
actually no physical barrier between the bottom and the top sensor. Nevertheless,
for all of the sites, the weak-wind and the strong-wind data are surprisingly well
separated in the plots of the vertical wind standard deviations σw,b(σw,t). The typical
ranges of the strong-wind data and the weak-wind data hardly overlap. On the other
hand, the typical ranges of the weak-wind data are very similar between all of the
sites (see grey lines in fig. 4.12) and also the typical ranges of the strong-wind data
at all forested sites (coloured symbols in fig. 4.12).
We did not find any evidence that during strong wind, turbulence in the subcanopy
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Figure 4.14: Dependency of the subcanopy turbulence on the above canopy turbulence
in weak-wind and in strong-wind situations (blue and black points) versus overall
dependence when no separation into weak and strong-wind regime is done (red line).
Left plot belongs to the MP site, right plot to the MF site.

is more dependent on turbulence above canopy than during weak wind. In the case
of strong-wind and weak-wind data being separated, there isn’t even a critical above
canopy turbulence, starting from which the subcanopy turbulence is more strongly
influenced by the above canopy one. For this reason it is necessary to check, if a critical
above canopy turbulence exists, in case that no separation between weak-wind and
strong-wind is done. For this purpose, we look at the dependence of the subcanopy
σw,b from the above canopy σw,t without separating weak and strong-wind data and
compare it to the behaviour of the separated weak-wind and strong-wind curves.
Figure 4.14 shows again the black and blue dots representing the bin averages of the
strong-wind and weak-wind case’s dependence of σw,b on σw,t (left plot for MP, right
plot for MF). As before, the standard deviation within the bins is represented by
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grey and blue backgrounds. This time however, the plots show an additional red
line, which is the connecting line between the bin averages when no separation into
weak-wind and strong-wind data is done. In this line there actually is a point where
the slope of σw,b(σw,t) suddenly increases (marked with a red arrow). Comparing
the position of the transition point to the separated bin averages, one can see that
this corresponds to the strong-wind situations becoming more frequent than the
weak-wind situations at the given level of above canopy turbulence σw,t. The higher
slope of the combined weak and strong-wind bin averages that follows at higher above
canopy turbulence than the kink value actually results from the focus of the combined
data slowly shifting from the weak-wind position to the strong-wind position. Once
the line of the combined data’s σw,b(σw,t) reaches that of the strong-wind data, the
slope reduces again to its original value (see left plot of fig. 4.14, MP site). It seems
thus as if the bend in the dependence of the subcanopy σw,b on the above canopy σw,t
was just caused by the strong-wind data gaining more influence than the weak-wind
data. This should be further investigated in order to decide whether or not the kink
in the relation between σw,b and σw,t can actually be used as an indicator on whether
or not the subcanopy is decoupled from the above canopy.
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5 Meandering - a typical weak-wind
phenomenon

We now want to analyse meandering, one of the typical submesoscale phenomena.
Meandering generally refers to a horizontal, low frequency oscillation of the wind
direction. It is prevalent during weak-wind conditions, but can also be observed
during strong-wind situations (Anfossi et al., 2005). Also sudden wind shifts instead
of wind direction oscillations are sometimes referred to as meandering (Mahrt, 2007).
In the following section, a new technique for identifying meandering intervals is
introduced, using the constancy of the wind C. Afterwards, this technique is compared
to one that has been used a lot in the recent years. This technique makes use of the
autocorrelation of the horizontal wind directions and the temperature, respectively
(Anfossi et al., 2005). Finally, we will look if there are any predominant time scales
inherent to the meandering motions and if any differences in the meandering can be
found between day and night-time or between weak-wind and strong-wind situations.
For extracting the time scales, again two different methods are compared. Those
methods are the autocorrelation function on the one hand and the wavelet transform
on the other hand (Cava et al., 2017).

5.1 Constancy as a meandering indicator

For determining during which intervals meandering took place, a dimensionless
quantity called constancy C is used. This quantity makes use of the difference
between the vector average and the scalar average. It is calculated as

C =
ū

ūsc
(5.1)

where again ū means the vector averaged wind velocity and ūsc refers to the scalar
averaged wind speed (Singer 1967; Mahrt 2007). When the direction of the wind stays
constant during the complete interval over which the wind speed is averaged, the
constancy will reach its maximum C = 1. On the other hand, if the wind speeds and
directions are distributed symmetrically during the averaging interval, the constancy
reaches its minimum C = 0. Thus, the constancy is a measure of the variability of
the wind direction during the averaging interval.
Figure 5.1 shows time series of a 6-hour interval at the MF site (sensor C3), during
which 2 separate periods of meandering can be observed. The meandering periods
approximately last from 0:20 AM to 02:00 AM and from 3:40 AM to 05:10 AM.
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Figure 5.1: Time series of the wind φ (top), the two horizontal wind components
uNS and vNS (middle )and the constancy C (bottom) during a 6-hour interval that
contains two separate meandering periods.

The time series of the wind direction (top plot in fig. 5.1) is output from the Bmmflux
software with a perturbation time scale Tp = 1 min (see chap. 3.2). Whereas during
non-meandering periods, the wind direction varies only sightly, it spans the full range
of 360◦ during meandering periods. It is thus evident, that the ’mean wind direction’
has no physical meaning during meandering (Mortarini et al., 2013).
The plot in the middle shows the time series of the two vector averaged velocity
components uNS and vNS output by the Bmmflux software (Tp = 1 min). The index
NS indicates that the velocity components now are regarded in the coordinate frame
of the earth’s surface and not in the one of the mean wind direction, which changes
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5 Meandering - a typical weak-wind phenomenon

its orientation every interval. This is necessary for making the shifts in wind direction
visible in the velocity components. Also the vertical wind component will get the
index NS and thus be called wNS when the coordinate frame referred to is the fixed
one of the earth’s surface. During the meandering periods, both horizontal velocity
components switch their sign regularly due to the directional changes. During the
non-meandering periods, the relative changes of the horizontal wind components are
much smaller.
Since the aim is to find submesoscale phenomena, it is necessary to make sure that
only the ’slow’ directional changes are identified and not the rapid ones caused by
the small-scale turbulent eddies. For this purpose, we do not take the 20 Hz data for
calculating the constancy, but the vector averaged mean wind velocities uNS and vNS.
This way, any directional changes that can be detected take at least longer than one
minute. From the time series of uNS and vNS, the vector as well as the scalar average
and from those the constancy are calculated with a moving average of length τ .
Of course, the window length τ for computing the constancy has an influence on what
is identified as meandering and thus has to be chosen carefully. It is evident, that a
too short filter may prevent the constancy from detecting some directional changes.
If a directional change takes much longer than the filter length, the constancy is not
able to see its full extent. Thus, a quick one-time directional change may be detected
while a slow but long-lasting directional change may be missed.
On the other hand, also a too long averaging window may lead to problems, as for
example:
• The ends of the meandering intervals get smeared out
• Very slow directional changes that might e.g. be connected to the diurnal cycle

might be mistaken as meandering
• Regular directional changes from a well-defined main wind direction (see
chap. 5.4, fig. 5.13) cannot be seen if the filter length is much longer than
the switch of direction takes.

It is thus clear, that an intermediate length has to be chosen for the averaging window.
The chosen filter length should be suitable for detecting directional changes at time
scales typical for meandering.
Mortarini et al. (2016a) investigated the time scales of meandering motions at two
different sites. The found that the average time scale is site-dependent. Within
an urban environment in Turin, they found an median meandering time scale of
τm ≈ 25 min and a median time scale τm ≈ 36 min at a pasture near the Amazon
river. Within one site, the meandering time scales they found varied substantially
from a few minutes up to nearly an hour. Those time scales should be kept in mind
when choosing the filter length for calculating the constancy.
For selecting the optimal filter length, we look at the number of minutes N∆, that
is classified differently as meandering or non-meandering when the length of the
averaging window τ for computing the constancy is increased by one minute. In
Figure 5.2, this can be seen for the A2 sensor at the BPP site. The dependence of
the number of changes on the filter length can be well described by an exponential
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Site τ1% (min) στ1% (min)
BPP Main 29 2

BPP Moritz 40 4
MP 37 4
HJA 26 10
MF 42 2

Table 5.1: Mean site-specific optimal
filter lengths determined by the de-
pendence of the Number of minutes
classified differently when increasing
the filter length on the filter length
and its standard deviation.

function
N∆ = N0 · exp

(
τ

τ0

)
(5.2)

For calculating the constancy, we use the filter length τ1%, where on average, the
number of changes N∆ drops below 1%. Depending on site and sensor, the τ1% varies
a bit. Thus, the fit of eq. (5.2) is done for every station of the ground network. From
those values, a mean resultant filter length is calculated for every site.
Table 5.1 contains the filter lengths τ1% for the different sites and its standard

deviation στ1% . The standard deviation, which indicates the variability of the single
sensor’s τ1%, is much larger at the HJA site than at all the other sites. Furthermore,
the site-specific filter lengths of the two BPP sub-sites (BPP Main and BPP Moritz)
are very different compared to their respective standard deviations. The standard
deviations of the BPP sub-sites and also the MP and MF site are comparatively
small.
The reason for the high standard deviation στ1% at the HJA site is probably the
comparatively large distance between the sensors. While the distances between the
sensors at the MF and MP site are less than 100 m, the HJA sensors are distributed
along the valley over a length of nearly 1 km. Thus, the probability that the different
sensors see the same meandering motions is much larger at the small MF and MP
sites and the two BPP subsites than at the HJA site. This notion is confirmed by
the big difference between the calculated filter lengths of the two the BPP subsites
in combination with the relatively small standard deviation στ1% within each of the
subsites. The terrain at the BPP site is very similar between both subsites, but
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5 Meandering - a typical weak-wind phenomenon

the distance between them is about one kilometre (similar to the distance of the
farthest sensors at the HJA site). Thus it seems that not differences in terrain but
spatial separation lead to big differences between the single sensor’s τ1%. We can thus
conclude that it is not possible to find a simple relationship between the terrain and
the optimal filter time scale for detection of meandering intervals by the constancy.
However the plan is not only to detect meandering, but also to compare the typical
time scales between the different sites. In order to facilitate that without a bias
due to the detection mechanism, the same filter length should be used for all the
sites. Thus, the mean of the site-specific filter lengths from table 5.1is used, which is
τ1% = 35 min. The two-step averaging (first a site specific τ1% followed by an average
over all the site specific values) is done because of the different number of ground
network sensors at the different sites. By computing first a site-specific filter length
and averaging those, favouring the sites with more sensors can be avoided.
Using τ1% = 35 min as filter length, a time series of the constancy C can be received
like the one in figure. 5.1. It shows the time series of the constancy during the same
6-hour interval as the wind direction and the horizontal wind components in the
upper two plots. The rapid drop of the constancy when the directional changes occur
is clearly visible.
Finally, the meandering intervals are detected by searching for the minima of the
constancy C. Once a minimum is detected, we search for the ’full width at half
minimum’ around this minimum (i.e. the full width half maximum of 1−C, FWHM).
All the minima up to C = 0.5 are taken into account. This corresponds to the
relative strength of the submesoscale flow compared to the large scale flow reaching
approximately unity (Mahrt, 2007).
In figure 5.1, the intervals that were judged as meandering by this algorithm are marked
with a grey background. Those intervals coincide perfectly with the intervals during
which the large directional changes take place and the horizontal wind components
keep switching their sign. Thus, the method using the constancy seems very promising
for detecting the meandering phenomenon.

5.2 Autocorrelation function - the previous method for
identifying meandering

In the following we want to compare our new method of detecting meandering to
one that has so far often been used in literature (Anfossi et al. 2005; Mortarini et al.
2013; Mortarini & Anfossi 2015, Mortarini et al. 2016a, Cava et al. 2017). Thus, the
following section shows how this other detection scheme works.
The method is based on the autocorrelation function of the horizontal wind com-
ponents. Oettl et al. (2001) detected that during low wind speed conditions, the
autocorrelation function of both horizontal wind components frequently show a
negative lobe, while the autocorrelation function of the vertical wind component
mostly has the expected exponential form of a turbulent flow. This negative lobe is
attributed to the slow horizontal wind oscillations of the meandering. Anfossi et al.
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Figure 5.3: Time series of the three velocity components uNS, vNS and wNS and of
the sonic temperature θs after removing the linear trend.
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Figure 5.4: Autocorrelation functions of the time series shown in figure 5.3
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5.2 Autocorrelation function - the previous method for identifying meandering

(2005) showed that the autocorrelation function of the horizontal wind component,
from which any linear trend has been removed, can be described by

Ru,v(τ) = exp (−pu,vτ) cos (qu,vτ) (5.3)

where u is the mean wind direction, v the lateral direction and τ is the delay. While
pu,v describes the decorrelation due to turbulence, qu,v gives the typical time scale of
the meandering motion. Both, pu,v and qu,v can be obtained by fitting eq. (5.3) to
the autocorrelation function of the horizontal wind components during an interval
that is to be checked for meandering. Mortarini et al. (2013) proposed, using the
loop parameter

mu,v =
pu,v
qu,v

(5.4)

as a meandering indicator, with mu,v ≥ 1 during meandering and mu,v < 1 during
non-meandering conditions. The loop parameter measures the ratio between the
oscillation frequency and the inverse of the decorrelation time. High values of mu,v

indicate that the decorrelation takes long compared to the oscillation frequency, while
for low values ofmu,v the oscillation is negligible due to the quicker decorrelation. Also
the temperature θs shows the oscillating autocorrelation function during meandering
conditions due to the advection of heat (Mortarini et al., 2016a). Sometimes, also
the vertical wind component shows the oscillating behaviour of the autocorrelation.
This is however not always the case and no necessary condition for meandering.
For determining, whether or not an interval is meandering according to the autocor-
relation method, first any linear trend within that interval is removed by subtracting
a linear function fitted to the data (Bendat & Piersol, 2011). Afterwards, the au-
tocorrelation is calculated from the detrended interval. Then eq. (5.3) is fitted to
the autocorrelation and the loop parameters mu,v,θ < 1 for both horizontal wind
components and the temperature are calculated.
An interval will be called non-meandering, if mu,v,θ < 1 and meandering if mu,v,θ ≥ 1.
If at least one loop parameter, but not all of them are greater than unity, the re-
spective interval is called almost meandering (Mortarini et al., 2016b). Unlike the
previous works we will not do this for fixed intervals of one hour (or two hours in
Mortarini & Anfossi (2015)), but for the intervals that are identified as meandering by
the constancy method. Furthermore, we resign from rotating the coordinate system
to the direction of the mean wind and instead use the coordinate frame of the earth.
Figure 5.3 shows the detrended but unrotated time series of all three wind components
and of the sonic temperature. Apart from the block averaged data, also the high
frequency data from the sonic is shown. The depicted time series corresponds to the
second one of the two highlighted meandering intervals in figure 5.1 (from 03:37 AM
to 05:07 AM). It is thus an interval that is judged as meandering by the constancy
indicator. It is evident that both horizontal components and the temperature show
structures on the order of 10 to 20 minutes that strongly exceed the turbulent fluctu-
ations of the 20 Hz time series. Those structures are only very barely visible in the
time series of the vertical wind component.
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5 Meandering - a typical weak-wind phenomenon

Figure 5.4 shows the autocorrelation of the time series in figure 5.3 (coloured crosses).
Additionally, the fit of eq. (5.3) to the calculated autocorrelation is included in each
of the plots (black line). For comparison we also include the fit of an exponential
function (black dashed line), which does however not describe the autocorrelation
properly.
For uNS, vNS and θs, the autocorrelation function shows a strongly oscillating be-
haviour. The first negative lobe goes down to -0.5 for the uNS component and even
further for vNS and θs. Because of this, the form of the autocorrelation is much better
described by eq. (5.3) than by the simple, exponential decay that would be expected
for a turbulent system. The vertical wind component does not show a clear oscillation.
This is however no necessary condition for meandering.
The two horizontal wind components’ autocorrelations are well captured by eq. (5.3).
The time scales of the oscillations are τuNS ≈ 20 min and τvNS ≈ 26 min. The loop
parameters given by the fit of eq. (5.3) are mu = 8.6 and mv = 17.7.
The fit to the autocorrelation of the sonic temperature is much worse than that for
the two horizontal wind components. After a closer comparison of the calculated
autocorrelation Rθs with the ones of the horizontal wind components, one realizes
that Rθs seems like a superposition of both, RuNS and RuNS . This is plausible, as the
temperature is horizontally advected by the wind (Mortarini et al., 2016a). It makes
thus sense that features from both horizontal wind components appear in the time
series of the temperature. The function fitted to the autocorrelation can only take
one frequency into account. It is thus not surprising that the fit cannot capture the
autocorrelation correctly if there is a superposition. Nevertheless, the first negative
lobe, which goes down to −0.5 and which would not happen in the autocorrelation of
a purely turbulent time series, is nicely captured by the fit.
The loop parameter of the temperature is mθs = 7.5. Thus, all loop parameters are
greater than unity and the analysed interval is considered as meandering not only by
the constancy, but also by the autocorrelation method. Also the other meandering
interval depicted in figure 5.1 is classified as meandering by the autocorrelation
method, too. The loop parameters of this interval are mu = 5.7, mv = 1.8 and
mθs = 13.9.

5.3 Extraction of meandering time scales

If the meandering intervals are detected by their autocorrelation function, one auto-
matically also gets the typical time scales of this meandering motion. These time
scales are given by

τu,v,θ =
2π

qu,v,θ
(5.5)

where qu,v,θ are the respective fit parameters from the cosine part of eq. (5.3) for the
wind components uNS and vNS and the temperature θs.
When the constancy is used for detecting meandering, no information on the time
scale arises during the detection. It is thus necessary to apply another method for
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5.3 Extraction of meandering time scales

extracting the typical scales of the observed phenomena. For this purpose, wavelet
analysis will be used (Cava et al., 2017).
The wavelet transform is a local transform. Unlike the fourier transform it contains
not only information on the frequencies contained in a signal, but also on when
these frequencies occur. Thus it is a very good tool for studying non-stationary
processes (Collineau & Brunet, 1993). Wavelet analysis can also be used for many
other purposes mainly in signal processing like detection of jumps or filtering of
signals. In this work it will however only be used for the determination of typical
time scales during meandering situations.
The wavelet transform Tp(a, b) of a function f(t) is defined as

Tp(a, b) =
1

ap

+∞∫
−∞

f(t)Ψ

(
t− b
a

)
dt (5.6)

Ψ
(
t−b
a

)
is called the mother wavelet, a the dilation parameter and b the translation

parameter (Thomas & Foken, 2005). The factor 1
ap serves for the normalisation.

In this analysis, p = 1 is used as suggested by Collineau & Brunet (1993). This
corresponds to the L1 norm. It is also possible to use p = 1

2 , which corresponds to
the L2 norm (see Gamage & Hagelberg (1993) and Collineau & Brunet (1993) for a
discussion on the difference and on which normalisation to choose).
Depending on the purpose of the wavelet analysis, there are many different possible
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Figure 5.5: Basic form of the Morlet
wavelet (a = 1 and b = 0)

mother wavelets. Some of them are better localised in the frequency space and some
better in the time space. With the main interest being the typical durations, we
chose the real-valued Morlet wavelet, which is well localised in the frequency domain.
The Morlet wavelet, which is shown in figure 5.5, consists of a sine wave windowed
by a gaussian function. The wavelet function is given by

Ψ(t) = exp
(
−t2
)

cos(5t) (5.7)

For extracting the information on the typical time scales, it is necessary to translate
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Figure 5.6: Wavelet spectrum of the meandering time series shown in figure 5.3.
From top to bottom: uNS, vNS, wNS and θs.

60



5.3 Extraction of meandering time scales

the dilation parameter a into a time scale. This can be done by

D(a) =
1

2
· a · 2π∆t

ω0
Ψp,1,0

(5.8)

The wavelet-specific constant ω0
Ψp,1,0

= 0.8125 is given by the peak frequency of the
mother wavelet in the Fourier space with a = 1 and b = 0 and ∆t is the temporal
resolution of the input time series. The factor 1

2 is introduced here in order to get
the time scale of single events. An event here consists of a single deviation of the
time series upwards or downwards from the mean. Thus, during one period of a sine
function, there are two events taking place (Thomas & Foken, 2005).
All in all, the Morlet wavelet transform is very similar to a short-time Fourier
transform. However, for the wavelet transform, the width of the window function is
scaled depending on the time scale that is currently analysed. Thus, with a wavelet
transform, the high frequencies or short lived structures can be much better localized
in the time domain than with a short-time Fourier transform. Simultaneously, for
a slowly varying function, the Morlet wavelet has a very good resolution in the
frequency domain compared to the short-time Fourier transform.
Figure 5.6 shows the wavelet spectrum of the meandering time series shown in
figure 5.3. In addition to the time-dependent and scale-dependent wavelet coefficients
|T (D, t)|, which are represented by a colour code, the plots show a red, horizontal line.
This line corresponds to the time scale that was recognized by the autocorrelation
function as the dominant time scale of the meandering. For the sake of consistency,
the time scale determined by the autocorrelation function is also divided by two in
order to refer to single events instead of an oscillation period. Thus, the horizontal
line corresponds to Du,v,θ = 1

2τu,v,θ = π
qu,v,θ

.
From the wavelet coefficients, it is evident that for both horizontal components, there
is a clearly dominant time scale (two top plots, fig. 5.6). In the time series of vNS, the
activity of this dominant time scale can be observed during the whole period, while
for the uNS component, it only is pronounced in the second half of the interval. For
both horizontal wind components, the time scale determined from the autocorrelation
function perfectly matches the dominant time scale in the wavelet spectrum.
Also in the vertical wind component (third plot from top, fig. 5.6), a dominant time
scale can be recognized. Its activity however also only starts in the second half of
the interval and thus much later than the meandering. The observed interval seems
similar to the one analysed by Cava et al. (2017) as an extensive case study. In
this study they came to the result that meandering cannot only exist without being
triggered by vertical motions but can even trigger gravity waves itself.
In the wavelet spectrum of the temperature time series (bottom plot, fig. 5.6), a
complex superposition of different scales can be seen. The difficulties in fitting eq. 5.3
are thus not surprising as this equation considers only one frequency. Still, considering
the bad fit, one of the dominant time scales is captured surprisingly well by the
autocorrelation function, as can be seen by the horizontal red line.
In order to get the dominant time scale over the whole interval by wavelet analysis,
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Figure 5.7: Left plot: Wavelet variance spectra of the horizontal wind components
uNS (dotted) and vNS (dashed) and a total horizontal spectrum (red continuous line).
The vertical lines indicate the time scales given by the respective autocorrelation.
Right plot: Wavelet variance spectrum of the temperature θs and time scale from the
autocorrelation Rθs .

time scale ACF 1
2τu,v,θ (min) peaks wavel. var. spectrum Dpeak (min)

u 9.2 9.2 20.9 32.0
v 13.3 4.3 12.9 30.2
w (6.7) 4.3 8.6 17.8 30.2
θ 13.5 3.7 9.8 13.5 29.5 40.0

Table 5.2: Comparison of the time scales from the autocorrelation function to the
peaks in the wavelet variance spectrum.

a wavelet variance spectrum can be computed. The wavelet variance spectrum is
given by

W (D) =

+∞∫
−∞

|T (D, t)|2dt (5.9)

The wavelet variance spectra for both horizontal wind components as well as the
temperature θs can be seen in figure 5.7. Both horizontal velocity components show a
distinctive peak at scales around 10 minutes. The peak of the vNS component lies at
slightly larger time scales than the one of the uNS component. An additional but much
less pronounced peak lies at time scales of D ≈ 30 min. This time scale corresponds
to most pronounced peak in the wavelet variance spectrum of the temperature. It is
however too long to be properly visible in a autocorrelation function of a time series
that is only 90 minutes long.
The peak at D ≈ 10 min is the one recognized by the fit of the autocorrelation.

This can be seen by the vertical lines that represent the autocorrelation time scales
1
2τu,v,θ. They correspond perfectly to the peaks in the wavelet variance spectrum.
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5.4 Comparing the constancy and wavelet method to the ACF

Table 5.2 shows the scales Dpeak of all the peaks in the wavelet variance spectra and
the meandering time scale from the autocorrelation function 1

2τu,v,θ. For the sake
of completeness, also the ’meandering’ time scale from the autocorrelation function
of the vertical wind component is included, although a vertical oscillation is not
necessary for meandering. This time scale does not match with any of the peaks from
the wavelet variance spectrum of the vertical velocity. This is however not surprising
as the autocorrelation function of wNS does not show a strong oscillation behaviour
and the fit of eq. (5.3) gave a very poor result.
As also the plots in figure 5.6 and 5.7 indicate, for uNS, vNS and θs, the agreement
between both methods on the time scale is very satisfying. This can be seen from
the numbers in bold in table 5.2. Especially for the temperature, the compliance
between the time scales from the different methods is surprising because the fit of the
autocorrelation function does not even look very promising. The wavelet variance
spectrum however gives a variety of peak time scales, while the autocorrelation
function can give only one due to the design of the fit equation.
As already mentioned, during meandering conditions, there is no distinct mean wind
direction. It would thus be advantageous to get the predominant horizontal time
scales without allocating a certain direction to the coordinate system. For this
purpose, the wavelet spectrum of the horizontal motions can be computed by

Thor(D, t) =
√
T 2
u (D, t) + T 2

v (D, t) (5.10)

From Thor(D, t) one can compute the wavelet variance spectrum of the horizontal
wind speed Whor(D) by eq. 5.9 (red line in fig. 5.7). In the case shown here, the vNS
component was oscillating more strongly and thus the horizontal wavelet variance
spectrum is mainly influenced by that of vNS. The peak of the uNS component is
barely even visible in the combined spectrum. This shows that the calculation of the
horizontal time scale is a very important step in determining the time scale of the
meandering motion.

5.4 Comparing the constancy and wavelet method to the
ACF

Chapters 5.1 - 5.3 show a nice case study for the comparison between the constancy
and the autocorrelation method on an interval that clearly is meandering. For this
interval, both methods don’t only succeed in assessing it as meandering, but also
agree very well on the time scale of the oscillating motion. However, the time series of
the temperature also shows that difficulties could arise when there is a superposition
of motions with different time scales. The reason for those difficulties is that the fit of
the autocorrelation function only takes one time scale into account and thus doesn’t
perform well, if the time series consists of a superposition of differently sized motions.
Thus, there already is some indication that the agreement between both methods
might not always be as nice as in the interval discussed above.
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5 Meandering - a typical weak-wind phenomenon

In the following chapter, intervals for which the constancy indicator and the autocor-
relation indicator don’t agree on whether or not it is meandering will be analysed. A
closer look at those intervals shows that there are different reasons for the discrepancy
between both methods.
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Figure 5.8: Top left : Time series of the wind direction which contains a very long
meandering interval. Time series (Top right), Wavelet variance spectrum (Bottom
left) and autocorrelation (Bottom right) of the potential sonic temperature during
the meandering interval.

The first step in the analysis of the discrepancies is to find out, how many of the inter-
vals classified as meandering by the constancy method are also judged as meandering
by the autocorrelation. For this purpose however we have to consider one problem
first, which is the diurnal course of the variables and especially of the temperature.
This problem is only important for very long meandering intervals, as e.g. the one in
figure 5.8.
During the long interval, the temperature undergoes a strong, non-linear shift due
to its diurnal course (see top right plot, fig. 5.8). This shift is much stronger than
any fluctuations due to advection of warmer or colder air by meandering. As a result,
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5.4 Comparing the constancy and wavelet method to the ACF

(%) BPP BPP (Moritz) MP HJA (val.) HJA (sl.) MF
meandering 18.6 29.8 5.8 18.0 38.3 52.1

almost meandering 76.5 46.5 35.4 67.3 53.1 42.6
not meandering 13.9 23.7 58.9 14.7 8.6 5.4

Table 5.3: Percentage of meandering intervals according to constancy that are classified
as meandering, almost meandering and not meandering by the loop parameters.

for a very long period of meandering, the linear detrending that is applied before
calculating the autocorrelation is not enough for removing the diurnal trend. Conse-
quently, the autocorrelation function is ’blind’ to all the other, weaker fluctuations
(fig. 5.8, bottom right plot). It will always give back a too long time scale because of
the diurnal variations. The smaller fluctuations that are present in the time series
according to the wavelet variance (fig. 5.8, bottom left plot) are not detected by the
autocorrelation method.
As a workaround, in order to get a reasonable result when comparing both detection
methods, the long meandering periods are cut into shorter pieces before analysing
them with the autocorrelation function. This is a reasonable approach as also in
the works done so far with the autocorrelation function, the intervals tested for
meandering normally were only 60 minutes long. Mortarini & Anfossi (2015) also
tested using longer intervals of 120 minutes. They see that the shorter interval of
60 minutes might lead to some meandering events not being recognized correctly.
However they also state that using a too long interval does not make sense due to
unavoidable instationarity. Thus, the necessity to cut the very long meandering
intervals into shorter pieces is easily justifiable.
In order to decide, how long the pieces should be into which the too long time series
is cut, it makes sense to remember that the averaging length for the constancy is
τ1% = 35 min. During this period, the wind direction has to cover at least a sector of
120◦ in order to be recognized by the constancy indicator as meandering in case of
a sudden jump of the wind direction. In case of a very gradual change of direction
(equidistant steps), the directional change within 35 minutes must exceed 217◦ for
being detected. For meandering motions that cover the full range of 360◦ this would
mean that a full oscillation can take up to 56 minutes and still be identified. It is
thus clear that using intervals of 35 minutes for the autocorrelation analysis is too
short as not even a full oscillation will be completed during this period. Instead, we
will use units of 70 minutes, which corresponds to twice the filter length. This way,
more than one complete oscillation can take place during the interval and at the same
time the diurnal course is not a problem.
The interval will thus be cut into as many intervals of length L = 70 min as possible.
The remainder after that is attached to the last interval, resulting in intervals that
can be 139 minutes at most. This is in a similar range as the interval length used by
Mortarini & Anfossi (2015) and thus still a reasonable length.
Apart from cutting the time series into pieces, for intervals where the autocorrelation
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(%) BPP BPP (Moritz) MP HJA (val.) HJA (sl.) MF
all agree 34.7 32.0 23.5 44.8 40.9 33.0

some agree 65.3 65.0 76.5 54.1 58.1 64.3
none agree 0 3 0 1.2 1.0 2.7

Table 5.4: Percentage of intervals where all the typical time scales (some/none of
the time scales) determined with the autocorrelation function agree with the ones
determined from the wavelet variance spectrum for the intervals that are classified as
meandering by both methods.

(%) BPP BPP (Moritz) MP HJA (val.) HJA (sl.) MF
all agree 10.2 8.5 2.0 6.0 13.9 4.9

some agree 80.3 77.3 76.5 83.5 80.8 87.6
none agree 9.1 14.2 21.6 10.5 5.3 7.6

Table 5.5: Percentage of intervals where all the typical time scales (some/none of
the time scales) determined with the autocorrelation function agree with the ones
determined from the wavelet variance spectrum for the intervals that are classified
as meandering by the constancy and as almost mendering by the autocorrelation
function.

function gives a time scale greater than D = 35 min , we assume that the fit detected
a variation due to the diurnal course instead of a fluctuation due to meandering and
set the loop parameter to zero. D = 35 min corresponds to an oscillation period of 70
min, which is the limit of oscillations that can be reliably identified by the constancy.
The process for excluding diurnal variations could certainly still be optimized but
this was not done within the scope of this master thesis.
Being now able to avoid misjudging the diurnal course for meandering, it is inter-
esting how often both methods of detection for meandering agree. For this purpose,
the autocorrelation function is fitted for every interval that was identified by the
constancy. If the interval is too long it is cut into pieces as described above and then
the fit is done for each subinterval. Each of the (sub-)intervals is assigned to one of
the groups ’meandering’, ’almost meandering’ and ’not meandering’ according to its
loop parameter (see chap. 5.2). Table 5.3 shows, how many of the intervals that are
meandering according to the constancy are meandering, almost meandering or not
meandering due to the autocorrelation function. The numbers shown in table 5.3 are
the average of all the ground network stations at the given site.
By far the worst coincidence between the two methods can be found at the MP site,
where nearly 60% of the meandering intervals found by the constancy are classified
as not meandering by the autocorrelation function. Only 5.8% of the intervals are
determined as meandering according to the autocorrelation and 58.9% are judged as
non-meandering. At all the other sites, the results are much more encouraging. The
best coincidence can be found at the MF site, where only 5.4% of the intervals are not
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5.4 Comparing the constancy and wavelet method to the ACF

meandering due to the autocorrelation function and more than 50% are meandering.
At all sites except MP one can observe that most of the intervals are attributed to
the ’almost meandering’ group by the autocorrelation function.
It is not only important to know how well both methods agree on whether or not
there is meandering, but also the reliability of the detected time scale is interesting.
The time scale given by the wavelet analysis is quite reliable as the Morlet wavelet
was used, which has a very good localization in the frequency space. The time scale
detection of the autocorrelation function however seems not very trustworthy, due
to its difficulties in dealing with a superposition of different motions. Additionally,
the autocorrelation function is prone to give the wrong time scale when a slow trend
is present in the data, for example due to the diurnal cycle. Last but not least, it
is doubtful how well a time scale can be detected from a autocorrelation function,
if only a few cycles of the event take place during the analysed interval. Making
the analysed interval longer is no option because than the diurnal cycle would start
playing a role. Furthermore, in the atmosphere often not more than a few cycles can
be observed.
Table 5.4 shows the percentage of intervals where all (some/no) time scales agree, in
case both methods identified the interval as meandering. If the autocorrelation of
both horizontal wind components as well as the temperature indicate meandering,
almost always at least some of the time scales from the autocorrelation function agree.
Nevertheless, for the bulk of the meandering intervals, only some of the time scales
agree between the methods and not all of them. In the case of ’almost meandering’
behaviour according to the autocorrelation, the percentage of intervals where some of
the time scales agree is bigger than in the case of ’meandering’. This group includes
around 80% of all the ’almost meandering’ cases. Also the percentage of cases where
none of the time scales agree rises for the ’almost meandering’ case compared to
the ’meandering’ one. This group accounts for approximately 10% of all the ’almost
meandering’ cases.
It is not clear, which time scale is the correct one in case the two methods disagree.
Due to the reasons discussed above however, the time scale given by the wavelet
analysis seems more trustworthy.
Knowing that the autocorrelation and the constancy method don’t always agree on
whether or not a situation should be acknowledged as meandering, we now want to
analyse the reason for those discrepancies.
First of all meandering often is caused by a complex superposition of motions (Mahrt,
2007). As a result, there sometimes is more than one predominant frequency in the
meandering motion. As eq. (5.3) only considers one frequency of oscillation, this
sometimes leads to a failing of the fit. The failing of the fit sometimes ’only’ leads to
a wrong time scale that is detected by the autocorrelation function, but sometimes it
also leads to the autocorrelation function not detecting the meandering at all.
Figure 5.9 shows an example of an interval where motions of two different time scales
occur simultaneously. In the top left plot, the time series of the wind direction during
this interval is shown. It is evident that during the interval, the wind direction covers
the complete possible range from 0◦ to 360◦ and thus is clearly meandering according
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Figure 5.9: Top left: Time series of the wind direction during a meandering interval
detected by the constancy method. Top right: Autocorrelation of the uNS compo-
nent during this interval and fit of the expected autocorrelation function during a
meandering interval (continuous line) and a during a turbulent interval (dashed line).
Bottom left: Wavelet spectrum of uNS. Bottom right: Wavelet variance spectrum of
uNS.

to the constancy method. Regarding the autocorrelation of the uNS component one
can clearly see that it does go down far below zero, as it is expected for a meandering
interval. However, the oscillation of the autocorrelation function is very irregular.
As a result, the fit of eq. (5.3) does not succeed in capturing the oscillation and
looks similar to a simple exponential decay instead. The loop parameter from this
fit is mu = 0.86 < 1 which hints at a non-meandering interval. Also for the second
horizontal wind component, vNS (not shown), the loop parameter mu = 0.54 < 1 does
indicate meandering. Only the loop parameter from the temperature θs is greater
than unity and thus makes the interval ’almost meandering’ according to Mortarini
et al. (2016b). The time scale of the oscillation given by the fit of the temperature
autocorrelation however is τθ = 65.7 min, which is a very dubious result from a time
series that is only about 80 minutes long.
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At the bottom of figure 5.9, the wavelet spectrum and the wavelet variance spectrum
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Figure 5.10: Top left: Time series of the wind direction during an interval where
turbulence was possibly misjudged as meandering; Top right: Autocorrelation of the
uNS component during this interval and fit of the expected autocorrelation function
during a meandering interval (dotted line) and during a turbulent interval (dashed
line); Bottom left: Time series of the 20 Hz data and the block averaged data; Bottom
right: Wavelet variance spectrum of uNS.

of the uNS component (and vNS for the wavelet variance spectrum) are shown. It is
clearly visible that there is a superposition of events with a time scale of around 20
minutes and ones with around five minutes. Also the time scales Du,v = 1

2τu,v = π
qu,v

that result from the fit of the autocorrelation function are shown. They clearly do
not fit to the time scales shown by the wavelet spectrum. All in all, figure 5.9 shows
an example of a meandering situation that is only judged as almost meandering
according to the autocorrelation method. Furthermore, the time scales that the
autocorrelation method gives back are completely wrong as the fit cannot properly
describe the superposition of two different time scales.
From visual inspection of the autocorrelation functions in the cases with discrepancies
between the autocorrelation and the constancy method, it appears that the super-
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5 Meandering - a typical weak-wind phenomenon

position of different time scales is the most frequent reason for the autocorrelation
function not or only partially detecting the meandering.
Another example, of an interval where the two methods don’t agree on whether or not
it is meandering is shown in figure 5.10. Again, the wind covers all possible directions
during the depicted interval. However the situation is different this time as apart
from a lot of scatter, the autocorrelation of the uNS component hardly dips below
zero. Also the time series of one horizontal velocity component during the interval
(bottom left of fig. 5.10) looks different than the clear meandering time series shown
in figure 5.3. The difference is that now, the rapid fluctuations of the original 20 Hz
time series shown in gray are large compared to the fluctuations of the block-averaged
data with a temporal resolution of 1 minute. Furthermore, the wavelet variance
spectrum (bottom right) shows a peak at the smallest time scales that it can resolve.
Intervals with behaviour like described above occur almost only during the day.
Particularly often they can be found at the MP site. MP is the only site, where this
kind of ’meandering interval’ can be found during the night, too.
The preferred time of occurrence as well as the very small dominant time scale found
from the wavelet spectrum and the form of the autocorrelation function all hint that
during these intervals, the constancy indicator is actually not detecting meandering,
but turbulent fluctuations of the wind direction. This is probably caused by the
turbulence during the day not being confined to the same small scales as during
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Figure 5.11: left : time series of the uNS component during a ’meandering interval’
detected by the constancy; right Autocorrelation of the block averaged data (red
crosses) and the 20 Hz data (grey dots forming a line) and the fit of the expected
function for a meandering situation (black dotted line)

the night. Because of that, in the block averaged data, some turbulent fluctuations
are still included. In order to avoid the accidental detection of turbulent phases as
meandering it would probably help to adapt the perturbation time scale Tp. For this
purpose, the method of Vickers & Mahrt (2003) could be used in order to detect the
best perturbation time scale during the night and during the day respectively. It is
however unlikely that a distinct cospectral gap can be found during the day, as then
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5.4 Comparing the constancy and wavelet method to the ACF

the scales of submeso motions and of turbulence might overlap. All in all, the chosen
time scale Tp = 1 min is probably too short during the day, but finding a proper one
is a challenge.
As the intervals of possibly misjudged turbulence happen exceptionally often at the
MP site, this probably is the reason for the bad coincidence between the constancy
and the autocorrelation method at this site (see tab. 5.3). This raises the suspicion
that the perturbation time scale Tp = 1 min is actually not a good choice for the MP
site. The choice of a proper perturbation time scale is thus of vital importance for
identifying meandering via the constancy.
Also the autocorrelation function sometimes judges intervals as meandering or almost
meandering where it is doubtful if the oscillations that can be seen are actually
meandering or turbulence. One example of such a situation can be seen in figure 5.11.
The left plot shows the time series of an interval that is judged as meandering. The 1
minute block averaged time series is represented by the red crosses and the 20 Hz
time series is shown as as continuous grey line. Again, the interval takes place during
the day (8.40 AM to 10:30 AM) and again also the block averaged time series seems
to fluctuate rapidly. This time however two out of three loop parameters (mu and
mθ) are greater than unity and thus classify the interval as almost meandering. For
the uNS component, the autocorrelation function from the block averaged data and
also the one from the 20 Hz data are shown in the right plot of figure 5.11. One
can see that this time, the fitted autocorrelation function recognizes the first dip
below zero of the autocorrelation. As a result, the loop parameter for the shown
autocorrelation is mu = 2.0. The time scale that the fitted autocorrelation gives back
is Du = 1

2τu = 2.2 min. This is similar to the dominant time scale from the wavelet
variance spectrum D = 2 min, which is again at the very limit of time scales that
can be resolved. All in all, the interval has all of the properties that were identified
as a indication for turbulent fluctuations being misjudged as meandering. Thus, both
methods, the autocorrelation as well as the constancy, might sometimes mistake
turbulent fluctuations as meandering. However, at least at the BPP, HJA and MF
sites, this problem vanishes when excluding daytime data.
It is now clear that the constancy performs better than the autocorrelation method
at recognizing meandering if there is a superposition of motions with different scales.
On the other hand, if the perturbation time scale was chosen too short the constancy
cannot differentiate between the directional changes due to turbulence and those due
to mesoscale phenomena. The problem is less pronounced when using the autocorre-
lation function as an indicator, but also then some intervals remain dubious. When
using the constancy, the problem of misinterpreted turbulence might be resolved by
choosing a site-dependent and day/night dependent perturbation time scale according
to the cospectral gap method (Vickers & Mahrt, 2003). This was however not done
in the scope of this master thesis.
Next, it is interesting how many meandering intervals the autocorrelation method
finds during periods that are non-meandering according to the constancy. For this
purpose, too long intervals are again split into pieces of 70 minutes like described
above. This serves again the purpose of the diurnal course not impeding the detection
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Figure 5.12: Interval where sometimes directional changes are too small to be
discovered by the constancy Top left : Time series of the wind direction φ. Intervals
that are detected as meandering by the constancy are marked in grey. ; Top right :
Time series of the two horizontal wind components u and v ; Middle left : Time
series of the constancy C ; Middle right : Autocorrelation of the three intervals
marked with 1, 2 and 3 in the top left plot (interval 1: 9:20 pm - 11:26 pm, interval
2: 11:26 pm - 1:23 am, interval 3: 1:23 am - 2:35 am). The earlier intervals are
shorter than 70 minutes and thus no autocorrelation is calculated ; Bottom: Wavelet
spectrum; Intervals detected by the constancy are marked with vertical red lines. For
the intervals that are at least 70 minutes, the meandering time scale given by the
autocorrelation function is marked with a horizontal black line.
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(%) BPP BPP (Moritz) MP HJA (val.) HJA (sl.) MF
meandering 0.5 4.2 3.6 7.3 14.0 8.8

almost meandering 18.3 17.2 52.2 65.3 53.7 74.1
not meandering 81.1 78.6 44.4 36.4 32.3 17.1

Table 5.6: Percentage of non-meandering intervals according to constancy that are
classified as meandering, almost meandering and not meandering by the loop param-
eters.

of meandering.
Table 5.6 shows the percentage of intervals that the autocorrelation function judges
as meandering, almost meandering or not meandering when the constancy doesn’t
detect meandering. While the result looks promising for the BPP site (less than 5%
meandering according to the autocorrelation when constancy says non-meandering),
all the other sites show a disappointing result. Especially at the MF site, only 17.1%
of the intervals that are non-meandering according to the constancy are also classified
as non-meandering by the autocorrelation function. It is thus important to investigate
the reason for the autocorrelation function discovering so much more meandering
than the constancy.
Visual inspection of the intervals in question suggests three main reasons for the
discrepancies.

1. Sometimes, wind directions don’t cover the whole range of 360◦ but only
a smaller angle. This is shown in figure 5.12 for a 6-hour interval, which is
characterized by quite regular directional changes occurring during the complete
period (top left plot). The wind directions however only span roughly 180◦.
The exact range that they cover varies slightly over time, with a slightly smaller
range from 9:20 PM to 11:26 PM and after 1:23 AM. As a result, the constancy
during those intervals with a slightly smaller range of wind directions doesn’t
fall below 0.5 and the intervals stay undetected by the constancy method. The
autocorrelation function however correctly detects the oscillating behaviour
during the intervals 1, 2 and 3 and classifies all of them as meandering (see
second row, right plot; loop parameters : m1 = 9.0, m2 = 14.2 and m3 = 6.9).
The time scales that the autocorrelation gives for them is marked with a
horizontal black line in the wavelet spectrum (bottom plot, fig. 5.12). The good
agreement between the dominant time scale in the wavelet spectrum and the
time scale from the autocorrelation is obvious.
The two intervals that are not marked with a number in figure 5.12 are shorter
than 70 minutes. This means that they are shorter than the lower limit set for
a meandering interval for being analysed with the autocorrelation. This limit
was set because for too short intervals the autocorrelation cannot reliably detect
the slowly fluctuating behaviour of the wind components. The directional time
series as well as the wavelet spectrum however suggests that also during the
two earlier intervals, regular fluctuations of the horizontal wind velocity already
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5 Meandering - a typical weak-wind phenomenon

exist and thus meandering is already present.
The interval in figure 5.12 shows, that situations with regular wind directional
changes exist, during which not the whole range of 360◦ is covered. Due to
the limit of C < 0.5 that determines meandering situations with the constancy
method, the intervals with a too small range of directions are missed. The range
that has to be covered during an interval of 35 minutes (i.e. the filter length) is
120◦ for the ideal case an abrupt change of direction of 180◦. For a very gradual
change of direction with equidistant steps, the change within 35 minutes needs
to be at least 217◦, in case the absolute value of the wind speed stays constant.
The numbers that are necessary for the directional change being recognized vary
when the wind speed doesn’t stay constant and when the change of direction
neither goes abruptly nor in equidistant steps. This dependence of the detection
scheme on how the directional change happens certainly is a disadvantage in
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Figure 5.13: Interval with a dominant wind direction with some strong but short
changes of direction. Top left: Time series of the wind direction φ.; Top right: Time
series of one of the horizontal wind components (uNS); Bottom left: Autocorrelation
of uNS; Bottom right: Time series of the constancy C.
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5.4 Comparing the constancy and wavelet method to the ACF

the constancy method. It would be possible to adapt the limit of the constancy,
from which on a interval is classified as meandering. However, the optimal limit
of the constancy seems to be site dependent (not shown). No further analysis
was done for determining the site-dependent optimal limit for detecting the
constancy.
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Figure 5.14: Interval without directional changes but other wavelike structures in
the horizontal wind components Top left: Time series of the wind direction φ;
Top right: Time series of one of the horizontal wind components (uNS); Bottom left:
Autocorrelation of uNS; Bottom right: Wavelet spectrum with the time scale extracted
by the autocorrelation function marked with a horizontal red line.

2. Sometimes, a clearly dominant wind direction exists, which is from time to time
interrupted by a sudden and strong wind directional change (fig. 5.13, after
10 minutes, 40 minutes, 50 minutes and 60 minutes) The new wind direction
stays stable for a couple of minutes (one symbol in figure 5.13 corresponds to
one minute) and then the old dominant wind direction takes over again. This
behaviour is especially typical for the HJA site, where due to the narrow valley
basically only two wind directions exist (down the valley and up the valley). It
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5 Meandering - a typical weak-wind phenomenon

can however also be found at the other sites, albeit to a lesser extent.
In the plot of the horizontal wind component uNS, each of the shifts of wind
direction is connected to a peak in uNS. Those quite regular peaks are easily
detected by the autocorrelation function, which gives the loop parameters
mu = 6.3, mv = 4.3, mθ = 3.2. For the uNS component, the autocorrelation
function as well as the fit is shown in the bottom left plot of figure 5.13. The
oscillating behaviour can clearly be seen. The constancy however stays higher
than 0.5 for the complete interval because of the strong predominance of one
direction. The secondary direction needs to be present for at least 9 minutes
(not necessarily coherent) during a 35 minutes interval so that the constancy
drops below 0.5. As a result, the constancy method fails at identifying the
directional changes in the interval shown in figure 5.13.

3. The autocorrelation sometimes detects intervals as meandering, where actually
the wind direction stays constant during the complete interval. During the
interval shown in figure 5.14, no major directional changes take place (see top
left plot). Only after 30-40 minutes, some fluctuations of the wind direction
occur, but they are less than 30◦.
In case of the wind speed however, slow fluctuations are quite obvious and
results in loop parameters of mu = 8.4, mv = 4.4 and mθ = 9.9. This can
be seen in the top right plot (time series of uNS) and in the bottom left plot
(autocorrelation of uNS and fit) of figure 5.14. The autocorrelation function
thus clearly characterizes the interval as meandering.
Also the wavelet spectrum shows that structures on the order of 10 minutes occur
during the interval, which corresponds to the time scale that the autocorrelation
gives back as the dominant one. This means that during the observed interval,
some structures do occur in the atmospheric boundary layer leading to an
oscillation of the horizontal wind components. However, with meandering being
defined as slow but strong changes of wind direction, what is observed certainly
is not meandering. Thus, the autocorrelation method can accidentally identify
the wrong kind of motions.

All in all, the constancy method misses some intervals if the changes of wind direction
cover a too small range or if there is a strongly dominating wind direction. However,
many of the intervals identified as meandering by the autocorrelation but not by
the constancy actually correspond to a different kind of motions. This means that
both methods might misinterpret some motions as meandering that are actually
something different. Besides, both methods might not be able to identify some
actually meandering situations. Which situations are accidentally detected and
which ones are missed depends on the method used for identification of meandering.
The difference in which situations are missed and which ones might accidentally
be detected could be used as a criterion for deciding which method to use for the
detection of meandering.
Apart from the ability to deal with a superposition of differently sized motions,
another big advantage of the constancy method is that the identification can be done
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very quickly compared to the autocorrelation method, where three functions have
to be fitted for every interval in order to decide whether is is meandering, almost
meandering or not meandering. This is especially useful, if block averaged wind
speeds have already been calculated with a proper perturbation time scale, as it was
the case in this work.
Furthermore, using the autocorrelation method, it is necessary to decide beforehand,
how long the intervals to be analysed for meandering should be. The original time
series then has to be cut into pieces of this length and every one of those pieces
has to be analysed. With the constancy method on the other hand, the complete
time series can be analysed at once. Besides, the starting and the ending time of a
meandering period can be found much more exactly using the constancy, as with the
autocorrelation method one is bound to the intervals into which the time series was
cut.
On the other hand, the autocorrelation immediately gives a typical time scale of
the meandering motion, while with the constancy method one has to apply some
additional work in order to get that. The time scale given by the autocorrelation is
however not very reliable in case there is a superposition of different motions.

5.5 Some statistics on weak wind and meandering

Finally, we will make use of the weak-wind threshold and the new meandering
indicator to get some statistics on weak-wind and meandering situations and the
connection between both. Furthermore, we look at the site dependence of those
statistics.

(%) BPP BPP (Moritz) MP HJA (valley) HJA (slopes) MF
overall 23 21 40 17 22 26
day 11 11 56 14 19 27
night 36 31 13 21 28 24

during sw 13 13 46 4 12 8
during ww 66 42 25 26 26 27

Table 5.7: Average percentage of meandering situations for each site. First line:
during the complete period, second line: during the day, third line: during the night,
fourth line: during strong wind situations, fifth line: during weak-wind situations;

Table 5.7 shows, how often meandering happens at the four sites. For computing those
numbers, first all meandering situations are determined for each sensor respectively.
The percentage is calculated by taking the ratio of the number of minutes classified
as meandering to the number of minutes during the measurement period. The overall
ratio for a given site is then calculated by averaging over the ratios of all ground
network stations of the respective site. Apart from the overall percentage, the table
also shows the percentage of meandering during the day and during the night and also
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5 Meandering - a typical weak-wind phenomenon

(%) BPP BPP (Moritz) MP HJA (valley) HJA (slopes) MF
overall 19 27 31 62 81 95
by day 5 10 22 47 70 93
by night 35 46 45 82 96 96

Table 5.8: Percentage of weak-wind situations overall, during the day and during the
night at the different sites.

during weak-wind and during strong-wind situations. For deriving the percentages
of meandering within the different categories, only the minutes associated to the
respective category are used. Then the ratio of the meandering minutes to the overall
number of minutes within the category is taken. For defining the weak-wind and
strong-wind category, the scalar averaged wind speed and the threshold wind speed
derived in chap. 4.1 are used. For differentiating between day and night, we use a
day-night indicator which is given back by the Bmmflux program for every minute.
For calculating that, the day of the year and the geographic position are taken into
account for calculating the time when the sun sets behind the horizon. The transition
time during sunset and sunrise is excluded from table 5.8.
At the HJA site and the BPP site, the ground network stations are additionally split
into two different subgroups. At the BPP site those subgroups are the main site on the
one hand and the Moritz site on the other hand. At the HJA site, the one subgroup
consists of all the sensors on the valley bottom, while the sensors of the other group
are all located on the slopes. Thus, at the BPP site, the two subgroups are separated
spatially by approximately one kilometre, but the terrain is very similar between
them. At the HJA site on the other hand, the two subgroups are not separated
by a big spatial distance compared to the distance between the sensors within one
subgroup. Instead, the subgroups are fundamentally different regarding the terrain.
As an addition to the table on meandering, table 5.8 shows the percentage of weak-
wind situations at the different (sub-)sites. Due to the different weak-wind thresholds
at the different sites, a higher percentage of weak-wind does not necessarily show that
the wind speed at this site is lower. The table shows that, as expected, much more
weak-wind situations can be found during night. Only at the densely forested MF site,
the difference between day and night is very low, as there are always predominately
weak-wind situations. For the HJA site, the same weak-wind threshold is for both
subgroups. Thus, table 5.8 indicates that the wind speed is generally higher at the
valley bottom than at the slopes, resulting in less weak-wind situations at the bottom.
It is evident from table 5.7 that for most sites, there are much more meandering
situations during the night and during weak-wind situations than there are during
strong-wind situations and during the day. This is exactly what we would expect, as
submeso motions are more prominent during weak-wind situations and weak-wind
situations occur most often during the night. Also Mortarini et al. (2016b), using
the autocorrelation method noted that meandering is much more frequent during
the night. Furthermore, we can confirm that also during strong wind situations,
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sometimes meandering can be observed, but less frequently than during weak winds.
This was also noted by Anfossi et al. (2005) but with a much higher wind speed as a
weak-wind threshold.
At the MF site, there are a bit more meandering intervals during the day than during
the night. This is probably due to the fact that at this site winds are generally very
weak and thus also during the day, weak-wind situations prevail. If one differentiates
by weak wind and strong wind instead of by night and day, the MF site again shows
the expected behaviour, with very little meandering during strong wind situations.
This suggests that at least at the MF site, actually the wind speed is more important
for the existence of meandering than the time of the day.
The next thing that catches the eye is that by far the most meandering situations
are identified at the MP site, while for the other sites, the percentages are very
similar. This peculiarity is particularly strong during the day and during strong-wind
situations. During weak-wind situations and during the night, the percentage of
meandering situations on the other hand is much lower at the MP site than at al the
others. Furthermore, the rule that there is more meandering during weak wind or
during the night respectively than during strong wind or during the day seems not to
apply to the MP site.
Unfortunately, this anomaly is probably caused by the erroneously identified mean-
dering intervals that were already mentioned in chapter 5.4. The combination of
unexpectedly many meandering cases during strong wind with very little meandering
during weak wind supports the suspicion that at the MP site, we might misjudge
turbulent fluctuations for meandering. Another possibility is that some of the motions
identified as meandering are actually a rotor caused by the airflow being forced above
the nearby ridge of the Cascade mountains. During the night, the turbulent fluctua-
tions are confined to much smaller scales. As a result, the ’meandering situations’
identified during the night are more likely to actually be caused by submesoscale
motions and thus the ones that we originally wanted to detect. Still, the data on
meandering from the MP site should not be over-interpreted.
At the HJA site, a systematic difference can be seen between the valley stations and
the slope stations. For every single category, the percentage of meandering cases is
lower at the valley bottom than at the slopes. Especially during strong-wind situa-
tions, hardly any meandering occurs at the valley bottom. Only for the weak-wind
cases, meandering shows a similar frequency of occurrence for both subgroups.
Probably, there are three reasons for this difference between the valley bottom and
the slopes. On the one hand, as already mentioned, winds are generally weaker at
the slopes than at the valley bottom. This can explain, why overall as well as in
the categories ’day’ and ’night’ meandering is more frequent at the slopes, as lower
wind speeds favour meandering. This is supported by the fact that for weak-wind
situations, the probability of meandering is nearly as high in the valley as at the
slopes. However, during strong-wind situations, meandering is nearly three times as
likely at the slopes than at the valley floor. This indicates that there is an additional
cause for the different frequencies of occurrence. The most likely causes can be seen
from the very special distribution of wind directions at the bottom of the deeply
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Figure 5.15: Left : Distribution of wind directions at the A3 sensor at HJA (valley
bottom); Right : Distribution of wind directions at the A4 sensor at HJA (slope)

incised valley. As you can see in the wind rose plot figure 5.15, the flow at the
valley bottom of HJA is strongly channelled. It can only move either downstream
or upstream, but hardly ever perpendicular to the valley axis. Thus, the trigger for
meandering probably needs to be much stronger at the bottom of the valley compared
to a place where every wind direction is possible. At the slopes, the upstream and
downstream directions are much less dominant. This is first and foremost true for the
A4 station, which is the one placed farthest away from the valley bottom (right plot,
fig. 5.15). At this station, more than 40 % of the time, meandering can be detected.
Also at the the WS1_Top station, which is located above the canopy in a height of
38 m, more meandering situations than the average of HJA can be found. Also at
this station the flow is less channelled (see wind direction distribution in figure 2.9).
Last but not least, cold air drainage can only happen at the deepest locations within
the valley and only close to the ground. Presumably, also cold air drainage and its
fixed downward wind direction can reduce meandering. It is thus very likely that the
strong topography impedes meandering at the valley bottom.
Apart from the difference between the two HJA subgroups, no big systematic differ-
ences can be found between the sites. Actually the differences in the probability of
meandering between weak wind and strong wind are much stronger than the differ-
ences between the single sites. Thus, again, the most important criterion for whether
meandering happens is the wind speed, except with extremely strong topography.
Apart from when meandering occurs, also the time scales of the meandering motions
and their dependence on the wind speed and the time of the day can be analysed.
Unfortunately, at the shortest time scales that can be detected with the perturbation
time scale Tp = 1 min, we cannot be sure if the observed phenomenon actually is
a submeso motion or if the directional changes are caused by turbulence. On the
other hand, the length of the filter for calculating the constancy can lead to very slow
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Figure 5.16: Distribution of the meander-
ing time scales of the A1 sensor at HJA.

(min) BPP BPP (Moritz) MP HJA (valley) HJA (slopes) MF
overall 14.4 14.5 11.9 13.9 13.2 14.3
by day 13.2 13.8 11.6 12.7 11.8 13.0
by night 14.8 14.8 13.5 15.0 14.5 15.5
during sw 14.0 13.8 11.6 11.7 10.7 -
during ww 14.7 15.3 14.0 14.0 13.5 14.3

Table 5.9: Average time scales of the meandering motion at the different sites overall,
during the day/night and during weak-wind/strong-wind situations.

directional chances not being recognized. If a change of direction needs longer than
the filter length τ1% = 35 min for a angular change of at least 120◦, it can not be
recognized. We thus probably register too many events with a very short time scale
and possibly too few events with a very long time scale. Unfortunately the same
problem concerning the influence of the detection mechanism on the detected time
scales exists when using the autocorrelation method (Mortarini et al., 2013).
The distribution of the time scales, which is exemplary shown for station A1 in HJA
in figure 5.16 may thus result from a systematic error in our detection scheme. The
time scales shown in this figure are the ones extracted by a wavelet analysis for every
single meandering interval, as explained in chapter 5.3. A similar distribution can be
found for all sensors of the ground networks. Even if the exact form of the distribution
is doubtful, we can conclude from fig.5.16 that a broad variety of meandering time
scales exists. This is true for each of the analysed sites.
Table 5.9 shows the mean time scale of the meandering motions for all (sub-)sites.
It is clear that due to the uncertainty concerning the influence of our filter on the
detected time scales, no quantitative conclusions should be drawn from this table.
Nevertheless, it should be possible to draw some qualitative conclusions on whether
or not the time scale is site dependent.
Apart from the mean time scale of all the meandering intervals (’overall’, tab. 5.9),
the intervals are again sorted depending on whether they happen during weak wind
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or during strong wind and whether during the day or during the night. During
each meandering interval, there can be a mix of minutes classified as weak wind and
minutes classified as strong wind due to fluctuations in the wind speed. As for each
interval, the wavelet variance spectrum gives only one set of dominant time scales
however, we want to assign the whole interval either to weak wind or to strong wind.
There are two possibilities for doing the allocation.
The first option is deciding for every single minute, if it belongs to weak wind or to
strong wind. If the majority of the minutes within one meandering interval belongs
to weak wind, the whole interval could be attributed to the weak-wind category. The
second possibility is calculating the average scalar wind speed during the complete
interval. If this average wind speed is less then the threshold velocity, the complete
interval is taken into account in the category ’during weak-wind’. For table 5.9, the
second method was used. However, no big differences arise when using the other
method.
For differentiating between ’by day’ and ’by night’, we use again the day-night indica-
tor from Bmmflux. Again, the interval has to be allocated wholly to one group or the
other. Thus, when more than three quarters of an interval happen during the day,
the complete interval is attributed to the ’by day’ group and vice versa. The exact
limit for when an interval can be attributed to either group is of minor importance
as only qualitative conclusions will be drawn.
It is evident from table 5.9 that regarding the time scales, there are only small
differences between the different sites. On average, the time scales are shortest at the
MP site (11.9 min). This can however also be due to the large number of possibly
turbulent intervals that were misjudged as meandering at this site. Also the two
subgroups of the HJA, the valley stations and the slop stations show very similar
average time scales, although they are quite different concerning the frequency of
occurrence of meandering.
Slightly bigger differences than between the different sites can be found between
the categories day and night and between weak wind and strong wind. The time
scales during the nightly intervals are generally larger than the ones during the
day. Similarly, time scales during strong wind are smaller than during weak wind.
Unfortunately this difference can again be caused by turbulence misinterpreted as
meandering, as this is much more likely during the day than during the night.
In order to get good quantitative results on the typical distribution of time scales for
a given site, it would be necessary to further evaluate the effect of the filter length on
the one hand and the optimal perturbation time scale for not misjudging turbulence
as meandering on the other hand. This however was not done for this thesis. We can
however conclude that no big difference exists between the meandering time scales of
the different sites.
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6 Conclusion

We used data from a network of 12 sonic anemometers and 12 thermohygrometers for
detecting and analysing weak-wind situations. This network of sensors was deployed
at four sites with strongly different vegetation and topography for one to two months
at each site. With this data, the following analysis was conducted

• We used the dependence of the friction velocity u∗ on the mean wind speed
for determining a threshold for weak-wind situations. At all sites, a wind
speed could be found, starting from which the friction velocity and thus the
turbulence are stronger influenced by the wind speed. This is true independent
from whether the scalar or the vector average is used for computing the mean
speed.
The threshold velocity of the weak-wind regime turned out to be strongly
dependent on the location of the sensor. Strong differences could be found
between sensors at different sites but also between sensors at the same site
when the surrounding is very different (e.g. subcanopy vs. within the canopy).
Sensors in very similar surroundings showed a very similar weak-wind threshold.
For the subcanopy sensors, there seems to exist a connection between the
tree density and the threshold velocity. This connection could however not
be confirmed beyond doubts due to considerable scatter. Especially the large
variability at the HJA site complicated the derivation of a correlation between
the threshold and the surroundings.

• We tried to verify the hypothesis that a weak-wind situation in the subcanopy
indicates a decoupling of the bole space from the flow above the canopy. Coupling
or decoupling should be indicated by the different relationships between the
vertical wind’s standard deviation σw above and below the canopy.
At the BPP site, the air flow at the highest sensor seems to be decoupled from
the one at the lowest sensor during weak-wind situations. For the other sites
however, a decoupling could not be verified, as the slope in the dependence
of subcanopy turbulence from above canopy turbulence is the same for weak-
wind and for strong-wind cases. Nevertheless, the amount of turbulence in the
subcanopy at a given amount of turbulence above the canopy is very much
smaller during weak-wind situations than during strong-wind situations.
Some doubts arose about this method of identifying decoupled situations when
we compared the different ratios of subcanopy to above canopy turbulence with
weak-wind and strong-wind situations separated to the ratio when no separation
was done. The higher slope that has so far been used as a sign for coupling
of subcanopy to above the canopy might actually be caused by strong-wind
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situations becoming more frequent than weak-wind situations at a higher above
canopy turbulence.

• We developed a new indicator for meandering motions. This methods makes use
of the difference between the vector average and the scalar average for finding
intervals with lots of directional changes. By using the block averaged data
with a perturbation time scale of Tp = 1 min we can make sure that (mostly)
only non-turbulent directional changes are detected. It also became clear that
great care has to be taken about the proper perturbation time scale for making
that work reliably. For determining the dominant time scale(s) of the detected
meandering motion, we used a wavelet transform. The Morlet wavelet is used
as a mother wavelet due to its good performance in the frequency space.

• The new method for detection of meandering was compared to a well established
one, namely the autocorrelation method. The new methods has advantages
when a superposition of different motions is present. Furthermore, it can make
sure that the detected motions are really connected to directional changes
and not a different kind of submesoscale motions, as may happen with the
autocorrelation method. Last but not least, the beginning and the end of a
meandering period can be found more exactly. On the other hand, intervals
with a too small range of directions or intervals with one direction that is too
dominant compared to the directional changes are missed.

• The new detection method was used for getting some statistics on meandering.
As expected, meandering is more prevalent during the night and during weak-
wind situations. Similarly, weak-wind situations are more frequent during the
night. The average time scales of meandering motions hardly vary between
the different sites. At all of the sites, a broad range of time scales can be
found with shorter time scales occurring more often than longer time scales.
The average time scale seems to be a bit longer during weak-wind situations
(or nights respectively) than during strong-wind situations (or days), but that
might be caused by misinterpretation of turbulent fluctuations as meandering.
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A The procedure of Reynolds
averaging

The procedure of Reynolds averaging and the subsequent calculation of turbulent
perturbations can be divided into four steps. First of all, a running average is applied.
This can be written as

uj =
1

N + 1

k+N
2∑

n=k−N
2

un (A.1)

where un is the original time series of 20 Hz and N is the number of data within
one perturbation time scale. In case of the perturbation time scale Tp = 1 min this
corresponds to 1200 data points.
The next step after the application of the moving average is downsampling, so that
only one data point per perturbation time scale is retained.

uk = uj · δ
(
j −Nk +

N

2

)
(A.2)

The resulting time series is the time series of the mean Reynolds averaged quantity.
For computing the perturbations, this quantity first has to be re-expanded by a Zero
Order Hold. As we want the interval to be centred around the one data point that is
retained, the Zero Order Hold additionally has to be shifted backwards by half an
interval

ul = uk · rectD (l − k) (A.3)

with the discrete rectangular function

rectD (l − k) =

{
0, if |l − k| > N

2

1, if |l − k| ≤ N
2

The new time series ul has again the same number of data points as the original one
un. For retaining the turbulent perturbation u′n, the time series ul simply has to be
subtracted from un:

u′n = un − ul (A.4)
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B Fit ranges for the hockeystick curves

The following table contains the ranges that where used for fitting the hockeystick curves in order to identify the weak-wind
threshold.

Site SUSAN unit range (ms ) comment
BPP, main all except A1 and C1 0.1 - 0.6 all ground network sensors at BPP main
BPP, main A1 and C1 0.1 - 1.5 the higher sensors at BPP main
BPP, Moritz all B sensors 0.1 - 1.0

MP all A and C sensors, B3 sensor 0.1 - 1.0 all subcanopy sensor
MP B1 and B2 sensor 0.1 - 4.0 the above canopy sensors at MP
HJA all A sensors, C1 and C2 sensor 0.2 - 1.0
HJA all B sensors, C3 and C4 sensor 0.2 - 1.5
MF all C sensors, B1 - B3 0.1 - no upper limit all except the sensor right at the upper edge of the canopy
MF B4 0.1 - 1 edge of canopy sensor

Table B.1: Ranges for fitting the hockeystick curves for finding the weak-wind threshold
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