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Despite extensive studies on hydrological responses to forest cover change in small watersheds, the
hydrological responses to forest change and associated mechanisms across multiple spatial scales have
not been fully understood. This review thus examined about 312 watersheds worldwide to provide a gen-
eralized framework to evaluate hydrological responses to forest cover change and to identify the contri-
bution of spatial scale, climate, forest type and hydrological regime in determining the intensity of forest
change related hydrological responses in small (<1000 km2) and large watersheds (P1000 km2). Key
findings include: (1) the increase in annual runoff associated with forest cover loss is statistically signif-
icant at multiple spatial scales whereas the effect of forest cover gain is statistically inconsistent; (2) the
sensitivity of annual runoff to forest cover change tends to attenuate as watershed size increases only in
large watersheds; (3) annual runoff is more sensitive to forest cover change in water-limited watersheds
than in energy-limited watersheds across all spatial scales; and (4) small mixed forest-dominated water-
sheds or large snow-dominated watersheds are more hydrologically resilient to forest cover change.
These findings improve the understanding of hydrological response to forest cover change at different
spatial scales and provide a scientific underpinning to future watershed management in the context of
climate change and increasing anthropogenic disturbances.

� 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The interactions between forest change and water have been
studied for over a century. Several classic reviews on hydrological
responses to forest change in small watersheds (<1000 km2) have
been published, and these provide deep insights into the impact
of forest change on annual runoff in small watersheds (Bosch and
Hewlett, 1982; Sahin and Hall, 1996; Stednick, 1996;
Andréassian, 2004; Bruijnzeel, 2004; Brown et al., 2005; Moore
and Wondzell, 2005; van Dijk et al., 2012). A general conclusion
drawn from small watershed studies is that deforestation (e.g., har-
vesting, urbanization, land cover change, wildfire, and insect infes-
tation) can increase annual runoff while afforestation affects
streamflow in the opposite way (David et al., 1994; Stednick,
1996; Neary et al., 2003; Bruijnzeel, 2004; Wu et al., 2007; Bi
et al., 2009; Webb and Kathuria, 2012; Beck et al., 2013; Zhang
et al., 2015; Carvalho-Santos et al., 2016; Buendia et al., 2016a).
However, there have been some inconsistent responses, suggesting
the response intensity of annual runoff to forest cover change can
be variable among watersheds, especially for watersheds with
afforestation or reforestation (Stednick, 2008; Lacombe et al.,
2016).

In contrast, the relationship between forest change and water
yield has been less investigated in large watersheds
(P1000 km2). This is mainly due to the lack of high quality data
on precipitation and streamflow or suitable methodology to
exclude the hydrological impact of non-forest factors such as cli-
mate variability and human activities (e.g., dam construction, agri-
cultural activities, and urbanization) (Wei and Zhang, 2010a, 201b;
Vose et al., 2011). Unlike small watershed studies, a general con-
clusion on the relationship between forest change and annual run-
off in large watersheds has not yet been drawn. Indeed,
inconsistent responses, and high variations in response intensity
of annual runoff to forest change, have often been reported in large
watershed studies (Eschner and Satterlund, 1966; Ring and Fisher,
1985; Cheng, 1989; Buttle and Metcalfe, 2000; Costa et al., 2003;
Tuteja et al., 2007; Adnan and Atkinson, 2011; Wu et al., 2015).
For example, in Canadian boreal forests (watershed areas from
401 to 11,900 km2), with disturbance levels ranging from 5% to
25% of the watershed areas, no definitive changes in annual runoff
were found (Buttle and Metcalfe, 2000) while in the upper Yangtze
River annual runoff was increased by a mean of 38 mm with only
15.5% of the watershed area logged (Zhang et al., 2012b).

In small watershed studies, large variations in the hydrological
response to forest change are attributed to factors such as forest
type, topography, climate, hydrological regimes, soil, geology,
and landscape pattern (Moore and Wondzell, 2005; Zhang and
Wei, 2014). However, an understanding on hydrological responses
to forest change and on how those factors affect interactions
between forest and water in large watersheds or across multiple
spatial scales is limited. In most cases, the inconsistent findings
from large watersheds are simply ascribed to the complexity in
watershed processes and heterogeneity in landscape, climate and
geology in large watersheds (Stednick, 1996; Moore and
Wondzell, 2005; Vose et al., 2011). Although Peel et al. (2010) eval-
uated the vegetation impact on hydrology at both large and small
watershed, they studied annual evapotranspiration rather than
annual runoff. Similarly, some studies have investigated the cli-
matic effects on water use efficiency of vegetation (Huxman
et al., 2004; Troch et al., 2009; Yang et al., 2016), and this helps
to disclose the mechanisms that explain the effect of precipitation
on hydrological response to vegetation change.

Due to a lack of a generalized relationship between forest and
water in large watersheds, the empirical relationships between dif-
ferent watershed processes and components from small watershed
studies are largely used in hydrological models, and may be prob-
lematic when scaled to large watersheds (Kirchner, 2006). Simi-
larly, watershed management often relies on a simple
extrapolation of concepts and information generated from small
watersheds to large watersheds, which can be misleading in
decision-making (Yang et al., 2009; van Dijk et al., 2012; Xiao
et al., 2013; Zhang et al., 2016). Since the design of natural resource
management strategies is normally performed in large watersheds,
a comprehensive understanding on the likely hydrological impact
of forest change in large watersheds and the associated mecha-
nisms is in critical need. This can be particularly true given the fact
that climate change and anthropogenic activities (e.g., widespread
afforestation, deforestation, forest harvesting, urbanization, and
fire) are dramatically and extensively altering the watershed pro-
cesses and ecosystem services (Keenan et al., 2013; Frank et al.,
2015). Some of these forest disturbances are more frequent and
catastrophic (e.g., insect infestation and wildfire) due to climate
change (Schindler, 2001; Kurz et al., 2008). This critical scientific
information gap, along with growing watershed management
and planning needs in large watersheds calls for a substantial
review of forest ecohydrology across multiple spatial scales.

This review aims: (1) to provide a generalized relationship
between forest cover change and annual runoff response at multi-
ple spatial scales; (2) to examine how the response intensity of
annual runoff response to forest cover change varies along spatial
scale and climatic gradients; (3) to investigate the effects of forest
type and hydrological regime on hydrological responses to forest
cover change in both small and large watersheds. Since annual run-
off is the commonly investigated response variable to forest cover
change, this paper focuses on this variable as a means to maximize
the sample size.
2. Study sites and materials

This study synthesized quantitative assessments of annual run-
off response to forest cover change from 312 watersheds world-
wide in the literature. Collected watersheds are classified into
large watersheds (watershed size P1000 km2) and small water-
sheds (watershed size 61000 km2) (Wei and Zhang, 2010a,
2010b). 61 of them are large watersheds, ranging from 1033 to



Fig. 1. The distribution of watershed studies on forest cover change and annual runoff.

Table 1
The number of selected watersheds across different categories of forest change, forest type and hydrological regime.

Watershed size Forest type Hydrological
regime

Climate type Forest change
type

CF BF MF RD SD EL EQ WL FG FL

Small 76 150 26 195 57 82 120 50 70 182
Large 11 34 16 50 11 14 22 23 31 30

BF, CF, and MF are broadleaf, coniferous, and mixed forests, respectively. EL, EQ, WL are energy-limited, equitant and water-limited watersheds, respectively. RD, and SD are
rain-dominated and snow-dominated watersheds, respectively. FCG and FCL are forest cover gain and forest cover loss, respectively.
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1,858,883 km2 in size, while 251 of them are small watersheds
(Fig. 1). 31 of the large watersheds have experienced forest cover
gain by afforestation, or reforestation (with 3.6–46% forest cover
change, Table 1), while 30 of them with forest cover loss (a 1–
58% reduction in forest coverage) due to logging, slash-burn, fire,
and insect infestation (Jones and Grant, 1996; Storck et al., 1998;
Bowling et al., 2000; Chen et al., 2005; Li et al., 2007; Zhang
et al., 2008; Mao and Cherkauer, 2009; Li et al., 2010; Ma et al.,
2010; Jorge et al., 2012; Zhang and Wei, 2012a, 2012b; Iroumé
and Palacios, 2013; Lima et al., 2014; Bieger et al., 2015). 182 of
the small watersheds have forest cover losses due to logging,
slash-burn, fire, and insect infestation, and only 69 of them with
forest cover gain by afforestation, regrowth, or reforestation. This
global dataset includes newly published small and large watershed
studies on the annual runoff response to forest cover change (e.g.,
Webb et al., 2007; Webb, 2009; Bren et al., 2010; Gallart et al.,
2011; Dung et al., 2012; van Dijk et al., 2012; Beck et al., 2013;
Niedda et al., 2014; Carvalho-Santos et al., 2016; Winkler et al.,
2015; Mahat et al., 2016), and small watersheds documented by
several classic reviews (e.g., Bosch and Hewlett, 1982; Stednick,
1996; Sahin and Hall, 1996; Andréassian, 2004; Bruijnzeel, 2004;
Brown et al., 2005; Moore and Wondzell, 2005). See Appendix A
(Alexander and Watkilas, 1977; Alexander et al., 1985; Amatya
and Skaggs, 2008; Bari et al., 1996; Bates and Henry, 1928; Bent,
2001; Blackie, 1993; Boggs et al., 2015; Borg et al., 1988; Bosch,
1979; Brantley et al., 2015; Brown, 1971; Bruijnzeel, 1990;
Buendia et al., 2016; Buytaert et al., 2007; Cornish, 1993; Cornish
and Vertessy, 2001; Cuo et al., 2009; Dale et al., 2000; Devito
et al., 2005; Douglass and Swank, 1976; Edwards and Blackie,
1981; Fohrer et al., 2005; Fowler et al., 1987; Ganatsios et al.,
2010; Gottfried, 1991; Haileyesus et al., 2011; Harr, 1982; Harr,
1980; Harr, 1976; Harr et al., 1979; Harris, 1977; Harris, 1973;
Harrold et al., 1962; Hawthorne et al., 2013; Hewlett and
Hibbert, 1961; Hewlett, 1979; Hewlett and Douglass, 1968;
Hibbert, 1971; Hibbert, 1979; Hibbert and Ingebo, 1971; Hibbert
et al., 1975; Hornbeck, 1975; Hornbeck et al., 1993; Hornbeck
et al., 1970; Ide et al., 2013; Ingebo and Hibbert, 1974; Johnson
and Kovner, 1956; Johnston, 1984; Jones, 2000; Jones and Post,
2004; Kabeya et al., 2015; Keppeler and Ziemer, 1990;
Kochenderfer and Wendel, 1983; Kochenderfer et al., 1990;
Koivusalo et al., 2006; Lane and Mackay, 2001; Lavabre et al.,
1993; Lewis, 1968; Li et al., 2014; Lin and Wei, 2008; Liu et al.,
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2015; Lynch et al., 1980; Ma, 1980; Ma et al., 2009; Magilligan and
Nislow, 2001; Matheussen et al., 2000; Miller et al., 1988; Molina
et al., 2012; Nakano, 1971; Nänni, 1970; Ngo Thanh et al., 2015;
Nguyen Khoi and Suetsugi, 2014; O’Shaughnessy et al., 1979;
Patric, 1980; Patric and Reinhart, 1971; Pearce et al., 1976;
Pearce et al., 1980; Peña-Arancibia et al., 2012; Pereira, 1962;
Reinhart et al., 1963; Rich and Gottfried, 1976; Rich and
Thompson, 1974; Robinson, 1993; Robinson and Dupeyrat, 2005;
Robinson et al., 1991; Roche, 1981; Rodriguez Suarez et al., 2014;
Rodriguez-Iturbe and Porporato, 2005; Rodriguez-Iturbea et al.,
2001; Rothacher, 1970; Rowe, 1963; Ruprecht et al., 1991;
Samraj et al., 1998; Schneider and Ayer, 1961; Serengil et al.,
2007; Silveira and Alonso, 2009; Siriwardena et al., 2006; Sun
et al., 2008; Swank and Helvey, 1970; Swank and Douglass,
1974; Swank and Miner, 1968; Swank et al., 1988; Swift and
Swank, 1980; Tomer and Schilling, 2009; Troendle and Olsen,
1994; Troendle, 1988; Troendle and King, 1985; Troendle and
King, 1987; Ukkola et al., 2015; Van der Zel and Kruger, 1975;
Van Dijk et al., 2007; Van Haveren, 1988; Van Lill et al., 1980;
VanShaar et al., 2002; Wang and Hejazi, 2011; Wang et al., 2012;
Watson et al., 2001; Wei and Zhang, 2010a; Williamson et al.,
1987; Yan et al., 2014; Yao et al., 2015; Yu et al., 2015; Zhao
et al., 2010; Zheng et al., 2009; Zhou et al., 2010, 2015) for more
details.

Data on spatial scale (watershed size), climate (dryness index),
potential evaporation, annual runoff, forest cover change (%),
annual runoff response to forest cover change (%), forest type
(coniferous, broadleaf, and mixed forests), and hydrological regime
(snow-dominated and rain-dominated) were derived or calculated
from collected documents. See Appendix A for more details on the
study watersheds.

It is important to note that these studies used a range of meth-
ods to quantify the change in runoff caused by forest cover change,
including paired watershed experiments (e.g., Bart and Hope,
2010; Webb and Jarrett, 2013), quasi-paired watersheds (e.g.,
Buttle and Metcalfe, 2000; Mahat et al., 2016), hydrological mod-
elling (e.g., Gallart et al., 2011; Beck et al., 2013), elasticity analysis
(e.g., Zhang et al., 2008; Zhao et al., 2013), and a combination of
statistical methods and hydrographs (e.g., Wang et al., 2009;
Iroumé and Palacios, 2013). Paired watershed experiments are
commonly used to measure runoff response to forest change in
smaller watersheds (<100 km2), where the influences on runoff
from non-forest factors (e.g., climate variability) can be removed
through comparisons between the impacted watershed and the
control one. Quasi-paired watershed approach is applied to esti-
mate runoff response to forest change in larger watersheds
(P100 km2) with more heterogeneities in landscape and climate.
A watershed with a greater disturbance level is defined as the
impacted watershed while its neighboring, intact, or less disturbed
watershed is viewed as the control or partial control (Buttle and
Metcalfe, 2000). Hydrological models (e.g., VIC, DHSVM, MIKE-
SHE, SWAT) are often utilized to predict runoff response due to for-
est changes in well observed and monitored watersheds (e.g.,
Waterloo et al., 2007; Coe et al., 2009). In watersheds with limited
data on forest, hydrology, climate, geology, and land cover, or lack-
ing a suitable control watershed, a combination of statistical meth-
ods (e.g., non-parametric tests, ANOVA, time series analysis) and
hydrographs (e.g., double mass curve, modified double mass curve,
flow duration curve) are well-accepted strategies, especially in
large watersheds (e.g., Costa et al., 2003; Zhang and Wei, 2012a).
F (%)
Forest Cover Loss Qf =-0.71* F R2=0.1 (p<0.001) Kendall's tau=-0.29 (p<0.05)
Forest Cover Gain: Qf =0.05* F -0.46 R2=0.001(p=0.80) Kendall's tau=-0.05 (p=0.65)

Fig. 2. The relationship between forest coverage change and annual runoff change
in (a) large (P1000 km2) and (b) small watersheds (<1000 km2).
3. Methods

Annual runoff response to forest cover change (DQf) is defined
by Eq. (1). Additionally, the sensitivity of annual runoff to forest
cover change (Sf) in a given watershed has been introduced as an
indicator of the response intensity of annual runoff to forest cover
change. Sf is defined as annual runoff response to forest change
(DQf) normalized by forest cover change (DF) (Eq. (2)). Watershed
properties such as watershed size, climate, forest type, and hydro-
logical regime are potential determinants of the sensitivity of
annual runoff to forest change (Kirchner, 2006; Donohue et al.,
2010).

Budyko dryness index (DI), equal to the ratio of mean annual
potential evaporation (PET) to mean annual precipitation (P) was
adopted as an integrated indicator of climate conditions for a given
watershed. Dryness index can effectively reflect the interactions
between energy and water limitations on catchment annual ET,
and thus can indicate the water availability for vegetation growth
(Jones et al., 2012; van Dijk et al., 2012). Watersheds were then
grouped into water-limited (DI > 1.35), equitant (0.76 < DI < 1.35),
energy-limited (DI < 0.76) environments based on dryness index
(McVicar et al., 2012). Forest types include coniferous, broadleaf
(either evergreen or deciduous broadleaf forest), and mixed forests
(a mixture of coniferous and broadleaf forests). The forest type for
a given watershed was determined by its dominant tree species
from the literature. Hydrological regime for a watershed can be
snow-dominated or rain-dominated. Snow-dominated watershed
is featured with most floods driven by snowmelt process while
rain-dominated watershed with most floods driven by rainfall.

Linear regression and Kendall rank correlation test were used:
(1) to detect the statistical significance of relationships between
DQf and DF; (2) to investigate the statistical significance of rela-
tionships between watershed size and the response intensity of
annual runoff response to forest cover change (Sf); and (3) to exam-
ine how the response intensity of annual runoff response to forest
cover change (Sf) varies with climatic gradients (DI). Two-sample
nonparametric Kolmogorov–Smirnov test was performed on pairs
of watershed groups classified by climate type (energy-limited
(EL), equitant (EQ) and water-limited (EW) environments), forest
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Fig. 4. The relationship between climatic gradient and the sensitivity of annual
runoff response to forest cover change in (a) large (P1000 km2) and (b) small
watersheds (<1000 km2).

S f
S f

EL  Sf: Mean=0.44,Median=0.15, CV=144%
EQ  Sf: Mean=0.45, Median=0.31,CV=115% 
WL  Sf: Mean=1.04, Median=1.0, CV=53%

EL  Sf: Mean=0.43, Median=0.31, CV=103%
EQ  Sf: Mean=0.66, Median= 0.46, CV=100% 
WL  Sf: Mean=1.19, Median=0.82, CV=122%

a) 

b) 

48 M. Zhang et al. / Journal of Hydrology 546 (2017) 44–59
type (coniferous (CF), broadleaf (BF), and mixed forests (MF)) or
hydrological regime (rain-dominated (RD) and snow-dominated
(SD) watersheds) to test for significant differences between entire
distributions of the sensitivity of annual runoff to forest cover
change, while the Mann-Whitney U test was conducted on water-
shed groups to test for significant differences in the medians of dis-
tributions of the sensitivity of annual runoff to forest cover change.
In this way, the effects of watershed size, climate, forest type, and
hydrological regime on the sensitivity of annual runoff to forest
cover change can be quantitatively analyzed.

DQf ¼ 100� DQf ;m

Q
ð1Þ
EL EQ WL

Fig. 5. A comparison of the sensitivity of annual runoff response to forest cover
change grouped by energy-limited (EL), equitant (EQ), and water-limited (WL)
environments in (a) large (P1000 km2) and (b) small watersheds (<1000 km2).
Sf ¼
DQf

DF

�
�
�
�

�
�
�
�

ð2Þ

where Q refers to the long-term mean annual runoff (mm); DQf,m

is the amount of (mm). DQf is annual runoff response to forest
change (%). Sf refers to the response intensity of annual runoff
to forest cover change and DF is the watershed forest cover
change (%).
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Fig. 6. A comparison of the sensitivities of annual runoff to forest cover change in
(a) large and (b) small watersheds dominated by different forest types (BF,
broadleaf forest, CF, coniferous forest, MF, mixed forest).
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4. Results

4.1. Forest and water relationships at multiple spatial scales: forest
cover gain vs. forest cover loss

Results from the majority of watersheds show that forest cover
loss can increase annual runoff ((21 large watersheds (P1000 km2)
and 202 small watersheds (<1000 km2)). Both linear regression
analysis and the Kendall correlation test suggest a significant neg-
ative relationship (a = 0.05) between forest cover loss (DF) and its
associated annual runoff change (DQf) in both large and small
watersheds (Fig. 2a and b). In other words, there is significant ten-
dency across multiple spatial scales for more forest cover loss to
lead to increases in annual runoff. However, the effect of forest
cover gain (e.g., afforestation, reforestation or regeneration) tends
to be more complicated and inconsistent. We failed to detect a sta-
tistically significant relationship (a = 0.05) between forest cover
change (DF) and annual runoff response (DQf) in small watersheds
with forest cover gain (Fig. 2b), while there is a significant negative
relationship between DF and DQf in large watersheds (Fig. 2a). This
suggests that the tendency for an increase in forest cover to lead to
a reduction in annual runoff is only significant in large watersheds.

4.2. Spatial scale and the sensitivity of annual runoff to forest cover
change

Fig. 3 shows how the sensitivity of annual runoff to forest cover
change varies across spatial scales. As suggested by the linear
regression and the Kendall correlation test, the relationship
between watershed area and the sensitivity of annual runoff to for-
est cover loss is statistically insignificant (a = 0.05) across all spa-
tial scales (Fig. 3a). Similarly, the relationship between watershed
area and the sensitivity of annual runoff to forest cover gain is also
insignificant across multiple spatial scales. However, when large
watersheds and small watersheds were investigated separately,
different results were found. For large watersheds, there is a signif-
icant negative relationship between watershed area and the sensi-
tivity of annual runoff to forest cover change (forest cover loss and
forest cover gain) at a = 0.05 (Fig. 3b). That is, there is a significant
tendency for the response intensity of annual runoff to forest cover
change to decline with increased watershed size in large water-
sheds. In contrast, the relationship between watershed area and
the sensitivity of annual runoff to forest cover change is statisti-
cally insignificant for small watersheds (Fig. 3c).

4.3. Climate gradient and the sensitivity of annual runoff to forest
cover change

The general tendency that the sensitivity of annual runoff to
forest cover change can increase with elevated dryness index is sig-
nificant across multiple spatial scales. As shown by the regression
Table 2
Statistical tests for the effect of climate type on the sensitivity of annual runoff to forest c

Climate type Watershed type Kolmogorov–Smirnov test

Max Neg difference

EL-EQ Large �0.20
Small �0.22

EL-WL Large �0.60
Small �0.37

EQ-WL Large �0.57
Small �0.23

EL, EQ, WL are energy-limited, equitant and water-limited watersheds, respectively.
** Significant at a = 0.05.
analysis and the Kendall correlation test, there is a significant pos-
itive relationship between dryness index and the sensitivity of
annual runoff to forest cover change in both small and large water-
sheds at a = 0.05 (Fig. 4).The drier a watershed, the more pro-
nounced is the response intensity of annual runoff to forest cover
change and vice versa.

Fig. 5 compares the sensitivity of annual runoff to forest cover
change in water-limited (WL), equitant (EQ), energy-limited (EL)
environments. In large watersheds, the Kolmogorov–Smirnov and
the Mann-Whitney U tests (Table 2) suggest insignificant differ-
ences between EL and EQ watersheds in the distributions and
medians of the sensitivity of annual runoff to forest cover change,
over change.

Mann-Whitney U test

Max Pos difference p Z P

0.30 >0. 1 0.7 0.51
0.01 <0.02** �2.4 <0.02**

0.00 <0.005** �2.9 0.004**

0.11 <0.001** �2.8 <0.006**

0.04 <0.005** �3.8 0.0002**

0.11 0.07 �1.56 0.12



Table 3
Statistical tests for the effect of forest type on the sensitivity of annual runoff to forest cover change.

Forest type Watershed type Kolmogorov–Smirnov test Mann-Whitney U test

Max Neg difference Max Pos difference p Z P

BF-CF Large �0.40 0.00 >0.1 �2.3 0.02**

Small �0.03 0.09 >0.1 �0.57 0.57

CF-MF Large �0.57 0.00 <0.05** �3.2 0.001**

Small �0.35 0.00 <0.05** �2.2 0.03**

MF-BF Large �0.21 0.29 >0.10 0.83 0.40
Small �0.32 0.00 <0.05** �2.4 0.02**

BF, CF, and MF are broadleaf, coniferous, and mixed forests, respectively.
** Significant at a = 0.05.

S f

RD Sf: Mean=0.74, Median=0.70, CV=81%
SD Sf: Mean=0.37, Median=0, CV=178% 
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whereas the distribution and median of the sensitivity of annual
runoff to forest cover change in WL watersheds are significantly
different from those in EQ or EL watersheds (a = 0.05). In large
water-limited watersheds 1% forest cover change can lead to
1.04% change in annual runoff, while it can only cause about
0.44% and 0.45% change in annual runoff in large EL and EQ water-
sheds, respectively (Fig. 5a). In small watersheds, the distributions
and medians of the sensitivity of annual runoff to forest cover
change in EL watersheds are significantly different from those of
WL and EQ watersheds, while there are insignificant differences
between EQ and WL watersheds (a = 0.05). For small EL water-
sheds 1% forest cover change can cause about 0.43% change in
annual runoff, while in small EQ and EL watersheds that value
can be up to 0.66% and 1.19%, respectively (Fig. 5b).
DSDR

DSDR

RD Sf: Mean=0.68 Median=0.43, CV=116%
SD Sf: Mean=0.72 Median=0.32, CV=153% 

b)

S f

Fig. 7. A comparison of the sensitivities of annual runoff to forest cover change in
(a) large and (b) small watersheds dominated by different hydrological regimes (RD,
rain-dominated, SD, snow-dominated).
4.4. Forest type and the sensitivity of annual runoff to forest cover
change

Fig. 6 compares the sensitivity of annual runoff to forest cover
change in watersheds dominated by different forest types. As sug-
gested by the statistical tests (Table 3), in large watersheds, the
median of the sensitivity of annual runoff to forest cover change
in coniferous forest dominated watersheds is significantly different
from that in broadleaf or mixed forest dominated watersheds
(a = 0.05). In large mixed and broadleaf forests dominated water-
sheds, 1% forest cover change can result in 0.80% and 0.74% change
in annual runoff, respectively, while in large coniferous forests
dominated watersheds, that value is only 0.24%. In small water-
sheds, the distribution and medians of the sensitivity of annual
runoff to forest cover change in mixed forest dominated water-
sheds are significantly different from those of broadleaf and conif-
erous forest dominated watersheds, while there are no significant
differences in the distribution and medians of the sensitivity of
annual runoff to forest cover change between broadleaf and conif-
erous forest dominated watersheds (a = 0.05). In small broadleaf
and coniferous forests dominated watersheds, 1% forest cover
change can result in 0.73% and 0.71% change in annual runoff while
in small mixed forests dominated watersheds, respectively, that
value is only 0.33%.
4.5. Hydrological regime and the sensitivity of annual runoff to forest
cover change

Fig. 7 compares the sensitivity of annual runoff to forest cover
change between rain-dominated and snow-dominated water-
sheds. As suggested by the statistical tests (Table 4), in large water-
sheds, the distribution and medians of the sensitivity of annual
runoff to forest cover change (Sf) in rain-dominated watersheds
are significantly (a = 0.05) different from those in snow-
dominated watersheds (Table 4). In rain-dominated large water-
sheds, 1% forest cover change can lead to up to mean 0.74% change
in annual runoff while in snow-dominated watersheds, this value
is only 0.37%. However, in small watersheds, there are no statisti-
cally significant differences (a = 0.05) between rain-dominated and
snow-dominated watersheds in the distribution and medians of
the sensitivity of annual runoff to forest cover change (Table 4).

5. Discussion

5.1. Forest cover change and annual runoff response: consistency and
variations

There is a general understanding that forest cover loss can
increase annual runoff due to a reduction in interception and evap-



Table 4
Statistical tests for the effect of hydrological regime on the sensitivity of annual runoff to forest cover change.

Hydrological regime Watershed type Kolmogorov–Smirnov test Mann-Whitney U test

Max Neg difference Max Pos difference p Z P

RD-SD Large �0.07 0.43 0.05** 2.40 0.01**

Small �0.07 0.13 >0.1 0.76 0.45

RD and SD are rain-dominated and snow-dominated watersheds, respectively.
** Significant at a = 0.05.
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otranspiration in small watersheds while a similar conclusion has
not yet been drawn in large watersheds (Andréassian, 2004;
Stednick, 2008; Oudin et al., 2008). Our analysis suggests that
the tendency for forest cover loss to increase annual runoff is valid
across watersheds of all sizes: simply put, increasing forest cover
loss will lead to an increase in annual runoff. This is consistent with
a few studies on the effect of vegetation change on annual evapo-
transpiration (e.g., see Brown et al., 2005; McVicar et al., 2007 and
the relevant references in both), which show a negative relation-
ship between vegetation coverage and annual evapotranspiration
at multiple spatial scales.

Despite this general trend, the annual runoff response to forest
change is variable among watersheds. There is a sub-set of water-
sheds with insignificant changes in annual runoff to forest cover
change in 12 (of 61) large watersheds with forest cover loss from
1 to 53% and 33 (of 252) small watersheds with forest cover loss
from 0 to 100%. In some watersheds, insignificant changes in
annual runoff are associated with a small amount of forest cover
change. For example, a study in Canadian boreal forests (with six
watersheds ranging from 401 to 11,900 km2), with forest cover loss
ranging from 5% to 25% of watershed areas, failed to find definitive
changes in annual runoff (Buttle and Metcalfe, 2000).

However, there are several non-responsive watersheds (10 of
the 45 non-responsive watersheds) with forest cover loss >50%.
More surprisingly, in some small watersheds, even with a 100% for-
est cover loss, insignificant changes in annual runoff have been
detected (Scott, 1993; Stednick, 1996; Bart and Hope, 2010). The
reasons for these non-responsive cases could be their differences
in hydrological regimes. For example, in the Nam Pong River Basin
(12,100 km2) of Northeast Thailand, a rain-dominated tropical
watershed with forest cover reduced by 53%, Wilk et al. (2001)
did not detect any significant change in annual runoff. Part of the
explanation is associated with the land classification of forested
land and non-forested land. Land with a low density of trees can
be classified as forested land, and this may mask the actual effect
of a particular land use on watershed hydrology. Another impor-
tant reason is that in this large watershed deforestation occurred
gradually over time with vegetation regrowth occurring in parts
of the watershed at the same time. The rapid vegetation regrowth
in these subtropical or tropical rain-dominated regions may con-
sume more water than reduced evapotranspiration by cleared
trees (Bruijnzeel, 2004). In snow-dominated watersheds, the non-
response is likely to be related to snowmelt processes that are
affected by aspect, elevation range, soil, and energy input
(Schnorbus and Alila, 2013). For example, in the 242 Creek in the
interior of British Columbia in Canada, where forest was logged
by 50%, annual runoff change was insignificant while runoff in
May was greatly increased by 100% followed by a significant reduc-
tion in June and July. That is, more water leaves the watershed in
terms of spring snowmelt runoff, resulting in less water recharge
for the drier soils during summer and autumn (low flow seasons
in the Pacific Northwest) with high evapotranspiration and low
precipitation, and consequently leading to insignificant changes
in annual runoff (Winkler et al., 2015).
In addition, the non-response in runoff to forest changes can
sometimes be related to dominating impacts of climate conditions
during post-forest change years. For example, Bart and Hope
(2010) investigated the post-fire runoff response in six California
catchments (54–632 km2) with forest burnt by 23–100% and found
insignificant changes in annual runoff in four catchments (Sespe,
Santa Paula, San Antonio, and Lopez). In particular, the Lopez
catchment was completely burned. These four catchments experi-
enced a prolonged drought during the second to fifth post-fire
years when no streamflow increases were detected. In this region,
soil moisture was the determinant of the runoff response to vege-
tation change during droughts. Differences in vegetation cover and
transpirational capacity of the control and treated catchments may
have limited effects on evapotranspiration and hence on runoff.
Thus, soil moisture deficit due to the post-fire prolonged drought
may offset the increases in runoff due to reduced ET after fire
(Stednick, 2008; Bart and Hope, 2010).

The response of annual runoff to forest cover gain tends to be
even more variable and complicated when compared to forest
cover loss. In large watersheds, more forest cover gain is likely to
result in more reduction in annual runoff while in small water-
sheds, insignificant relationship between forest cover gain (DF)
and annual runoff response (DQf) has been detected. There are
many watersheds where the response of annual runoff to forest
cover gain is insignificant. There are about 19 small watersheds
and one large watershed even with quite distinct hydrological
responses - increased annual runoff due to forest cover gain. Such
an example occurs in the headwater of Heihe River Basin in China
where a 12.6% increase in forest cover due to spruce reforestation
was predicted to increase annual runoff by 8.6% (Wu et al., 2015).
In this mountainous watershed, old-growth spruce forests (Picea
crassifolia) dominated at higher elevation areas (with an altitude
of 3000 m above sea level) are featured by lower evapotranspira-
tion than grassland as suggested by the modelling. In addition,
these subalpine forests can increase soil water storage by inter-
cepting both rainfall and cloud water (Wei et al., 2005; Zhang
et al., 2008b). Thus, an increase in annual runoff after the conver-
sion of grassland to spruce forest in this watershed will be
expected.

In general, we can only draw a statistical inference that more
forest cover loss can lead to more pronounced changes in annual
runoff in both small and large watersheds. Moreover, despite this
general tendency, the annual runoff response to forest cover
change is highly variable. These variations are not simply deter-
mined by the change in forest cover rate, but largely related to
many confounding factors such as forest characteristics (e., tree
species, stand age and structure, vegetation regeneration, and for-
est change pattern), topography (e.g., aspect, elevations), geology
(e.g., surface-groundwater interactions), hydrological regimes
(e.g., snow-dominated, rain-dominated), landscape pattern (e.g.,
lakes, wetlands) and water availability (precipitation) rather than
watershed size (Farmer et al., 2003; Williams and Albertson,
2005; Blöschl et al., 2007; Bart and Hope, 2010; Karlsen et al.,
2016). This highlights the need for a more detailed investigation
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on how these factors affect the response of annual runoff to forest
cover change across multiple spatial scales.

5.2. Scale issue in annual runoff response to forest cover change

Theoretically, more heterogeneities in landscape, topography,
climate, geology and vegetation will occur as watershed size
increases, resulting in greater buffering ability to watershed distur-
bances such as forest cover change, and thus being less sensitive to
a given level of forest cover change as compared to smaller water-
sheds (Huff et al., 2000; Andréassian, 2004; Crouzeilles and Curran,
2016). Is the response of annual runoff to forest cover change really
scale-dependent? Our analysis shows that the response intensity
of annual runoff to forest cover change declines with increasing
watershed size is only valid in large watersheds. A definite conclu-
sion that the impact of forest cover change on annual runoff atten-
uates with watershed size cannot be drawn in small watersheds or
across multiple spatial scales.

The differences in scale effects on the hydrological responses to
forest cover change between large watersheds and small water-
sheds indicate that dominant eco-hydrological processes and inter-
actions between forests and water in large watersheds can be quite
different from those in small watersheds (Arrigo and Salvucci,
2005; Kirchner, 2006). Therefore, extrapolating the findings from
small watersheds to large watersheds or vice versa can be very
challenging and complicated (Best et al., 2003; Popp et al., 2009).
A simple extrapolation of findings from a small watershed to a
large watershed could be problematic given the differences in eco-
hydrological processes between small and large watersheds
(Bracken and Croke, 2007). This calls for more large watershed
studies on the mechanisms underlying forest and water interac-
tions and feedbacks.

5.3. Differences among water-limited, equitant, and energy-limited
watersheds in hydrological responses to forest cover change

It is well-recognized that climate conditions in terms of water
and energy are critical for forest growth (Jackson et al., 2005;
Rodriguez-Iturbe et al., 2007; Asbjornsen et al., 2011). The interac-
tions between ecological and hydrological processes can be quite
different across climatic gradients (Rodriguez-Iturbe et al., 2007;
Farmer et al., 2003; Donohue et al., 2011; Liu and McVicar, 2012;
Zhou et al., 2015). Our analysis showed that the sensitivity of
annual runoff to forest cover change will increase with dryness
index across multiple spatial scales. A water-limited watershed
tends to be more hydrologically sensitive to forest cover change
than an energy-limited watershed. This is in accordance with a glo-
bal study on the impact of afforestation on annual runoff, where
afforestation in drier regions (mean annual precipitation
<1000 mm) was found to have greater impact on runoff than in
wetter regions (Jackson et al., 2005). Similarly, modelling by Sun
et al. (2006) in China also showed that annual runoff reduction
due to reforestation can be up to 50% in semi-arid regions while
the reduction is only 30% in humid regions. The findings above sug-
gest that the sensitivity of annual runoff to forest cover change is
not constant but may vary along climatic gradients (Asbjornsen
et al., 2011; Donohue et al., 2011). The mechanism controlling
interactions between forest and water in water-limited watersheds
is likely to be different from that in energy-limited watersheds
(Newman et al., 2006; Zhang and Wei, 2012a). In water-limited
watersheds, forest growth is often controlled by the spatial-
temporal distribution of water, and the dryness index is often
viewed as the best predictor of forest growth (Das et al., 2013).
In turn, forest structure, age, and species composition affect water
flux across multiple spatial scales (Schwinning and Sala, 2004;
Asbjornsen et al., 2011), and the sensitivity of water-limited forests
to water availability is expected to be maximal (Huxman et al.,
2004; Scanlon et al., 2005). Accordingly, forest cover change in
water-limited watersheds can cause more significant hydrological
responses. On the contrary, in energy-limited watersheds where
saturated soils are prevalent (Asbjornsen et al., 2011), forest
growth tends to be less dependent on water availability but
responds more strongly to temperature (Rodriguez-Iturbe et al.,
2007; Troch et al., 2009; Wohl et al., 2012). Consequently, forest
cover change tends to generate less pronounced hydrological
impacts in these water-abundant environments.

5.4. Differences between large and small watersheds in the effects of
forest type and hydrological regime

In small watersheds, mixed forests dominated watersheds tend
to be less hydrologically sensitive to forest cover change than
coniferous or broadleaf forest-dominated watersheds (Table 3
and Fig. 6). This finding is supported by several studies, showing
that a 10% reduction in coniferous forest, deciduous forest and
eucalypt forest can lead to about 20–25, 17–19, and 6 mm increase
in water yield, respectively (Bosch and Hewlett, 1982; Brown et al.,
2005). A small watershed study regarding global warming also
suggests that mixed forest dominated catchments have higher
resilience and stable water yield in response to global warming
while coniferous forested ones have the lowest resilience (Creed
et al., 2014). However, large coniferous forest dominated water-
sheds have been found to be least hydrologically sensitive to forest
cover change, suggesting more hydrological resilience of large
coniferous forest dominated watersheds to forest cover change.
The differences between small and large watersheds may be due
to more complexities in controls of the hydrological responses to
changes at a larger spatial scale.

Unlike the important role that forest type plays in annual runoff
response to forest cover change, hydrological regime tends to be a
less influential factor in small watersheds but is a factor in large
watersheds. The sensitivity of annual runoff to forest cover change
in large snow-dominated watersheds is significantly lower than in
rain-dominated watersheds. In other words, large snow-
dominated watersheds are generally more resilient to forest cover
change as compared with large rain-dominated watersheds. This is
in accordance with small watershed studies: logging in snow-
dominated hydrological systems can produce less pronounced
impacts on annual runoff than in rain-dominated hydrological sys-
tems in the Pacific Northwest (Moore and Wondzell, 2005). The
differences in Sf between large snow-dominated and rain-
dominated watersheds maybe due to their different hydrological
processes. In snow-dominated watersheds, annual runoff is mostly
from snow-melt water in spring, affected by energy input and win-
ter snow accumulation. Factors including not only forest but also
topography (e.g., elevation, aspect) can produce significant impacts
on evapotransipration and snow-melting, and eventually on
annual runoff (Jost et al., 2007; Gleason et al., 2013). For example,
forest cover loss at higher elevations or on slopes with southern
aspects can have more pronounced hydrological impact than those
at lower elevations or on slopes with northern aspect mainly
because ET can be increased and snow-melting processes can be
accelerated due to more energy input after forest cover loss, lead-
ing to more advanced snow-melt water input from higher eleva-
tion areas to streams (Boon, 2009; Bewley et al., 2010).
Sometimes, even with similar level of forest cover change in
snow-dominated watersheds, contrasting responses in annual run-
off may be detected due to differences in topography, landscape
pattern, and spatial heterogeneity in climate. For example, Zhang
and Wei (2014) studied two large deforested watersheds (the Wil-
low and Bowron) with the DF about 30% in British Columbia,
Canada. They found forest harvesting in the Willow watershed sig-
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nificantly increased annual runoff but caused insignificant hydro-
logical change in the Bowron watershed. The relative uniform
topography and climate in the Willow watershed may promote
hydrological synchronization effects, while larger variation in ele-
vations, together with more forest harvesting occurred at lower
elevations may cause hydrological de-synchronization effect in
the Bowron watershed (Wei and Davidson, 1998; Whitaker et al.,
2002). In general, heterogeneities in topography grow with the
watershed size, resulting in more confounding effects to offset
the annual runoff response to forest cover change
(Jothityangkoon and Sivapalan, 2009), and thus annual runoff in
large snow-dominated watersheds can be less sensitive to forest
cover change.

5.5. Implications for future research

Forest hydrological studies in large watersheds are limited
mainly due to the lack of an efficient, commonly-accepted method-
ology. Physically based hydrological models, such as the Distribu-
ted Hydrology Soils and Vegetation Model (DHSVM), MIKE-SHE
(an integrated water simulation model designed by Danish
Hydraulic Institute) and the Variable Infiltration Capacity (VIC)
model are often used in large watershed studies (Stonesifer,
2007; Thanapakpawin et al., 2007; Franczyk, 2008; Wei and
Zhang, 2010a, 2010b; Kuraś et al., 2012). However, these models
mainly depend on scientific information derived from small water-
shed studies, and this can be problematic when applied to large
watersheds (Kirchner, 2006). This review provides a generalized
relationship between forest cover change and annual runoff
response in large watersheds (Fig. 3), and can be directly applied
in future hydrological modelling of large watersheds to generate
more reliable predictions. Moreover, the selection of assessment
techniques must consider the differences in ecohydrological pro-
cesses between large and small watersheds since dominating fac-
tors that determine annual runoff response to forest cover
change in large and small watersheds can be quite different
(Jencso and McGlynn, 2011; Sivapalan et al., 2011). Similarly, given
contrasting hydrological sensitivities and responses to forest
changes in water-limited and energy-limited watersheds, future
watershed hydrology studies should focus on identifying the dom-
inant ecohydrological processes in both situations (Gentine et al.,
2012). A better understanding of the interaction and feedback
mechanisms between forest and water along climate gradients
would improve the current hydrological models or help in the
development of new hydrological models for more accurate simu-
lation and prediction of ecohydrological processes under a chang-
ing environment.

5.6. Implications for future forest and water management

According to our analysis, the responses of annual runoff to for-
est change are determined not only by the proportion of forest
cover change but also by watershed properties such as climate
conditions, hydrological regime and forest type. The interactions
of these factors with each other lead to diverse and inconsistent
results (Lima et al., 2014). Thus, the transfer of results from one
large watershed to another will have to be adjusted by considering
similarities in climate, hydrological regime, and forest type
between the two watersheds.

Since runoff responses are more sensitive to forest change in
water-limited watersheds than in energy-limited watersheds, for-
est management in water-limited watersheds must be designed
with caution (Porporato et al., 2001; Krishnaswamy et al., 2012).
The trade-off between forest growth (carbon sequestration) and
water use in watersheds across climatic gradients must be recog-
nized in order to ensure water supply for both human and ecosys-
tems (Jackson et al., 2005; Williams and Albertson, 2005; Keenan
et al., 2013; Frank et al., 2015). This is particularly important and
complicated under climate change given that more catastrophic
forest disturbances such as fire, drought, flood, and insect outbreak
are intensified (Anderegg et al., 2012; Pretzsch et al., 2014; Jolly
et al., 2015). Climate change is very likely to yield significant
impacts on water resources and in general, dry areas will tend to
become drier while wet areas will become wetter (IPCC, 2007).
Large-scale afforestation in water-limited environments will inevi-
tably exacerbate water scarcity while afforestation in energy-
limited environment will help to reduce flood risks (Calder,
2007). In addition to direct impacts on water resources, climate
change will produce indirect impacts on water by altering forest,
for example, altering the interactions and feedbacks between for-
est and water due to increasing temperature, changing seasonal
precipitation patterns, and prolonged phenology and increased
growth potential due to climate change (Bearup et al., 2014;
Doughty et al., 2015; Swann et al., 2016). Thus, current under-
standing of the interactions between forest and water may be inad-
equate to support natural resources management in the context of
climate change. In brief, forest practices must be designed with a
full consideration of future climate, water availability, water con-
sumption of different forest types, and hydrological regime, as well
as topography and watershed size.

5.7. Limitations

A successful study on the quantification of hydrological
response to forest cover change normally relies on the availability
of long-term data on hydrology and climate, the quantification of
watershed-scale forest changes, and an appropriate method to
exclude the effect of non-forest drivers on runoff, e.g., climate vari-
ability and human activities (Wang et al., 2013; Liang et al., 2015).
This review is a synthesis of many world-wide studies on hydro-
logical responses to forest cover change across multiple spatial
scales. Uncertainties associated with data collection, the quantifi-
cation of forest changes and methods for excluding non-forest
related hydrological impact in the literature are inevitable
(Patterson et al., 2013).

For example, although precipitation data were derived from the
literature, precipitation data sources (i.e., observed, spatial grids,
and modelled) may differ among watersheds. Observed data from
local climate stations are often used in small watershed studies
while modelled or gridded data are normally applied in large
watersheds due to a lack of sufficient climate stations (Coe et al.,
2011; Lima et al., 2014). This strategy allows for a better represen-
tation of mean annual precipitation across multiple spatial scales,
but associated uncertainties from various data sources may occur
(Biederman et al., 2015). An ideal way is to apply a global gridded
precipitation dataset with high resolution. Similarly, the length of
streamflow record varied from one study to another. A short
streamflow record may incompletely capture long-term cumula-
tive hydrological responses after forest change (Brown et al.,
2005). Although it would be helpful if the length of record could
be standardized across all study watersheds in order to represent
a full stand rotation for example, the number of study watersheds
would be greatly reduced given great differences in data collection
across the dataset.

The quantification of forest change at a watershed scale is very
challenging since different types of forest changes due to natural
(e.g., wildfire, flood, drought, hurricane, insect) and anthropogenic
disturbances (e.g., logging, road construction, agricultural activi-
ties, urbanization, mining, and recreation) are accumulated over
space and time (Logan et al., 2003; Bebi et al., 2016). The most
direct way to quantify forest changes in a watershed is to compute
the forest cover change (%), mainly because these data are nor-
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mally available and relatively easy to derive (Buttle and Metcalfe,
2000; Zhang et al., 2008a). In this review, to maximize sample size,
we also used forest cover change (%) as the indicator of forest
change level. However, this indicator merely serves as a basic indi-
cator without differentiating forest species, stand age and struc-
ture, growth potential, and disturbance types, and fails to express
the spatial pattern of forest changes and subsequent forest recov-
ery processes (Lewis and Huggard, 2010). A suitable forest change
indicator for a watershed should not only express forest cover
changes due to all types of disturbances, and their intensities and
severities, but also account for forest characteristics (e.g., species,
stand age, structure), disturbance history, and subsequent recovery
processes over space and time.

The most challenging consideration in quantifying hydrological
response to forest cover change is to exclude the effect of non-
forest drivers on runoff, e.g., climate variability and human activi-
ties (Renner et al., 2014). This can be even more challenging for
large watershed studies with various confounding factors includ-
ing climate variability, dams, irrigation, and urbanization (Wang
and Hejazi, 2011; Feng et al., 2016). As mentioned before, the
responses of annual runoff to forest cover change in these water-
sheds are quantified by different methods such as paired water-
sheds, quasi-paired watersheds, hydrological modelling, elasticity
analysis and a combination of statistical analysis and hydrographs.
The paired watershed experiment is commonly accepted as an
effective approach to exclude climatic effect on runoff in the trea-
ted or disturbed watershed through comparison against the con-
trol watershed (Biederman et al., 2015). However, the quasi-
paired watersheds study, designed for larger watersheds may fail
to completely remove the effect of climate variability on runoff
given great variations in climate, especially precipitation in larger
watersheds, leading to less reliable results as compared to a paired
watersheds study (Loáiciga et al., 2001; Liu et al., 2004). Most
hydrological models are still based on current theories that are
deeply rooted in the physics of small-scale processes. This gives
rise to difficulties in representing nonlinear hydrological processes
and their interactions at all scales across heterogeneous landscapes
(Kirchner, 2009). In addition, models are often over-parameterized
to meet high accuracy levels, potentially leading to the equifinality
problem because of an excessive number of free parameters
(Beven, 1992; Kirchner, 2006). Similarly, the elasticity analysis or
the combination of statistical methods and hydrographs may
sometimes remove the effect of non-forest change on runoff
incompletely since most studies only considered climate variabil-
ity and forest change or land cover change as two major drivers,
and ignored other confounding factors (Costa et al., 2003; Wei
and Zhang, 2010; Wang et al., 2013; Xu et al., 2013; Liang et al.,
2015). Obviously, none of these methods is perfect but character-
ized by different levels of uncertainties, especially for larger water-
shed studies. These method-related uncertainties may lead a
certain level of bias in our synthesized analysis. Although a better
solution could be to develop a standardized and efficient method
that can be applied widely in both small and large watersheds to
quantify annual runoff response to forest cover change, this
approach is not possible with the current array of available data.
6. Conclusions

This review shows that dominant ecohydrological processes
and associated drivers are variable across spatial scales. Climate
is a key factor in determining annual runoff response to forest
change at multiple spatial scales. Annual runoff in water-limited
watersheds is more sensitive to forest cover change than in
energy-limited watersheds. Forest type is an important factor
affecting annual runoff response to forest cover change in small
watersheds while hydrological regime tends to be a more influen-
tial factor in large watersheds. These findings above have profound
implications for upscaling issues and model development in forest
hydrology and also provide useful scientific information to guide
future watershed management in the context of climate change.
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