In the format provided by the authors and unedited.

Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality

Yann Hautier^{1*}, Forest Isbell^{1*}, Elizabeth T. Borer^{1*}, Eric W. Seabloom^{1*}, W. Stanley Harpole^{3,4,5}, Eric M. Lind², Andrew S. MacDougall⁶, Carly J. Stevens⁷, Peter B. Adler⁸, Juan Alberti⁹, Jonathan D. Bakker¹⁰, Lars A. Brudvig¹¹, Yvonne M. Buckley¹², Marc Cadotte¹³, Maria C. Caldeira¹⁴, Enrique J. Chaneton¹⁵, Chengjin Chu¹⁶, Pedro Daleo⁹, Christopher R. Dickman¹⁷, John M. Dwyer^{1*}, Anu Eskelinen^{3,4,20}, Philip A. Fay^{1*}, Jennifer Firn^{1*}, Nicole Hagenah^{23,24}, Helmut Hillebrand²⁵, Oscar Iribarne⁹, Kevin P. Kirkman^{1*}, Johannes M. H. Knops²⁶, Kimberly J. La Pierre²⁷, Rebecca L. McCulley²⁸, John W. Morgan²⁹, Meelis Pärtel³⁰, Jesus Pascual⁹, Jodi N. Price³¹, Suzanne M. Prober³², Anita C. Risch³³, Mahesh Sankaran^{34,35}, Martin Schuetz³⁶, Rachel J. Standish³⁷, Risto Virtanen^{1*}, ^{3,4,20}, Glenda M. Wardle^{1*}, Laura Yahdjian¹⁵ and Andy Hector³⁸

¹Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. ²Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA. ³Department of Physiological Diversity, Helmholtz Center for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany. ⁴German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany. ⁵Institute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany. ⁶Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada. 7Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK. ⁸Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT 84322, USA. ⁹Instituto de Investigaciones Marinas y Costeras, UNMdP, CONICET, 7600 Mar del Plata, Argentina. 10 School of Environmental and Forest Sciences, University of Washington, Box 354115, Seattle, WA 98195-4115, USA. "Department of Plant Biology and Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI 48824, USA. ¹²School of Natural Sciences, Zoology, Trinity College Dublin, Dublin 2, Ireland. ¹³University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada. ¹⁴Forest Research Centre, School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal. ¹⁵IFEVA-CONICET, Facultad de Agronomia, Universidad de Buenos Aires, Av. San Martin 4453, 1417 Buenos Aires, Argentina. ¹⁶Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, China. ¹⁷Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia. ¹⁸School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia. ¹⁹CSIRO Land & Water, EcoSciences Precinct, Dutton Park, Queensland 4102, Australia. ²⁰Ecology & Genetics, University of Oulu, FI-90014 University of Oulu, Oulu, Finland. ²¹USDA-ARS, Grassland Soil and Water Lab, 808 E Blackland Road, Temple, TX 76502, USA. ²²School of Biological Sciences, Oueensland University of Technology, Brisbane, Oueensland, Australia, 23 School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa. ²⁴South African Environmental Network (SAEON), Grasslands, Forests and Wetlands Node, Queen Elizabeth Park, 1 Peter Brown Drive, Pietermaritzburg, South Africa. ²⁵Institute for Chemistry and Biology of the Marine Environment, University Oldenburg, Oldenburg, Germany. ²⁶School of Biological Sciences, University of Nebraska, Lincoln, NE, USA. 27 Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD, USA. ²⁸Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY 40546-0091, USA. ²⁹Department of Ecology, Environment and Evolution, La Trobe University, Bundoora 3083 Victoria, Australia. ³⁰Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu, Estonia. ³¹Institute of Land, Water and Society, Charles Sturt University, Albury, New South Wales 2640, Australia. ³²CSIRO Land and Water, Private Bag 5, Wembley, Western Australia 6913, Australia. ³³Swiss Federal Institute of Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland. ³⁴School of Biology, University of Leeds, Leeds LS2 9JT, UK. ³⁵National Centre for Biological Sciences, GKVK Campus, Bangalore 560065, India. ³⁶Swiss Federal Institute of Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland. ³⁷School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia. ³⁸Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK. *e-mail: y.hautier@uu.nl

Supplementary Figure 1. Locations of the 65 Nutrient Network sites included in this study.

Supplementary Figure 2. Effect sizes of plant diversity on individual function and on the average multifunctionality. Standardized regression coefficients of local species richness ($\overline{\alpha}$), community dissimilarity (β) and their interaction ($\overline{\alpha}$: β) with each individual function and with the average multifunctionality. R² values are the proportion of variation explained by each regression.

Supplementary Figure 3. Relative contribution of plant diversity to individual function and to the average multifunctionality. Percentage of variance explained by local species richness ($\overline{\alpha}$), community dissimilarity (β) and their interaction ($\overline{\alpha}$: β) on each individual function and on the average multifunctionality. The proportion of variance explained is based on R² values for each regression shown in Extended Data Figure 2.

Supplementary Figure 4. Relationships between plant diversity and multiple-threshold multifunctionality after accounting for environmental variables. a and b, $\bar{\alpha}$ diversity; c and d, β diversity. Points in A and C are the slopes of the diversity-multifunctionality relationships for a range of threshold values ranging from 5 to 95% of maximum for each function. The shaded green area in a and c represents the 95% confidence intervals around the slopes such that diversity effect on multifunctionality is significant when the intervals do not overlap the zero line. Lines in B and D are the slopes shown in a and c for the minimum threshold above which (T_{max}) multifunctionality is associated with diversity, and for the realized maximum diversity effect (R_{mde}) where the slope of the diversity-multifunctionality relationship is steepest.

Supplementary Figure 5. Relationships of plant diversity with each individual function. a, average number of species per plot within spatial blocks ($\overline{\alpha}$ diversity); b, dissimilarity in species composition among plots within spatial blocks (β diversity). Red lines indicate the fits at low (Low) diversity and blue lines at intermediate to high diversity (Int-High).

Supplementary Figure 6. Relative importance of $\overline{\alpha}$, β diversity, their interaction ($\overline{\alpha}$: β) (red bars) and other key environmental predictors (black bars) on individual function and on the average multifunctionality. The size of the bars represents the importance of a variable relative to the other variables in the same model. Temp Wet: Mean temperature during the wettest four months (0 C), MAP VAR: Coefficient of variation of precipitation, MAT Range: Mean annual range in temperature (0 C), MAT: Mean annual temperature (0 C), Temp SD: Standard deviation in temperature, MAP: Mean annual precipitation (mm), CV: coefficient of variation.

Supplementary Figure 7. Analyses using presence-absence instead of species abundances (a-c) or only sites with three or fewer spatial blocks (d-f). Mean overlap values \pm 95% CI between sets of species maintaining ecosystem functioning a & d. Higher proportion of species maintained ecosystem functioning when more functions b & e, or when a wider range of spatial blocks c & f, were independently considered. N denotes the number of sites included in each approach.

Supplementary Figure 8. Proportion of times a species significantly increased or decreased ecosystem functioning (EF). Study species (1633) are ordered from those that promoted EF most frequently (left) to those that promoted EF least frequently (right). About two third of the species studied (1082) increased EF at least once and about one fifth of the species (295) never influenced EF.

Supplementary Table 1. Additional information on the 65 Nutrient Network study sites.

		1							Number			Number of plot	PIs
								Number	of	Functions	Land use	per block	
Site	Continent	Country	Habitat	Elevation	Latitude	Longitude	Year	of block	functions	measured	history	1,2,3,4,5,6	
													Jonathan D.
													Bakker,
	North		mesic										Janneke Hille Ric
amcamp.us	America	USA	grassland	41	48.5	-123.0	2007	3	8			10.10.10.0.0.0	Lambers
ameampras	7 unici icu	00/1	Brassiana		10.5	120.0	2007	5	5	20		10,10,10,0,0,0	Selene Baez
	South		alpine					_		AGB PAR			
anti.ec	America	Ecuador	grassland	4400	-0.5	-78.2	2013	5	4	LD IR		10,10,10,10,10,0	Chanalin
			alnine										Chengjin
azi.cn	Asia	China	grassland	3500	33.7	101.9	2007	3	8	LD IR		10.10.10.0.0.0	Citu
		-	8					-	-	AGB PAR			David
	North		mixedgrass							СNРК			Wedin
barta.us	America	USA	prairie	767	42.2	-99.7	2007	3	8	LD IR		10,10,10,0,0,0	
													Brett
	North		chortgrace							AGBPAR			Melbourne, Kondi
bldr us	America	USA	nrairie	1633	40.0	-105.2	2008	2	8	IDIR	Managed	10 10 0 0 0 0	Davies
			presso						-				Eric
										AGB PAR			Seabloom,
	North		montane							СNРК			Elizabeth
bnch.us	America	USA	grassland	1318	44.3	-122.0	2007	3	8	LD IR		10,10,10,0,0,0	Borer
													John
			alnine							C N P K			loslin I
bogong.au	Australia	Australia	grassland	1760	-36.9	147.3	2009	3	8	LD IR		10.10.10.0.0.0	Moore
			8					-	-				Eric
										AGB PAR			Seabloom,
	North		montane							СNРК			Elizabeth
bttr.us	America	USA	grassland	1500	44.3	-122.0	2007	3	8	LD IR		10,10,10,0,0,0	Borer
										AGB C N			Jennifer
bunya.au	Australia	Australia	grassland	0	-26.9	151.6	2013	3	7	P K LD IR		10,10,10,0,0,0	FILLI
													Jennifer
										AGB PAR			Firn,
hurrawan au	Australia	Austrolio	semiarid	425	27.7	151 1	2008	2	0	CNPK		10 10 10 0 0 0	Yvonne M.
Durrawan.au	Australia	Australia	grassianu	425	-27.7	151.1	2008	3	0	LUIK		10,10,10,0,0,0	W Stapley
										AGB PAR			Harpole.
	North		tallgrass							СNРК	Burned		Lori A.
cbgb.us	America	USA	prairie	275	41.8	-93.4	2009	6	8	LD IR	Anthropogenic	10,10,10,8,8,8	Biederman
													Elizabeth
													Borer,
													W. Stanley
										AGB PAR			Adam Kay
	North		tallgrass							CNPK			Eric
cdcr.us	America	USA	prairie	270	45.4	-93.2	2007	5	8	LD IR		10,10,10,10,10,0	Seabloom
										AGB PAR			Johannes
	North		shortgrass	0.05			2007	~		CNPK			M. H. Knops
capt.us	America	USA	prairie	965	41.Z	-101.6	2007	6	8	LD IK		10,10,10,10,10,10,10	Amandino
											Managed		Hansart.
										AGB C N	Grazed		Beatriz
cereep.fr	Europe	France	old field	83	48.3	2.7	2012	3	5	РК	Anthropogenic	10,10,10,0,0,0	Decencière
													Enrique
													Chaneton,
	South	A	mesic	45	26.2	50.0	2012	2		AGB PAR		10 10 10 0 0 0	Laura
chiicas.ar	America	Argentina	grassiand	15	-30.3	-58.3	2013	3	4	LD IK		10,10,10,0,0,0	Yandjian Maria
					1				1		Managed		Caldeira.
			annual		1				1	AGB PAR	Grazed		Miguel
comp.pt	Europe	Portugal	grassland	200	38.0	-8.0	2012	3	7	C N P K IR	Anthropogenic	10,11,10,0,0,0	Bugalho
	North												Andrew
cowi.ca	America	Canada	old field	50	48.5	-123.4	2007	3	7	PKLDIR		10,10,10.0.0.0	MacDougall
								-			1	.,,0,0,0	John
1.			semiarid							AGB PAR	Managed		Morgan
derr.au	Australia	Australia	grassland	38	-37.8	144.8	2007	3	3	IR	Burned	10,10,10,0,0,0	Daw
	North		tallgrass						1	AGR DAD	Burned		kamesn Laungani
doane.us	America	USA	prairie	418	40.7	-96.9	2012	6	4	LD IR	Anthropogenic	10,10,10.10.10.10	Luungaill
	0							-	<u> </u>			., .,,,,,_	Elsa Cleland
-111-4	North	1104	annual	200	22.0	447.4	2000			PARCNP		10 10 10 0 0 0	
elliot.us	America	USA	grassland	200	32.9	-117.1	2008	5	6	KIK		10,10,10,0,0,0	Maalic
												1	Pärtel
			semiarid							AGB PAR		1	Aveliina
elva.ee	Europe	Estonia	grassland	64	58.3	26.4	2012	1	4	LD IR		10,0,0,0,0,0	Helm
				1				1		AGB PAR			Glenda
1	Ι.		desert						Ι.	СNРК	Managed		Wardle
ethass.au	Australia	Australia	grassland	104	-23.6	138.4	2013	3	8	LD IR	Grazed	10,9,9,0,0,0	Arral
									1		Managod		Andy
					1				1	AGB PAR	Grazed		Yann
frue.ch	Europe	Switzerland	pasture	995	47.1	8.5	2008	3	7	CNPKIR	Anthropogenic	10,10,10.0.0.0	Hautier
					1	1		1	1			,.,.,.	Peter D.
-10	46-1-	South	montane	1740	20.2	20.2	2010		_	AGB PAR	Managed	10 10 10 0 0 0	Wragg
giib.za	Atrica	Africa	grassland	1/48	-29.3	30.3	2010	5	/	CNPKIR	Burned	10,10,10,0,0,0	

													Janneke
										AGB PAR			Hille Ris Lambers
	North		mesic							CNPK			Jonathan D.
glac.us	America	USA	grassland	33	46.9	-123.0	2007	3	8	LD IR		10,10,10,0,0,0	Bakker
	North		tallgrass							AGB PAR C N P K			Rebecca L. McCulley
hall.us	America	USA	prairie	194	36.9	-86.7	2007	3	8	LD IR	Managed	10,10,10,0,0,0	
	North		chrub							AGB PAR			Nicole M.
hart.us	America	USA	steppe	1508	42.7	-119.5	2007	3	8	LDIR		10,10,10,0,0,0	David Pyke
													Elizabeth
	North		annual							AGRIDAR			Borer, Fric
hast.us	America	USA	grassland	750	36.2	-121.6	2007	3	4	LD IR		10,10,10,0,0,0	Seabloom
													Elizabeth
										AGRIDAR			M. Wolkovich
	North									CNPK			Kathryn L.
hnvr.us	America	USA	old field	271	43.4	-72.1	2007	3	8	LD IR	Anthropogenic	10,10,10,0,0,0	Cottingham
													Elizabeth
	North		annual							AGB PAR			Eric
hopl.us	America	USA	grassland	598	39.0	-123.1	2007	3	4	LD IR		9,9,9,0,0,0	Seabloom
	North		annual							AGB PAR			Elsa Cleland
jasp.us	America	USA	grassland	120	37.4	-122.2	2007	3	4	LD IR		10,10,10,0,0,0	
	North									AGB PAR			Lars
kbs.us	America	USA	old field	288	42.4	-85.4	2013	5	8	LD IR		10,10,10,10,10,0	Diddvig
													Anu
			tundra										Eskelinen, Bisto
kilp.fi	Europe	Finland	grassland	700	69.1	20.8	2013	4	2	AGB LD	Grazed	10,10,10,10,0,0	Virtanen
										AGB PAR			John
kiny au	Australia	Australia	semiarid	90	-36.2	1/12 8	2007	3	8			10 10 10 0 0 0	Morgan
Killy.du	Australia	Australia	grassiariu	90	-30.2	143.0	2007	5	0	LUIK		10,10,10,0,0,0	Aveliina
													Helm,
kirik oo	Furana	Fatania	calcareous		F0 7	22.0	2012	2	4	AGB PAR		10 10 10 0 0 0	Meelis
KITK.ee	Europe	Estorila	grassiariu	0	56.7	23.0	2012	5	4	LUIK		10,10,10,0,0,0	Marc
													Cadotte,
													Robin Marushia
	North									AGB PAR			Arthur
koffler.ca	America	Canada	pasture	301	44.0	-79.5	2010	3	4	LD IR	Managed	12,12,12,0,0,0	Weiss
													Melinda
	North		tallgrass							AGB PAR	Managed		Smith, Kimberly J.
konz.us	America	USA	prairie	440	39.1	-96.6	2007	3	3	IR	Burned	10,10,10,0,0,0	La Pierre
			mesic							AGB C N	Managed		Carly
lancaster.uk	Europe	UK	grassland	180	54.0	-2.6	2008	3	7	P K LD IR	Grazed	10,8,8,0,0,0	Stevens
	North									AGB PAR			John G.
lead.us	America	USA	salt marsh	2	46.6	-124.0	2007	3	8	LDIR		10,10,10,0,0,0	Lamprinos
													Eric
	North		montono							AGB PAR			Seabloom,
look.us	America	USA	grassland	1500	44.2	-122.1	2007	3	8	LD IR		10,10,10,0,0,0	Borer
													Juan
	Couth												Alberti,
marc.ar	America	Argentina	grassland	6	-37.7	-57.4	2011	3	4	LD IR		10,10,10,0,0,0	Daleo
													Eric
													Seabloom,
													Harpole,
Ι.	North		annual						Ι.	AGB PAR			Elizabeth
mcla.us	America	USA	grassland	642	38.9	-122.4	2007	3	4	LD IR		10,10,10,0,0,0	Borer
			semiarid							CNPK			Firn
mitch.au	Australia	Australia	grassland	242	-22.5	143.3	2013	1	8	LD IR		10,0,0,0,0,0	
										AGB PAR			Suzanne M
mtca.au	Australia	Australia	savanna	285	-31.8	117.6	2008	4	4	LD IR		10,10,10,10,0,0	11000
													William
	North		alpine										Timothy
niwo.us	America	USA	grassland	3050	40.0	-105.4	2007	4	3	AGB LD IR		10,10,10,0,0,0	Seastedt
										AGB PAR			Helmut Hillebrand
pape.de	Europe	Germany	old field	1	53.1	7.5	2007	1	8	LD IR	Anthropogenic	10,0,0,0,0,0	rinebranu
										AGB PAR			Selene Baez
nich ec	South	Foundar	alpine	4200	-0.1	-79.0	2012	3	8			10 10 10 0 0 0	
picitiec	America	LUUUUI	ธาตรราชเป็น	4200	-0.1	-13.0	2013		U		Managed	10,10,10,0,0,0	Jodi Price.
										AGB PAR	Grazed		Rachel
ping.au	Australia	Australia	old field	338	-32.5	117.0	2013	3	4	LD IR	Anthropogenic	10,10,10,0,0,0	Standish
										AGB PAR			Dwyer.
										СNРК	Grazed		Yvonne M.
pinj.au	Australia	Australia	pasture	38	-27.5	152.9	2013	3	8	LD IR	Anthropogenic	10,10,10,0,0,0	Buckley

	1	1	1		1		1	1					
										AGB PAR			Daniel S.
	North		montane							CNPK			Gruner,
sage.us	America	USA	grassland	1920	39.4	-120.2	2007	3	8	LD IR		10,10,10,0,0,0	Louie Yang
			0						-			-, -, -,-,-	Fllen I
													Elleri I.
													Damschen,
													Lars
										AGB PAR			Brudvig,
	North									СМРК			John I
	America			71	22.2	01 7	2007	2				10 10 0 0 0 0	Orrech
SdVd.US	America	USA	Savalilla	/1	33.3	-01.7	2007	2	0	LD IK		10,10,0,0,0,0	UTTOCK
													Elizabeth
													Borer,
													Fric
													Cashlasan
													Seabloom,
													Carla M
										AGB PAR			D'Antonio,
	North		annual							СМРК			W. Stanley
soda us	America	1154	grassland	550	347	-120.0	2007	3	8			10 10 10 0 0 0	Harpole
seug.us	America	USA	grassiariu	330	54.7	-120.0	2007	3	0	LUIK		10,10,10,0,0,0	пагроте
										AGB PAR			T. Michael
										CNPK			Anderson
sereng.tz	Africa	Tanzania	savanna	1536	-2.3	34.5	2008	3	8	LD IR		10.10.10.0.0.0	
00.0.8.0						0.10		-	-				Cuethia C
													Cynthia S.
													Brown,
													Dana M.
1	1	1		1	1	1	1	1	1	1	1	1	Blumenthal.
1	North	1	shortgrass	1	1	1	1		1	AGRIDAD			Julia A
	NOI UI		SHULBLASS	1050	40.0	1010	2007	2	-	AGD PAR		10 10 10 0 0 0	Julia A.
sgs.us	America	USA	prairie	1650	40.8	-104.8	2007	3	7	CNPKIR		10,10,10,0,0,0	Klein
1	1	1		1	1	1	1		1	AGB PAR			Peter Adler
	North		shrub							СМРК	Managed		
choc uc	Amorica	115.4	ctoppo	010	44.2	112.2	2007	4	0		Grazod	10 10 10 10 0 0	
sups.us	America	USA	steppe	910	44.2	-112.2	2007	4	0	LUIK	Grazeu	10,10,10,10,0,0	
													Elizabeth
													Borer,
													W. Stanley
										ACDDAD			Harpolo
										AGBPAN			Haipole,
	North		annuai							CNPK			Eric
sier.us	America	USA	grassland	197	39.2	-121.3	2007	3	8	LD IR		10,10,10,0,0,0	Seabloom
										AGB PAR			Jonathan D.
	North		mesic							СМРК			Bakker
emith us	Amorico	110 4	grassland	62	40.2	122.0	2007	2				10 10 10 0 0 0	Builder
smin.us	America	USA	grassianu	02	46.2	-122.0	2007	3	0	LUIK		10,10,10,0,0,0	
										AGB PAR	Managed		Rebecca L.
	North									CNPK	Grazed		McCulley
spin.us	America	USA	pasture	271	38.1	-84.5	2007	3	8	LD IR	Anthropogenic	10.10.10.0.0.0	
			P			0.10		-	-				Deter D
		South	mesic							AGB PAR	Managed		Peter D.
CUIP2 P2 70	Africo	Africa	grassland	670	20.0	20.7	2010	2	7	CNDKID	Durnad	10 10 10 0 0 0	Wragg
Summ.za	AIrica	AIrica	grassianu	079	-29.8	30.7	2010	3	/	CNPKIK	Burneu	10,10,10,0,0,0	
													Philip A Fay
	North		taligrass							AGB PAR			
temple.us	America	USA	prairie	184	31.0	-97.3	2007	3	7	CNPKIR		8,10,8,0,0,0	
													Andrew
													Leakey
	N a stale		A										Visalaui
	North		Laligrass							PARCNP			Aldonui
trel.us	America	USA	prairie	200	40.1	-88.8	2008	3	6	K IR		10,10,10,0,0,0	Feng
					1								John L.
													Orrock
1	1	1		1	1	1	1	1	1	1	1	1	Tiffonu
1						1	1		1				imany
1	1	1		1	1	1	1		1	AGB PAR			Knight,
1	North	1		1	1	1	1		1	CNPK			Ellen I.
tyso.us	America	USA	old field	169	38.5	-90.6	2007	4	8	LD IR	Anthropogenic	10,10,10,10,0.0	Damschen
1											1 0	, , , , , ,	Kovin D
1	1	1		1	1	1	1		1				Kevin F
													Kirkman,
1						1	1		1				Nicole
1	1	1		1	1	1	1		1	AGB PAR			Hagenah,
1	1	South	mesic	1	1	1	1	1	1	СИРК	Managed	1	Michelle
ukul 70	Africa	Africa	graceland	942	20.7	20.4	2000	2	•		Burnod	10 10 10 0 0 0	Todder
ukui.za	ATTICA	ATTICA	grassiand	843	-29./	30.4	2009	3	ŏ	LUIK	ьигпеа	10,10,10,0,0,0	reader
1	1	1		1	1	1	1		1				Justin
1	1	1		1	1	1	1		1	AGB PAR			Wright,
1	North	1	1	1	1	1	1	1	1	СИРК	1	1	Charles
uncus	Amorica	115 A	old field	1.41	26.0	70.0	2007	2	•		Anthronogon'-	10 10 10 0 0 0	Mitchell
unc.us	America	USA	olu nela	141	30.0	-79.0	2007	3	٥		Anunopogenic	10,10,10,0,0,0	witchell
1	1	1		1	1	1	1		1				Martin
1						1	1		1	AGB PAR			Schuetz,
1	1	1	alpine	1	1	1	1		1	СИРК			Anita C
volm ch	Europa	Curitzorland	graceland	2220	16.6	10.4	2000	2	•			10 10 10 0 0 0	Ricch
vaiiii.ch	Europe	Switzerland	grassiano	2320	40.0	10.4	2008	3	0	LUIK	1	10,10,10,0,0,0	RISCII

 Valm.ch
 Europe
 Switzerland
 grassland
 2320
 46.6
 10.4
 2008
 3
 8
 LD IR
 10,10,10,00,0
 Ris

 AGB: Aboveground live biomass , PAR: Percentage of photosynthetically active radiation intercepted at ground level, C: Percent of soil carbon, N: Percent total nitrogen (nitrate ammonium), P: Soil extractable phosphorus, K: Soil extractable potassium, LD: Litter decomposition, IR: Invasion resistance

Supplementary Table 2. Correlation matrix between eac	here the standardized functions.
---	----------------------------------

	Aboveground live biomass	Light interce- ption	Percent total C	Percent total N	Extractable soil P	Extractable soil K	Litter decompo- sition
Light interception	0.29***						
Percent total C	0.05	0.10***					
Percent total N	0.07**	0.11***	-0.96***				
Extractable soil P	0.20***	0.30***	0.01	0.04			
Extractable soil K	0.08**	-0.02	-0.01	0.02	0.25***		
Litter decomposition	0.06*	-0.26***	0.02	-0.01	-0.14***	0.02	
Invasion resistance	0.01	-0.11***	0.10***	0.05	-0.25***	0.14***	0.05

Significance levels of Pearson's correlation coefficients: ***P < 0.001, **P < 0.01, *P < 0.05. Significant Pearson's correlation coefficients are shown in bold.

Supplementary Table 3. Relationships of plant diversity with each individual function. Coefficients of the relationships of the average number of species per plot within spatial blocks ($\overline{\alpha}$ diversity) and dissimilarity in species composition among plots within spatial blocks (β diversity) with each individual functions. The effects report the value of the intercept and slope of the fits at low (Low) diversity for $\overline{\alpha}$ diversity and at low to intermediate (Low-Int) diversity for (β diversity) as well as the differences (in italics) between the intermediate to high diversity (Int-High) and low diversity for $\overline{\alpha}$ diversity and between the high (High) diversity and low to intermediate diversity for β diversity.

Alpha				Beta			
·	Effect	2.5%	97.5%		Effect	2.5%	97.5%
Aboveground live biomass				Aboveground live biomass			
Intercept Low	-1.98	-3.59	-0.53	Intercept Low-Int	-2.11	-4.19	-0.26
Intercept Int-High	-0.19	-2.07	1.77	Intercept High	-0.60	-4.74	3.36
Slope Low	-0.01	-0.12	0.08	Slope Low-Int	-0.09	-5.20	5.00
Slope Int-High	0.01	-0.11	0.15	Slope High	2.16	-9.29	13.38
Light interception				Light interception			
Intercept Low	0.60	-0.35	1.60	Intercept Low-Int	0.11	-1.11	1.34
Intercept Int-High	-0.23	-1.48	1.01	Intercept High	-0.64	-3.43	2.09
Slope Low	-0.02	-0.09	0.04	Slope Low-Int	0.71	-2.52	3.97
Slope Int-High	0.01	-0.07	0.10	Slope High	1.23	-6.50	9.18
Percent total soil C				Percent total soil C			
Intercept Low	-1.51	-2.82	-0.30	Intercept Low-Int	-0.97	-2.83	0.76
Intercept Int-High	-0.83	-2.63	0.95	Intercept High	0.28	-3.45	4.02
Slope Low	0.01	-0.09	0.09	Slope Low-Int	-2.42	-7.60	2.59
Slope Int-High	0.03	-0.09	0.15	Slope High	0.32	-10.92	10.93
Percent total soil N				Percent total soil N			
Intercept Low	1.41	0.27	2.64	Intercept Low-Int	0.82	-0.76	2.51
Intercept Int-High	0.41	-1.23	2.05	Intercept High	-0.41	-3.91	3.08
Slope Low	-0.02	-0.10	0.06	Slope Low-Int	1.94	-2.58	6.57
Slope Int-High	0.00	-0.11	0.11	Slope High	0.31	-9.57	10.78
Extractable soil P				Extractable soil P			
Intercept Low	1.16	-0.05	2.41	Intercept Low-Int	1.02	-0.60	2.77
Intercept Int-High	0.25	-1.51	2.01	Intercept High	-1.16	-5.47	3.02
Slope Low	0.01	-0.07	0.11	Slope Low-Int	1.59	-3.05	6.32
Slope Int-High	0.03	-0.11	0.17	Slope High	4.43	-7.69	18.34
Extractable soil K				Extractable soil K			
Intercept Low	1.54	0.12	3.03	Intercept Low-Int	1.46	-0.34	3.45
Intercept Int-High	0.08	-1.87	2.03	Intercept High	0.14	-4.22	4.63
Slope Low	0.02	-0.07	0.15	Slope Low-Int	1.29	-3.94	6.58
Slope Int-High	0.01	-0.15	0.16	Slope High	-0.21	-12.57	13.10
Litter decomposition				Litter decomposition			
Intercept Low	-1.56	-2.90	-0.36	Intercept Low-Int	-0.87	-2.55	0.72
Intercept Int-High	-0.53	-2.12	1.10	Intercept High	-1.13	-4.48	2.06
Slope Low	0.02	-0.06	0.09	Slope Low-Int	-1.67	-6.00	2.57
Slope Int-High	0.05	-0.05	0.15	Slope High	4.76	-4.25	14.00
Invasion resistance				Invasion resistance			
Intercept Low	0.11	-0.89	1.09	Intercept Low-Int	-0.31	-1.50	0.86
Intercept Int-High	-0.49	-1.82	0.83	Intercept High	1.09	-2.33	4.54
Slope Low	0.05	-0.02	0.13	Slope Low-Int	2.42	-0.69	5.64
Slope Int-High	0.07	-0.04	0.17	Slope High	0.40	-9.44	10.95

Supplementary Table 4. Coefficients of the best and most parsimonious model following multi-model inference evaluating the influence of $\bar{\alpha}$, β diversity, their interaction ($\bar{\alpha}$: β) and other key environmental predictors on each individual function and on the average multifunctionality. Details as for Extended Data Figure 6.

	Estimate	Std.Error	z values	Pr(> z)
Average multifunctionality				
MAP	0.00005	0.00001	4.937	<0.001
Temp SD	0.00065	0.00021	3.046	0.003
Temp Wet	0.00356	0.00071	5.027	< 0.001
CV extractable soll K	-0.00010	0.00008	-1.209	0.229
р а.в	-0.14940	0.00105	-2.423	<0.017
Aboveground live biomass	0.01200	0.00228	5.272	<0.001
ΜΔΤ	-0.00805	0.00149	-5 406	<0.001
MAP	0.00005	0.000143	5.400	<0.001
Temp SD	-0.00217	0.00025	-8.642	<0.001
MAP VAR	-0.00082	0.00023	-3.624	< 0.001
Temp Wet	0.00591	0.00101	5.835	< 0.001
α	-0.00184	0.00074	-2.484	0.014
Light interception				
Longitude	-0.00105	0.00025	-4.190	< 0.001
MAT	0.02001	0.00637	3.139	0.002
MAP	0.00030	0.00005	6.268	<0.001
MAT Range	-0.04705	0.00937	-5.022	< 0.001
Temp SD	0.01901	0.00357	5.323	< 0.001
MAP VAR	0.00380	0.00107	3.567	0.001
Rercent silt	0.00772	0.00398	1.942	0.055
	0.00098	0.00128	3 1 7 7	0.001
Rescent total soil C	0.01014	0.00324	5.127	0.002
MAT	-0 01383	0.00216	-6 397	<0.001
MAP	0.00009	0.00002	4.571	<0.001
Temp SD	-0.00304	0.00045	-6.739	<0.001
CV total soil N	-0.00031	0.00011	-2.972	0.003
CV extractable soil C	0.00037	0.00011	3.435	0.001
CV extractable soil K	0.00029	0.00015	1.940	0.054
π:β	-0.00956	0.00378	-2.529	0.013
Percent total soil N				
MAT	0.02022	0.00236	8.555	< 0.001
MAP	-0.00012	0.00002	-5.604	< 0.001
Temp SD	0.00410	0.00051	8.057	< 0.001
CV total soil N	0.00035	0.00011	3.255	0.001
CV extractable soil P	-0.00037	0.00011	-3.337	0.001
CV extractable soil K	-0.00029	0.00015	-1.889	0.061
ā	-0.00998	0.00507	-1.968	0.051
β æi0	-0.58260	0.19040	-3.060	0.003
u:p	0.04576	0.01497	5.057	0.005
MAD	-0.00005	0.00002	-2 210	0 0 2 0
MAP VAR	0.00091	0.00045	2.210	0.025
рН	-0.03255	0.01620	-2.009	0.046
CV total soil N	-0.00017	0.00011	-1.569	0.119
CV extractable soil P	0.00070	0.00011	6.238	< 0.001
β	0.35150	0.10390	3.383	0.001
Extractable soil K				
MAT	0.00810	0.00297	2.727	0.007
MAP	-0.00005	0.00002	-2.544	0.012
MAT Range	-0.00804	0.00361	-2.230	0.027
Temp SD	0.00466	0.00135	3.444	0.001
Temp Wet	-0.00377	0.00174	-2.172	0.031
pH	-0.06885	0.01394	-4.939	< 0.001
CV extractable soil K	0.00055	0.00014	4.101	<0.001
u:p	0.01299	0.00354	3.009	<0.001
Litter accomposition	0 00079	0.00011	7 226	<0.001
MAP	-0.00019	0.00011	_/ 000	<0.001
Temn Wet	-0.00010	0.00002	-7 892	0.001
$\overline{\alpha}$	-0.03017	0.00150	-6.469	<0.004
ß	-0.98680	0 17060	-5 785	<0.001
	0.10910	0.01380	7.908	<0.001
Invasion resistance				
MAT	-0.07650	0.00852	-8.975	< 0.001
MAP	0.00049	0.00006	7.685	< 0.001
MAT Range	0.07299	0.01103	6.615	< 0.001
Temp SD	0 02072	0.00408	-7.288	< 0.001
ΜΔΡ. ΛΔΡ	-0.02972			
	-0.02972	0.00130	-2.296	0.024
Temp Wet	-0.02972 -0.00299 0.03533	0.00130 0.00500	-2.296 7.066	0.024 <0.001
Temp Wet Percent silt	-0.02972 -0.00299 0.03533 -0.00548	0.00130 0.00500 0.00179	-2.296 7.066 -3.067	0.024 <0.001 0.003
Temp Wet Percent silt Percent clay	-0.02972 -0.00299 0.03533 -0.00548 0.00711	0.00130 0.00500 0.00179 0.00289	-2.296 7.066 -3.067 2.459	0.024 <0.001 0.003 0.015
Temp Wet Percent silt Percent clay CV total soil N	-0.02972 -0.00299 0.03533 -0.00548 0.00711 0.00082	0.00130 0.00500 0.00179 0.00289 0.00029	-2.296 7.066 -3.067 2.459 2.873	0.024 <0.001 0.003 0.015 0.005

Supplementary Table 5. Relationship between plant diversity and average multifunctionality across environmental gradients. Coefficients of the relationships between the slopes of relationships of $\overline{\alpha}$ and β diversity with average multifunctionality as response variable and each environmental variable as explanatory variables.

		$\overline{\alpha}$ diver	sity	β diversity				
Variable	Slope	Std.Error	t values	Pr(> t)	Slope	Std.Error	t values	Pr(> t)
Latitude	609.80	4653.32	0.13	0.90	-129.63	109.90	-1.18	0.24
Longitude	17251.98	13366.51	1.29	0.20	99.73	323.06	0.31	0.76
MAT	356.45	831.38	0.43	0.67	6.34	19.86	0.32	0.75
MAP	-63.01	1074.25	-0.06	0.95	-8.19	25.63	-0.32	0.75
MAT RANGE	96.35	403.28	0.24	0.81	-5.05	9.61	-0.53	0.60
Temp SD	4540.13	3708.58	1.22	0.23	-249.05	83.91	-2.97	<0.01
MAP VAR	863.74	3508.30	0.25	0.81	74.33	83.27	0.89	0.38
Temp Wet	1565.12	1122.72	1.39	0.17	-44.82	26.62	-1.68	0.10
рН	-77.46	73.19	-1.06	0.29	0.40	1.97	0.21	0.84
Percent silt	1344.43	1530.71	0.88	0.38	92.60	41.25	2.24	0.03
Percent clay	1441.03	1088.88	1.32	0.19	84.23	29.08	2.90	<0.01
Bulk density	33.77	35.39	0.95	0.34	0.06	1.17	0.05	0.96
CV total soil N	-178.75	123.38	-1.45	0.15	-6.81	3.28	-2.07	0.04
CV extractable soil P	49.61	110.34	0.45	0.65	1.36	2.96	0.46	0.65
CV extractable soil K	-85.68	94.68	-0.90	0.37	-3.94	2.53	-1.56	0.12

Supplementary Table 6. Author contribution matrix.

Co-author	Developed and framed research question(s)	Analyzed	Contributed to	Wrote the	Contributed to	Site level	Nutrient Network coordinators	Acknowledgements
	question(3)	data	duu unuryses	puper	puper writing	coordinator	coordinators	
Yann Hautier	x	x		x		x		
Forest Isbell	x	x		x				
Borer			x		x	x	x	
Eric W Seabloom			x		x	x	x	
W Stanley Harpole					x	x	x	
Eric M. Lind					х		x	
Andrew S MacDougall					х	x		
Carly J. Stevens					x	x		
Peter B. Adler					x	x		
Juan Alberti					x	x		
Jonathan D. Bakker			x		x	x		
Lars Brudvig					x	x		This is KBS contribution # 2004
Yvonne M. Buckley					х	x		
Marc W. Cadotte					x	x		
Maria C Caldeira					x	x		
Enrique J. Chaneton					x	x		
Chengjin Chu					x	x		
Pedro Daleo					x	x		
					A			
								The Ethabuka cite is supported by the Long Term
Christopher R Dickman					x	x		Ecological Research Network, part of Australia's Terrestrial Ecosystem Research Network
John M. Dwyer					х	x		
Anu Eskelinen					x	x		
Philip A. Fay					x	x		
Jennifer Firn					x	x		
Nicole Hagenah					x	x		
Helmut					v	v		
Occar Iribarne					v	v		
Kevin P.					~	<u>^</u>		
Kirkman Johannes M H					x	X		
Knops		<u> </u>			x	x		The Konza Prairie cite was supported by the Venza Prairie
Kimberly La Pierre			x		x	x		LTER and the Yale Institute for Biospheric Studies. The Saline Experimental Range site was supported by the Yale Institute for Biospheric Studies
Rebecca L.					x	x		
mecuncy	1	1	1	1	**	*	1	1

John W. Morgan				x	x	
Meelis Pärtel				x	x	Meelis Pärtel was supported by the Estonian Ministry of Education and Research (IUT20-29) and the European Regional Development Fund (Centre of Excellence EcolChange)
Jesus Pascual				x	x	
Jodi N Price				x	x	
Suzanne M Prober				x	x	The Mt Caroline experimental site was supported by the Great Western Woodlands Supersite, part of Australia's Terrestrial Ecosystem Research Network
Anita C. Risch				x	x	
Mahesh Sankaran				x	x	
Martin Schuetz				x	x	
Rachel J. Standish				x	x	
Risto Virtanen				x	x	
Glenda M. Wardle				x	x	The Ethabuka site is supported by the Long Term Ecological Research Network, part of Australia's Terrestrial Ecosystem Research Network
Laura Yahdjian				x	x	The Las Chilcas site is supported by Agencia Nacional de Investigaciones Cientificas y Tecnologicas and Universidad de Buenos Aires, Argentina
Andy Hector	x	x	x		x	