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Ecological scaling laws link individual body size variation to 
population abundance fluctuation
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Scaling research has seen remarkable progress in the past several decades. Many scaling relationships were discovered  
within and across individual and population levels, such as species–abundance relationship, Taylor’s law, and density mass 
allometry. However none of these established patterns incorporate individual variation in the formulation. Individual body 
size variation is a key evolutionary phenomenon and closely related to ecological diversity and species adaptation. Using a 
macroecological approach, I test 57 Long-Term Ecological Research data sets and show that a power-law and a generalized 
power-law function describe well the mean-variance scaling of individual body mass. This relationship connects Taylor’s law 
and density mass allometry, and leads to a new scaling pattern between the individual body size variation and population 
abundance fluctuation, which is confirmed using freshwater fish and forest tree data. Underlying mechanisms and implica-
tions of the proposed scaling relationships are discussed. This synthesis shows that integration and extension of existing 
ecological laws can lead to the discovery of new scaling patterns and complete our understanding of the relation between 
individual trait and population abundance.

Fluctuation of population abundance (count of individu-
als) in time and space is a central topic in ecology. 60 years 
ago, MacArthur (1955) used population fluctuations in 
food webs to introduce the stability concept of ecological 
communities. MacArthur proposed three possible causes 
for the fluctuations of species populations in nature: time 
delay in predation, mortality, and environmental variation. 
In practice, population fluctuation influences species distri-
bution, reproduction, and extinction, which directly impact 
the health and food supply of human society (Davis et al. 
2005, Hsieh et al. 2006). The role of quantitative patterns of 
population fluctuation has been emphasized in the design of 
environmental conservation programs and studies of species 
diversity (Brown et al. 1995).

Body size is one of the essential properties of individual 
organisms. It has been studied with population abundance 
(Damuth’s law or abundance mass allometry, Damuth 1987, 
Brown and Maurer 1989, Reuman et al. 2008), species diver-
sity (body size species richness distribution, Brown et al. 1993, 
Purvis and Harvey 1997), metabolic rate (Kleiber’s law or met-

abolic rate scaling allometry, Kleiber 1932, Schmidt-Nielsen 
1997), and other life history traits or environmental vari-
ables (Smock 1980, Peters 1986, Martin and Palumbi 1993,  
Ashton 2002). Various physical models and evolutionary the-
ory have been proposed to explain these patterns (West et al. 
1997, Blanckenhorn 2000). Body size variation was mostly 
studied at the species level instead of the individual level.

The ecological effect of individual variation was brought 
into attention by several recent studies. Clark (2010) showed 
that demographic (e.g. fecundity, growth rate) variation 
among individuals allows high species diversity of forest 
trees. Bolnick et  al. (2011) reviewed that trait (e.g. diet, 
predator defense) variation among intraspecific individu-
als leads to changes in demographic characteristics of the 
population. They also argued that the notion of individual 
variation has challenged the traditional population dynam-
ics models where intraspecific variation was not considered. 
Forsman et al. (2015) showed that high color pattern varia-
tion among individual moths was associated with stable 
population abundance. These empirical findings suggest 

Scaling relationships are useful for community ecology as they reveal ubiquitous patterns across different levels 
of biological organizations. This work extends and integrates two existing scaling laws: Taylor’s law and density-
mass allometry, and derives a new variance allometry between individual body mass and population abundance. 
The result shows that diverse individual body size is associated with stable population fluctuation, reflecting 
the effect of individual traits on population characteristics. Confirmed by several empirical data sets, these 
scaling relationships suggest new ways to study the underlying mechanisms of Taylor’s law and have profound 
implications for fisheries and other applied sciences.

Sy
nt

he
si

s

© 2015 The Author. Oikos © 2015 Nordic Society Oikos
Subject Editor and Editor-in-Chief: Christopher Lortie. Accepted 17 October 2015

Oikos 125: 288–299, 2016 
doi: 10.1111/oik.03100

C h o i c e

E d i t o r ’s

OIKOS



289

that a quantitative framework is urgently needed to facilitate 
our understanding of individual variation and its relation to 
population abundance.

On the other hand, ecological scaling laws have been a 
useful tool to study the interplay between individual body 
size and population abundance. For example, density mass 
allometry (DMA) states that the mean population density 
of a species decays as a power-law function of the aver-
age individual body mass. Namely, the bigger individuals 
are rarer. Marquet et  al. (2005) and Cohen et  al. (2012)  
independently proposed, and Cohen et  al. (2012) con-
firmed that Taylor’s law (Taylor 1961, [TL]) and DMA can 
be combined to predict the variance of population abun-
dance as a power-law function of the average individual 
body mass (called variance-mass allometry [VMA]). In the  
current work, I tested a mean-variance body mass scaling 
relationship (called mass allometry [MA]) of individuals, and 
integrated it with TL and DMA to construct a new scaling 
pattern between individual body mass variation and popu-
lation abundance fluctuation (called density mass variance 
allometry [DMVA]). I tested DMVA using fish data of an 
African lake and oak tree data from a local forest in North-
east America. The four scaling relationships (TL, DMA, MA, 
DMVA) are described in Table 1 and its caption.

The idea of individual body mass scaling is not new.  
Hallgrímsson and Maiorana (2000, abbreviated as HM) 
studied the relationship between relative-size variability 
and mean body mass of mammal individuals and Giometto 
et al. (2013, abbreviated as G) showed that the proportional 
moment of protist individual body size scaled with the mean 
body size. My work differs substantially from HM and G in 
the following three aspects. First, the mathematical formula-
tions of body mass scaling in HM and G are different from 
the mass allometry in the current work. In fact, HM first 
transformed the individual body size (mass and total length) 
on logarithmic scale, then calculated the mean and the vari-

Table 1. A scaling quartet between the means and variances of  
individual body mass and population abundance. The two  
well-known scaling relationships are Taylor’s law (TL: variance of 
population abundance is a power-law function of the mean  
population abundance) and density mass allometry (DMA: mean 
population abundance is a power-law function of the mean indi-
vidual body mass). The two new scaling relationships studied here 
are mass allometry (MA: variance of individual body mass is a  
power-law or a generalized power-law function of the mean indi-
vidual body mass) and density mass variance allometry (DMVA: 
variance of population abundance is a power-law or a generalized 
power-law function of the variance of individual body mass).

Mean Variance

Individual 
body mass

Mean individual 
body mass

MA Variance of 
individual 
body mass

DMA DMVA

Population 
abundance

Mean population 
abundance

TL Variance of 
population 
abundance

ance of log(body size) across all individuals within a group; 
while in the current work, I first calculated the mean and 
variance of arithmetic (untransformed) body mass across 
individuals within a group, then transformed the mean and 
variance to logarithmic scale. Different orders in which loga-
rithm, mean, and variance act on body size yield different 
formulations. The fitted equations in this work and in HM 
are respectively

log (variance (body size))  a  b  log (mean (body size)) 
� (1)
and

variance (log (body size))  c  d  mean (log (body size)) 
� (2)
Applying the first-order delta method (Oehlert 1992) on the 
variables of Eq. 2 yields

mean (log (body size)) ≈ log (mean (body size))

and

variance (log( ))
( )

body size
mean body size

≈ 1
2








                                         

          

variance ( )body size

                               

             

CV body size2 ( )
                            ≠ log( ( ))variance body size

Here CV is the coefficient of variation. Delta method shows 
that the independent variables of Eq. 1 and 2 are approxi-
mately equal, but their dependent variables differ.

G’s body size scaling (Fig. 2C in Giometto et al. 2013) 
reads as

mean body size
mean body size

e mean body size f( )
( )

( ( ))
2

  � (3)

Recalling that variance(body size)  mean(body size2) – 
(mean(body size))2, Eq. 3 becomes

variance (body size)  e (mean (body size))f  1 – (mean (body size))2

Unless f  1 and b  2, G’s body mass scaling (Eq. 3) is 
mathematically different from the MA studied here (Eq. 1).

Second, HM’s data did not specify the spatial or tem-
poral scales or details. Individuals were grouped purely by 
taxon (e.g. species, family, or order), and spatially or tem-
porally distant individuals may fall into the same group. G 
examined individuals living in laboratorial controlled cul-
tures. My analysis took a community ecology perspective, 
and grouped within-taxon individuals (not necessarily con-
specifics) of a natural community from the same geographi-
cal location or time period. Each group can therefore be  
considered as a sub-community of living organisms. Third, 
HM and G studied individuals of mammal and 13 protist 
species respectively; while my work analyzed individuals 
from a wider range of taxa, including amphibian, arthro-
pod, bird, fish, mammal, plant, and reptile (Supplementary  
material Appendix 1 Table A1).

To calculate the mean and the variance of individual  
body mass, I grouped within-taxon individuals (not necessar-
ily conspecifics) from the same spatial location or time (called 
a ‘block’) of a community. Individuals of different ages, sexes, 
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or species were treated equally without distinction. Popula-
tion abundance was defined as the number of within-taxon 
individuals within a spatial or temporal replicate (defined 
in Material and methods) of each block. Then mean and  
variance of population abundance were calculated across all 
replicates in the same block.

I showed that TL, DMA, MA and the predicted DMVA 
linked four statistical parameters that characterize individu-
als and populations: mean individual body mass, mean pop-
ulation abundance, variance of individual body mass, and 
variance of population abundance (Table 1). The scope of 
data and diversity of taxa used in the testing of MA gave 
promise to its empirical universality, and suggested that the 
scaling pattern does not necessarily operate under a specific 
physical or biological mechanism. DMVA revealed that  
trait variations across different levels of biological orga-
nization (i.e. individual and population) were correlated, 
and provided a new machinery to analyze the ecological  
consequence of fishing activities for marine stocks.

Material and methods

Analytic framework

Suppose that N individuals of a taxon were grouped into  
M blocks. Here a block is a spatial (e.g. site, stand, plot, 
station) or temporal (e.g. date, year) unit within a data 
set. Among all Ni individuals in block i (i  1, 2, …, M, 
N  N1  N2  …  NM), the mean and the variance of 
individual body size (denoted by Bj, j  1, 2, …, Ni) were 
respectively

mean B
B

Ni

jj

N

i

i

( )
1∑

and

vari
j ij
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i

B
B mean B

N

i

( )
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

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

2
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1
∑

If block i (i  1, 2, …, M) contained Ki replicates, the  
Ni individuals of block i can be subdivided into Ni  Ni1  Ni2 
 …  NiKi

 . Here a replicate is a spatial or temporal subunit 
within a block (e.g. date within a year, plot within a stand) 
and Nil was the local population abundance (count of indi-
viduals) of replicate l (l  1, 2, …, Ki) in block i (i  1, 2, …, 
M). The mean and variance of population abundance (denoted 
by A) among all Ki replicates of block i were respectively
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Density mass allometry (DMA) is a power-law relation-
ship between the mean individual body size and the mean  
population abundance (Damuth 1987). Across the M blocks, 
DMA is written as

meani (A)  a(meani (B))b, a  0� (4)

Taylor’s law (TL) describes the variance of population abun-
dance as a power-law function of the corresponding mean 
population abundance (Taylor 1961). Across the M blocks, 
TL is formulated as

vari (A)  a(meani (A))b, a  0� (5)

I propose a mean-variance scaling relationship of individual 
body size
vari (B)  c (meani (B))d, c  0� (6)

and name Eq. 6 the mass allometry (MA). I combine Eq. 4–6 
into a new scaling relationship between the variance of popu-
lation abundance and the variance of individual body size.

vari i
b

i
b

b
i

b b

A a mean A a mean B

a mean B a

( ) ( ( )) ( ( ( )) )

( ( ))
v

 

 

a

a a

b

b aar ( )
(var ( ))i d

b
b

b
d

i

b
dB

c
a

c
B

















1 b

b

ba


� (7)

I name the derived power-law relationship (Eq. 7) the den-
sity mass variance allometry (DMVA). Since a, a and c are 
all positive, the sign of its power exponent bb / d determines 
the behavior of this individual–population variability rela-
tionship. As the individual variation of body size increases, 
population abundance fluctuates less when bb / d  0 and 
more when bb / d  0.

Statistical analysis of the four scaling relationships

For each of the four scaling relationships described in Eq. 
4–7, the corresponding independent variable and dependent 
variable were transformed to logarithmic scale (log  log10 
throughout). A least-squares linear regression model was 
fitted to the transformed variables to test their linearity on 
the log-log scale (power law), and a least-squares quadratic  
regression model was fitted to test their curvilinearity  
(generalized power law).

For example, when testing MA (Eq. 6) in a data set,  
the taxon-specific means and variances of individual body 
mass for each block i were calculated and logarithmically 
transformed and fitted by the least-squares equations across 
all M blocks (i  1, 2, …, M),

log (vari (B))  log (c1)  d1 log (meani (B))� (8)

and

log (vari (B))  log (c2)  d2 log (meani (B))  e2 [log (meani (B))]2  
� (9)

For each test of MA, p-values of d1 and e2, coefficients 
of determination (R2), and Akaike information criteria 
(AIC) of Eq. 8 and 9 were computed. ∆AIC was defined 
as the AIC of Eq. 9 minus the AIC of Eq. 8. If e2 was not 
statistically different from 0 (p  0.05) but d1 was statisti-
cally different from 0 (p  0.05), then Eq. 8 was selected 
as the better model and the power-law form of MA (Eq. 6) 
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and spatial effects on body mass variation were completely 
separated. Temporal or spatial grouping variables were speci-
fied in Supplementary material Appendix 1 Table A1. For 
temporally (spatially) grouped individuals, MA examines 
whether the time (location) with greater average individual 
body mass has higher individual mass variation. Use of dif-
ferent weight units does not affect the significance of regres-
sions or the slope estimate of linear regression (Gelman and 
Hill 2006).

I built the statistical models and estimated the param-
eters of MA, TL, DMA and DMVA using fish samples from 
an African lake and oak trees from a deciduous forest in  
Northeast America.

Individual fish samples were collected from the long-term 
gillnet sampling program in Lake Kariba, located between 
Zimbabwe and Zambia. Gillnet fishing was performed almost 
weekly from 1976 to 2001 at the Lakeside station of Zimba-
bwe using panels of 11 distinct mesh sizes (51 mm–178 mm 
with about 12.5 mm increment) (Kolding et al. 2003). For 
consistency, only fishes caught with uniform catching effort 
(45.7 by 2 m2 panel size and 0.5 hanging ratio), bottom-set 
and multi-filament nets were used. The four most dominant 
species (common name, scientific name, (count of individu-
als)) were tigerfish Hydrocynus vittatus (31 508), green happy 
Serranochromis codringtonii (29 297), brown squeaker Syno-
dontis zambezensis (15 644) and Kariba tilapia Oreochromis 
mortimeri (11 180), from a total of 132 150 individual fishes 
analyzed in the data. Body mass of each individual fish was 
measured in weight (g). To calculate the variables needed 
in the testing of the four scaling relationships, I defined a 
block as panels of a unique mesh size and a replicate as panels 
of a unique mesh size in a year. Population abundance was 
defined as the number of fish caught in a replicate. Mean 
and variance of individual body mass were calculated across 
all individual fishes caught by panels of the same mesh size, 
regardless of species. Mean and variance of population abun-
dance were calculated across all years for panels of a unique 
mesh size, regardless of species. Supplementary material 
Appendix 2 Table A1 gives the means and variances used 
in the analysis. In this case, TL examines whether panels 
that caught more fishes show higher inter-annual variability 
in population abundance. DMA tests whether panels that 
caught smaller individuals caught more fishes. MA tests 
whether panels that caught larger individual fish on average 
show higher body mass variation among individuals. DMVA 
tests whether population abundance fluctuates less in panels 
with higher individual variation of body mass.

Individual oak trees were sampled in 2007 and 2010 
separately from the Black Rock Forest (BRF), Cornwall, NY, 
USA. In the summer of 2007, 12 experimental plots (75 by 
75 m2 each) were established at the north slope of BRF. Each 
plot defined a block and was subdivided into nine subplots 
(25 by 25 m2 each), each as a replicate. In each subplot, the 
diameter of breast height (dbh) of individual oak tree was 
measured if the dbh  2.54 cm (called stem), and the above-
ground body mass (ABM, in kg) of each measured tree was 
calculated using the biomass formula in Brenneman et  al. 
(1978). After a girdling activity in 2008 (Cohen et al. 2012), 
dbh of each living individual oak stem was measured again 
in 2010 and the ABM was calculated. In each year of 2007 
and 2010, oak population density was defined as the number 

was confirmed. If e2 was statistically different from 0, then 
Eq. 9 was selected as the better model and the generalized 
power-law form of MA was confirmed. If neither e2 nor 
d1 significantly differed from 0, then the model with a 
smaller AIC was favored and selected. Regression parame-
ter estimates were reported in the Supplementary material 
Appendix 1 Table A1. All model statistics were computed 
in R ver. 3.2.0 ( www.r-project.org ).

Denote the statistically favored model (power law or  
generalized power law) of DMA, TL, MA and DMVA by F1, 
F2, F3 and F4 respectively,
log (meani (A))  F1 (log (meani (B)))
log (vari (A))  F2 (log (meani (A)))
log (vari (B))  F3 (log (meani (B))) or log (meani (B))  F3

1 
(log (vari (B)))
log (vari (A))  F4 (log (vari (B)))

Here F3
1 denotes the inverse function of F3. I composed 

F2, F1 and F3
1 to predict the form and the parameters of 

DMVA as

log (vari (A))  F2 o F1  o F3
1 (log (vari (B)))� (10)

Here “o” means function composition. The predicted for-
mula (Eq. 10) and its coefficients were compared with the 
corresponding parameters of F4 estimated from the data.

Data sets

To test MA, I searched and downloaded taxon-specific (not 
necessarily conspecific) individual body mass data from 
Long-Term Ecological Research (LTER) network (2015) 
using the keywords ‘body mass’ and ‘individual weight’.  
A complete list of data sets and their citations with DOI  
are provided in the Supplementary material Appendix 1 
Table A1. Individuals that were pooled from multiple studies 
(under different experimental or environmental conditions) 
or not randomly sampled (e.g. physiological study using 
selected predator specimen) were deleted. Data with recap-
tured or unidentifiable individuals (e.g. plant root, algae), 
or averaged individual weight or biomass measure (e.g. in 
g cm–2) were not used in the analysis. Individual body mass 
was measured by the weight (mg, g or kg) of each individual 
organism.

For each remaining data set, all individuals of the stud-
ied taxon were grouped into blocks defined by the spatial 
and temporal variables separately. For individuals sampled 
at multiple times (e.g. dates) in different geographical areas 
(e.g. stands, plots, islands), each level of the temporal vari-
ables (e.g. same date) defined a block, and a mean and a 
variance of body mass were calculated across all individuals 
within each such block, representing the average and varia-
tion of individuals’ body masses at a particular time. Simi-
larly, each level of the spatial variables (e.g. same location) 
defined a block, and a mean and a variance of body mass 
were calculated across all individuals within each block, 
representing the average and variation of individuals’ body 
masses in a particular space. For data sets with only temporal 
or only spatial variables, the available variables were used to 
group individuals into blocks. Smallest temporal or spatial 
units were used to group individuals so that the temporal 
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of data (ΔAIC   2). In only one test ΔAIC  2, meaning 
that Eq. 9 was substantially worse than Eq. 8. Compared to 
Eq. 8, Eq. 9 improved the regression R2 by at least 0.1 in 14 
(15%) of the 93 tests. Among the 31 quadratic regressions 
with statistically significant squared coefficient, four were 
convex and 27 were concave.

The linear regression slope d1 (Eq. 8) was significantly 
different from 0 in 81 of the 93 tests. Among these signifi-
cant tests, d1 had a median of 2.11 and a 95% percentile 
confidence interval (CI) (0.82, 3.83) when individuals were 
grouped by time periods, and had a median of 2.19 and 
a 95% percentile CI (1.12, 3.44) when individuals were 
grouped by spatial locations (Fig. 1a). The wider CI of d1 for 
temporally grouped individuals showed that MA was more 
varied across time than across space, an indication of the 
demographic stochasticity (e.g. age structure, growth rate) 
in individual body mass. Under both groupings, the median 
of R2 of the significant linear regressions was about 0.7  
(Fig. 1b). The slope estimate of d1 and linear regression 
R2 varied widely when the number of blocks and number 
of individuals per block were small (Fig. 1c–f ), at which 
R2 reached the lowest values. All regression statistics were 
reported in Supplementary material Appendix 1 Table A1.

Data analysis of the four scaling relationships

Using fish data from Lake Kariba and oak tree data from Black 
Rock Forest, I tested the four scaling relationships (MA, TL, 
DMA, DMVA), and compared the parameters of DMVA 
estimated from the data and predicted using Eq. 10.

For the Lake Kariba fish data, the four scaling relation-
ships were visually clear (Fig. 2). Regression models were 
fitted and their statistics were reported in Table 3. Linear 
model was selected for MA and TL, and quadratic model 
was selected for DMA and DMVA. The log-log plot of 
DMA showed slight concavity when mean individual weight 
was small, indicating underestimation in the number of 
fishes (Fig. 2c). This may be attributed to two reasons. First, 

of measured oak stems in a subplot. Mean and variance of 
individual body mass were calculated using ABM across 
all individual stems within a plot in a given year, regard-
less of species. Mean and variance of population abundance 
were calculated across all subplots within a plot in a given 
year, regardless of species. For each year, TL tests if plots 
with more trees show higher spatial population variability. 
DMA tests if plots with smaller individual trees contain 
more trees. MA tests if individual variation of body mass 
is higher in plots with larger-sized trees on average. DMVA 
tests if tree population abundance varies less in plots with 
higher individual body mass variation. Due to girdling, in 
2010, three plots contained no or few live trees and were 
eliminated from the analysis. Therefore respectively 12 and  
nine plots were available for regression analysis before and 
after girdling. Individual tree data can be accessed from the 
supporting information of Cohen et al. (2012).

Results

Empirical support of mass allometry

I used 57 individual body mass data from 20 Long-Term 
Ecological Research (LTER) sites (Table 2) to test the func-
tional forms of mass allometry (MA, Eq. 6). In total, the 
meta-analysis examined 298 811 individuals of at least 869 
animal and plant species. The geographical coverage of the 
data ranged from contiguous United States, Alaska, Mexico, 
Caribbean to Antarctica (Table 2).

Of the 57 analyzed data sets, individuals were grouped 
at each level of the temporal variables in 48 sets and again 
at each level of the spatial variables in 45 sets. In the overall 
93 regression tests, 52 (56%) favored the linear model (Eq. 
8) and 31 (33%) favored the quadratic model (Eq. 9). In 
10 (11%) tests, neither Eq. 8 nor Eq. 9 fitted the data well. 
Equation 8 and 9 were not substantially different (|ΔAIC| 
 2) in 58 (62%) tests and Eq. 9 was favored in 34 (37%) 

Table 2. 57 LTER individual body mass data-sets with LTER sites and locations, taxonomic kingdom, number of species and individuals, and  
average number of blocks per data set.

LTER 
sites

No. of 
data sets Geographical coverage Kingdom

Total no. 
of species

Total no. of 
individuals

Average no. of 
blocks per data set

AND 1 western United States and Mexico Plantae 45 10614 649
ARC 4 Alaska Animalia, Plantae 59 19776 156
BNZ 2 interior Alaska Animalia, Plantae 6 2840 92
CAP 2 Arizona and northern Mexico Animalia, Plantae 5 417 38
CDR 5 Minnesota Animalia, Plantae 108 2935 48
CWT 5 southern Appalachian Animalia, Plantae 46 10161 29
FCE 1 southern Florida Plantae 2 282 70
GCE 1 coastal Georgia Plantae 4 967 14
HFR 3 north central Massachusetts Animalia, Plantae 32 1776 128
JRN 2 southern United States and Mexico Animalia 37 8955 336
KBS 2 Michigan Plantae  24 14412 41
KNZ 1 Kansas Animalia 1 5723 19
LUQ 2 northeast Puerto Rico Animalia 55 1651 39
NTL 12 Wisconsin Animalia 312 108104 111
NWT 1 Colorado Animalia 21 3372 406
PAL 2 Antarctica Animalia 2 8427 201
PIE 3 coastal Massachusetts Animalia, Plantae 25 67053 27
SEV 3 New Mexico Animalia, Plantae 47 19800 562
SGS 2 Colorado Animalia 13 2912 222
VCR 3 coastal Virginia Animalia 25 8634 220
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Figure 1. Point estimates of d1 and R2 of 81 statistically significant linear regressions for mass allometry (Eq. 8). Black and grey colors  
indicate respectively that within-taxon individuals were grouped by temporal and spatial variables. (a) Histogram of the point estimate of 
d1. (b) Histogram of regression R2. (c) Point estimate of d1 against number of blocks. (d) Point estimate of d1 against average number of 
individuals per block. (e) R2 against number of blocks. (f ) R2 against average number of individuals per block.

some small fishes were not individually recorded during the 
sampling, causing the underestimation of their abundance in 
numbers. Second, it is possible that small fishes were hiding 
in shallow areas to avoid predation, therefore not present at 
the fishing location. Nevertheless, slope of the fitted linear 
regression of DMA was not significantly different from 1 
(95% normal CI  (1.29, 0.91)), which implied that 
the product of number of fish and individual fish weight for 
each size class was a constant. This suggested that the total 
energy was preserved across the fish communities of different 
body sizes (White et al. 2007).

Using the formulae of statistically favored models for TL 
and DMA,

log (var (A))   0.66  1.98  log (mean (A))
   0.66  1.98  [1.29  2.09 

 log (mean (B))  0.58  (log (mean (B)))2] 
 1.89  4.14  log (mean (B))  1.15 
 [log (mean (B))]2� (11)

From the best model of MA

log (var (B))  1.10  1.50  log (mean (B))

I derived

log (mean (B))   0.73  0.67  log (var (B))

Substituting the above equation into Eq. 11 yielded

log( ( )) . . . . log( ( ))var var A B     

          

1 89 4 14 0 73 0 67[ ]
                   

         

1 15 0 73 0 67
2

. . . log( ( ))var B 
                  

                   

1 75 3 87. . log ( )var B( )
       0 51

2
. log var B( )( ) � (12)

Equation 12 gave the predicted formula and parameters 
of DMVA. Each coefficient of Eq. 12 fell within the 
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Figure 2. Four scaling relationships tested using Lake Kariba fish sampling data: (a) MA, (b) TL, (c) DMA, and (d) DMVA. Each circle 
gives the mean and the variance for a block (panels of the same mesh size), calculated across all individuals (for individual fish body mass) 
or across all years (for fish population abundance). In each panel, the solid line is the fitted least-squares linear regression line and the dashed 
line is the fitted least-squares quadratic regression line. Regression statistics were reported in Table 3.

corresponding 95% normal CI of DMVA estimated from the 
fish data (Table 3). Namely, the predicted intercept  1.75 
fell within ( 4.44, 4.36), predicted linear coefficient 3.87 
fell within (1.51, 4.88), and predicted quadratic coefficient 
 0.51 fell within ( 0.60,  0.28).

I repeated the above analysis for the oak tree data in 2007 
and 2010 separately.

In all combinations of years and four scaling patterns, the 
linear model was statistically significant and the quadratic 
coefficient of quadratic model was not statistically different 
from 0, with one exception. For DMVA in 2007, the lead-
ing coefficient in neither the linear nor the quadratic model 
was statistically different from 0. However AIC of the linear 
model (17.16) was smaller than the AIC of the quadratic 
model (18.05). In all cases, the linear model was favored 
to the quadratic model (Fig. 3, 4, Table 3). The slope of 
DMA did not differ significantly from –1 (95% normal 
CI  ( 1.04,  0.82) in 2007 and ( 1.75,  0.65) in 
2010), which again agreed with the energy-equivalence rule 
(White et al. 2007).

For trees in 2007, the predicted formula and parameters 
of DMVA were derived following Eq. 7,

log( ( )) log log

log ( ) lo

var 
a

var

a

A
c

b
d

B

b

b

b
d

  

 

a b
b













( )( )

gg ( ) log ( ) log ( )

. . .
( .

a b b−





( )

= − − −

b
d

c
b

d
B

 

var

1 09 2 30 3 87
0 933 2 30

0 49
4 32

0 93 2 30

) ( . )
.

.

( . ) ( .




                   








− ))
.

log ( ( )) . .

log ( ( ))
0 49

26 57 4 33var

var

B

B





−

Coefficients predicted from above formula did not fell 
within the corresponding 95% CI of DMVA estimated from 
data, but differed slightly from the 95% bounds (Table 3). 
In particular, the predicted intercept 26.57 was very close 
to the 95% upper bound of estimated intercept (26.46); 
the predicted slope  4.33 was very close to the 95% lower 
bound of estimated slope ( 4.31). This discrepancy may  
be accounted for by the lack of fit in both the linear and 
quadratic models for DMVA (R2  0.4, Table 3).

Similarly, for trees in 2010, the predicted formula and 
parameters of DMVA were
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
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var

var

B
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



−

Coefficients from the predicted formula fell within the corre-
sponding 95% CI of DMVA estimated from data (Table 3). 
Namely, predicted intercept 28.94 fell within (4.75, 36.17) 
and predicted slope  4.72 fell within ( 5.95,  0.61).

To summarize, in all three data sets, the predicted form 
of DMVA matched the statistically favored model of DMVA 
tested using data. Moreover, parameters of the statistically 
favored model of DMVA estimated from data were rea-
sonably predicted from TL, DMA, and MA (Eq. 10). The 
analytic connection between the four scaling patterns was 
confirmed using the fish and tree data.

Discussion

The body mass variance observed among individuals can be 
attributed to variations in many demographic and environ-
mental variables, such as life stages, sex differences, species 
diversity, climatic conditions and food resources. My analy-
sis showed that the majority of long-term ecological research 
data sets (∼90%) obeyed a power-law or a generalized power-
law mass allometry (MA). This finding provided a functional 
description of the individual body mass variation. It is worth-
while to note that when the generalized power law (Eq. 9) was 
favored for MA, the majority of tests showed that log(variance 
of body mass) was a concave function of log(mean body mass) 
(27/31  87%), indicating that individual body mass varia-
tion saturated as the average individual body mass became 
large. This makes sense biologically because, for within-
taxon individuals, body growth rate decreases dramatically as 
they reach sexual maturity (Charnov 1993, Angilletta et al. 
2004), consequently survived individuals of large body sizes 
will approximate a unified maximum body size, henceforth 
reducing individual variation.

In a general sense, the mass allometry (MA) can be con-
sidered as Taylor’s law (TL) applied to individual body mass 
because they both describe variance as a function of the mean. 
In this work I distinguished these two scaling relationships by 
treating MA as an individual-level pattern and TL as a pop-
ulation-level pattern. Nevertheless, MA and TL resembled 
in their forms and parameters. On one hand, their shared 
power-law forms indicated that population abundance and 
individual body size may share some intrinsic properties, one 
of which is the skewness in the distributions of interspecific 
population abundance (Brown 1984, Brown et al. 1995) and 
individual body size (Gardezi and Silva 1999, Kozłowski and 
Gawelczyk 2002, Knouft and Page 2003, Smith and Lyons 
2011), although the skewness is not universal (Gouws et al. 
2011). Recently, it has been shown that random samples of 
a skewed distribution could generate TL (Cohen and Xu Ta
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Figure 3. Four scaling relationships tested using BRF oak tree data in 2007 before girdling: (a) MA, (b) TL, (c) DMA, and (d) DMVA. Each 
circle gives the mean and the variance for a block (plot), calculated across all individuals (for individual tree aboveground body mass) or 
across all subplots (for tree population abundance). Solid and dashed lines were defined in the legend of Fig. 2. Regression statistics were 
reported in Table 3.

2015). The theory by Cohen and Xu (2015) can be similarly 
tested for the individual body size distribution and poten-
tially provide a general statistical explanation for the power-
law MA observed here.

On the other hand, using data of hundreds of species 
from Europe, Taylor and his colleagues (Taylor et al. 1978, 
Taylor and Woiwod 1980) tested that the slope of TL mostly 
fell between 1 and 2 with an uppermost value less than 3  
(see Fig. 7 in Taylor et al. 1978, Fig. 2 in Anderson et al.  
1982 and Fig. 2 in Keil et  al. 2010). My meta-analysis 
showed that the slope of MA fell between 0.82 and 3.83 
with a maximum slope of above 5 (Fig. 2a). Compared to 
TL, the wider range in the slopes of MA may be caused by 
the different underlying mechanisms of body size and abun-
dance, or merely a reflection of the different geographical 
coverages and number of species used in the testing of MA 
(North America, Central America and Antarctica, ∼900 spe-
cies, Table 2) and TL (Great Britain and mainland Europe, 
∼500 species, Taylor et al. 1978).

My analysis also provided evidence for the validity of 
MA for intraspecific individuals. In ten intraspecific long-
term data sets tested here, eight of them can be described 
adequately by either the power law (Eq. 8) or the general-
ized power law (Eq. 9) (Supplementary material Appendix 1 
Table A1). This result indicated that interspecific difference 

is not the sole contributor to individual body mass variation. 
For intraspecific populations, TL has been widely confirmed 
(Taylor et  al. 1978, Taylor 1984) and density mass allom-
etry (DMA) is mostly well-known as the self-thinning law of 
plant (Westoby 1984), although the relationship was found 
weak and polygonal in within-taxon communities of animal 
(Blackburn et al. 1993) and bird (Nee et al. 1991). Following 
these observations and the analytic framework derived here, 
an intraspecific density mass variance allometry (DMVA) 
seems natural but remains to be tested empirically.

The scaling between individual body size variation  
and population abundance fluctuation (DMVA) can have 
profound implications on biological conservation, species 
extinction and sustainability of food resources. Recently,  
the impact of fishing on fluctuations of marine population 
abundance has raised great scientific attentions. Several 
authors (Hsieh et  al. 2006, Anderson et  al. 2008, Zhou 
et al. 2010, Garcia et al. 2012) advocated balanced fishing of 
various species, ages, sizes, etc. rather than selective fishing, 
because the latter was found to increase population variability 
and generate adverse effects on marine ecosystem. Here I use 
an idealized probability model to demonstrate how DMVA 
can infer fluctuations in marine fish stocks under different 
fishing strategies. The main idea is to theorize fishing activi-
ties as truncations of a hypothetical body mass distribution. 
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Figure 4. Four scaling relationships tested using BRF oak tree data in 2010 after girdling: (a) MA, (b) TL, (c) DMA, and (d) DMVA. The 
meaning of each circle was given in the legend of Fig. 3. Solid and dashed lines were defined in the legend of Fig. 2. Regression statistics 
were reported in Table 3.

These examples are crude in details, but give a simple illustra-
tion of the ecological implication of DMVA through changes 
in the variation of individual body mass. In the following 
conceptual examples, DMVA is assumed to be valid.

Suppose the individual body mass of a particular marine 
stock is normally distributed with mean m and variance  
s2. If selected fishing only harvests fishes above a greater-
than-average or below a less-than-average body mass, then 
the body mass of uncaught individuals can be modeled to 
follow a truncated normal distribution, with a new variance 
st

2. It is well known analytically that st
2  s2 (Johnson et al. 

1994). According to DMVA, as individual body mass var-
ies less, population abundance fluctuates more. Therefore 
it implies that fish abundance fluctuates more severely in 
the exploited stock after selective fishing of adult (upper-
truncated normal) or juvenile fish (lower-truncated normal) 
than in the unexploited stock (normal). Compared to both 
selective fishing scenarios, balanced fishing in proportion to 
the mass distribution of individual fish is favorable since it 
does not alter the underlying individual body mass variance 
and, according to DMVA, does not increase the population 
fluctuation. This finding agrees with the recent proposal out-
lined by Garcia et al. (2012).

I continue using the above model to illustrate the simi-
larity and difference of DMVA with the ‘variance mass 
allometry (VMA)’ (Marquet et al. 2005, Cohen et al. 2012). 

VMA states that the variance of population size decreases 
as a power-law function of the mean individual body mass. 
Suppose now the fishing strategy changes to target fish 
of the most abundance, then we can model the exploited 
stock as a normal distribution truncated around its mean  
m (the peak). For simplicity, I assume that the truncated 
portion was symmetric about m (m – ks to m  k s , k  0) 
and all fishes in the truncated body mass classes were har-
vested. It can be shown that the truncated body mass distri-
bution had mean m and variance s2[1  2kf(k) / (12 F(k))] 
(Johnson et  al. 1994). Here f is the standard normal prob-
ability function and F is the standard normal distribution  
function. Since k  0, f(k)  0 and F(k)  1/2, 2k f (k) /  
(1  2F(k))  0, therefore the truncated distribution always 
has a variance less than s2. One can deduce that harvesting 
most abundant species would reduce the variation of indi-
vidual fish body mass, and, according to DMVA, increase 
fluctuation in the population abundance. Such change  
cannot be detected by VMA since the mean body mass 
before and after selective fishing remains as m.

The theoretical model above depends on the underlying 
distribution of individual body mass. Using the empirically 
realistic Pareto power-law distribution (Garcia et al. 2012), 
I showed that when small fishes are harvested (a lower-trun-
cated Pareto), the variance of individual body mass increases 
(Supplementary material Appendix 2) and the corresponding 
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population abundance fluctuates less according to DMVA. 
Biologically, selective fishing increases mortality rate and 
disturbs the natural growth of small individuals, which con-
sequently shrinks the age classes, reduces the correspond-
ing population abundance, and decreases the population 
fluctuation according to TL (smaller population abun-
dance is associated with higher population variability). On  
the other hand, when large individuals are targeted (an upper-
truncated Pareto), I showed that the variance of individual 
body mass decreases (Supplementary material Appendix 2) 
and the corresponding population abundance fluctuated 
more according to DMVA. In this case, the disappearance of 
large individuals could negatively affect the spawning activ-
ity, which consequently leads to increased fluctuation in fry 
and juvenile population abundances.

In conclusion, this work provided a comprehensive  
meta-analysis of the mean-variance individual body mass 
scaling in communities. The existence of mass allometry 
suggested that Taylor’s law applies not only to population 
abundance or density, but also to functional trait at the 
individual level. Such finding broadens the applicability of  
Taylor’s law and offers new channels to examine the underlying  
mechanisms of Taylor’s law, which still remain unclear. The 
predicted scaling between individual body size variation and 
population abundance fluctuation (DMVA) showed that 
increased individual variation can stabilize population abun-
dance and decreased individual variation can disturb popula-
tion abundance. Increased individual body mass variation may 
enhance population’s adaptation to changing environments, 
protect genetically superior individuals from predation,  
and facilitate reproduction and breeding, which all have 
a positive effect on the stability of population abundance. 
Despite these biological speculations, challenges remain 
in the search for a general theory of DMVA. For example, 
DMVA embodies distributions across two distinct biological 
organizations, thus the univariate statistical theory developed 
by Cohen and Xu (2015) is not applicable. Future research 
should address whether the predicted DMVA is a statistical 
consequence of the combined existing scaling relationships, 
or it follows certain biological or physical mechanisms.
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