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Abstract. The methods for conducting reductionist ecological science are well known and widely used.

In contrast, those used in the synthesis of ecological science (i.e., synthesis science) are still being

developed, vary widely, and often lack the rigor of reductionist approaches. This is unfortunate because the

synthesis of ecological parts into a greater whole is critical to understanding many of the environmental

challenges faced by society. To help address this imbalance in approaches, we examine how the rigor of

ecological synthesis science might be increased by using uncertainty as an evaluation metric—as a parallel

to methods used in reductionist science. To estimate and understand uncertainty we propose that it be

divided into four general classes: (1) measurement uncertainty (i.e., experimental error) as defined by

precision and accuracy, (2) sampling uncertainty that reflects natural variation in space and time as

quantified by classical statistical moments (e.g., mean and variance), (3) model prediction uncertainty

which relates to the transformation of measurements into other variables of interest (e.g., plant dimensions

to biomass), and (4) model selection uncertainty which relates to uncertainty about the form of the

relationships used in models. Of these sources of uncertainty, model selection is the least understood and

potentially, the most important, because it is integral to how components of a system are combined and it

reflects imperfect knowledge about these relationships. To demonstrate uncertainty in synthesis science, we

examine each source of uncertainty in an analysis that estimates the live tree biomass of a forest and how

knowledge of each source can improve future estimates. By quantifying sources of uncertainty in synthesis

science, it should be possible to make rigorous comparisons among results, to judge whether they differ

within the bounds of measurement and knowledge, and to assess the degree to which scientific progress is

being made. However, to be accepted as a standard method, best practices analogous to those used in

reductionist science need to be developed and implemented.
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INTRODUCTION

Today, ecological studies are proceeding on

two complementary tracks: the traditional use of

reductionist science and a more recent approach,

which we term synthesis science. Each has its

strengths and weaknesses, hence the value of

pursuing both simultaneously. The reductionist
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approach is well known and practiced through-
out most, if not all, fields of science (Gallagher
and Appenzeller 1999). It entails simplifying a
system, controlling confounding factors to isolate
the essential parts and mechanisms, and con-
ducting controlled experiments. This approach
works well when a system is inherently simple
and when the overall structure is additive (i.e.,
the whole is the sum of the parts). However,
ecological systems rarely comprise simple, addi-
tive structures, and this has led to attempts to
synthesize the parts in ways that retain non-
additive interactions and inherent complexity
(Odum 1977, Holling 2001). Examples of syn-
thetic science include ecosystem budgets (Sollins
et al. 1980), simulation modeling (Shugart 1998),
and analysis of biocomplexity (Michener et al.
2001), each of which embraces—rather than
eliminates—complex interactions, multiple con-
trols, and confounding factors. Despite the need
for synthesis science in the field of ecology,
compared to reductionist science there is not a
well-established methodology for achieving it.
This may stem, in part, from the more recent
advent of synthesis science and from the exis-
tence of multiple, viable approaches. The latter
may pose a barrier to standardization in synthe-
sis science. Synthesis science also lags behind
reductionist science in its limited use of evalua-
tion metrics. Evaluation of reductionist science
relies on well-established criteria for experimen-
tal design and a well-established set of statistical
methods. Comparable sets of evaluation metrics
are lacking in synthesis science. Here we describe
how uncertainty analysis, if applied rigorously,
could serve in this role. For example, it would
facilitate rigorous comparison of multiple esti-
mates resulting from synthesis and whether they
differ—similar to more traditional statistical
tests.

Although quantitative uncertainty analysis has
been incorporated into past synthesis efforts (e.g.,
Harmon et al. 2004, Yanai et al. 2010), it has not,
unfortunately, been a standard practice. This may
reflect the complexity of synthesis science,
limitations in classical analytical error- propaga-
tion methods, and lack of computational power.
As recent advances reduce these constraints,
opportunities exist to add rigor to synthesis
science. Specifically, while the complexity of
synthesis efforts is unlikely to diminish, greater

understanding of the sources of uncertainty can
aid in interpreting this complexity (Harmon et al.
2007). Furthermore, increased computing power
permits use of Monte Carlo approaches to
estimate uncertainty when traditional analytical
methods are too challenging.

The objective of this paper is to provide a
general framework for considering uncertainty as
an evaluation metric in synthesis science. We
illustrate this concept using an example that
estimates live tree biomass over a 30-year period
following clear-cutting of a forested watershed.
We conclude with a set of general thoughts on
future challenges to creating an uncertainty-
based evaluation metric for synthetic sciences in
ecology. Although we emphasize uncertainty as
an evaluation metric, it can play a broader role in
risk analysis (Bartell et al. 1992), decision support
(Kangas 2010), methods evaluation (Lauenroth et
al. 2006), and ecological modeling (Li and Wu
2006).

GENERAL SOURCES OF UNCERTAINTY

IN ECOLOGICAL SCIENCES

Among the many sources of uncertainty that
can be identified, we suggest there are four
general classes: (1) measurement, (2) sampling,
(3) model prediction, and (4) model selection. Of
these uncertainties, those related to measure-
ments and sampling are the best understood and
model selection, the least. Model prediction
uncertainty may be as well understood as
measurement and sampling uncertainty, but it
is often not quantified and rarely considered
outside of simulation modeling. Below we
describe each of these general classes in more
detail.

Measurement uncertainty (usually termed
measurement or experimental error) reflects the
limitations of the instrument used to make a
measurement, of those using the instrument or,
in some cases, of the situations in which the
instrument is used. There are two general
components of measurement uncertainty: accu-
racy and precision. Accuracy is the degree that a
measurement matches the actual value; precision
quantifies the degree that measurements are
repeatable (i.e., the variation in measuring the
same object repeatedly). Accuracy and precision
of the measurement instrument is generally
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available (particularly for instruments that mea-
sure aspects of climate or chemistry). How
accuracy and precision are influenced by users
interacting with an instrument, is less well
understood, because it requires additional effort
(evaluating multiple users). It is more tractable
when personnel do not change, but it can be
difficult when they do. Additionally, accuracy
and precision can vary for the same instrument
and user. For example, presence of ice can affect
precipitation and hydrologic measurements,
thick growth of bryophytes on tree boles can
influence diameter measurements, and high
concentrations of some elements in water can
interfere with measurements of others. Although
many of these situations are well known and
addressed by seasoned practitioners, they are not
routinely quantified.

Sampling uncertainty is probably the best
understood and quantified aspect of uncertainty
in ecology. It reflects the natural variation in a
variable, either in space or time. Quantifying and
using sampling uncertainty is the basis of
classical statistics; it is widely taught and
practiced. Moreover, it is almost impossible to
publish an ecological analysis (including simula-
tion modeling) in which this aspect of uncertain-
ty is not addressed in some way. An interesting
facet of sampling uncertainty is that while there
are more efficient ways to characterize it, this
aspect of uncertainty cannot be reduced to zero
unless the system of interest has no variation in
space and time. Sampling uncertainty is also
scale dependent which makes it difficult to
compare ecological data collected in different
ways. In general, for a given population, sam-
pling uncertainty is reduced as the spatial and
temporal extent of measurements increase. For
example, estimates of tree mortality in smaller
(e.g., 0.05 ha) plots will be inherently more
variable than those in larger plots (e.g., .2 ha).
Similarly, estimates of mortality conducted an-
nually will be inherently more variable than
those spanning a decade. Experienced practition-
ers generally understand the sampling designs
and scales that provide useful results; however,
these are not always documented. Moreover,
given the wide variation in spatial structure and
temporal dynamics of ecosystems (e.g., algal
versus forest systems), it may not be possible to
standardize all sampling designs.

There are two general aspects of model-related
uncertainty that can be quantified: prediction
and selection. There are merits to separating
them, but we acknowledge that there is overlap
that cannot be ignored. ‘‘Model’’ refers to any
calculation that transforms the original, mea-
sured quantity that involves uncertainty. It can be
a simple conversion of one quantity to another
using one parameter (e.g., conversion of organic
matter to carbon) or a complex calculation that
involves many parameters and equations. Thus,
this general class of uncertainty includes conver-
sion and regression uncertainty (Phillips et al.
2000, Harmon et al. 2007), but could also involve
complex simulation models. Model prediction
uncertainty arises when an individual deviates
from the mean estimate for a fixed value of the
predictor, or independent, variable. For some
transformations, however, there is no prediction
uncertainty. For example, the calculation of basal
area involves two parameters (i.e., the exponent 2
and P ), but their values are either constant or
known to a very large number of decimal places.
In contrast, a model that converts stem diameter
to biomass has several parameters that have to be
estimated empirically, hence the associated un-
certainty. This form of uncertainty can be
addressed in at least two ways. The first involves
quantifying model residual uncertainty (e.g., the
mean square error of the model). The second
involves model parameter uncertainty, quantify-
ing the effect of not knowing the exact value of a
model parameter. Although model prediction
uncertainty is influenced by sampling uncertain-
ty (as mean square error and variability of
parameter estimates typically reflect sampling),
it differs from the latter because it involves
application, not development and evaluation, of
the model. Unfortunately, when models are
reported, there is a tendency to document the
overall goodness of fit in the form of the
coefficient of determination and parameter esti-
mates. However, one needs either the mean
square error of the model or the standard errors
of the individual parameters and their correla-
tions, to incorporate model prediction uncertain-
ty in an uncertainty analysis (but see our
example analysis of uncertainty, below, for an
approximation based on the coefficient of deter-
mination).

Model selection error is the least understood
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class of uncertainty and involves either choosing
alternative model structures or models with very
different parameter values (Rowe 1994, Draper
1995, Lindenschmidt et al. 2007, Melson et al.
2011). Model selection involves knowledge un-
certainty or, as Ferson and Ginzburg (1996) put
it, ignorance. Simply stated, if there is limited
information to guide model selection, then those
models that cannot be eliminated should be
considered. Unlike other forms of uncertainty
estimated with standard analytical or Monte
Carlo approaches, there is no random component
to model selection uncertainty because the errors
are exclusively systematic. This makes model
selection error difficult to estimate or character-
ize. Although, in a general sense, the entire
scientific enterprise seeks to eliminate model
selection error, this form of uncertainty is usually
hidden in synthesis science. Typically, models are
selected based on perceived realism, adequacy,
convenience, and familiarity. Reliance of model
selection on expert opinion can be counterpro-
ductive because it can hide a major form of
uncertainty, reducing the motivation to under-
stand and reduce it.

There are other forms of uncertainty, as well.
For example, there can be uncertainty associated
with data entry and ‘‘version control’’ (i.e.,
whether the correct or most recent data or model
are used). In addition, we assume that our
calculations are correct, but even after verifica-
tion, some errors may not be caught or recorded.
Finally, we can combine these forms of uncer-
tainty to estimate ‘‘total’’ uncertainty. Because it
is difficult, if not impossible, to identify all forms
of uncertainty (thus our use of quotes), we use
the term ‘‘overall’’ uncertainty to represent the
combined set of sources considered in an
analysis.

ANDREWS FOREST WATERSHED 1:
AN EXAMPLE

We use estimates of live, aboveground tree
biomass in a 100-ha watershed (WS01) within the
H. J. Andrews Experimental Forest, Oregon as an
example of how the four general classes of
uncertainty can be estimated, combined, evalu-
ated, and used. This assessment is part of a
broader effort to quantify the carbon budget of
this gauged watershed. WS01 contained an old-

growth Douglas-fir/western hemlock forest that
was clear-cut logged between 1962 and 1966
(Halpern and Franklin 1990). Post-harvest regen-
eration was very uneven despite multiple at-
tempts at seeding and planting of Douglas-fir,
resulting in large variation in the spatial distri-
bution of biomass accumulation (Lutz and
Halpern 2006, Halpern and Lutz 2013). Within
the watershed, a total of 138, 0.025 ha plots was
systematically arrayed along 6 widely-spaced
transects. The plots were measured at 3- to 6-
year intervals between 1980 and 2007 (a total of 7
measurements). At each measurement, perma-
nently tagged trees (.1.4 m tall) were assessed
for species and status (live, dead, missing, or
ingrowth) and measured for diameter either at
the ground surface (DAG, for smaller trees) or at
breast height (DBH, for larger trees). Live,
aboveground biomass was estimated from diam-
eter (or for some species, diameter and estimated
height).

To assess measurement, sampling, and model
parameter uncertainty, we used biomass equa-
tions from Biopak (Means et al. 1994). Each of
these forms of uncertainty was estimated using
Monte Carlo methods and expressed as two
standard errors of the mean (i.e., the 95%
confidence bounds). We used the standard error
of the mean because we are interested in the
uncertainty of the overall estimate for the
watershed, not of the individual measurements,
trees, or plots.

To assess model selection error, we considered
in addition to the biomass equations from
Biopak, two other sets of equations: (1) those
from Lutz and Halpern (2006) (henceforth, Lutz
equations), adjusted to total aboveground bio-
mass using the ratio of branches and leaves to
boles (derived from Biopak); and (2) the national
set of equations from Jenkins et al. (2003).
Uncertainty associated with model selection
was represented as the difference between the
minimum and maximum estimates of these
equations. Additional details relevant to each
aspect of uncertainty are described below.

Measurement uncertainty was based on the
average variation in tree diameter measured by
multiple, experienced crew members. Repeated
measurements of the same trees indicated that
crew members measured diameters with a
precision of 2% as represented by two standard
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deviations of the mean (Harmon et al. 2007),
reflecting variation in the placement of the
diameter tape and measurement technique of
each crew member. We did not account for
measurement accuracy because the diameter
tapes are usually accurate to within 1 mm—the
lowest unit of measurement recorded. To esti-
mate measurement uncertainty, 10 of the 138
plots were randomly selected and the diameter of
each tree in each plot was randomly varied using
a distribution with a standard error of 1%. A total
of 3,000 iterations was used to compute the mean
and standard deviation of biomass at the time of
measurement using the Biopak equations. This
analysis indicated that although measurement
uncertainty was as high as 2% per tree, it was
only 0.09% for estimated biomass when all trees
were considered (Fig. 1). This large reduction in
measurement error reflects the offsetting effect of
one random error by another, a general pattern
with measurement error (Phillips et al. 2000).

Sampling uncertainty was calculated by ‘‘set-
ting’’ all other sources of uncertainty to zero. That
is, we assumed no uncertainty in the diameter
measurements, model parameters, and model
selection (this is usually assumed tacitly); here,
too, we used the Biopak equations. Sampling
uncertainty thus reflects only spatial variation

among the 138 plots. In absolute terms, sampling
uncertainty was relatively constant (13–14 Mg/ha
over the measurement period; Fig. 2). However,
in relative terms (as a percentage of total
biomass), it declined from 50% in 1980 to 4% in
2007. The initially high value likely relates to
substantial spatial variation in the establishment
of trees (Lutz and Halpern 2006), when total
biomass was low. The relative variability de-
clined over time because the absolute variability
remained constant as the average biomass
increased 16-fold.

Model parameter uncertainty could only be
approximated: as is too often the case, we lacked
documentation of the uncertainty of the biomass-
equation parameters and the mean square error
of the models. Because indices of parameter
uncertainty were not available, we used the
coefficient of determination as a guide to the
range of variation possible in the parameter
estimates. Lacking knowledge of the correlation
among biomass model parameters, we assumed
no correlation among parameters and varied all
parameters simultaneously the same relative
amount until the variation in biomass estimates
for hypothetical trees was consistent with the
coefficient of determination reported. While the
estimate of parameter variation differed some-

Fig. 1. Estimate of measurement uncertainty for live tree biomass in WS01 in the H. J. Andrews Experimental

Forest, Oregon. Note that at this scale, the bounds indicated by two standard errors (SE) are too small to be

visible.
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what among tree species, ’5% variation in the
equation parameters produced a level of varia-
tion consistent with the coefficients of determi-
nation. For height-diameter equations, we used
the parameter standard errors provided by Gar-
man et al. (1995). For the same 10 plots used to
assess measurement uncertainty, we estimated
the biomass of all trees, 3,000 times. This analysis
indicated that model parameter uncertainty
increased in absolute terms from ’0 in 1980 to
8 Mg/ha in 2007 (Fig. 3). In contrast to sampling
uncertainty, the relative expression of model
parameter uncertainty remained fairly constant
among measurement periods, at ’1.5%. Similar
to measurement uncertainty, however, there was
a substantial reduction in uncertainty of the total
biomass estimates, due to the counterbalancing
effects of trees with lower- and higher-than-
average biomass for a given diameter.

Model selection uncertainty was estimated by
comparing models with the lowest and highest
live biomass estimates (Fig. 4), with the other
sources of uncertainty set to zero. Estimates
based on equations from Jenkins et al. (2003)
and Biopak were similar (213 and 216 Mg/ha,
respectively, in 2007) and both were higher than
the estimate of Lutz and Halpern (2006) adjusted
for non-bole components (192 Mg/ha in 2007),
resulting in an average model selection uncer-

tainty of 12% of the median value of 204 Mg/ha
in 2007. As with model parameter uncertainty,
model selection uncertainty increased in absolute
terms over time, largely due to the cumulative
nature of biomass. To determine if the Lutz and
Jenkins models differed from those of Biopak, we
used a series of modified t-tests. Specifically, for
each measurement period we generated a ratio,
with the numerator computed as the difference
between the mean aboveground biomass for
Biopak and the model in question (Lutz or
Jenkins), and the denominator computed as the
combined uncertainty in measurements and
parameters for Biopak. Given the large sample
size (3,000), we compared the ratios to the critical
value of t when the degrees of freedom were
infinite and p ¼ 0.05 (t ¼ 1.96). These tests
indicated that the sets of Biopak and Lutz models
differed ‘‘significantly’’ over the entire sampling
period (1980 to 2007), with the difference-to-
uncertainty ratio ranging from 5.71 to 7.50. Thus,
there is no basis for assuming that the models are
interchangeable. In contrast, the Biopak and
Jenkins equations differed ‘‘significantly’’ only
in 1980 (ratio of 2.27), indicating that for most
measurement times, either could be used.

To compute the ‘‘overall’’ uncertainty of
biomass estimates (i.e., the combination of
measurement, sampling, model parameter, and

Fig. 2. Estimate of sampling uncertainty indicated by two standard errors (SE) for live tree biomass in WS01 in

the H. J. Andrews Experimental Forest, Oregon. All other sources of uncertainty were set to zero.
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model selection uncertainty) we used the equa-

tions yielding the lowest (Lutz and Halpern

2006) and highest estimates (Biopak) to estimate

lower and upper bounds. For this analysis we

used classic error-propagation methods, i.e.,

summing component variation and calculating

the square root. These methods assumed that (1)

the relative measurement and model parameter

uncertainties in the 10 plots were representative

of the entire sample (138 plots), and (2) all

Fig. 3. Estimate of model parameter uncertainty indicated by two standard errors (SE) for live tree biomass in

WS01 in the H. J. Andrews Experimental Forest, Oregon. All other sources of uncertainty were set to zero.

Fig. 4. Estimate of model selection uncertainty for live tree biomass in WS01 in the H. J. Andrews Experimental

Forest, Oregon. All other sources of uncertainty were set to zero.
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sources of uncertainty were uncorrelated. There
was considerable overlap in the predictions of
these equations (Fig. 5), with estimates in 2007
ranging from 175 to 235 Mg/ha or 15% of the
average. Overall uncertainty also varied over
time.

To assess the relative contributions of each of
the four major forms of uncertainty to the overall
uncertainty, we used the ‘‘variance’’, not the
standard error, as the metric. (When uncertain-
ties are not positively correlated, e.g., random,
the combined standard error is lower than the
arithmetic sum of the standard errors). For model
selection uncertainty, we assumed that the
difference between the lowest and highest model
estimates approximated that of 4 standard errors.
We recognize the limits to this approach;
however, it is one way to establish a common
basis for assessing uncertainty. Among them,
sampling uncertainty was greatest in 1980 when
it was .90% of the overall uncertainty ‘‘variance’’
(Fig. 6). By 2007, it still accounted for the largest
share of the total (62–64% depending on the set
of biomass models considered). Most of the
remaining uncertainty was attributable to model
selection and, to a lesser extent, model parameter
uncertainty (e.g., 25–35% vs. 2–12%, respectively,

of the overall uncertainty ‘‘variance’’ in 2007).
There are several ways in which these esti-

mates of uncertainty are useful. First, they permit
comparisons with other estimates of live, above-
ground biomass accumulation. For example, in
our system, we are interested in whether the
aboveground biomass in the relatively young
forests of WS01 is lower than that estimated in a
nearby, paired old-growth watershed (WS02)
(Acker et al. 2002). The average aboveground
biomass in WS02 was estimated at ’590 Mg/ha
with a standard error of ’32 Mg/ha (which
captures only sampling uncertainty). The ratio of
the difference between watersheds (385 Mg/ha)
to the overall uncertainty estimated for WS01 (60
Mg/ha)—somewhat analogous to a t-test based
on the range (Lord 1947)—is 6.4, a highly
significant result based on the critical t-statistic
of 0.126 for 20 degrees of freedom, the largest
degrees of freedom published for this statistic.
Although the same conclusion could have been
reached without an evaluation using uncertainty
analysis, the analysis would be more critical had
the biomass estimates been more similar between
watersheds.

Second, it is possible to use this information to
develop a strategy for reducing uncertainty in

Fig. 5. Estimate of overall uncertainty for live tree biomass in WS01 in the H. J. Andrews Experimental Forest,

Oregon. For each model (Biopak and Lutz) the bounds indicated by two standard errors (SE) included

measurement, sampling, and model parameter uncertainty.
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Fig. 6. Relative proportions of different forms of uncertainty ‘‘variance’’ for live-tree biomass in WS01 in the H.

J. Andrews Experimental Forest, Oregon, for (A) Biopak set of equations and (B) Lutz set of equations. Note that

at this scale, measurement uncertainty variance is too small to be visible.
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future estimates or increasing sampling efficiency
(Levine et al. 2014). Because forms of uncertainty
are not strictly additive, we reduced each in turn
to assess the effects on overall uncertainty.
Measurement uncertainty was very small: even
a 50% reduction would have little influence on
overall uncertainty (,0.01%). Although sampling
uncertainty constituted a major share of overall
uncertainty, it would be difficult to reduce given
the large number of plots currently sampled. For
example, doubling the number of plots would
likely reduce the sampling uncertainty by ’30%
and reduce overall uncertainty by 18%, but it
would also double the cost of sampling. By
determining which set of biomass equations is
most appropriate (reducing model selection
error), ’13–19% of the overall uncertainty could
be eliminated. Reducing uncertainty in model
parameters could also reduce overall uncertainty,
but because part of this uncertainty is related to
natural variation among trees and the variation
explained by the current set of equations is
generally high (.90%), it would be difficult to
reduce it further. For example, to reduce model
parameter uncertainty by ’50%, sampling inten-
sity would have to increase 4-fold. This would
reduce the overall uncertainty by 1–5% depend-
ing on the set of biomass models used. In this
example, the best strategy to reduce overall
uncertainty would target model selection. Re-
ducing uncertainty could be achieved with
relatively small effort, by sampling a small
number of the principal tree species in WS01 to
identify the most appropriate equations—or with
substantially greater effort, by developing site-
specific equations based on extensive, destructive
sampling.

Although ours can be viewed as a relatively
simple example of a larger set of more complex
problems (Räty et al. 2011), it elucidates some of
the fundamental steps to estimating and using
uncertainty in a synthesis context. However, it
does not address other aspects of uncertainty,
e.g., the extent to which uncertainty components
are correlated, multiplicative effects (which in-
volve a covariance term in error propagation),
and serial autocorrelation. For example, had the
variable of interest been net primary production,
the autocorrelation of individual tree biomass
estimates over time would have to be considered
to estimate net change in biomass over time.

Similarly, had the focus been on litter production
of fine roots and leaves, estimates might involve
a proportion of the biomass dying per year
multiplied by biomass, thus creating a multipli-
cative effect.

FUTURE CHALLENGES AND OPPORTUNITIES

Quantifying uncertainty more rigorously rep-
resents a powerful step for strengthening the
ecological sciences (Yanai et al. 2010). Although
uncertainty is not desirable, it is even less
desirable to remain ignorant of uncertainty in
synthesis (even if the estimate is approximate).
Without a metric that allows for comparison, it is
difficult to determine whether a new estimate is
different, whether it reduces uncertainty, and
ultimately, whether science is progressing. In a
sense, synthesis science is now where reduction-
ist science was before inferential statistics were
developed, with no means of rigorously testing
whether estimates differ. This could be remedied
easily by adopting an agreed-upon metric,
because many of the tests used in reductionist
science (e.g., the t-test, which examines differ-
ences in means divided by the standard error of
the mean) likely have analogues in synthesis
science (e.g., the difference between alternative
estimates divided by overall uncertainty).

If uncertainty becomes a metric to rigorously
evaluate synthesis science, several challenges lie
ahead. First, some aspects of uncertainty may be
difficult to quantify. Some relationships may not
be completely understood, but that is true of
science in general and can be captured to some
degree by model selection uncertainty. Even with
complete knowledge about relationships, some
quantities are difficult to measure or estimate
without bias or with great precision. The
question is, whether uncertainty estimates need
to be perfect to be useful. There are ecological
phenomena or processes that are difficult to
measure and estimate, including net primary
production, heterotrophic respiration, net ecosys-
tem production, and net ecosystem carbon
balance. Despite these limitations, these are
routinely and productively used in ecosystem
science. Although there are limits to estimating
uncertainty, estimates can be useful if they
represent a best attempt to incorporate current
knowledge and methodology.
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Second, because uncertainty is ‘‘undesirable’’,
it is all too easy to equate the presence of
uncertainty with the quality of synthesis. This
leads to a tendency to deliberately underesti-
mate, or fail to report, uncertainty, which
undermines the progress of science. We suggest
a radically different view of uncertainty: synthe-
sis lacking inclusion, or involving an unex-
plained, deliberate underestimate of uncertainty,
should be deemed unacceptable as quantitative
science. Although it is difficult to address all
forms of uncertainty, acknowledging and justify-
ing those that are included vs. excluded should
become routine. Accepting the positive aspects of
synthesis uncertainty will likely require a major
shift in attitudes among journals and reviewers.

Perhaps the most challenging aspect of
uncertainty in synthesis involves model selec-
tion. It is rarely quantified and largely ignored,
but it can constitute the largest portion of
overall uncertainty. Synthesis scientists thus
need to be more cognizant or careful about this
form of uncertainty. For example, when two
viable model structures are possible, it is
important to test whether predictions signifi-
cantly differ and, if they do, to compare the
effect. This would create a strong inferential
framework and identify alternative hypotheses
to be evaluated (Platt 1964). Without such a
framework, progress in science is impeded
because critical uncertainties are hidden from
view. Although model selection uncertainty is
essential, we acknowledge that it does not
readily fit within the realm of classical statistical
methods; thus, more thought needs to be
devoted to this topic.

To fully embrace uncertainty as a useful
evaluation metric in synthesis science, several
developments are needed: (1) improved access
to (i.e., ability to retrieve) the information
necessary to conduct uncertainty analysis, in-
cluding standard estimates of measurement and
model prediction uncertainty, (2) more effective
and efficient methods to estimate and express
uncertainty in all its forms, including model
selection uncertainty, (3) standard guidelines for
analyzing and reporting uncertainty, and broad
acceptance of these guidelines, and (4) revised
expectations for publication of synthesis efforts,
including similar levels of rigor for synthesis as
for reductionist science. This list may be

daunting, but the potential benefits are vast.
The time to begin this change is now, so let us
start.
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