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Snowcover pattern and persistence have important implications for planetary energy balance, climate sensitivity
to forcings, and vegetation structure, function, and composition. Variability in snow cover within mountainous
regions of the Pacific Northwest, USA is attributable to a combination of anthropogenic climate change and cli-
mate oscillations. However, snow covered areas can be heterogeneous and patchy, requiringmore detailedmap-
ping of snow trends to understand their potential influences onmontane forests.We used standard dailyMODIS
snow products (MOD10A1.5) to investigate the 15-year record (2000–2014) of snow cover in the predominant
forest ecotone of the OregonWestern Cascades. Wemodeled the ecotone using field data from the H.J. Andrews
Experimental Forest, and only considered forested MODIS Terra pixels located within the mapped ecotone of a
five-county region. Three snow cover metrics were developed using both binary and fractional snow cover
data: mean ecotone snow cover percent, number of snow covered days during the melt season, and day of
snow disappearance. Snow cover and depletion dates exhibited large interannual variability and no significant
linear trends. This variability is likely influenced by the preceding wintertime states of the Pacific Decadal Oscil-
lation (PDO) and the El Niño/Southern Oscillation (ENSO), which tend to covary. We improve and generalize
existingmethods for power analysis of trend estimation and quantify the number of uninterrupted observations
of the snowmetrics thatwould be needed to distinguish trends of different magnitudes from noise variance, tak-
ing possible autocorrelation into account. Sensitivity analyses of the results to some of our heuristic choices are
conducted, and challenges associated with optical remote sensing of snow in a dense montane forest are
discussed.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction and background

Global increases in surface temperature have direct and indirect im-
plications for the hydrological cycle. Anthropogenic changes in radiative
forcing affect precipitation (including changes in amount, frequency,
timing, and type), evaporation, and sensible heat transfer at the Earth's
surface (IPCC, 2013). Even relatively small changes in temperatures
can have large effects on the hydrologic cycle including alterations
to soil moisture, drought, and flooding regimes (Barnett, Adam, &
Lettenmaier, 2005; USGCRP, 2000). More than one-sixth of the world's
population depends on glaciers or seasonal snow for their available
water, and these supplies are at significant risk as a consequence of a
warming climate (Barnett et al., 2005). Snowmelt runoff dominates the
hydrologic cycle in mountainous regions of the western USA, where sig-
nificant portions of annual precipitation fall as snow (Serreze, Clark,
1 804 484 1577.
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Armstrong, McGinnis, & Pulwarty, 1999). Although snow telemetry
(SNOTEL) data provide empirical evidence for decreasing trends in
snowwater equivalent (SWE)within the Pacific Northwest in recent de-
cades (Mote, 2003; Mote, Hamlet, Clark, & Lettenmaier, 2005), model
projections for future changes in winter precipitation as a consequence
of anthropogenic warming are more equivocal (Mote & Salathé, 2010).

Annual variability in snow can also be influenced by climate oscilla-
tion modes associated with ocean–atmosphere couplings such as the El
Niño/Southern Oscillation (ENSO) and the Pacific Decadal Oscillation
(PDO) (Hamlet & Lettenmaier, 2007). In the Pacific Northwest, variabil-
ity in ocean circulation patterns over the last 25,000 years can explain
significant variation in coastal fog and sediment transport (Briles,
Whitlock, Bartlein, & Higuera, 2008; Long & Whitlock, 2002; Van
Laningham, Duncan, Pisias, & Graham, 2008). Over the past two centu-
ries, streamflow in the Columbia River has been as sensitive to these
teleconnections as to the considerable water withdrawal for irrigation
in the basin (Naik & Jay, 2011), and the strength of these linkages has in-
creased in the 20th century (Gedalof, Peterson, & Mantua, 2004). The
PDO and ENSO are an important source of decadal-scale climate vari-
ability throughout the Pacific Northwest (Abatzoglou, Rupp, & Mote,
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Santiam Junction SNOTEL site snow water equivalent (SWE) in mm (blue curve) and snow depth in cm (red curve). See Fig. 2B or Fig. 3 for the SNOTEL station location (red dia-
mond). AMSL = above mean sea level. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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2014; Cayan, Dettinger, Diaz, & Graham, 1998; Dettinger, Cayan,
Diaz, & Meko, 1998; Wise, 2010), with warm-phase PDO and El-Niño
years tending to be warmer and drier than average and cold-phase
PDO and La-Niña years tending to be colder and wetter than average;
these effects are generally additive and get amplified when PDO and
ENSO are in phase (Climate Impacts Group, 2014a; Hamlet &
Lettenmaier, 1999).

Several studies have examined the relative contributions of global
climate change trends and PDO/ENSO climate oscillations to snow dy-
namics in the mountains of the western US and determined that both
have detectable signals (Moore, Holdsworth, & Alverson, 2002; Mote,
2006; Peng, Zhongbo, & Gautam, 2013). However, these studies typical-
ly provide inferences over large regions (Trujillo & Molotch, 2014) or
use changes in streamflow as the response variable of interest, which
aggregates snowmelt over entire basins (e.g., Stewart, Cayan, &
Dettinger, 2005). Snow covered areas can be heterogeneous and patchy,
varying over very small spatial scales, especially in forested and/or com-
plex terrain (Lundquist & Lott, 2008; Raleigh et al., 2013). Many forest
processes that are dependent on snow hydrology, such as seedling re-
cruitment and mortality, operate at these finer functional scales
(Dingman et al., 2013;Mori, Mizumachi, & Sprugel, 2008). For example,
snow dynamics may be a key factor influencing the specifics of forest
composition change within forest community ecotones of the Pacific
Northwest (Lookingbill, Rocca, & Urban, 2011; Mori et al., 2008); how-
ever, snow variability has been poorly quantified at these local scales.
Existing ground-based sensor networks such as SNOTEL (Serreze et al.,
1999) indicate the high annual variability of snow cover (Fig. 1), but
are generally too sparsely distributed to capture the fine spatial scales
required for ecotone-level studies. No studies have been published in
the region using remotely sensed snow products to evaluate snow
trends within a specific forest community ecotone.

Remotely sensed data can provide the daily synoptic world-wide
sampling at high spatial resolution required to track seasonal changes in
forest snow cover (Nolin, 2010). Standard operational snow cover algo-
rithms for the Moderate Resolution Imaging Spectroradiometer
(MODIS) sensors retrieve snow presence or absence (binary product) or
fractional snow covered area (fSCA) using the visible and near-infrared
(NIR) bands (Riggs, Hall, & Salomonson, 2006). Hall, Foster, DiGirolamo,
and Riggs (2012) derived metrics of snow cover amount and timing of
melt from ten years ofMODIS data for theWindRiver Range inWyoming,
USA and found a significant correlationwith spring discharge in the basin.
A similar approach could be used to develop ecologically relevantmetrics
for evaluating potential changes in snow condition at a forest community
ecotone. Useful metrics would consider the relationship between the
phenology of snow-tolerant species and the timing of melt (Mori et al.,
2008). These metrics would allow the assessment of overall trends in
snow cover and duration and the influence of PDO/ENSO climate oscilla-
tions on these trends. In addition, quantification of the inter-annual vari-
ance in snow cover metrics would allow the estimation of the record
length required to distinguish statistically significant trends from noise.

Here, we use standard daily MODIS Terra binary and fSCA snow
products for the 2000–2014 period to investigate snow cover variability
in the western hemlock-true fir ecotone of the Oregon Western
Cascades. We develop and compare three ecologically meaningful
snow metrics using both data sets and map these metrics for MODIS
Terra pixels locatedwithin the ecotone.We hypothesize that the annual
variability in the metrics is associated with the state of the PDO and
ENSO. To test this hypothesis, we divide the time series into wintertime
warm, cold and neutral PDO/ENSO years and compare the snowmetrics
for the cold vs. the warm years usingWilcoxon rank-sum tests. We also
investigate the linear correlation of PDO/ENSO indices with our metrics.
We test for the presence of linear trends for the fifteen years of data and
quantify noise variance in the data; we then generalize existing power
analysis of trend estimationmethods and use them to forecast the min-
imum length of record that would be required to detect long-term
changes in snow cover for this ecotone.

2. Study area

2.1. Geographic setting

The study area comprises the Oregon Western Cascades within
Clackamas, Marion, Linn, Lane and Douglas counties, eastwards of
123o7′40″W (Fig. 2). These counties were chosen because their



Fig. 2. (A) Elevationmap (fromNED data) of the H.J. Andrews Experimental Forest (HJA). The beige-colored 1242–1443m band illustrates the elevation range of the hemlock-fir ecotone.
MODIS pixels from the MOD10A1.5 data set (500 m resolution in sinusoidal projection, tile h09v04) that belong to the ecotone are shaded in light gray and overlaid on the map. The lo-
cations of fourmainmeteorological stations are shown for reference. (B) Map of the entire western hemlock-true fir ecotone included in this study, superimposed on an elevationmap of
the region. MODIS pixels from theMOD10A1.5 data set (as in (A)) belonging to the ecotone are shown in dark blue. The location of the Santiam Junction SNOTEL station is shown as a red
diamond. Themap datum for bothmaps isNAD83HARNand theprojection is Oregon-centered Lambert conformal conic. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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boundaries follow the ridge of theWestern CascadeMountains in the
roughly N–S direction. The western hemlock-true fir ecotone is ex-
trapolated using data from the H.J. Andrews Experimental Forest
Long Term Ecological Research site (HJA, Fig. 2A, also shown as a
red outline straddling Linn and Lane counties in Fig. 2B); therefore
the study area is limited to parts of the Western Cascades that are
reasonably close to the HJA. The Cascade Range within the five
study counties is located within less than ~1.5o latitude (~170 km)
N or S of the HJA. The majority of the study area is contained within
the Willamette National Forest.
2.2. Mapping the western hemlock-true fir ecotone

The spatial transition from western hemlock (Tsuga heterophylla) to
true fir (Abies amabilis and Abies procera) community association is the
dominant forest ecotone in the Western Cascade Mountains. The
ecotone was modeled for the study region, based on a classification
and regression tree (CART) analysis conducted in the HJA (Lookingbill
& Urban, 2005). Here, we simplified the criteria to use only the
elevation-based branches of the CART model in order to classify
MODIS pixels from tile h09v04 (sinusoidal projection, 500 m nominal
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resolution) of the MOD10A1.5 snow cover data set (Section 3.1) as ei-
ther belonging to the ecotone or not belonging to it. Subsequent analy-
ses are carried out only for the ecotone pixels. Elevation was derived
from the 1-arcsecond (~30 m) USGS National Elevation Dataset (NED)
(Gesch, 2007; Gesch et al., 2002), available at http://ned.usgs.gov. The
mean elevation of eachMODIS pixel was determined using zonal statis-
tics (provided by ESRI's ArcGIS®) over the ~256 NED pixels covering a
single MODIS pixel. MODIS pixels were classified as belonging to the
ecotone if they had mean NED elevation between 1242 and 1443m, in-
clusive, as this is the elevation band of the ecotone as modeled by
Lookingbill and Urban (2005) (Fig. 2).

The dynamics of snow accumulation andmelt differ considerably for
different land covers. Because of the large differences between forests
and fields, we included only forested pixels in our analysis. The National
Land Cover Dataset (NLCD 2006) (Fry et al., 2011), was used to deter-
mine which MODIS pixels could be classified as evergreen forest
(~256 NLCD pixels per MODIS pixel). A MODIS pixel was considered
to be part of the ecotone only if it was at least 80% evergreen forest
(Class #42 in the NLCD 2006 data set). The MODIS snow cover
tile h09v04 is 2400 × 2400 pixels (1200 × 1200 km), out of which
7437 pixels (~0.13% of the tile) were classified as belonging to the eco-
tone (Fig. 2B). The total area of these MODIS ecotone pixels is approxi-
mately 1600 km2. The ecotone map is provided in ESRI® ASCII and
Geotiff raster formats as Supplementary data to this article (see link in
Appendix B).

In summary, MODIS pixels are considered to be ecotone pixels
(Fig. 2B) if all of the following conditions are met: 1) elevation between
1242 and 1443m; 2)within the boundaries of the followingfiveOregon
counties: Clackamas, Marion, Linn, Lane and Douglas; 3) at least 80%
covered by evergreen forest; and 4) part of tile h09v04 of the MODIS
snow cover data set MOD10A1.5 (Section 3.1).
3. Data and methods

3.1. Snow cover data

Daily MODIS Terra snow cover maps for the period February 24,
2000–November 10, 2014 were obtained from the National Snow and
Ice Data Center (NSIDC), at http://www.nsidc.org. Data from the prod-
uct MOD10A1.5 (Hall & Riggs, 2007; Hall, Salomonson, & Riggs, 2006;
Riggs et al., 2006), tile h09v04were used to create snow cover depletion
curves specific to themodeled ecotone only. MOD10A1.5 contains bina-
ry daily snow cover (snow or no snow) and continuous fractional snow
covered area (fSCA) at 500 m resolution, in sinusoidal projection. The
binary retrieval for MODIS Terra is based on a threshold test on the
normalized difference snow index (NDSI), calculated from bands 4
(0.545–0.565 μm) and 6 (1.628–1.652 μm); many additional threshold
tests are also used (Hall, Riggs, & Salomonson, 2001; Riggs et al.,
2006). Details of the algorithm are provided in Hall et al. (2001), Riggs
et al. (2006) and Hall and Riggs (2007). fSCA is calculated from empiri-
cal linear relationships with true sub-pixel snow cover from Landsat
data (Hall & Riggs, 2007; Salomonson & Appel, 2004). The binary and
fSCA data sets are used here for independent, parallel analyses. Example
binary and fSCA US Pacific Northwest snow cover maps for January 27,
2012 are shown in Fig. 3. The sinusoidal projection has the advantage
of being equal area, so any spatial statistics need no corrections.
MODIS snow cover data were analyzed as is, resampling the rest of
the data sets used in order to avoid any resampling of the NSIDC prod-
ucts. Only ecotone pixels of good data quality (quality flag = 0 in the
Spatial QA data set) were used in the analysis. MODIS Terra was chosen
for the analysis over MODIS Aqua because a channel failure on Aqua
prevented the algorithm correction for densely-forested areas (Klein,
Hall, & Riggs, 1998) to be applied; since the ecotone is a dense evergreen
forest, this correction is very important and is applied to Terra data (Hall
& Riggs, 2007).
Snow water equivalent (SWE) and snow depth data from the
Santiam Junction SNOTEL station (elevation 1140 m) were obtained
from the National Water and Climate Center and were used for
comparison purposes to illustrate interannual variability in snow
cover for an area close to the HJA and similar to the ecotone in
elevation.

3.1.1. Cloud gap filling
Before any further processing was applied, daily imagery was

cloud gap filled using the methodology of Hall, Riggs, Foster, and
Kumar (2010). For cloud gap filling purposes, pixels from the
MOD10A1.5 binary snow cover product classified as cloud, snow,
no snow, lake, lake ice or ocean were considered valid. Pixels from
the fSCA data classified as cloud, fractional snow cover (0–100%),
land (none occur in actual images), inland water or ocean were con-
sidered valid. All other pixel classification values were considered in-
valid. Pixels that were invalid or classified as cloud were gap filled by
using the most recent corresponding observation from up to three
days prior to the current image's date. The gap filling was performed
using a computationally efficient algorithm whereby all valid pixels
of the current image and the three previous days were assigned a bi-
nary ‘1’, and all invalid and cloudy ones were assigned a binary ‘0’. A
4-bit binary number was constructed for each pixel from the 4 days
of observations. The most significant digit of the binary number
was formed from the current day's image, the second — from one
day prior, the third — from two days prior, and the least significant
digit — from the image three days prior. The value of this binary
number was used to determine the index of the most recent valid
non-cloudy observation at each pixel. The composite cloud gap-
filled image was then constructed from the four input images using
these indices. For example, if the resulting binary number at a partic-
ular pixel was ‘0101’, this indicated that the current day's image had
a cloudy or invalid observation, and the most recent valid non-
cloudy observation came from one day prior. Thus, the pixel value
from the image one day prior was assigned to the corresponding
pixel of the current day's image. Under this scheme, pixels still clas-
sified as cloud after cloud gap-filling indicate that the current day
was cloudy and no valid non-cloud observations were made in any
of the previous days.

3.2. Snow cover and snowmelt metrics

Snow cover time series specific to the ecotone were constructed for
every year from 2000 to 2014. For metric calculation, pixels from the
cloud gap-filled data classified as cloud, snow, no snow, or fractional
snow cover (0–100%) were considered valid; all other pixel classifica-
tion values were considered invalid. The percent snow covered pixels
(out of all valid ecotone pixels) from the cloud gap-filled binary data
and themean fSCA from the cloud gap-filled fSCAdata over all valid eco-
tone pixels were calculated for each day. Days when more than 80% of
the ecotone pixels were cloud covered (even after temporal cloud-gap
filling, Section 3.1.1) were considered too cloudy for analysis and were
not included in the snowdepletion curves (Hall et al., 2010). In addition,
daily MOD10A1.5 tiles for which less than 25% of the ecotone pixels
were valid were excluded from the analysis. These criteria and satellite
data outages led to some dayswithmissing data; thus beforemetric cal-
culation the time series of spatially aggregated ecotone percent snow
cover was temporally gap-filled using linear interpolation. This step is
distinct from the cloud gap filling (Section 3.1.1) which is conducted
on a per-pixel basis.

Three metrics were calculated from the snow cover time series and
employed to assess snow cover dynamics in the ecotone during the
snowmelt season, considered to be days of year 80 through 181
(March 20 or 21 to June 29 or 30) (Hall et al., 2012). The first metric
was themean ecotone percent snow cover over the snowmelt season, cal-
culated by averaging the cloud gap filled and interpolated daily binary

http://ned.usgs.gov
http://www.nsidc.org


Fig. 3. (A) Example of MODIS Terra binary snow cover data for the Pacific Northwest USA from sinusoidal projection tile h09v04 of the MOD10A1.5 data set for January 27, 2012 (500 m
nominal resolution). Cyan colored pixels indicate presence of snow; other pixels are color-coded as in the legend. (B) Same as in (A) but for the fractional snow cover (fSCA) data. Themap
datum and projection are as in Fig. 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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or fSCA percent snow cover. The second metricwas the number of snow
covered days, defined as days during the snowmelt season when snow
cover was at least 20% of the valid ecotone pixels (Hall et al., 2010,
2012), also derived from both binary and fSCA data.

The thirdmetricwas the day of snow disappearance, defined as the date
atwhich snowcover declined to less than20%of the ecotonepermanently
for the season (Hall et al., 2010, 2012). Detecting the day of snow disap-
pearance was confounded by the existence of “spikes” in the snow deple-
tion curves, i.e. snow is first depleted to below 20% coverage and then
increases to more than 20% on some subsequent days. This could be due
to a late season snow storm, or it could be an algorithmor data availability
artifact. There are several years in which spikes are present in the binary
data (and less in the fSCAdata). In those cases,we extended thedayof dis-
appearance to include the spikes only if they were within the snowmelt
period considered (days 80–181) and if they were separated by less
than 15 days from the preceding snow presence (N20%) condition.

3.3. Climate indices

In order to test the hypothesis that climate teleconnections due to
the El Niño/Southern Oscillation (ENSO) and the Pacific Decadal Oscilla-
tion (PDO) are drivers of snow cover variability in the ecotone during
the melt season, monthly values for the Multivariate ENSO index
(MEI) (Wolter & Timlin, 1993, 1998) and the PDO index (Mantua,
Hare, Zhang, Wallace, & Francis, 1997; Zhang, Wallace, & Battisti,
1997) were obtained for the 1995–2014 period from http://www.esrl.
noaa.gov/psd/enso/mei/ and http://jisao.washington.edu/pdo/PDO.
latest, respectively. The MEI index is a quantification of ENSO based on
the first principal component of several meteorological variables ob-
served over the tropical Pacific, namely sea-level pressure, vector sur-
face winds, seas surface temperature, surface air temperature, and
cloudiness fraction (Wolter, 1987; Wolter & Timlin, 1993). The PDO
index is computed as the first principal component of Pacific sea surface
temperature north of 20oN (Mantua et al., 1997).Monthly climate index
data were smoothed using an equiripple lowpass FIR filter of order N=
18, and a pass-band frequency of 1 year−1 for theMEI and½ year−1 for
the PDO. Stop-band frequencies were set to twice the pass-band fre-
quency. Time-lag of the filter was corrected by shifting the filtered
data set by 9 months (half the filter order); this makes the filter non-
causal but preserves timing of peaks and troughs in the original data.

The MEI and the PDO signals are positively correlated (ρ = 0.63,
p b 0.001 for the filtered signals, ρ = 0.60, p b 0.001 for the unfiltered
signals, Fig. 4), and their climate effects in the Pacific Northwest are ad-
ditive (Climate Impacts Group, 2014a; Hamlet & Lettenmaier, 1999).
Themeanof thefiltered values of theMEI for December of the preceding
year to February of the current year was used to rank the years in the
2000–2014 period from coldest to warmest. Similarly, the mean of the
filtered values of the PDO for October of the preceding year to March
of the current year was also used to rank the same years. Since the
MEI and the PDO signals are positively correlated, the mean of the two
ranks was used to classify the years as being warm winter years
(2003, 2004, 2005, 2007 and 2010), cold winter years (2000, 2008,
2009, 2011 and 2012), or neutral years (2001, 2002, 2006, 2013 and
2014). This classification closely matches (but is not identical to)

http://www.esrl.noaa.gov/psd/enso/mei/
http://www.esrl.noaa.gov/psd/enso/mei/
http://jisao.washington.edu/pdo/PDO.latest
http://jisao.washington.edu/pdo/PDO.latest
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the classification of the Climate Impacts Group at the University of
Washington (Climate Impacts Group, 2014b, their Table 1; see also
Gershunov, Barnett, & Cayan, 1999), which uses different criteria.

3.4. Statistical analyses

Ecotone snow cover variability during the melt season was investi-
gated by examining the snow cover metrics (Section 3.2) from two dif-
ferent perspectives. First, we tested for the presence of a linear trend in
themetric time series across the 15 years of data, possibly indicating the
presence of a longer-term process influencing spring-time snow cover
dynamics in the ecotone. Trends were assessed via a generalized least
squares (GLS) regressionmodel accounting for possible autocorrelation
of the residuals (GLS details are provided in Appendix A.1). Significance
of the autocorrelationwas tested using a Durbin–Watson test on the re-
siduals. Because the MODIS record length was not expected to be long
enough to detect climate-relevant trends, our main objective was to
forecast the actual length of record required to distinguish a statistically
significant trend fromnoise, accounting for autocorrelation and for both
type I and type II errors. This analysis is termed power analysis of trend
estimation and its details are given in Appendix A.2.

Second, we investigated the influence of PDO and ENSO climate os-
cillations on snow cover variability by 1) testing whether the medians
of the metrics differed significantly in warm vs. cold PDO/ENSO years,
using the Wilcoxon rank sum test, and 2) relating the snow cover met-
rics to the PDO and ENSO climate oscillation indices used to classify the
years, using type I ordinary least squares (OLS) regressions.

The sensitivity of the snow covermetric trends and cold-warmyears
median differences to the chosen melt season start and end dates (day
of year 80–181, Hall et al., 2012) was examined. These start and end
dateswere both varied and the effect on themagnitude and significance
of the statisticswas assessed. An example of a similar sensitivity analysis
can be found in Fay andMcKinley (2013). Themelt start datewas varied
from day of year 45 to day of year 115 (February 14 to April 25 for com-
mon years), and the season end date was varied from day of year 130 to
212 (May 10 to July 31).

The sensitivity of the statistics calculated from the day of snow
disappearance to spikes in the snow depletion curves was also investi-
gated. All possible snow disappearance dates for each yearwere consid-
ered, including or excluding spikes within days of year 80–181. This led
Ye
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 20

M
E

I o
r 

P
D

O
 in

de
x

-3

-2

-1

0

1

2

3

4
MEI or PDO index, positive means str

Fig. 4. Lowpass filtered and original MEI and PDO indices from 1995 to the present. The strong
signals of the entire 1995–2014 period.
to a large number of different possible time series cases containing dif-
ferent combinations of snow melt dates from each year. These time
series cases form the Cartesian product of the 15 sets consisting of all
possible disappearance dates for each year. This 15-fold Cartesian prod-
uct contained ~ one million elements for binary data and ~1.5 million
elements for fSCA data. The trend and the PDO/ENSO-based statistics
were calculated for all those cases and their variability and significance
were evaluated.

4. Results and discussion

4.1. Melt season snow cover variability in the western hemlock-true fir
ecotone

Example MODIS-based snow cover time series curves illustrate the
significant interannual variability in the ecotone: the warm PDO/ENSO
year 2003 (Fig. 5A) exhibited less snow cover throughout the year and
somewhat earlier snowmelt, as compared to the cold PDO/ENSO year
2008 (Fig. 5B). The fSCA-based metrics consistently estimated less
snow cover as compared to the binary-based metrics. In spite of
cloud-gap filling, significant wintertime cloudiness in the region caused
some days to not be observable via visible and NIR remote sensing.
Finally, significant amount of noise in the snow curves was evident,
e.g. frequent spikes occur in the data.

The observations stemming from a comparison of these two individ-
ual years (Fig. 5)were consistentwith thepatterns of snowcoverwithin
the ecotone for the entire MODIS Terra mission (Fig. 6). As expected for
a marine west coast climate area (e.g. Christopherson, 2012), July, Au-
gust and September tended to be fairly clear, whereas the rest of the
year was quite cloudy, which impedes satellite-based snow studies
that rely on visible and NIR wavelengths, such as the MODIS products
analyzed here. The cloud gap filling improved data coverage significant-
ly (not shown), leaving relatively few data gaps with snowmelt season
days more than 80% cloud covered (Fig. 6A). A very small percentage of
these gaps were due tomissing data days in theMODIS record. The data
gaps were filled using linear interpolation, resulting in a continuous
time series of percent snow cover (Fig. 6B–C) used in the computation
of the snow cover metrics (Section 3.2).

Time series of the three ecotone snow cover metrics are shown in
Fig. 7A–C. The curves provide biophysically meaningful quantification
ar
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Fig. 5. (A) 2003 and (B) 2008 examples of MODIS snow cover time series for the hemlock-fir ecotone. Binary snow cover data are shown in blue; fractional snow covered area data (fSCA)
are shown in red. The 20% snow cover threshold (horizontal cyan line) is used to decide whether the ecotone is snow covered or not on a given day and for determining the day of snow
disappearance. Ground-based SWE data for the Santiam Junction SNOTEL station are shown in green for comparative purposes (units of cm on the same y axis as snow cover percentage).
Analysis is focused on the snow cover depletion curves during the snowmelt season, days of year 80 to 181 (Hall et al., 2012), indicated by the vertical cyan lines. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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of interannual snow dynamics at the ecotone. Linear trends were not
significant for any of these six time series (R2 b 0.1 and all slope confi-
dence intervals crossed zero, not shown). The Durbin–Watson test on
the residuals indicated that no lag-1 autocorrelation was present in
the data (p N 0.05). Interannual variability was high, as indicated by
the standard deviation of the noise,σN. Quantification of autocorrelation
and noise levels is critical for the power analysis of trend detection, re-
sults of which are presented in Section 4.2.

A negative trend in the time series may be expected due to a long-
term interdecadal global warming signal (Mote & Salathé, 2010). How-
ever, it is not surprising that a robust long-term signal cannot be distin-
guished fromPDO/ENSOeffects and other sources of variability over this
time period. We next test the hypothesis that the states of the PDO and
ENSO were correlated with snow cover variability. For all three metrics
and both the fSCA and binary data, the cold-phase years were consis-
tently characterized by greater snow cover than the warm-phase
years of the PDO and ENSO oscillations, as quantified by median differ-
ences (Table 1). These differences were not significant, except for fSCA-
based day of snowmelt; however, the small sample size of only five
years in each categorymakes it difficult to distinguish statistically signif-
icant median differences from random noise. OLS regressions of the
snow cover metrics on the mean Oct–Mar PDO and the mean Dec–Feb
MEI exhibited negative slopes (not shown), suggesting that a warmer
PDO and ENSO winter leads to less overall snow cover, fewer number
of snow covered days and earlier snowmelt the following spring. How-
ever, these regressions were also not significant (p≥ 0.05), with lots of



Fig. 6. (А) Percent cloud coverage over the ecotone pixels for the entire MODIS Terra mission (until Nov. 2014), after the cloud-gap filling procedure was applied (Sect. 3.1.1). The color
scale indicates the percentage of valid pixels over the ecotone that were cloud covered for that day. Days with no valid data are indicated in cyan. The snowmelt season as used in the
analysis here (day of year 80 to 181) is indicated with green vertical dash-dot lines in this panel and white vertical dash-dot lines in subsequent panels. (B) Percent snow cover from
cloud gap-filled MODIS binary data for the modeled western hemlock-true fir ecotone. In addition to the cloud gap-filling, linear interpolation was used on the spatially aggregated
daily ecotone data to fill in cloud-covered (N80%) and missing data days. (C) Same as in (B), but using the fractional snow covered area (fSCA) MODIS data. The mean fSCA over all
valid ecotone pixels is shown in percent (colorbar), unless cloud cover exceeded 80%, in which case interpolation from neighboring days was used, as above. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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noise variance (low R2 values, ranging from 0.09 to 0.26). This finding is
in general agreement with the assessment that only about 30% of the
variability of Pacific Northwest overall winter climate can be explained
by ENSO and PDO variability (Climate Impacts Group, 2014a).

4.2. Power analysis of snow metrics trend detection

Satellite records of geophysical variables are generally too short to
discern small long-term trends in noisy data (e.g. Beaulieu et al.,
2013). Therefore, a major goal of trend analysis in climate change re-
search should be the estimation of the minimal record length required
to distinguish a long-term trend (possibly due to climate change)
from stochastic noise or, for example, from variability caused by the
PDO and ENSO oscillations. To address this question, we adapted and
generalized the power analysis technique of Tiao et al. (1990) and
Weatherhead et al. (1998) (Appendix A.2). The equations provided
allow for the presence of first-order autocorrelation; however, since
our time series did not exhibit significant autocorrelation, we set ϕ=0.

Results of the power analysis indicate that at the observed noise
levels, aminimumof ~30 years of continuous observationswould be re-
quired to distinguish a trend of about ±0.5%/year in the percent snow
cover metric (Fig. 8A), a trend of ±1 day/year in the number of snow
covered days metric (Fig. 8B) and a trend of ±1 day/year in the day of
snow disappearance metric (Fig. 8C). These example trends are quite
large, leading to drastic increases or decreases in snow cover in just a
few decades, assuming linear trends continue in the future. Clearly, no
such assumption is warranted, but it is likely that any underlying
longer-term climate change signal is smaller than these values, leading
tomanymore years required to detect it (the gradient of T* is very large
in the x-direction as the trend magnitude tends to 0).

An alternative application of the power analysis is to assess themin-
imal trend (in absolute value) that can be detected given a set record
length. Then, if a trend is not observed in the data, this is an indication
that a trend larger than that value is not present, but a smaller possibly
undetected trendmay still exist. Following the15-year contours in Fig. 8
to the observed noise level from the data in our case indicates that
trends larger than ~1.3%/year (fSCA) and ~2.1%/year (binary) do not
exist over this time period in the percent snow cover metric (Fig. 8A);
trends larger than ~2.5–3 days/year do not exist in the number of
snow covered days metric (Fig. 8B) and the day of snow disappearance
metric (Fig. 8C). Otherwise such trends would have been detected
under the probability assumptions of the power analysis.

4.3. Sensitivity to depletion curve spikes and the choice of snowmelt season
start and end dates

The third metric (snow disappearance day) is particularly sensitive
to the existence of spikes in the snow depletion curves (Fig. 5). Sensitiv-
ity analysis of all possible time series (counting or not counting spikes
within the days of year 80–181 of each of the 15 years) indicated that
the GLS linear trends of snow disappearance day remained insignificant
in ~97% (binary-based) and ~100% (fSCA-based) of the cases tested. The
Wilcoxon rank-sum tests on the median cold to warm PDO/ESNO year
differences were significant in ~9% (binary) and ~49% (fSCA) of the
cases, respectively, and indicated later snowmelt during cold years in
97% (binary) and 100% (fSCA) of the cases. Finally, the OLS regressions
of the metric on the combined PDO/ENSO index were significant in
~1% (binary) and ~54% (fSCA) of the cases, exhibiting a negative slope
in ~85% (binary) and ~100% (fSCA) of the cases. In conclusion, trend es-
timates are particularly robust to theway spikes are counted in the third
metric, whereas the PDO/ENSO influence could become statistically sig-
nificant in the case of fSCA data depending on how spikes are counted,
which supports the notion that the PDO/ENSO is a driver of snow
cover variability in the ecotone.

Varying the melt season start and end dates also indicated that cold
and warm PDO/ENSO years can be significant predictors of snow cover
for both the first and the second metric. The fSCA-based percent snow
cover was significant at the 90% level in the initial analysis; however,
had we used a slightly different start date of the snowmelt period, the
differenceswould be significant at the 95% level (Fig. 9). Results are sim-
ilar for the binary percent snow cover and the fSCA-based number of
snow covered days, whereas binary-based number of snow covered
days differences are almost always not significant (not shown). Impor-
tantly, all of these cold to warm differences remain positive, indicating
that cold PDO/ENSO years exhibit more and longer lasting snow cover,
which can be statistically significant depending on choice of season
dates. In contrast to these PDO/ENSO results, long-term trends in the
metrics remained statistically insignificant and small in magnitude for
all combinations of season start and end dates for both the fSCA and
the binary data (not shown).

4.4. Additional sources of uncertainty

In addition to spikes and the choice of snowmelt season start and
end dates, several other sources of uncertainty may influence the
study outcomes. Absolute validation of the snow cover product indi-
cates accuracies of about 90% in general under clear skies (Hall &
Riggs, 2007; Klein & Barnett, 2003); however retrieval accuracies dete-
riorate for evergreen forest land cover and are consistently worst for
closed-canopy evergreen forests, where agreement with ground-based
observations can be as low as 75–80% for some months (Simic,
Fernandes, Brown, Romanov, & Park, 2004). There are inherent limita-
tions of optical sensors in thick canopies because the canopy literally
hides the snow (Rittger, Painter, &Dozier, 2013). The ecotone of interest
here is exclusively in mountainous terrain that is covered with thick,
closed-canopy evergreen forests. Additionally, errors are likely to be
greatest when little snow is present, e.g. during transitional periods of
accumulation and melt (Hall & Riggs, 2007; Klein & Barnett, 2003;
Rittger et al., 2013). The choice of the 20% threshold for the ecotone to
be deemed snow-free (Hall et al., 2010) can also influence the metrics.
Passive optical and NIR remote sensing of snow affords relatively high
spatial resolution (~500 m in this case); however, it can only be per-
formed during daylight hours under clear skies. A related source of
error likely to affect the snow algorithm in the ecotone are errors of
omission and commission due to confusion with clouds, particularly at
the edges of snow cover or on shadowed clouds that have a “yellow”

spectrum (Riggs et al., 2006).
The cloud gap filling analysis uses data from up to three previous

days, and thus each input image is a complex composite of up to four
days of data. This can introduce additional uncertainty in the metrics,
especially the timing of snowmelt. The detectable trends are smaller
than 4 days/year (Fig. 8B–C), which illustrates that choosing to cloud
gap fill is a compromise and can introduce large uncertainties. This mo-
tivates our choice to use only three days of previous observation to gap
fill: assigning older observations to a given day can introduce larger un-
certainties. Three days also was shown to be quite effective in reducing
cloud gaps (Hall et al., 2010). Furthermore, a more sophisticated cloud
gap filling technique with a spatial component is not recommended in
a highly spatially heterogeneous terrain and a highly segmented eco-
tone such as our study area (Fig. 2). Finally, merging with MODIS Aqua
data is also not recommended because of amissing channel compromis-
ing forest canopy corrections (Hall & Riggs, 2007).

Parallel analyses using binary and fSCA data allow comparison be-
tween the two products over the ecotone. Results indicate that binary
data consistently show more snow cover and later snowmelt than
fSCA data (Figs. 5–7). Detailed comparison of daily fSCA and binary
data over the ecotone indicates that for 76% of snowmelt season days
for which some binary pixels indicated snow, mean fSCA over those
same pixels was less than 50%. Mean fSCA over binary pixels that indi-
cated no snow was generally well under 50%. The binary algorithm is
designed to detect snow if the pixel is more than 50% snow covered
(Hall, Riggs, Salomonson, DiGirolamo, & Bayr, 2002); thus, fSCA and
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binary data appear to be inconsistent over some pixels that are snow-
covered according to the binary data. The binary algorithm is subject
to errors of commission, which can explain this discrepancy (Rittger
et al., 2013). fSCA data provide more information and are characterized
by better validation statistics (Rittger et al., 2013). However, it is possi-
ble that fSCA datamay be underestimating snow in the heavily forested
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ecotone, perhaps since the thick canopies obscure the snow. An NDVI-
based enhancement of snow mapping in dense forests is applied to
the MOD10A1.5 binary data set, but a correction for viewable area in
thick canopies (e.g. Rittger et al., 2013, their Eq. (6)) is not applied to
corresponding fSCA data (Riggs et al., 2006; Dorothy Hall, pers.
comm.); this correction may help alleviate any underestimation prob-
lems in future studies. Rittger et al. (2013) analyzed Landsat data coars-
ened to 500 m resolution for MODIS product validation and observed
that binary data introduces biases as expected in tree-free areas, i.e. un-
derestimates when fSCA is smaller than ~45% and overestimates other-
wise. However, under tree canopies, binary data indicated more snow
than fSCA data for all fSCA greater than ~20%. Their result is consistent
with our observation that fSCA in the forested hemlock-fir ecotone
can indicate less than 50% snow cover when binary data indicate
snow. Importantly for the conclusions presented here, in spite of under-
lying differences between the two data sets, trend estimates and rela-
tionships to the state of PDO/ENSO are virtually the same between
binary and fSCA data.

Retrievals based on physically-based spectral mixture analysis, such
as the MODSCAG algorithm (Painter et al., 2009), are generally charac-
terized by better validation statistics than the empirical NDSI-based
products used here and are better able to map snow in transitional pe-
riods of accumulation andmelt (Rittger et al., 2013). Snow-water equiv-
alent remote-sensing retrievals are hydrologically and plant-relevant,
but they have a very coarse resolution (Foster et al., 2005), thus they
are less suitable to inform ecotone studies such as this one. Therefore,
logical next steps of the analysis presented here include the use of the
MODSCAG products (as long as the end-members are appropriate for
the region), perhaps supported by a network of in-situ sensors that
are able to resolve snowunder clouds and thick canopies, aswell as pro-
vide more variables and resolve spatial variability at very fine scales
(Lundquist & Lott, 2008; Tyler et al., 2008).

Our analysis is specific to the time period studied (2000–2014) and
the specific elevation range of the OregonWestern Cascades used to de-
fine the western hemlock-true fir ecotone. Different elevation ranges
and different areas (e.g. to the north or south, or east of the Cascades
ridge) may exhibit substantially different snow cover dynamics (Mote,
2006). In addition, we have focused on the snowmelt season only, rath-
er than the entire water year. Importantly, the patterns identified can-
not be assumed to be predictive for future years. Climate change
projections indicate that Pacific Northwest temperatures will keep in-
creasing (Mote & Salathé, 2010) and snow coverwill likely substantially
decrease, especially in at-risk areas, including in the Oregon Cascades
(Nolin & Daly, 2006); such trends in snowpack parameters have already
been observed over longer time periods than studied here (e.g. Mote,
2003; Mote et al., 2005). In addition, non-linearities are likely in the fu-
ture due to feedbacks in the climate system. Additional variability in the
snow cover metrics may be explained if the North Pacific Index (NPI)
(Trenberth & Hurrell, 1994) is also considered (Mote, 2006).

Finally, the power analysis for trend detection (Fig. 8) assumes the
data are not autocorrelated.While theMODIS time series indeed exhibits
no autocorrelation (Fig. 7A–C), autocorrelation detection and estimation
for such short time series is problematic (e.g. Bence, 1995; Schwarz,
2014). If positive autocorrelation is present, it will take longer to detect
a trend. This is likely because the PDO tends to exhibit stable regime-
Fig. 7. Time series of the MODIS-derived hemlock-fir ecotone snow cover metrics for
2000–2014: (A) mean ecotone snow cover and (B) number of snow covered days during
the snowmelt season (days of year 80 to 181) , and (C) the day of snow disappearance.
Black solid curves with circles indicate fSCA-based analyses and gray dotted curves with
crosses indicate binary-based analyses. Years classified as cold PDO/ENSO years are indi-
catedwith bluemarkers, whereaswarm years are indicatedwith redmarkers. GLS regres-
sion statistics indicate very low R2 values and non-significant slopes (not shown). Shown
next to each time series are (black and gray, same as curve they refer to): N— the number
of sample points, AR(1) ϕ,— the lag 1 autocorrelation, DWp— the p-value of the Durbin–
Watson test for autocorrelation significance, and σN— the standard deviation of the resid-
uals. (For interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)



Table 1
Medians of the ecotone snow cover metrics for cold and warm PDO and ENSO years. Metrics are calculated for the snowmelt season (days of year 80 to 181). Minimum and maximum
values are given in parentheses after themedian. The median differences for cold vs. warm years are also shown, and p-values of theWilcoxon rank sum test for significance of these dif-
ferences are provided in parentheses.

Type of metric Cold years
(2000, 2008, 2009, 2011, 2012)

Warm years
(2003, 2004, 2005, 2007, 2010)

Difference (cold–warm years)

Dataset used fSCA Binary fSCA Binary fSCA Binary

Mean ecotone percent snow cover 18.5 (14.2–30.8) 36.1 (25.8–52.5) 15.1 (9.6–17.9) 27.9 (18.7–33.9) 3.4 (0.056) 8.2 (0.095)
Number of snow covered days 41.0 (27–65) 55.0 (51–75) 28.0 (25–33) 41.0 (36–65) 13.0 (0.095) 14.0 (0.222)
Day of snow disappearance 129 (121–159) 147 (136–159) 121 (109–126) 131 (116–156) 8 (0.040) 16 (0.087)
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like states lasting several years or decades (Climate Impacts Group,
2014b). Any gaps or discontinuities/level shifts in the data compromise
our ability to create a self-consistent Climate Data Record (CDR, NRC
(2004)) and detect climate change. Such level shifts would further in-
crease the number of observations necessary to distinguish a long-term
trend (Beaulieu et al., 2013; Weatherhead et al., 1998). Therefore, the
number of years necessary to detect a trend presented in Fig. 8 should
be treated as lower bounds. These results emphasize the need for long
satellite missions that are meticulously calibrated. Continuity in order
to avoid gaps and overlap of missions for cross-calibration are critical,
as are algorithm consistency and advanced merging methods (e.g.
Maritorena, d'Andon,Mangin, & Siegel, 2010;Maritorena& Siegel, 2005).

Ultimately, an improved understanding of the drivers of snowmelt
at the western hemlock-true fir ecotone is an important input to dy-
namic species distribution modeling for this ecosystem. A mechanistic
understanding of range expansion and contraction at species' distribu-
tion boundaries requires a detailed knowledge of both changes in the
physical environment and changes in biotic response parameters relat-
ed to species growth, establishment, decline and mortality (Breshears,
Huxman, Adams, Zou, & Davison, 2008). It is likely that many more
years of parallel observations are required to link snow trends to vege-
tation dynamics. Moreover, even at a high spatial resolution of 500 m,
MODIS pixels remain very coarse compared to the fine spatial scale var-
iability of various parameters relevant to seedling recruitment and sur-
vival (ground cover, slope, aspect, presence of nurse logs, proximity to
large tree trunks), especially in mountainous terrain (Urban, Miller,
Halpin, & Stephenson, 2000). Nevertheless, the detailed information
on annual differences in snow metrics of direct relevance to plants is a
valuable step towards a better understanding of these biophysical
relationships.

5. Summary and conclusions

Snow is a dominant influence on the hydrology and ecology of west-
ern North American mountains; yet the dynamics of snowmelt at criti-
cal locations of these landscapes are rather poorly documented.Herewe
used the standard MODIS Terra snow cover products to investigate
snow cover variability in the western hemlock-true fir ecotone of the
OregonWestern Cascades during the snow depletion season.We devel-
oped several ecologically relevant snow covermetrics. Themetricswere
characterized by large interannual variability and no statistically signif-
icant linear trends during the 2000–2014 study period. Median differ-
ences of the metrics between warm and cold PDO/ENSO years were
statistically significant depending on the choice of season start and
end dates, indicating that the state of the PDO/ENSO is a driver of
snow cover variability in the ecotone. However, large residual noise var-
iance remained unexplained.

The short satellite record length available, the large noise levels in
the data and the lack of significant trends necessitate estimation of
the record length required to distinguish trends from noise. We gener-
alized existing methods for power analyses of trend estimation that
take into account autocorrelation. Our technique is fully described in
Appendix A and can be applied to other data sets. The results indicated
that at the level of noise exhibited by the MODIS record, at least
~30 years of uninterrupted observations are needed in order to distin-
guish trends of ± 0.5%/year in percent snow cover and ±1 day/year
in number of snow covered days or snow disappearance date. This is
likely to be an underestimate due to possible autocorrelation in the
data and the inevitable introduction of time series discontinuities
due to the limited life-time of satellitemissions. Smaller trends likely as-
sociated with climate change would take even longer to detect. These
findings emphasize the need for continuous, high-quality satellite ob-
servations for the creation of Climate Data Records (CDRs), as well as
enhanced ground measurement networks in closed canopy forests for
algorithm development and validation.
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Appendix A. Power analysis of trend estimation via GLS regression

A.1. Generalized least squares (GLS) regression

Many time series are subject to autocorrelation, in which case an or-
dinary least squares (OLS) regressionwill underestimate the variance of
the slope. The application of generalized least squares (GLS) regression
to trend detection in time series that may exhibit first-order autocorre-
lation (AR(1)) is more appropriate (Beaulieu et al., 2013; Henson et al.,
2010; Tiao et al., 1990;Weatherhead et al., 1998). For completeness, we
provide a brief summary of GLS based on Beaulieu et al. (2013) and refs.
therein. Consider a linear model

y ¼ Xbþ N ðA1Þ

where X is the model's n × 2 design matrix the first column of which
contains 1's, and the second — the time variable, b is a 2 × 1 vector
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containing the intercept in b(1) and the slope in b(2), y is a n × 1 vector
of time series data and N is a n × 1 vector of noise/residual terms (n is
the number of samples). The slope represents the linear trend of the
data and has the units of y per unit time. Assuming that the sampling
is done in equal time intervals Δt and there is no missing data, the sec-
ond column of X will be the vector [1,2,3,….n] ∗ Δt.

Autocorrelation of the noise termsN is expressed as the relationship
Nt=ϕNt − 1+ e in the case of first order autocorrelation (Weatherhead
et al., 1998), where ϕ is the first-order autocorrelation of the residuals.
For this analysis, it is assumed that |ϕ| b 1, i.e. the noise process is sta-
tionary (Weatherhead et al., 1998). Assuming an AR(1) process, the var-
iance of the white noise σe

2 and the variance of the red noise, σN
2, are

related via (Henson et al., 2010; Tiao et al., 1990; Weatherhead et al.,
1998):

σ2
N ¼ σ2

e

1−ϕ2� � : ðA2Þ

The GLS estimators of the parameters in b from Eq. (A1) are given
by:

b ¼ X0S−1X
� �−1

XS−1y ðA3Þ

where the n × n covariance matrix S quantifies the autocorrelation of
the residuals and its (i, j) element is constructed as follows:

S i; jð Þ ¼ σ2
Nϕ

i− jj j
: ðA4Þ

The variance of the estimators of the slope and intercept in b is given
by:

Var bð Þ ¼ X0S−1X
� �−1

: ðA5Þ

Eq. (A5) is implicitly scaled by the variance of the noise σN
2 because

the S matrix elements are multiplied by it (Eq. (A4)). We first estimate
N using anOLS regression and ϕ is estimated as the autocorrelation ofN
at lag 1. The Smatrix is then constructed, and b, N and ϕ are iteratively
updated until convergence to less than 10−6 total percent difference in
the elements of b.

A.2. Power analysis of GLS trend detection

Power analysis of the trend estimation refers to determining the
number of observations necessary to distinguish a statistically sig-
nificant trend from noise, with a given statistical power. This power
analysis is based on deriving an expression for the variance of the
slope (Eq. (A5)). In order to detect a linear trend that is significant at
the 95% level, with statistical power of at least 90%, the following has
Fig. 8. Number of years, T*, necessary to achieve a 90% probability to detect a 95% signifi-
cant trend in the three ecotonemelt season snow covermetrics analyzed: (A) percent eco-
tone snow cover, (B) number of snow covered days, and (C) day of snow disappearance.
The absolute magnitude of the trend to detect is given on the x-axis, the amount of
noise in the data (standard deviation) is on the y-axis, and the number of years necessary
to detect the trend are indicated in colored and labeled contours. These are contours of
Eq. (A9)withϕ=0(no autocorrelation) andΔt=1 year (annual sampling). The standard
deviation of the noise derived from real MODIS data is indicated with a red solid line for
the fSCA-based data andwith a red dash-dot line for the binary-based data. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)



Fig. 9. Sensitivity of the difference inmedians (and their significance) between cold andwarmPDO/ENSO years to the choice of start (y-axis) and end (x-axis) dates of themelt season. The
example is shown for fSCA-based percent snow cover during the melt season. The melt season used in the initial analyses is indicated by crossing dash-dot white lines. The color fill in-
dicates the difference ofmedians (cold–warm), and the labeled contours indicate the p-value of theWilcoxon rank sum test for a difference inmedians. A value p b 0.05 indicates the two
groups (warm vs. cold years) have significantly different medians at the 95% confidence level.
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to be satisfied (Gerrodette, 1987; Tiao et al., 1990; Weatherhead et al.,
1998):

ω
σω

����
����≥ zα=2 þ zβ

� �
ðA6Þ

where ω is the trend to be detected, σω is its standard deviation, and za
is the value of a standard random normal variable such that the cumu-
lative normal probability density function at za is 1 − a (i.e. the area
under the tail beyond za is a). Here we take α= 0.05 and β= 0.1, cor-
responding to probabilities of making a type I error (mistakenly identi-
fying a trend that does not really exist) and type II error (missing a trend
that really does exist), respectively (Gerrodette, 1987; Tiao et al., 1990).
For the above values of α and β, the right hand side of Eq. (A6) equals
about 3.25, closely corresponding to the value used in Tiao et al.
(1990) and Weatherhead et al. (1998).

The minimum number of samples necessary to satisfy Eq. (A6) can
be determined by assuming temporal sampling is occurring at regular
intervals of time, Δt (Δt is the inverse of the sampling frequency). In
that case the variance of the trend estimate can be solved for, either
by assuming no autocorrelation and using ordinary least squares
estimates (Gerrodette, 1987) or by using GLS regression and taking
into account autocorrelation (Tiao et al., 1990; Weatherhead et al.,
1998), as in the treatment here. Weatherhead et al. (1998) assume
monthly sampling where the trend is expressed in per year units (i.e.
Δt = 1/12 years) and demonstrate that an approximate analytical ex-
pression for the slope variance can be derived (better for |ϕ| not close
to 1; see their Section A3). Generalizing their approach for any value
of the sampling interval, we obtain the following approximation:

σ2
ω ≈ σ2

e
12

1−ϕð Þ2n n2−1
� �

Δtð Þ2 ðA7Þ

where ϕ is the lag 1 autocorrelation of the residual terms, n is the
number of samples, andσω
2 is the variance of the slopeω (the second el-

ement of the b vector in Eqs. (A1), (A3) and (A5)).
Substituting Eqs. (A2) and (A7) into Eq. (A6), and solving for n, we

obtain n*, the minimum number of samples required to detect a trend:

n�≥ 3:25
ffiffiffiffiffiffi
12

p

Δt
σN

ωj j

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϕ
1−ϕ

s" #2=3

: ðA8Þ

The above equation is valid as long as the given trend to be detected
is expressed in the same time units as the sampling interval, and the
sampling is assumed to be done at equal sampling intervals. In addition,
the trend and the standard deviation of the noise need to be expressed
in consistent units, either absolute units or percentages (Weatherhead
et al., 1998).

If one wishes instead to determine the number of time units required
to detect a given trend, T*, rather than the number of samples n*,
Eq. (A8) is multiplied by Δt and becomes:

T�≥ 3:25σN

ffiffiffiffiffiffiffiffiffiffiffi
12Δt

p

ωj j

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϕ
1−ϕ

s" #2=3

: ðA9Þ

Apossible source of confusion needs to be clarified.Note that the fac-
tor of 12 in Eq. (A7) and subsequently Eqs. (A8) and (A9) appears be-
cause of the expression for the variance of the consecutive integers
from 1 to n (Gerrodette, 1987). Additional factors of 1/12 will appear
if the trend is expressed in per year units (time variable is in years)
and sampling is monthly (Δt = 1/12 years), and these factors cancel
in Eq. (A9) above, leading to the Weatherhead et al. (1998) result
(their Eq. (3); they use a slightly different factor of 3.3 instead of 3.25
due to requiring zα/2 = 2). Importantly, their n* indicates the number
of years required to detect the trend, not the number of samples,
and the equation is specific to a situation where sampling frequency is
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12 times per unit time interval. In other words, their n* is denoted as T*
in the more general case treated here.

Finally, note that the autocorrelation coefficient ϕ and the variance
of the noise σN

2 are specific to the sampling frequency. In other words,
data sampled monthly is likely to have different autocorrelation and
noise from data sampled daily or annually. Thus, analyses seeking to es-
tablish optimal sampling frequencies for a given trend detection need to
take this dependence into account.

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.rse.2015.04.002.

References

Abatzoglou, J.T., Rupp, D.E., & Mote, P.W. (2014). Seasonal climate variability and change
in the Pacific Northwest of the United States. Journal of Climate, 27, 2125–2142.

Barnett, T.P., Adam, J.C., & Lettenmaier, D.P. (2005). Potential impacts of a warming cli-
mate on water availability in snow-dominated regions. Nature, 438, 303–309.

Beaulieu, C., Henson, S.A., Sarmiento, Jorge L., Dunne, J.P., Doney, S.C., Rykaczewski, R.R.,
et al. (2013). Factors challenging our ability to detect long-term trends in ocean
chlorophyll. Biogeosciences, 10, 2711–2724. http://dx.doi.org/10.5194/bg-10-2711-
2013.

Bence, J.R. (1995). Analysis of short time series: Correcting for autocorrelation. Ecology,
628–639.

Breshears, D.D., Huxman, T.E., Adams, H.D., Zou, C.B., & Davison, J.E. (2008). Vegetation
synchronously leans upslope as climate warms. PNAS, 105, 11591–11592.

Briles, C.E., Whitlock, C., Bartlein, P.J., & Higuera, P. (2008). Regional and local controls on
postglacial vegetation and fire in the Siskiyou Mountains, northern California, USA.
Palaeogeography, Palaeoclimatology, Palaeoecology, 265, 159–169.

Cayan, D.R., Dettinger, M.D., Diaz, H.F., & Graham, N.E. (1998). Decadal variability of pre-
cipitation over western North America. Journal of Climate, 11, 3148–3166.

Christopherson, R.W. (2012). Geosystems: An introduction to physical geography, 8/E,
Pearson/Prentice Hall.

Climate Impacts Group, University of Washington (2014a). Impacts of natural climate
variability on Pacific Northwest climate. http://cses.washington.edu/cig/pnwc/
clvariability.shtml (last accessed Dec. 26, 2014).

Climate Impacts Group, University of Washington (2014b). Comparing ENSO and PDO.
http://cses.washington.edu/cig/pnwc/compensopdo.shtml (last accessed Dec. 26,
2014).

Dettinger, M.C., Cayan, D.R., Diaz, H.F., & Meko, D.M. (1998). North–south precipitation
patterns in western North America on interannual-to-decadal timescales. Journal of
Climate, 11, 3095–3111.

Dingman, J.R., Sweet, L.C., McCullough, I., Davis, F.W., Flint, A., Franklin, J., et al. (2013).
Cross-scale modeling of surface temperature and tree seedling establishment in
mountain landscapes. Ecological Processes, 2, 30.

Fay, A. R., & McKinley, G. A. (2013). Global trends in surface ocean pCO2 from in situ data.
Global Biogeochemical Cycles, 27, 541–557. http://dx.doi.org/10.1002/gbc.20051.

Foster, J.L., Sun, C., Walker, J.P., Kelly, R., Chang, A., Dong, J., et al. (2005). Quantifying the
uncertainty in passive microwave snow water equivalent observations. Remote
Sensing of Environment, 94(2), 187–203.

Fry, J., Xian, G., Jin, S., Dewitz, J., Homer, C., Yang, L., et al. (2011). Completion of the 2006
National Land Cover Database for the conterminous United States. PE&RS, 77(9),
858–864.

Gedalof, Z., Peterson, D.L., & Mantua, N.J. (2004). Columbia River flow and drought since
1750. Journal of the American Water Resources Association, 40(6), 1579–1592.

Gerrodette, T. (1987). A power analysis for detecting trends. Ecology, 1364–1372.
Gershunov, A., Barnett, T.P., & Cayan, D.R. (1999). North Pacific interdecadal oscillation

seen as factor in ENSO-related North American climate anomalies. EOS. Transactions
of the American Geophysical Union, 80(3), 25–30. http://dx.doi.org/10.1029/
99EO00019.

Gesch, D.B. (2007). The national elevation dataset. In D. Maune (Ed.), Digital elevation
model technologies and applications: The DEM users manual (pp. 99–118) (2nd Edition).
Bethesda, Maryland: American Society for Photogrammetry and Remote Sensing.

Gesch, D., Oimoen, M., Greenlee, S., Nelson, C., Steuck, M., & Tyler, D. (2002). The national
elevation dataset. Photogrammetric Engineering and Remote Sensing, 68(1), 5–11.

Hall, D.K., Foster, J.L., DiGirolamo, N., & Riggs, G.A. (2012). Snow cover, snowmelt timing
and stream power in the Wind River Range, Wyoming. Geomorphology, 137(1),
87–93. http://dx.doi.org/10.1016/j.geomorph.2010.11.011.

Hall, D.K., & Riggs, G.A. (2007). Accuracy assessment of the MODIS snow products.
Hydrological Processes, 21(12), 1534–1547.

Hall, D.K., Riggs, G.A., Foster, J.L., & Kumar, S.V. (2010). Development and evaluation of a
cloud-gap-filled MODIS daily snow-cover product. Remote Sensing of Environment,
114(3), 496–503.

Hall, D.K., Riggs, G.A., & Salomonson, V.V. (2001). Algorithm Theoretical Basis Document
(ATBD) for the MODIS snow and sea ice-mapping algorithms. Greenbelt, MD: NASA
Goddard Space Flight Center.

Hall, D.K., Riggs, G.A., Salomonson, V.V., DiGirolamo, N.E., & Bayr, K.J. (2002). MODIS
snow-cover products. Remote Sensing of Environment, 83, 181–194. http://dx.doi.
org/10.1016/S0034-4257(02)00095-0.
Hall, D.K., Salomonson, V.V., & Riggs, G.A. (2006). MODIS/Terra snow cover daily L3 global
500 m grid. Boulder, Colorado USA: National Snow and Ice Data Center (Version 5.
[Tile h09v04]).

Hamlet, A.F., & Lettenmaier, D.P. (1999). Columbia River streamflow forecasting based on
ENSO and PDO climate signals. Journal of Water Resources Planning and Management,
125, 333–341.

Hamlet, A.F., & Lettenmaier, D.P. (2007). Effects of 20th century warming and climate var-
iability on flood risk in the western U.S. Water Resources Research, 43(6).

Henson, S.A., Sarmiento, J.L., Dunne, J.P., Bopp, L., Lima, I., Doney, S.C., et al. (2010).
Detection of anthropogenic climate change in satellite records of ocean chlorophyll
and productivity. Biogeosciences, 7, 621–640. http://dx.doi.org/10.5194/bg-7-621-
2010.

IPCC (2013). Summary for policymakers. In T.F. Stocker, D. Qin, G. -K. Plattner, M. Tignor,
S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P.M.Midgley (Eds.), Climate CHANGE
2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom
and New York, NY, USA: Cambridge University Press.

Klein, A., & Barnett, A.C. (2003). Validation of daily MODIS snow maps of the Upper Rio
Grande River Basin for the 2000–2001 snow year. Remote Sensing of Environment,
86, 162–176.

Klein, A.G., Hall, D.K., & Riggs, G.A. (1998). Improving snow cover mapping in forests
through the use of a canopy reflectancemodel. Hydrological Processes, 12, 1723–1744.

Long, C.J., & Whitlock, C. (2002). Fire and vegetation history from the coastal rain forest of
the western Oregon coast range. Quaternary Research, 58, 215–225.

Lookingbill, T.R., Rocca, M.E., & Urban, D.L. (2011). Focused assessment of scale-
dependent vegetation pattern. In A. Drew, Y. Wiersma, & F. Huettmann (Eds.),
Predictive Species and Habitat Modeling in Landscape Ecology (pp. 111–138). New
York: Springer Press.

Lookingbill, T.R., & Urban, D.L. (2005). Gradient analysis, the next generation: Towards
more plant-relevant explanatory variables. Canadian Journal of Forest Research,
35(7), 1744–1753.

Lundquist, J.D., & Lott, F. (2008). Using inexpensive temperature sensors to monitor the
duration and heterogeneity of snow-covered areas. Water Resources Research, 44,
W00D16. http://dx.doi.org/10.1029/2008WR007035.

Mantua, N.J., Hare, S.R., Zhang, Y., Wallace, J.M., & Francis, R.C. (1997). A Pacific
interdecadal climate oscillation with impacts on salmon production. Bulletin of the
American Meteorological Society, 78, 1069–1079.

Maritorena, S., d'Andon, O.H.F., Mangin, A., & Siegel, D.A. (2010). Merged satellite ocean
color data products using a bio-optical model: Characteristics, benefits and issues.
Remote Sensing of Environment, 114(8), 1791–1804.

Maritorena, S., & Siegel, D.A. (2005). Consistent merging of satellite ocean color data sets
using a bio-optical model. Remote Sensing of Environment, 94(4), 429–440.

Moore, G.W.K., Holdsworth, G., & Alverson, K. (2002). Climate change in the North Pacific
region over the past three centuries. Nature, 420, 401–403.

Mori, A.S., Mizumachi, E., & Sprugel, D.G. (2008). Morphological acclimation to un-
derstory environments in Abies amabilis, a shade- and snow-tolerant conifer
species of the Cascade Mountains, Washington, USA. Tree Physiology, 28,
815–824.

Mote, P.W. (2003). Trends in snow water equivalent in the Pacific Northwest and their
climatic causes. Geophysical Research Letters, 30(12), 1601. http://dx.doi.org/10.
1029/2003GL017258.

Mote, P.W. (2006). Climate-driven variability and trends in mountain snowpack inWest-
ern North America. Journal of Climate, 19(23), 6209–6220.

Mote, P.W., Hamlet, A.F., Clark, M.P., & Lettenmaier, D.P. (2005). Declining mountain
snowpack in western North America. Bulletin of the American Meteorological Society,
86, 39–49.

Mote, P.W., & Salathé, E.P., Jr. (2010). Future climate in the Pacific Northwest. Climatic
Change, 102(1–2), 29–50.

Naik, P.K., & Jay, D.A. (2011). Distinguishing human and climate influences on the
Columbia River: Changes in mean flow and sediment transport. Journal of
Hydrology, 404, 259–277.

National Research Council (NRC) (2004). Climate data records from environmental satel-
lites: Interim report. Washington D.C., USA: The National Academies Press.

Nolin, A.W. (2010). Recent advances in remote sensing of seasonal snow. Journal of
Glaciology, 56, 1141–1150.

Nolin, A.W., & Daly, C. (2006). Mapping “at risk” snow in the Pacific Northwest. Journal of
Hydrometeorology, 7(5).

Painter, T.H., Rittger, K., McKenzie, C., Slaughter, P., Davis, R.E., & Dozier, J. (2009).
Retrieval of subpixel snow covered area, grain size, and albedo from MODIS.
Remote Sensing of Environment, 113(4), 868–879.

Peng, J., Zhongbo, Y., & Gautam, M.R. (2013). Pacific and Atlantic Ocean influence on the
spatiotemporal variability of heavy precipitation in the western United States. Global
and Planetary Change, 109, 38–45.

Raleigh, M.S., Rittger, K., Moore, C.E., Henn, B., Lutz, J.A., & Lundquist, J.D. (2013). Ground-
based testing of MODIS fractional snow cover in subalpine meadows and forests of
the Sierra Nevada. Remote Sensing of Environment, 128, 44–57.

Riggs, G.A., Hall, D.K., & Salomonson, V.V. (2006). MODIS snow products: User guide to col-
lection 5. Greenbelt, MD: NASA Goddard Space Flight Center.

Rittger, K., Painter, T.H., & Dozier, J. (2013). Assessment of methods for mapping snow
cover from MODIS. Advances in Water Resources, 51, 367–380.

Salomonson, V.V., & Appel, I. (2004). Estimating the fractional snow covering using
the normalized difference snow index. Remote Sensing of Environment, 89,
351–360.

Schwarz, C.J. (2014). Course notes for beginning and intermediate statistics, Ch. 16:
Detecting trends over time. http://people.stat.sfu.ca/~cschwarz/CourseNotes/ (last
accessed June 6, 2014).

http://dx.doi.org/10.1016/j.rse.2015.04.002
http://dx.doi.org/10.1016/j.rse.2015.04.002
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0005
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0005
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0010
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0010
http://dx.doi.org/10.5194/bg-10-2711-2013
http://dx.doi.org/10.5194/bg-10-2711-2013
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0020
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0020
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0025
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0025
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0315
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0315
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0315
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0030
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0030
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0320
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0320
http://cses.washington.edu/cig/pnwc/clvariability.shtml
http://cses.washington.edu/cig/pnwc/clvariability.shtml
http://cses.washington.edu/cig/pnwc/compensopdo.shtml
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0045
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0045
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0045
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0050
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0050
http://dx.doi.org/10.1002/gbc.20051
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0055
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0055
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0055
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0060
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0060
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0060
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0065
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0065
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0085
http://dx.doi.org/10.1029/99EO00019
http://dx.doi.org/10.1029/99EO00019
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0335
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0335
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0335
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0075
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0075
http://dx.doi.org/10.1016/j.geomorph.2010.11.011
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0095
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0095
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0100
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0100
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0100
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0090
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0090
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0090
http://dx.doi.org/10.1016/S0034-4257(02)00095-0
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0345
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0345
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0345
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0110
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0110
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0110
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0350
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0350
http://dx.doi.org/10.5194/bg-7-621-2010
http://dx.doi.org/10.5194/bg-7-621-2010
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0355
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0355
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0355
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0355
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0355
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0125
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0125
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0125
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0120
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0120
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0130
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0130
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0140
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0140
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0140
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0140
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0135
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0135
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0135
http://dx.doi.org/10.1029/2008WR007035
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0145
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0145
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0145
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0155
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0155
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0155
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0150
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0150
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0160
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0160
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0165
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0165
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0165
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0165
http://dx.doi.org/10.1029/2003GL017258
http://dx.doi.org/10.1029/2003GL017258
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0175
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0175
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0170
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0170
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0170
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0180
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0180
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0185
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0185
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0185
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0370
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0370
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0190
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0190
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0195
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0195
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0200
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0200
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0205
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0205
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0205
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0210
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0210
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0210
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0215
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0215
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0220
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0220
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0225
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0225
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0225
http://people.stat.sfu.ca/~cschwarz/CourseNotes/


169T.S. Kostadinov, T.R. Lookingbill / Remote Sensing of Environment 164 (2015) 155–169
Serreze, M.C., Clark, M.P., Armstrong, R.L., McGinnis, D.A., & Pulwarty, R.S. (1999).
Characteristics of the western United States snowpack from snowpack telemetry
(SNOTEL) data. Water Resources Research, 35, 2145–2160.

Simic, A., Fernandes, R., Brown, R., Romanov, P., & Park, W. (2004). Validation of
VEGETATION, MODIS, and GOES+ SSM/I snow‐cover products over Canada based
on surface snow depth observations. Hydrological Processes, 18(6), 1089–1104.

Stewart, I.T., Cayan, D.R., & Dettinger, M.D. (2005). Changes toward earlier streamflow
timing across western North America. Journal of Climate, 18(8), 1136–1155.

Tiao, G.C., Reinsel, G.C., Xu, D.M., Pedrick, J.H., Zhu, X.D., Miller, A.J., et al. (1990). Effects of
autocorrelation and temporal sampling schemes on estimates of trend and spatial
correlation. Journal of Geophysical Research — Atmospheres, 95, 20507–20517. http://
dx.doi.org/10.1029/JD095iD12p20507.

Trenberth, K.E., & Hurrell, J.W. (1994). Decadal atmosphere–ocean variations in the
Pacific. Climate Dynamics, 9, 303–319.

Trujillo, E., & Molotch, N.P. (2014). Snowpack regimes of the Western United States.
Water Resources Research, 50. http://dx.doi.org/10.1002/2013WR014753.

Tyler, S.W., Burak, S.A., McNamara, J.P., Lamontagne, A., Selker, J.S., & Dozier, J. (2008).
Spatially distributed temperatures at the base of two mountain snowpacks measured
with fiber-optic sensors. Journal of Glaciology, 54(187), 673–679.

United States Global Change Research Program (USGCRP) (2000). Water: The potential
consequences of climate variability and change for the water resources of the United
States. Report of the Water Sector Assessment Team of the National Assessment of the
Potential Consequences of Climate Variability and Change. Oakland, CA: Pacific Institute
for Studies in Development, Environment, and Security, 151.

Urban, D.L., Miller, C., Halpin, P.N., & Stephenson, N.L. (2000). Forest gradient response in
Sierran landscapes: The physical template. Landscape Ecology, 15, 603–620.
Van Laningham, S., Duncan, R.A., Pisias, N.G., & Graham, D.W. (2008). Tracking fluvial re-
sponse to climate change in, the Pacific Northwest: a combined provenance approach
using Ar and Nd isotopic systems on fine-grained sediments. Quaternary Science
Reviews, 27, 97–517.

Weatherhead, E.C., Reinsel, G.C., Tiao, G.C., Meng, X.L., Choi, D.S., Cheang, W.K., et al.
(1998). Factors affecting the detection of trends: Statistical considerations and appli-
cations to environmental data. Journal of Geophysical Research — Atmospheres, 103,
17149–17161. http://dx.doi.org/10.1029/98jd00995.

Wessel, P., & Smith, W.H.F. (1996). A global, self-consistent, hierarchical, high-resolution
shoreline database. Journal of Geophysical Research, 101(B4), 8741–8743.

Wise, E.K. (2010). Spatiotemporal variability of the precipitation dipole transition zone in
the western United States. Geophysical Research Letters, 37, L07706.

Wolter, K. (1987). The Southern Oscillation in surface circulation and climate over the
tropical Atlantic, Eastern Pacific, and Indian Oceans as captured by cluster analysis.
Journal of Climate and Applied Meteorology, 26, 540–558.

Wolter, K., & Timlin, M.S. (1993). Monitoring ENSO in COADS with a seasonally adjusted
principal component index. Proc. of the 17th Climate Diagnostics Workshop
(pp. 52–57). Norman, OK, NOAA/NMC/CAC, NSSL, Oklahoma Clim. Survey, CIMMS
and the School of Meteor., Univ. of Oklahoma.

Wolter, K., & Timlin, M.S. (1998). Measuring the strength of ENSO events — How does
1997/98 rank? Weather, 53, 315–324.

Zhang, Y., Wallace, J.M., & Battisti, D.S. (1997). ENSO-like interdecadal variability: 1900–93.
Journal of Climate, 10, 1004–1020.

http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0230
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0230
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0235
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0235
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0235
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0235
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0240
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0240
http://dx.doi.org/10.1029/JD095iD12p20507
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0250
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0250
http://dx.doi.org/10.1002/2013WR014753
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0260
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0260
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0265
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0265
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0265
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0265
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0265
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0270
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0270
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0275
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0275
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0275
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0275
http://dx.doi.org/10.1029/98jd00995
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0285
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0285
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0290
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0290
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0295
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0295
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0295
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0380
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0380
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0380
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0380
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0305
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0305
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0310
http://refhub.elsevier.com/S0034-4257(15)00130-3/rf0310

	Snow cover variability in a forest ecotone of the Oregon Cascades via MODIS Terra products
	1. Introduction and background
	2. Study area
	2.1. Geographic setting
	2.2. Mapping the western hemlock-true fir ecotone

	3. Data and methods
	3.1. Snow cover data
	3.1.1. Cloud gap filling

	3.2. Snow cover and snowmelt metrics
	3.3. Climate indices
	3.4. Statistical analyses

	4. Results and discussion
	4.1. Melt season snow cover variability in the western hemlock-true fir ecotone
	4.2. Power analysis of snow metrics trend detection
	4.3. Sensitivity to depletion curve spikes and the choice of snowmelt season start and end dates
	4.4. Additional sources of uncertainty

	5. Summary and conclusions
	Acknowledgments
	Appendix A. Power analysis of trend estimation via GLS regression
	A.1. Generalized least squares (GLS) regression
	A.2. Power analysis of GLS trend detection

	Appendix B. Supplementary data
	References


