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Population trends and patterns in species distributions are the major currencies used to 

examine responses by biodiversity to changing environments. Effective conservation 

recommendations require that models of both distribution dynamics and population trends 

accurately reflect reality. However, identification of the appropriate temporal and spatial scales 

of animal response, and then obtaining data at these scales present two major challenges to 

developing predictive models. In heterogeneous forested mountain landscapes I examined: A) 

the relative drivers of climatic variability at fine spatial scales under the forest canopy 

(‘microclimate’), B) the influence of microclimate on local-scale occupancy dynamics of bird 

communities, and C) the effects of spatial scale and imperfect bird detection on long-term avian 

population trends. 

Climate change has been predicted to cause widespread biodiversity declines. However, 

the capacity of climate envelope models for predicting the future of biodiversity has been 

questioned due to the mismatch between the scale of available data (i.e., global climate models) 

and the scales at which organisms experience their environment. Local-scale variation in 

microclimate is hypothesized to provide potential ‘microrefugia’ for biodiversity, but the relative 

role of elevation, microtopography, and vegetation structure in driving microclimate is not well 

known. If the microrefugia hypothesis is true, I expected to see areas on the landscape that 
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remained relatively cooler (i.e., buffered sites). To test this, I collected temperature data at 183 

sites across elevation and forest structure gradients in complex terrain of the H. J. Andrews 

Experimental Forest in the Cascade Mountains of Oregon, USA (Chapter 2). I used boosted 

regression trees, a novel machine learning approach, to determine the relative influence of 

vegetation structure, microtopography, and elevation as drivers of microclimate and mapped 

fine-scale distributions of temperature across the landscape. Models performed extremely well 

on independent data – cross-validation correlations between testing and training data were 0.69 – 

0.98 for ten selected climate variables. Elevation was the dominant driver in fine-scale 

microclimate patterns, although vegetation and microtopography also showed substantial relative 

influences. For instance, during the spring-summer transition, maximum monthly temperatures 

observed in old-growth sites were 2.6°C (95% CI: 1.8 – 3.3°C) cooler than plantation sites and 

minimum temperatures during winter months were 0.6°C (95% CI: 0.4 – 0.8°C) warmer. This 

suggests that older forest stands mediate changes in temperature by buffering against warming 

during summer months and moderating cold temperatures during the winter.  

Climate is generally considered most influential on species distributions at large spatial 

scales; however much microclimate variability exists within regional patterns. I tested whether 

this high degree of microclimate variability has relevance for predicting species distributions and 

occupancy dynamics of the Andrews Forest bird community. I collected bird occurrence data in 

2012 and 2013 at all 183 sites with fine-scale temperature measurements. I used dynamic 

occupancy models to test the effects of temperature on occupancy and apparent within-season 

bird movement while statistically accounting for vegetation effects and imperfect bird detection 

(Chapter 3). Most species (87%) exhibited within-season shifts in response to local-scale 

temperature metrics. Effects of temperature on within-season occupancy dynamics were as large 

or larger (1 to 1.7 times) than vegetation. However, individual species were almost as likely to 

shift toward warmer sites as toward cooler sites, suggesting that microclimate preferences are 

species-specific. My results emphasize that high-resolution temperature data provide valuable 

insight into avian distribution dynamics in montane forest environments and that microclimate is 

an important variable in breeding season habitat selection by forest birds. I hypothesize that 

microclimate-associated distribution shifts may reflect species’ potential for behavioral buffering 

from climate change in complex terrain. 
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Factors influencing population trends often differ depending on the spatial scale under 

consideration. Further, accurate estimation of trends requires accounting for biases caused by 

imperfect detection. To test the degree to which population trends are consistent across scales, I 

estimated landscape-scale bird population trends from 1999-2012 for 38 species at the Hubbard 

Brook Experimental Forest (HBEF) in the White Mountains of New Hampshire, USA and 

compared them to regional and local trends (Chapter 4). I used a new method – open-population 

binomial mixture models – to test the hypothesis that imperfect detection in bird sampling has 

the potential to bias trend estimates. I also tested for generalities in species responses by 

predicting population trends as a function of life history and ecological traits. Landscape-scale 

trends were correlated with regional and local trends, but generally these correlations were weak 

(r = 0.12 – 0.4). Further, more species were declining at the regional scale compared to within 

the relatively undisturbed HBEF. Life history and ecological traits did not explain any of the 

variability in the HBEF trends. However, at the regional scale, species that occurred at higher 

elevations were more likely to be declining and species associated with older forests have 

increased. I hypothesize that these differences could be attributed to both elevated rates of land-

use change in the broader region and the fact that the structure of regional data did not permit 

modeling of imperfect detection. Indeed, accounting for imperfect detection resulted in more 

accurate population trend estimates at the landscape scale; without accounting for detection we 

would have both missed trends and falsely identified trends where none existed. These results 

highlight two important cautions for trend analysis: 1) population trends estimated at fine spatial 

scales may not be extrapolated to broader scales and 2) accurate trends require accounting for 

imperfect detection.  
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1 GENERAL INTRODUCTION 

 

Climate change is exerting a strong influence on species distribution dynamics and 

population trends (Parmesan and Yohe 2003, Thomas et al. 2004, Both et al. 2006, Hitch and 

Leberg 2007, Devictor et al. 2008, Gutiérrez Illán et al. 2014). Given that climate influences are 

expected to amplify over the coming century (IPCC 2014), a key question is the degree to which 

such trends will continue, and whether biodiversity will decline as a result (Thomas et al. 2004). 

Effective conservation recommendations in the face of future change require that models of both 

population trends and distribution dynamics accurately reflect reality (Bellard et al. 2012). 

However, identification of the appropriate temporal and spatial scales of animal responses 

(Wiens 1989), and data acquisition at these scales (Potter et al. 2013b) present two major 

challenges to developing predictive models (Betts et al. 2006).  

Species abundance patterns are influenced by processes operating at multiple spatial 

scales. Therefore, distributions and trends may differ depending on the spatial scale investigated 

(Wiens 1989, Bohning-Gaese et al. 1994). Species distributions at large spatial scales are 

generally considered to be climate-driven (Thuiller et al. 2004a, Thomas 2010, Boucher-Lalonde 

et al. 2014) and at smaller scales, factors such as land cover and species interactions are 

hypothesized to be more influential (Brown et al. 1995, Luoto et al. 2007). For example, 

stochasticity in food resources or patchiness in vegetation structure can result in disparate 

abundance patterns at local versus regional scales. The scale at which measurements should be 

taken is a function of the ecological questions being asked (Seo et al. 2009). Failure to choose 

the appropriate scale for investigation may lead to misguided conclusions due to the mismatch 

between sample unit and the scale at which organisms interact with their environment (Wiens 

1989). Despite this, many studies are conducted at smaller spatial scales yet aim to transfer these 

local patterns to the larger landscape (Urban 2005). The degree to which population trends are 

consistent across spatial scales has rarely been examined (but see Holmes and Sherry 1988). 

 The capacity of climate envelope models for predicting the future of biodiversity has 

been questioned due to the mismatch between the scale of available data (i.e., global climate 

models) and the scales at which organisms experience their environment (Bernardo 2014). 

Climate stations are typically placed in open areas and often are separated by large distances 
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(Scherrer et al. 2011). Therefore they provide little insight into small-scale drivers of 

microclimate patterns – particularly under forest canopies. In heterogeneous environments, such 

as complex mountainous systems, considerable variability in local-scale climate (i.e., 

microclimate) can exist within a relatively small area (Potter et al. 2013b). Patterns in 

microclimate across forested mountain landscapes likely arise from a combination of elevation, 

microtopography, and vegetation structure, but the relative roles of these three factors in driving 

microclimate are not well known. 

The potential for local microclimate variability to influence species distribution patterns 

has largely been ignored (Potter et al. 2013b) due to both the logistical constraints in measuring 

temperature at fine resolutions over large spatial extents (Logan et al. 2013, Potter et al. 2013b) 

and the general assumption that factors other than climate are more dominant drivers at small 

spatial scales (Brown 1995, Boucher-Lalonde et al. 2014). However, local-scale variation in 

microclimate is hypothesized to provide potential ‘microrefugia’ for biodiversity (Ashcroft 2010). 

The broad goal of this thesis was to understand how spatial scale differences influenced 

the ecological patterns we observed in forested montane systems. I started by comparing the 

relative drivers of climatic variability at fine spatial scales (i.e., ‘microclimate’). I modeled 

microclimate patterns under forest canopy in complex terrain of the HJ Andrews Experimental 

Forest (HJAEF) in the western Cascade Mountains of Oregon, USA (Chapter 2). Next, I 

explored the influence of microclimate on local-scale occupancy dynamics of bird communities 

in the HJAEF (Chapter 3). Finally I examined the effects of spatial scale and imperfect 

detection on long-term avian population trends at local, landscape and regional scales 

surrounding the Hubbard Brook Experimental Forest (HBEF) in the White Mountains of New 

Hampshire, USA (Chapter 4).  

1. What drives patterns of understory microclimate variability in mountainous terrain? 

(Chapter 2)  

I collected temperature data at 183 sites across elevation and forest structure gradients in 

complex terrain of the HJAEF. The HJAEF is larger (6400-ha) and consists of a forest mosaic of 

plantations, old-growth, and mature forests. The dramatic nature of the terrain (very steep slopes 

and narrow valleys) creates temperature inversions due to cold-air pooling—a common 
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occurrence on the landscape (Daly et al. 2010). This combined variability in microtopography 

and vegetation structure in the HJAEF provided an excellent opportunity to examine patterns of 

microclimate. I used boosted regression trees, a novel machine learning approach, to test the 

relative influence of vegetation structure, microtopography, and elevation as drivers of 

microclimate. I also mapped fine-scale distributions of temperature across the landscape. If 

potential for microrefugia existed within the HJAEF, I expected to see areas on the landscape 

that remained relatively cooler (i.e., buffered sites).  

2. Can local microclimate variability influence distribution dynamics of forest birds? 

(Chapter 3)  

I tested whether site occupancy dynamics of the bird community were influenced by the 

high degree of microclimate variability at HJAEF that I observed in Chapter 2. I collected bird 

occurrence data in 2012 and 2013 at all 183 sites with fine-scale temperature measurements. I 

used dynamic occupancy models to test the effects of temperature on occupancy and apparent 

within-season bird movement while statistically accounting for vegetation effects and imperfect 

bird detection. 

3A. Are avian population trends consistent across scales?  (Chapter 4)  

To test population trend consistency, I estimated landscape-scale bird population trends 

from 1999-2012 for 38 species at the HBEF and compared them to both regional and local trends. 

HBEF is a 3160-ha bowl-shaped valley comprised of contiguous second-growth forest with a 

gradual transition from northern hardwood forest at lower elevations to softwood-dominated 

forests at upper elevations (elevation range 222 – 1015 m.a.s.l.). HBEF is relatively undisturbed, 

with no history of anthropogenic disturbance for a century (since 1915, (Holmes 2011), aside 

from small experimental watershed cuts in 1965 (Likens et al. 1970). In contrast, regional 

conditions are more fragmented, with higher levels of anthropogenic disturbance due to rural 

housing developments (Kluza et al. 2000) and timber harvest practices (Kittredge Jr et al. 2003). 

Three long-term datasets of avian population data were collected over the last 14 years at local 

(10-ha plot, (Holmes and Sherry 2001, Holmes 2011), landscape (3160-ha watershed, (Doran 

and Holmes 2005), and regional scales (Breeding bird survey data, (Sauer et al. 2014).  
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3B. Do detection biases affect trend estimates? (Chapter 4)  

Sampling techniques often introduce biases that can make inferences about populations 

problematic. Raw counts arise from a combination of two interrelated processes, the ecological 

(state) process and the observation process (Kéry 2011). Not accounting for such biases through 

study design and analysis can lead to biased estimates or a lack of power to detect important 

demographic patterns (Tyre et al. 2003, Guillera-Arroita et al. 2010). By not accounting for 

detection probability in estimating abundance trends, researchers risk missing trends (type I 

error) or identifying trends that are not real and due to changes in detection over time rather than 

abundance (type II error). To test the hypothesis that imperfect detection in bird sampling has the 

potential to bias trend estimates, I used a new method – open-population binomial mixture 

models (Kéry et al. 2005) – to estimate detection-corrected trends. 

3C. Can life history and ecological traits predict population trends? (Chapter 4)  

Finally, I tested for generalities in species responses by predicting population trends as a 

function of life history and ecological traits (Hansen and Urban 1992, Clark and Martin 2007). 

Life history characteristics govern a species’ capability to cope with environmental change 

therefore influencing the direction of population trends (Bennett and Owens 2002, Angert et al. 

2011). 

In the final section of my thesis (Chapter 5) I summarize findings from my work 

described above. I also address limitations and propose compelling new directions for future 

research. 
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2 UNDER-CANOPY TEMPERATURE PATTERNS IN A MOUNTAINOUS LANDSCAPE 

REVEAL BUFFERING CAPACITY OF VEGETATION STRUCTURE AND 
MICROTOPOGRAPHY 

 
 

2.1 ABSTRACT 

Climate envelope models predict widespread declines in biodiversity in the face of future 

climate change. However, there is a mismatch between these global climate models and the scale 

at which organisms experience their environment. Local-scale variation in microclimate is 

hypothesized to provide potential microrefugia for biodiversity, but the relative role of elevation, 

microtopography, and vegetation structure in driving microclimate is not well known. We 

sampled fine-scale air temperature data at 183 sites under the forest canopy in mountainous 

terrain (elevation range 410 – 1630 m.a.s.l.) to examine the relationship between site 

characteristics and six temperature variables commonly used to predict species distributions (e.g., 

mean/max/min, degree days, variability in temperature). We used boosted regression trees 

(BRTs) to examine the relative contribution of variables describing elevation, microtopography 

and vegetation structure at two spatial extents (25 and 250m). BRTs offered several advantages 

over traditional regression methods including the capacity to: 1) examine multiple variables 

without risk of over-fitting or collinearity, 2) handle non-linear relationships, and 3) allow 

interactions among variables. Elevation explained the most variation in temperature (mean ± SD 

= 63 ± 24.9%) across all response variables, but vegetation and microtopography were also 

important predictors (18.7 ± 15% and 18.3 ± 12.6% contributions respectively). Importantly, 

vegetation characteristics associated with older forest stands (e.g., taller canopies, with more 

complex vertical structure, and higher biomass) tended to mediate changes in temperature by 

providing an insulating effect – both buffering against warming during summer and against 

cooling during winter. For instance, maximum monthly temperatures observed in old-growth 

sites were 2.6°C (95% CI: 1.8 – 3.3°C) cooler than plantation sites during the spring-summer 

transition and minimum temperatures during winter months were 0.6°C (95% CI: 0.4 – 0.8°C) 

warmer in old-growth stands. Overall, the local scale (25-m radius) explained the majority of 

variation in temperature patterns; however the capacity of vegetation to buffer a site depended 

more on the vegetation structure at the 250-m scale. The importance of vegetation in mediating 

temperatures implies that forest management strategies to conserve old growth characteristics 
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have the potential to maintain microrefugia, thereby enhancing persistence of biodiversity in 

mountainous systems in a warming climate.  

 

2.2 INTRODUCTION 

Recent forecasts for the effects of climate change on biodiversity predict widespread 

extinctions (Thomas et al. 2004). However, most projections are based on climate envelope 

models, which relate species distributions to climate at large spatial scales averaging 104-fold 

coarser resolution than the extent of animal territories (Bernardo 2014) and do not take into 

account local microclimatic variability (Pearson and Dawson 2003, Storlie et al. 2014). For 

logistical reasons temperature is usually measured at broad spatial scales representing macro-

scale climate patterns. While macro-scale climate patterns are clearly important in determining 

range-wide suitability for biota, local-scale climate (hereafter microclimate) is often most 

relevant to animal behavior and demography (Potter et al. 2013b). Reconciling this mismatch 

between global climate models and the scale at which organisms experience their environment 

will improve our understanding of biodiversity responses to climate change (Wiens and Bachelet 

2010, Storlie et al. 2014). 

Generally climate models represent conditions found in the free air, which can differ 

substantially from the surface level (Pepin and Losleben 2002). It is widely known that, due to 

adiabatic lapse rates, altitude increases tend to be associated with cooler air temperatures. 

However, in mountainous terrain, processes such as cold air pooling and differences in 

topography can cause this relationship to break down (Dobrowski et al. 2009, Daly et al. 2010), 

resulting in highly variable, fine-scale spatial and temporal patterns in temperature. The 

decoupling of the surface temperature conditions from those of the free air is attributed to two 

main factors in mountainous areas: 1) local air-flow dynamics such as cold air drainage and 

pooling, and 2) variations in slope and aspect (i.e., microtopography; Dobrowski 2010). 

Vegetation structure can also interact with these abiotic factors to produce further variability in 

microclimatic conditions. However, the relative strength of each of these factors is not well 

understood (Fridley 2009, Vanwalleghem and Meentemeyer 2009) and potentially scale 

dependent (Wiens and Bachelet 2010). 
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 Understanding the patterns and drivers of microclimate is required for predicting how 

species will respond to climate change in areas of heterogeneous topography and vegetation 

cover. Identification of areas on the landscape that may contain microrefugia will help focus 

conservation efforts of these areas and could lessen the impacts on biodiversity (Moritz and 

Agudo 2013). Mountains are identified as ideal locations for the existence and preservation of 

microrefugia due to their inherent heterogeneity at fine spatial scales (Luoto and Heikkinen 

2008). These regions are also commonly biodiversity hotspots (Myers et al. 2000), perhaps partly 

due to the presence of such microrefugia (Botkin et al. 2007). In mountains, climate-sensitive 

species may have the potential to readily disperse to, and persist in small pockets of favorable 

microclimatic conditions (Sunday et al. 2014). In contrast, topographically homogeneous regions 

usually have consistent temperature patterns and require that individuals disperse farther to reach 

conditions present in their climate envelope (Loarie et al. 2009, Moritz and Agudo 2013). 

In addition to microtopography, vegetation structure and composition can also vary 

dramatically over short distances due to disturbance, management history, and enduring features 

of a site (e.g., geology, soils). Vegetation has the potential to influence microclimatic patterns 

through solar radiation, wind exposure, interception of precipitation and retention of understory 

humidity (Oke et al. 1989). However, since most climate stations are placed in open areas, there 

is surprisingly little previous research on the influence of vegetation on local microclimates (but 

see Chen et al. 1993, Vanwalleghem and Meentemeyer 2009, Suggitt et al. 2011, Ewers and 

Banks-Leite 2013, Hardwick et al. 2015). To our knowledge, no existing studies have considered 

the relative influence of microtopography and vegetation structure in mediating microclimate. 

If particular characteristics of vegetation structure can mediate the effects of regional 

climate change, human land use has the potential to amplify or buffer the effects of regional 

warming on biodiversity (Chen et al. 1999, De Frenne et al. 2013). In particular, vegetation 

characteristics and/or structures (e.g., canopy complexity, forest age, etc.) might sustain thermal 

conditions under which species persist (Oliver et al. 2010, De Frenne et al. 2013). For example, 

structural characteristics present in mature and old growth forests, such as taller and more 

variable canopies (Copeland et al. 1996), may increase the buffering capacity of a site. 

Alternatively, the closed canopy conditions of managed plantations could prevent rapid site-level 

warming, thereby moderating climate (Oke et al. 1989). However, if elevation and/or 
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microtopography are more influential in determining the spatial variability of air temperatures at 

fine spatial scales, fewer management opportunities are available. 

Traditional approaches to temperature modeling typically use straightforward regression 

methods to determine the most important variables (Li et al. 2014). However, the assumption of 

linearity in response variables and the risk of overfitting limits the use of these approaches for 

examining the relative importance of microclimate drivers. Spatial interpolation is also limited in 

that it provides little information about the underlying processes and tends to perform poorly in 

complex terrain (Yao et al. 2013). Machine learning approaches such as boosted regression trees 

(BRTs) allow examination of a large number of predictor variables with built-in methods to 

eliminate overfitting (Elith et al. 2008). Machine learning also allows more flexible modeling 

interactions and non-linearities which one would expect for many ecological relationships (Elith 

et al. 2008). 

Microclimate patterns may result from factors at multiple spatial scales (Dobrowski et al. 

2009, Scherrer et al. 2011). The elevation and vegetation structure at a location are likely to 

influence its microclimate, but features in the surrounding area may also play a role. 

Topographic context within the broader landscape may influence microclimate by sheltering a 

site or through cold-air drainage (Daly et al. 2010, Dobrowski 2010). Effects of vegetation cover 

on microclimate can also extend for some distance (Chen et al. 1993, Baker et al. 2014) 

suggesting that vegetation adjacent to sites may also be important. 

To better understand the variation in air temperature which drives habitat selection and 

phenology for many taxa, we collected understory air temperatures at high spatial resolution 

across a complex mountainous landscape at the H. J. Andrews Experimental Forest, Oregon, 

USA. We asked: 1) How much variation in surface air temperature can be explained by elevation, 

microtopography, and vegetation cover?; 2) Which of these variables are most important and 

what are their relative influences?; and 3) At what spatial and temporal scales are these drivers 

creating or influencing microclimates? Finally, we tested a new method for the spatial modeling 

of microrefugia at broad spatial scales. 
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2.3 METHODS 

We collected fine-scale temperature data across the 6400-ha H. J. Andrews Experimental 

Forest (HJAEF) located in the Cascade Mountains of central Oregon, USA (44°12′ N, 122°15′ 

W). The HJAEF spans an elevational gradient from 410-1630 m.a.s.l. It is a forest mosaic 

composed of a mix of old-growth forests, mature forests, ~60-yr old Douglas-fir (Pseudotsuga 

menzisii) plantations, alpine meadows, sitka alder (Alnus viridis), red alder (Alnus rubra), and/or 

vine maple (Acer circinatum) shrub fields, and landslides. We placed temperature sensors at 183 

locations across the entire study area. Our sample locations were set up as part of a multi-trophic 

study investigating the effects of climate on phenology of plants, insects, and birds. These 

locations were stratified across elevation, forest type, and distance to roads to ensure that the full 

environmental gradient was sampled (Fig. 1) with a minimum distance between sampling points 

of 300m. Sample points were categorized as transect, trail, or road. Transect points were selected 

by placing a random grid of points across a portion of the watershed using GIS. Individual 

transects were spaced 600m apart and points within each transect were placed 300m apart. Trail 

points were placed randomly along existing and abandoned trails at 300-m intervals using GIS. 

Selection of road points was a two-step process. First, points were placed randomly along 

maintained and abandoned gravel roads at 600-m intervals using Hawth’s tools (Beyer 2004) in 

ArcGIS (ESRI 2011). Finally, from each of these starting points we chose a random direction 

and distance from the road (0, 50, or 100m).  

 At the majority of the sites (n=167) we used HOBO pendant data loggers (Onset HOBO 

Pendant Temperature/Light Data Logger 64K, model UA-002-64 [Fig. S1], see Appendix 1 for 

deployment of temperature sensors). At 16 sites we employed HOBO water temperature data 

loggers (Onset HOBO Water Temperature Pro v2 Data Logger, model U22-001). All units were 

calibrated using both 20.3°C hot water and 0°C cold ice-water baths prior to deployment.  

 We collected air temperature data at all 183 sample locations from Jan 2012 – July 2013. 

Occasional malfunctioning units and seasonal snow cover created gaps in our dataset. 

Additionally, extreme anomalous values were occasionally produced by the units. To address 

these issues in the dataset, we processed (i.e., cleaned, flagged, pruned, and filled; see Appendix 
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2 for details) the temperature data before any analyses were performed. In total we used 

7,417,320 temperature loggings to calculate summary metrics.  

2.3.1 Environmental predictor variables 

All environmental variables were derived from GIS layers available for the Andrews 

Forest. We included a total of 19 predictor variables to model temperature metrics (see Appendix 

3 for a complete list of predictor variables used in the models). We selected variables that we 

hypothesized to be important for influencing air temperatures in forested mountain landscapes 

and categorized these into three main categories: 1) elevational (ELV), 2) microtopographic 

(TOPO), and 3) vegetation (VEG).  

 The ELV category consisted of the mean elevation at each of two spatial scales (25-m, 

and 250-m; see “Spatial scale” below). The TOPO category included predictors that represent 

variability in elevation, slope, aspect, and a topographic index that describes the relative position 

of the sample point in relation to the surrounding area at the two spatial scales (25 and 250-m). 

This was calculated by subtracting the mean elevation within both radii from the elevation value 

at the sample point (after Daly et al. 2010). Negative numbers indicate that a point is lower than 

the surrounding area and positive numbers indicate the reverse. The VEG category variables 

described vegetation structure using metrics relating to: 1) canopy height, 2) cover at multiple 

strata, and 3) vertical distribution of canopy elements. 

 We derived all vegetation variables from Light detection and ranging (LiDAR) data 

collected at the Andrews Forest in August of 2008 during the leaf-on period (Watershed Sciences 

2008). LiDAR is a relatively new technology that allows for fine-scale mapping of forest 

structure across broad spatial extents (Lefsky et al. 1999, Means et al. 2000). Variables derived 

from the LiDAR dataset include: 1) Canopy height (CH), 2) % cover mid-canopy (2-10m) and 

upper canopy (>10m), 3) Biomass, 4) Coefficient of variation in canopy height, 5) Height of 

median return (HOME) and 6) Vertical distribution ratio (VDR). HOME describes the height at 

which the bulk of the canopy exists (Goetz et al. 2010). VDR is an index of vertical distribution 

of intercepted canopy components (Goetz et al. 2010). It is calculated as follows: [CH – 

HOME]/CH. Lower VDR values represent a shorter distance between CH and HOME, indicating 

a larger understory canopy component (Goetz et al. 2010). We used Principle Component 
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Analyses (see PCA methods below) to examine the association of these vegetation characteristics 

with old-growth forest sites and even-aged plantation sites which represent the predominant 

forest management technique in the region.  

2.3.2 Spatial and temporal scales 

Regional climate data are typically collected at coarse resolutions, although the scale at 

which drivers of microclimate act is largely unknown (Bernardo 2014). We assessed the 

importance of the predictor variables at two spatial extents around each sample point: 1) 25-m 

radius that represents site- or stand-level predictors and 3) 250-m radius that represents both 

local and landscape conditions surrounding the site. The relative roles of biotic and abiotic 

aspects of the environment could influence microclimates differently at these two spatial scales 

(Wiens and Bachelet 2010). 

2.3.3 Response variables 

Our response variables were: 1) Cumulative degree days >0°C January – March 

(CDD0JM), 2) CDD >0°C April – June (CDD0AJ), 3) CDD >10°C April – June (CDD0AJ), 4) 

Standard deviation (SD) of weekly temperature January – March (SDwTJM), 5) SD of weekly 

temperature April – June (SDwTAJ), 6) Mean monthly mean temperature April – June 

(MnMoMeanAJ), 7) Mean monthly maximum temperature April – June (MnMoMaxAJ), 8) 

Mean monthly minimum temperature April – June (MnMoMinAJ), 9) Maximum temperature of 

the warmest month (MxTWM, 2012 only), and 10) Minimum temperature of the coldest month 

(MiTCM, 2012 only). We chose the two time periods of January – March (winter) and April – 

June (spring) because they are relevant to phenology of many organisms on our landscape. CDD 

are linked closely to timing of spring plant bud burst, leaf out, and flowering as well as insect 

emergence, and therefore have potential to influence higher trophic levels (Both et al. 2009a). In 

temperate regions, such as in Oregon, phenological events during spring also have direct 

implications for reproduction and growth in both plants and animals. Further, Daly et al. (2010) 

found that cold-air pools are more persistent in winter than in spring and summer when there is 

more energy and more consistent mixing of the vertical air profile. The variability in weekly 

temperature in both time periods (as measured by standard deviation [SD]) may also determine 
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the quality of sites by affecting its temperature stability (Stralberg et al. 2009, Dunstan et al. 

2012). 

2.3.4 Statistical analysis – Boosted Regression Trees 

We used a machine learning approach (BRTs) to explore the relationship between our 

suite of predictor variables and air temperature at our 183 sample locations. BRTs have recently 

been used extensively in species distribution modeling due to their capacity for uncovering non-

linear relationships between predictors and response variables as well as flexibility in testing 

interactions among predictors (Elith et al. 2008). BRTs can also handle large numbers of 

predictor variables and collinearity between them (Elith et al. 2008), which is advantageous in 

studies such as ours where there are many categorized predictor variables, but little prior 

information about which are most important or at which spatial scales. This modeling method 

allowed us the flexibility needed to explore multiple potential correlates of microclimate without 

arbitrarily restricting our predictor set. 

 We used program R (R Development Core Team 2011) version 3.0.1 in combination with 

the ‘dismo’ package version 0.8-17 (Hijmans et al. 2013) for all analyses. When using BRTs, 

there are settings for tree complexity, learning rate, and bag fraction. Tree complexity determines 

the number of interactions fitted in the modeling process. Learning rate (also known as the 

shrinkage parameter) controls the contribution of each tree added to the model. Reducing the 

learning rate will increase the number of trees used in the model. Bag fraction determines the 

number of observations used for the training set (without replacement) for each tree fitted. This 

adds a stochastic component to the modeling process, which improves model performance by 

reducing variance in the final model. We used the following default settings for each of our BRT 

models: tree complexity = 5, learning rate = 0.01, bag fraction = 0.75. We chose a bag fraction 

on the upper end of the suggested range (0.5 – 0.75) because of the relatively small number of 

sites in our dataset. When these settings did not result in 1000 or more trees, we decreased the 

learning rate incrementally until 1000 or more trees were obtained (following Elith et al. 2008; 

See Appendix 4 for model settings and diagnostics). 

 We used the function ‘gbm.step’ which has a built in 10-fold cross-validation to 

determine the ideal number of trees (Elith and Leathwick 2014). Predictive deviance is measured 
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as the mean deviance from the held-out data in all folds. We used this as our primary measure of 

model performance. Deviance is a likelihood-based metric that describes the loss in predictive 

performance as a result of a suboptimal model and is relative to the scale of the response variable 

and therefore not directly comparable between temperature metrics. We also tested the 

correlation between predicted and observed temperature metrics using 10% independent ‘test’ 

data. These tests thus represent an entirely independent test of model performance. If overfitting 

occurred, these tests should show low correlations between predicted and observed values. 

 We assessed the contribution of each category of predictor variables (ELV, TOPO, VEG) 

to explained variance in temperature metrics by summing the relative importance (RI) values of 

the variables in each category. Relative importance values are based on the frequency that a 

predictor variable is chosen for splitting (weighted by the squared improvement to the model) 

while growing trees. Non-informative predictors have minimal influence on prediction (Elith et 

al. 2008). To determine the direction and nature of the relationships between the temperature 

metrics and the most influential individual predictor variables (>2% RI), we examined the partial 

dependence plots for visualization of the fitted functions. Partial dependence plots show the 

effect of a predictor variable on the temperature response after the average effects of all other 

variables have been accounted for (Elith et al. 2008). We created a predicted spatial map for each 

temperature metric using the final BRT models and raster layers for each predictor variable. 

Finally, we identified important interactions between predictors. 

 Spatial autocorrelation is a common attribute of most ecological datasets (Legendre 

1993), particularly those characterized by broad-scale environmental gradients. In order to test 

whether spatial autocorrelation was present in our dataset we calculated Moran’s I on the 

residuals for each BRT model using the correlog function in the ‘ncf’ package in R (Bjornstad 

2013). We chose an interval of 500m and resampled 1000 times. We report these values (which 

vary between -1 and 1) along with their associated P-values. 

2.3.5 Statistical analysis – Principal Component Analysis 

We performed a principal component analysis (PCA) on all of our LiDAR-derived 

vegetation variables at the 25-m scale (19 variables, Appendix 4) to test if we could reliably 

differentiate between plantations and older forests. This also aided in determining whether our 
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vegetation structure variables captured the gradient in forest structure present across the 

landscape, which then facilitated our interpretation of their individual effects on the microclimate 

variables. A weakness of BRTs is that they do not produce effect sizes that can be easily related 

to differences in response variables (here ºC or degree days). Therefore, we used generalized 

linear models (GLMs) to examine the relationship between PC1 values (gradient in forest 

structure) and temperature metrics. In this fashion, we were able to quantify differences in 

temperature across the range of variability in forest structure (PC1). 

 

2.4 RESULTS 

2.4.1 Model performance & spatial autocorrelation 

All models performed very well when tested on independent data; low deviance values 

indicated minimal differences between modeled and observed values (Appendix 4). The cross-

validation correlations were high showing high congruence between training and test data (2012 

mean ± SD [range] r = 0.87 ± 0.09 [0.69 – 0.98]; 2013 mean r = 0.87 ± 0.10 [0.69 – 0.96], 

Appendix 4). Further, there was no evidence of spatial autocorrelation in our model residuals; the 

Moran’s I values were all small (mean ± SD [range] across all models = -0.01 ± 0.007 [-0.026 – 

0.003], Appendix 4 and none were statistically significant (mean ± SD [range] of P-value for all 

models = 0.20 ± 0.05 [0.14 – 0.28], Appendix 4). This indicates that after modeling temperature 

using our predictors, no variance remained to be explained by spatial structure (Legendre 1993). 

2.4.2 General temperature patterns 

As expected, elevation had a large relative influence (63 ± 24.9%) on patterns in fine-

scale air temperature, but for many temperature metrics, vegetation and microtopography had a 

major effect (18.7 ± 15% and 18.3 ± 12.6%, respectively; Fig. 2). Elevation was the dominant 

predictor for the majority of our temperature metrics: CDD0AJ (2012: 84.9%, 2013: 87.5%), 

CDD10AJ (2012: 64.9%, 2013: 70.6%), MnMoMeanAJ (2012: 86.2%, 2013: 88%), 

MnMoMaxAJ (2012: 67%, 2013: 71%), MnMoMinAJ (2012: 77%, 2013: 68%), and MiTCM 

(2012: 92.9%). 

 For the remainder of the temperature metrics (2012: 4/10 temperature metrics, 2013: 2/8 

metrics), elevation was less important than vegetation and microtopography combined. In 2012, 



! 17 
vegetation structure showed the largest influence on variability in weekly temperature from April 

to June (SDwTAJ: 36.7%) and maximum temperature of the warmest month (MxTWM: 35.5%). 

Vegetation structure was also an important predictor of our winter temperature variability metric 

(SDwTJM 2012: 28.9%, 2013: 31.6%) and cumulative degree days during winter (CDD0JM 

2012: 31.2%, 2013: 34.3%). Vegetation was also important for maximum temperature of the 

warmest month in 2012 (MxTWM 35.5%). Topographic features were more important than 

elevation for CDD0JM in both years (2012: 45.9%, 2013: 53.9%) but surprisingly had little 

importance on cumulative degree days in the spring and summer months (2012: 9.0%, 2013: 

7.0%). The maximum temperature of the warmest month in 2012 similarly had a large 

microtopographic component (37.9%). 

2.4.3 Variable-specific results 

Cumulative degree days >0°C from January to March – In both years, topographic 

variables had the highest relative influence values (2012: 45.9%, 2013: 53.9%), followed by 

vegetation (2012: 31.2%, 2013: 34.3%, Figs. 2 & 3A). The overall patterns were nearly identical 

in both years. As with all temperature metrics we investigated, elevation explained at least some 

of the variation in CDD0JM (�RI at both scales [unless otherwise indicated, all % values are RI 

summed across both scales] – 2012: 23%, 2013: 11.9%, Fig. 2). Overall, higher elevations had 

fewer CDD0JM. Larger ranges in elevation at a site (Fig. 4A; 2012: 17.9%, 2013: 24.6%), more 

exposed topographic position (Fig. 4B; 2012: 6.8%, 2013: 8%), and steeper slopes (2012: 7.2%, 

2013: 8.4%) all led to increases in CDD0JM. Additionally, intermediate slope variability (2012: 

5.6%, 2013: 3.2%) and northern exposure (2012: 3.2%, 2013: 3.7%) decreased CDD0JM. 

However, dense forest cover can accentuate the effect of topographic position (Fig. 5A). 

Exposed sites with low variability in biomass (e.g., plantation stands) accumulated the most 

degree days (interaction strength = 0.68). 

 Cumulative degree days >0°C and >10°C from April to June – In both 2012 and 2013, 

elevation was identified as the main apparent driver of both CDD0AJ (Figs. 2 & 3B; 2012: 

85.7%, 2013: 88.1%) and CDD10AJ (Figs. 2 & 3C; 2012: 65.9%, 2013: 70.2%). Higher 

elevations showed lower CDD0AJ and CDD10AJ, and there appeared to be a threshold of 

1000m at the local scale after which CDD0AJ remained low and constant. There was a larger 
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topographical influence on CDD10AJ (Figs. 2 & 3C; 2012: 20.5%, 2013: 18.2%). A wider 

elevation range in the surrounding area (2012: 7.7%, 2013: 6.7%), more exposure (2012: 3.2%, 

2013: 2.4%), and steeper slopes (2012: 3.2%, 2013: 2.6%) all increased CDD10AJ. 

 Variation in mean weekly temperature – A) January to March – The variability in weekly 

temperature from January to March (SDwTJM) was similar in both years. On average, mean 

weekly temperatures across the Andrews Forest varied 1.6°C (0.8 – 2.7°C) in 2012 and 2.6°C in 

2013 (from 1.2 to 3.6°C). However, the effect of elevation on variation in mean weekly 

temperature was not consistent in the two years (Fig. 6). In 2012, the lowest elevations varied 

least, and above ~1000m, variability was maximized (Fig. 6A). In 2013 contrarily, higher 

elevations (above ~1000m) were less variable (Fig. 6A), particularly if they had low topographic 

exposure (i.e., located in valleys or depressions; Fig. 5B; interaction strength = 1.34). We 

observed similar patterns in topographic influence in both years (2012: 24%, 2013: 28.6%); more 

exposed areas (Fig. 4C, 2012: 8.2%, 2013: 11.6%), sites with larger ranges in elevation (2012: 

5%, 2013: 6.3%), and steeper slopes (2012: 2.6%, 2013: 1.8%) showed more variable 

temperatures than sites in low topographic positions during the late winter/early spring. In 2012, 

north-facing slopes appeared to be more stable (2.6%). Vegetation effects were also similar 

between years; old forest traits including higher relative variation in canopy cover (Fig. 7A; 

2012: 6.7%, 2013: 8.7%) and more mid-canopy cover (2-10m; 2012: 4.2%, 2013: 3.1%) both 

reduced variability in mean weekly temperature. In 2013, areas with the lowest biomass 

variability (e.g., even-aged stands such as plantations; Fig. 8) showed more variability (Fig. 7B; 

5.4%). 

 Variation in mean weekly temperature – B) April to June – Standard deviation in mean 

weekly temperature from April to June (SDwTAJ) was quite different between years (Figs. 2 & 

4). The main difference was in the category of predictor variables that had the highest relative 

influence; in 2012, vegetation was most important (2012: 36.7%, 2013: 10.2%) and in 2013, 

elevation explained the majority of the variation (2012: 45.5%, 2013: 79.2%) in SDwTAJ. The 

effect direction of elevation also differed in the two years with high elevations being less 

variable in 2012 and more variable in 2013 (Fig. 4). In both years, topographically protected 

areas (low topographic exposure; 2012: 3.6%, 2013: 4.7%) were least variable. The overall 
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amount of variability was slightly higher in 2013 (2012 mean [range] = 3.78°C [3.34 – 4.53°C]; 

2013 = 4.86°C [4.20 – 5.54°C], Fig. 9). 

Mean monthly mean temperature from April to June –In both years, mean temperatures 

during the spring-summer transition were largely a function of elevation (2012: 49.7%, 2013: 

66%); MnMoMeanAJ was cooler with increasing elevation, but showed a threshold at 1000m 

(Fig 10A). The relationship between elevation and MnMoMeanAJ was more gradual at the broad 

spatial scale (2012: 36.5%, 2013: 22%). Elevation range (microtopographic) was also influential 

for MnMoMeanAJ (2012: 2.2%, 2013: 1.4%), with local sites with wider ranges in elevation 

(and likely steeper slopes) were warmer. 

Mean monthly maximum temperature from April to June –Increasing elevation decreased 

MnMoMaxAJ more or less linearly and was more important at the local scale (2012: 42%, 2013: 

52.6%; Fig. 10B). Increasing canopy cover >10m (2012: 3.0%, 2013: 2.8%), higher VDR values 

(2012: 2.2%, 2013: 2.9%), and biomass >500 Mg/ha (2012: 2.1%, 2013: 2.1%) lowered 

MnMoMaxAJ. East- (2012: 2.1%, 2013: 1.3%) and north-facing slopes (2012: 1.8%, 2013: 

1.6%) had lower maximum temperatures. A vegetation-elevation interaction revealed that 

MnMoMaxAJ was lowest at high elevations with high amounts of canopy cover surrounding a 

site (250-m radius, Fig. 5C). 

Mean monthly minimum temperature from April to June – MnMoMinAJ was higher at 

lower elevations with more influence at the finer spatial scale (2012: 48.8%, 2013: 40.3%; Fig. 

10C). At the broad spatial scale, elevation was less effective in lowering minimum temperatures 

below ~1000m (2012: 28.7%, 2013: 27.6%). MnMoMinAJ dropped sharply from it’s highest to 

lowest values at a VDR value of ~0.5, indicating a potential threshold (2012: 3.9%, 2013: 7.1%). 

In 2013, more canopy cover >10m increased MnMoMinAJ (2012: 1.3%, 2013: 2.2%). Minimum 

temperatures did not get as low at sites with more dramatic elevation ranges over a small area 

(local scale; 2012: 2.5%, 2013: 2.5%) and in steeper landscapes (broad scale; 2012: 1.7%, 2013: 

2.2%).!An interaction between elevation and microtopography indicated that high elevation sites 

in areas of gentle slopes had the lowest minimum temperatures in April-June (Fig. 5D). 

Maximum temperature of the warmest month (2012) – Monthly temperatures during the 

warmest part of 2012 were on average 25.2°C and could range from 20 – 33.1°C depending on 
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position within the landscape (Fig. 11). There was a large vegetation and microtopography 

influence on MxTWM (Fig 2A). Overall, higher elevations (26.7%), north (18.9%; Fig 4D) and 

east-facing (6.6%) aspects, and gentle slopes (4.3%) showed lower MxTWM. Forest areas with 

less of an understory canopy component (7.5%) showed increased MxTWM. Old forest 

characteristics (Fig. 8) such as more canopy cover >10m (5.1%) and taller canopies (6.6%) 

reduced MxTWM. 

Minimum temperature of the coldest month (2012) – Elevation was the main apparent 

driver for MiTCM (93.3%); higher elevations showed lower MiTCM (Fig. 11). At both spatial 

scales, as elevation increased the MiTCM decreased, more or less linearly. Although decreases 

were generally seen between 800-1000m, which was scale dependent.  

2.4.4 Principal Component Analysis 

The first two principal components of the PCA explained 74.7% of the variability in our 

forest structure variables (PC1 = 44.7%, PC2 = 30%, Fig. 8, Appendix 5). PC1 described the 

gradient in forest structure from plantation to mature and old-growth forests (Figs. 8 & 12). Sites 

with low PC1 values had less biomass (mean and SD), lower canopies (mean and SD), less cover 

2-10 and >10m, higher variability in cover 2-10 and >10m, higher HOME values, lower CV in 

canopy height, and lower VDR (Appendix 5). The most influential variables were mean biomass, 

mean canopy height, and HOME (contributions ~0.4), followed by SD of biomass and canopy 

height and mean cover >10m (contributions ~0.3; Appendix 5). 

 Based on our results demonstrating the dominant role of elevation in determining fine-

scale temperature patterns, we included elevation as a predictor in our linear regression models 

testing the influence of PC1. This is a more conservative approach because we could determine 

the effect of our vegetation structure gradient after accounting for the large elevation-based 

variability in temperature patterns. We found that for 7/10 temperature metrics in 2012 and 5/8 

metrics in 2013, PC1 had a significant effect (Table 1) even after controlling for elevation. 

Effects were largest for temperature extremes (minimums and maximums) and cumulative 

degree days in the spring and summer months for both years (Table 1). Temperature differences 

were substantial across the gradient in forest structure: maximum monthly temperatures observed 

in old-growth sites in 2012 were 2.6°C (95% CI: 1.8 – 3.3°C) cooler than plantation sites during 
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the spring-summer transition (Fig. 12A, Table 1) and minimum temperatures during winter 

months were 0.6°C (95% CI: 0.4 – 0.8°C) warmer in old-growth stands (Fig. 12B, Table 1).  

2.4.5 Scale effects 

In both years, the local scale (25-m radius) comprised the majority of the relative 

influence for most temperature metrics (overall average RI of local scale [25m] across all metrics 

– 2012: 60.7 ± 10%, 2013: 62.3 ± 9.5%, Fig. 13). However, vegetation metrics tended to be more 

influential at the broad spatial scale (Fig. 13C & F). 

2.4.6 Temporal consistency 

The number of degree days that a site accumulated showed a very consistent pattern from 

year-to-year during both winter and spring-summer periods (Fig. 10 A-C; CDD0JM r2 = 0.84, P 

< 0.0001; CDD0AJ r2 = 0.99, P < 0.0001; CDD10AJ r2 = 0.98, P < 0.0001) despite warmer 

overall temperature in much of 2013 (Fig. 9). However, variability in temperature during key 

periods of the year showed less consistency. Variability in temperature from January – March 

was the only temperature variable that was not significantly correlated in both years (Fig. 9D; 

SDwTJM r2 = 0.01, P = 0.18). Variation in temperature from April – June was significantly and 

positively correlated between the years, however the correlation was weaker in comparison to the 

majority of the temperature metrics we investigated (Fig. 9E; SDwTAJ r2 = 0.56, P < 0.0001). 

The mean monthly mean (r2 = 0.99, P < 0.0001), maximum (r2 = 0.97, P < 0.0001), and 

minimum (r2 = 0.98, P < 0.0001) temperatures from April – June were all highly significantly 

and positively correlated between the years (Fig. 9F-H). Overall, 2013 was warmer (Fig. 9). The 

difference between years was significant for all metrics based on Welch two-sample t-tests 

(Appendix 6). 

 

2.5 DISCUSSION 

As would be expected due to adiabatic lapse rate alone, elevation was the most powerful 

predictor of air temperatures across years, variables, and scales. Higher elevations were typically 

cooler across both seasons. For example, the minimum monthly winter temperatures were almost 

exclusively a function of elevation. Our results are consistent with other data that show a 

relatively large role of elevation in fine-scale temperature patterns (Vanwalleghem and 
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Meentemeyer 2009, Dobrowski 2010). However, for four of ten temperature variables in 2012 

and two of eight in 2013, the combined effects of microtopography and vegetation were greater 

than for elevation. Elevation predicted the most general temperature metrics well, but seemed to 

have less of an influence on the variables characterizing variability in temperature, and early-

season degree day accumulation which are both likely to be important in determining the 

conditions experienced by organisms and in influencing their fitness (Bernardo 2014). 

 Vegetation had a strong effect on fine-scale temperature patterns in our system, equal to 

that of microtopography. On average, nearly 20% of the variation in temperature patterns was 

attributable to vegetation; this was consistent in both years. Vegetation characteristics associated 

with older forest stands (Fig. 6) appeared to mediate changes in temperature by providing a 

buffering effect. Taller stands with more complex vertical structure and higher biomass tended to 

be both warmer during winter months and cooler during summer months; open areas and stands 

with shorter canopies were colder in the winter and warmer in summer. This insulating effect 

resulted in differences as large as 3°C between plantations and old-growth sites (Fig. 12, Table 

1). Other studies are congruent with vegetation influences on microclimate. However, the 

majority of these show differences between dramatically different vegetation types such as forest 

and grassland (Suggitt et al. 2011) or forest and young plantations (Chen et al. 1993, Baker et al. 

2014, Hardwick et al. 2015). Forest patch size can generate different microclimates in montane 

landscapes (Vanwalleghem and Meentemeyer 2009) and tropical systems (Ewers and Banks-

Leite 2013). To our knowledge, this is the first time that fine-scale differences across seral stages 

– particularly the importance of old-growth structure – have been shown to mediate temperature 

regimes. We observed mean monthly differences of several degrees when comparing >60 year 

old plantations with old-growth forest stands. 

 Microtopographic variables including slope, aspect, and relative topographic position 

(valley vs. topographically exposed sites) influenced temperature patterns. North- and east-facing 

sites and gentler slopes were associated with cooler temperatures during both summer and winter. 

Sites with more exposure (higher topographic position than its surroundings) and steeper slopes 

were typically warmer during spring/summer months. Depressions and other topographically-

sheltered areas are thought to contribute to the decoupling of surface temperatures from regional 

patterns thereby potentially generating microrefugia in complex terrain (Dobrowski 2010). Our 
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findings at the Andrews Forest are consistent with these patterns; topography creates potential 

microrefugia with sheltered sites generally being cooler in summer and warmer in winter. 

 Overall, the local scale (25-m radius) explained the majority of variation in temperature 

patterns suggesting that factors at the immediate site are critical determinates of microclimate 

conditions (Fig. 13). However, the capacity of vegetation to buffer a site against changes in 

temperature depended more on the vegetation structure at larger scales (250-m radius). Other 

studies have shown that edge effects on microclimate can extend well into forest patches (Baker 

et al. 2014) and that smaller forest patches tend to be more susceptible to changes in temperature 

(Vanwalleghem and Meentemeyer 2009). Chen et al. (1993) showed that microclimate 

characteristics between old-growth Douglas-fir forests and clear cuts differ markedly, with 

forests areas always being cooler during the growing season, and edges showing the higher 

variability than the interior. Such edge effects also limit microclimatic buffering of tropical 

forests (Ewers and Banks-Leite 2013).  

 Our results suggest that effects of topography and vegetation on local microclimate are 

greater during periods of high variation in temperature. When there is little temporal variation in 

temperature, variation is primarily explained by elevation (Anderson et al. 2007; Fig. 2). This 

indicates that the roles of complex vegetation and topography in microclimatic buffering may be 

more important during relatively extreme conditions. We found that predictors of temperature 

patterns were largely consistent despite substantial differences in overall temperature regimes 

between the two years (Fig. 9). Temperature metrics representing variability were less consistent 

between years than metrics such as cumulative degree days and mean monthly temperatures. 

General consistency in our microclimate results with other studies (Chen et al. 1993, 

Vanwalleghem and Meentemeyer 2009, Ewers and Banks-Leite 2013) suggests that our findings 

may be broadly relevant in other systems. However, an important caution, since many organisms 

experience temperature at heights other than those monitored by our 1.5-m height sensors, is that 

it is possible that additional microclimatic variability exists either above or below our sensors 

(Bernardo 2014). 

 Finally, our results demonstrate that BRTs offer a powerful new approach to examining 

microclimate drivers. BRTs allowed comparisons of large numbers of independent variables and 
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models predicted independent data extremely well. Interactions among variables were common 

(Fig. 5) and would not have been detectable using traditional regression approaches. This 

machine learning approach (Elith et al. 2008) thus represents a promising option for 

distinguishing relative importance of complex climate drivers and generating detailed spatial 

climate predictions.  

2.5.1 Management implications 

We showed that vegetation metrics associated with older forest such as dense canopy 

structures, tall canopies, and high vertical complexity (Fig. 8) provided cooler microclimates 

than simpler forest stands. Management practices that open forest canopies or create even-aged 

stands such as plantations (Franklin et al. 2002, Odion and Sarr 2007) are likely to reduce the 

buffering capacity of forest sites, thereby limiting access to favorable microclimates. Climate 

warming is expected to lead to widespread loss of cool-adapted species from communities (De 

Frenne et al. 2013). Conserving old-growth forest and avoiding shifts to simpler forest types such 

as plantations is likely to help sustain favorable microclimates. Recent work shows that the 

understory microclimate differences we document here could be highly relevant to biodiversity 

conservation. De Frenne et al. (2013) found that widespread loss of cool-adapted understory 

plant species was attenuated in sites with dense forest canopies. This was hypothesized to be due 

to such stands maintaining cooler and more favorable microclimates within regions that had 

warmed over the long term. Also, germination rates for heat-sensitive plant species are typically 

higher under dense canopies (von Arx et al. 2013). Amphibians, lizards and insects are all shown 

to take advantage of microclimate conditions when regional climate moves beyond the range of 

thermal preferences (Scheffers et al. 2013, Sunday et al. 2014). Even large mammals such as elk 

appear to use favorable microclimates to maintain higher body condition (Long et al. 2014). 

However, since older seral stages provide the highest levels of buffering, management options 

may be limited for species inhabiting early successional forest, unless they are able to take 

advantage of the microclimatic buffering of older forests or cooler microclimates near old forest 

(Baker et al. 2014). Since the vegetation structure within 250m was important in microclimatic 

buffering, limiting forest fragmentation by sustaining large forest patches and minimizing edges 

may be an important conservation consideration. 
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2.5.2 Conclusions 

Although elevation was a major predictor of fine-scale air temperatures on the Andrews 

Forest landscape, vegetation and topography played critical roles in microclimate patterns. Older 

forest stands with taller overstories and more complex vertical structure provided an insulating 

effect against temperature changes. The large influence of vegetation structure on microclimate 

presents the opportunity to manage for conditions that favor persistence of biodiversity in 

mountainous systems (Oliver et al. 2010). By preserving conditions that potentially buffer 

organisms from the impacts of regional warming, or at least slow the rate at which organisms 

have to adapt to a changing climate, it may be possible to ameliorate some the negative effects of 

regional warming in mountains.  
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TABLE 2.1. Generalized linear regression model results for the relationship between temperature metrics and the first component 
(PC1) of a principle component analysis representing a gradient in vegetation structure.Lower PC1 values indicate forest plantations 
and higher values old-growth forests (Fig. 9). Elevation (Elv) was included to control for elevation differences while examining 
effects of vegetation. Change in temperature metrics shows the difference in temperature (°C) or degree days (dd) across the range of 
PC1 values. ** indicates statistically significant effect of PC1 on temperature metrics at P < 0.05.  

 
 

Variable Est SE Est SE P Est SE P Units Change LCL UCL

CDD >0°C Jan-Mar 162.162 3.223 -0.903 3.456 0.794 -23.404 3.456 <0.0001 dd -3.77 -35.02 12.61
CDD >0°C Apr-Jun 754.445 3.469 -11.169 3.720 0.003 ** -122.116 3.720 <0.0001 dd -46.73 -80.35 -13.11
CDD >10°C Apr-Jun 115.065 1.613 -6.351 1.730 0.000 ** -33.660 1.730 <0.0001 dd -26.57 -42.21 -10.94
SD wkly T Jan-Mar 1.619 0.020 0.022 0.022 0.298 0.292 0.022 <0.0001 °C 0.09 0.29 -0.07
SD wkly T Apr-Jun 3.779 0.010 -0.017 0.011 0.105 0.096 0.011 <0.0001 °C -0.07 -0.17 0.02
Mn mo MEAN T Apr-Jun 8.249 0.038 -0.120 0.041 0.004 ** -1.383 0.041 <0.0001 °C -0.50 -0.87 -0.13
Mn mo MAX T Apr-Jun 12.852 0.081 -0.612 0.087 0.000 ** -1.802 0.087 <0.0001 °C -2.56 -3.34 -1.78
Mn mo MIN T Apr-Jun 4.645 0.036 0.149 0.039 0.000 ** -0.986 0.039 <0.0001 °C 0.62 0.97 0.27
MAX T warmest mo 25.221 0.141 -0.680 0.151 0.000 ** -1.054 0.151 <0.0001 °C -2.84 -4.21 -1.48
MIN T coldest mo -1.137 0.025 0.143 0.027 0.000 ** -0.992 0.027 <0.0001 °C 0.60 0.85 0.35

CDD >0°C Jan-Mar 195.162 4.293 -0.033 4.603 0.994 -22.708 4.603 <0.0001 dd -0.14 -42.81 16.94
CDD >0°C Apr-Jun 886.101 3.130 -9.333 3.356 0.006 ** -121.308 3.356 <0.0001 dd -39.05 -69.38 -8.72
CDD >10°C Apr-Jun 188.422 1.803 -6.616 1.933 0.001 ** -42.095 1.933 <0.0001 dd -27.68 -45.16 -10.20
SD wkly T Jan-Mar 2.598 0.027 -0.026 0.029 0.363 -0.204 0.029 <0.0001 °C -0.11 -0.37 0.09
SD wkly T Apr-Jun 4.864 0.009 -0.002 0.009 0.850 0.241 0.009 <0.0001 °C -0.007 -0.09 0.03
Mn mo MEAN T Apr-Jun 9.718 0.034 -0.101 0.037 0.007 ** -1.357 0.037 <0.0001 °C -0.42 -0.76 -0.09
Mn mo MAX T Apr-Jun 14.508 0.083 -0.562 0.089 <0.0001 ** -1.756 0.089 <0.0001 °C -2.35 -3.15 -1.55
Mn mo MIN T Apr-Jun 5.934 0.041 0.181 0.043 <0.0001 ** -0.846 0.043 <0.0001 °C 0.75 1.15 0.36

2013

Intercept PC1 Elv Change in temperature metrics ~ PC1

2012
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FIGURE 2.1. Maps showing A) the elevational gradient (meters) and microtopography, 

and B) Canopy height (meters) based on LiDAR from 2008 at the H. J. Andrews forest, 

Oregon, USA (Watershed Sciences 2008). Black dots show the 183 temperature sampling 

locations.

A!

B!
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FIGURE 2.2. Relative importance of variables describing elevation, microtopography and vegetation for each temperature metric in 

both years A) 2012, B) 2013. Relative importance values were derived from the number of times each variable was selected in the 

process of model building using BRTs.   

A) 2012! B) 2013!
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FIGURE 2.3. Spatially predicted temperature metrics of cumulative degree days at the H. J. Andrews Experimental Forest based on 

BRT models. Response variables are: (A) Cumulative degree days >0°C January-March (CDD0JM), (B) CDD >0°C April-June 

(CDD0AJ), and (C). CDD >10°C April-June (CDD0AJ). Vegetation and microtopography had a high relative influence on degree 

days in January-March (A), but degree days in April-June were primarily a function of elevation.
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FIGURE 2.4. Partial dependence plots of key microtopographic (TOPO) variables. The fitted 

functions generated using boosted regression show the effect of the variable on the response after 

accounting for all other variables in the model. (A) Sites with a larger range in elevation within 

25m (i.e., steep slopes) and (B) more exposure accumulate more degree days January-March 

(CDD0JM 2013). C) Sites located in exposed areas also are more variable in temperature during 

this period (SDwTJM 2013). (D) Aspect played a large role in determining the maximum 

temperature of sites with north-facing slopes being coolest (MxTWM 2012). Relative variable 

importance is indicated in parentheses (RI%).  
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FIGURE 2.5. Key interactions identified from BRT models testing the effects of elevation, 

microtopography, and vegetation structure on microclimate. A) Exposed sites with low 

variability in biomass (e.g., plantation stands) accumulated the most degree days >0°C from 

January-March (CDD0JM 2013). B) Higher elevations (above ~1000m) were less variable in 

January-March (SDwTJM 2013), particularly if they had low topographic exposure. C) Mean 

monthly maximum temperature from April-June (MonMnMaxAJ 2013) was lowest at high 

elevations in high amounts of canopy cover in the surrounding landscape. D) An interaction 

between elevation and microtopography indicated that high elevation sites in areas of gentle 

slopes had the lowest minimum temperatures in April-June (MonMnMinAJ 2013).  
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FIGURE 2.6. Spatially predicted variability in weakly temperature at the H. J. Andrews 

Experimental Forest based on BRT models. Response variables are: (A) Standard deviation (SD) 

of weekly temperature January-March (SDwTJM), and (B) SD of weekly temperature April-June 

(SDwTAJ). Elevation, vegetation and microtopography all had large relative influences on 

variability in weekly temperature in 2012 (A). In 2013 variability in January-March had a high 

component of vegetation and microtopography, but variation in April-June was primarily a 

function of elevation (B).  
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FIGURE 2.7. Partial dependence plots of key vegetation (VEG) variables. (A) Sites with a higher 

coefficient of variation in canopy height and (B) more variable biomass showed less variability 

in January-March (SDwTJM 2013). Proportion of canopy >10m (C) and increasing biomass (D) 

both reduce monthly maximum temperatures. Sites with a higher proportion of the canopy over 

10m in height (E) and higher values of median return (HOME) (F) had the highest minimum 

temperatures (MiTCM 2012). Sites with a high proportion of the canopy >10m (G) and taller 

canopies (H) reduced the variability in temperature April-June (SDwTAJ 2013). Relative 

variable importance is indicated in parentheses (RI%).  
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FIGURE 2.8. Principal component analysis showing how vegetation structure metrics differ 

between old-growth/mature forest sites (OG-MAT) and plantations (PLANT). See Appendix 3 

for vegetation structure predictor variable definition
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FIGURE 2.9. Comparison of temperature metrics measured in both 2012 and 2013. The majority of temperature metrics (A, B, C, F, G, 

H) showed extremely consistent temperature patterns in the two years despite warmer overall temperatures in 2013. Temperature 

variability (D, E) showed less consistency. Maximum temperature of the warmest month and minimum temperature of the coldest 

month were omitted from this figure because they were only calculated for 2012 due to a complete year of data. 
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FIGURE 2.10. Spatially predicted temperature metrics showing monthly temperature at the H. J. Andrews Experimental Forest based on 

BRT models. Response variables are: (A) Mean monthly mean temperature April-June (MnMoMeanAJ), (B) Mean monthly 

maximum temperature April-June (MnMoMaxAJ), (C) Mean monthly minimum temperature April-June (MnMoMinAJ). Mean 

monthly temperatures were primarily a function of elevation (A), but maximum (B) and minimum temperatures (C) also had 

substantial relative influences of vegetation and microtopography.
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FIGURE 2.11. Spatially predicted temperature metrics showing temperature extremes at the H. J. 

Andrews Experimental Forest based on BRT models. Response variables are: (A) Maximum 

temperature of the warmest month (MxTWM), and  (B) Minimum temperature of the coldest 

month (MiTCM). Maximum temperatures were primarily a function of vegetation and 

topography (A), but minimum temperatures were primarily influenced by elevation.  



! 39 

FIGURE 2.12. Results from generalized linear regression models testing the effect forest structure 

(PC1) on A) MonMnMaxAJ and B) MiTCM after accounting for the effect of elevation. A) and 

B) show the modeled relationship between forest structure (PC1) and the residuals from an 

elevation-only model of MonMnMaxAJ (A) and MiTCM (B). Maximum monthly temperatures 

observed in old-growth sites were 2.6°C (95% CI: 1.8 – 3.3°C) cooler than plantation sites 

during the spring-summer transition (A) and minimum temperatures during winter months were 

0.6°C (95% CI: 0.4 – 0.8°C) warmer in old-growth stands (B). Three-dimensional LiDAR-

generated images of old-growth forest (i = side, ii = top) and plantation forest (iii = side, iv = 

top) at H. J. Andrews Experimental Forest. 

i)!

ii)!

iii)!

iv)!

A)!

B)!
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FIGURE 2.13. Relative importance of variables measured at 25m and 250m scales for each temperature metric in both years. Relative 

importance values are derived from the number of times each variable is selected in the process of model building using BRT

A) 2012 ELV! B) 2012 TOPO! C) 2012 VEG!

D) 2013 ELV! E) 2013 TOPO! F) 2013 VEG!
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3 MICROCLIMATE PREDICTS WITHIN-SEASON DISTRIBUTION DYNAMICS OF 

MONTANE FOREST BIRDS 
 

 

3.1 ABSTRACT 

Climate changes are anticipated to have pervasive negative effects on biodiversity and are 

expected to necessitate widespread range shifts or contractions. However, such projections are 

based upon the assumptions that (a) species respond primarily to broad-scale climatic regimes, 

and (b) that little variation in climate exists at finer spatial scales. We used dynamic occupancy 

models to test the degree to which microclimate influences distribution patterns of forest birds in 

a heterogeneous mountain environment. We hypothesized that high vagility of most forest bird 

species combined with the heterogeneous thermal regime of mountain landscapes would enable 

within-season shifts toward sites exhibiting moderated temperatures. In all models, we 

statistically accounted for vegetation structure, vegetation composition, and potential biases due 

to imperfect detection of birds. Fine-scale temperature metrics were strong predictors of bird 

distributions and movements; effects of temperature on within-season occupancy dynamics were 

as large or larger (1 to 1.7 times) than vegetation effects. Most species (86.7%) exhibited 

apparent within-season occupancy dynamics. However, species were almost as likely to be 

warm-associated (i.e., settle at warmer sites and/or vacate cooler sites; 53.3% of species) as cool-

associated (i.e., settle at cooler sites and/or vacate warmer sites; 46.7% of species), suggesting 

that microclimate preferences are species-specific. Our results emphasize that high-resolution 

temperature data increase the quality of predictions about avian distribution dynamics in 

montane forest environments and should be included in efforts to project future distributions. We 

hypothesize that microclimate-associated distribution shifts may reflect species’ potential for 

behavioral buffering from climate change in complex terrain. 

 

3.2 INTRODUCTION 

Climate change is already exerting a strong influence on species range shifts and 

population trends (Parmesan and Yohe 2003, Thomas et al. 2004, Both et al. 2006, Hitch and 

Leberg 2007, Devictor et al. 2008, Gutiérrez Illán et al. 2014). Climate change has also been 
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implicated in inconsistent phenological changes across taxa resulting in the decoupling of trophic 

interactions (Both and Visser 2005). Given that climate change is expected to amplify over the 

coming century (IPCC 2014), a key question is the degree to which such trends will continue, 

and whether biodiversity will decline as a result (Thomas et al. 2004).  

Making reliable predictions about species responses to climate change has been 

challenging because species responses have not been monolithic; empirical studies using 

historical datasets have revealed high among-species variation in the degree to which populations 

and species distributions respond over time (Tingley et al. 2012, Gutiérrez Illán et al. 2014). 

Though some species demonstrate range shifting in response to climate change (Tingley and 

Beissinger 2009, Araújo and Peterson 2012, Virkkala et al. 2014) many species have not 

extended their ranges to occupy the geographic extent of apparently ‘suitable’ climates, either 

historically (Araújo and Pearson 2005, Moritz and Agudo 2013) or during recent rapid climate 

change (Thomas et al. 2004, Thuiller et al. 2004b). Though some of this variation in species 

responses is associated with life-history traits (Sheldon et al. 2011), much variation remains to be 

explained. 

One hypothesis for this mismatch between climate envelope predictions and observed 

responses to change is that the climate data used to define suitable envelopes are based on data 

collected at resolutions much coarser than those perceived and used by organisms in habitat 

selection (Pearson and Dawson 2003, Logan et al. 2013, Bernardo 2014, Storlie et al. 2014). 

Most temperature data are collected at scales 104-fold larger than the territory sizes of organisms 

of interest (Potter et al. 2013a, Bernardo 2014) and there is high potential for microclimate 

variation within broader regional patterns (Scherrer and Körner 2011, Franklin et al. 2013). 

Climate is assumed to be mainly a driver of distribution patterns at broad spatial scales (Thuiller 

et al. 2004a, Thomas 2010, Boucher-Lalonde et al. 2014) although habitat characteristics such as 

vegetation structure and composition are thought to trump the importance of climate at finer 

spatial scales (Brown 1995, Luoto et al. 2007). Therefore, this hidden microclimatic variation 

and its potential to affect distribution dynamics are often overlooked (Huey et al. 2012). 

Additionally, lack of high-resolution climate data, particularly under-canopy temperatures 

(Scherrer et al. 2011), has prohibited effective testing of the role of microclimate in fine-scale 

distribution dynamics.   
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Heterogeneous landscapes such as complex mountainous environments have been shown 

to promote more stable population dynamics (Oliver et al. 2010) and longer-term persistence 

(Vegas-Vilarrubia et al. 2012). Environmental heterogeneity offers a range of resources and 

microclimates that can provide options for ‘microrefugia’ where an organism can persist in the 

face of regional warming (Patsiou et al. 2013). In addition, microclimate variability at fine 

spatial scales could provide options for short-distance, adaptive movements and resource 

tracking within a season (Dobrowski 2010). Animals may adjust their use of local habitat in 

ways that allow them to persist in the face of climate change without necessitating broad-scale 

range shifts (Dolby and Grubb 1999, Kearney et al. 2009b). Landscapes with little variability 

provide fewer possibilities for new behavior (Bonebrake et al. 2014) such as shifts in habitat or 

diet. 

An unstated assumption of most occupancy studies is one of closure between sampling 

periods within a breeding season (Rota et al. 2009), inferring that once territories are established 

in a breeding season, birds are assumed to be unlikely to shift their territory locations. However, 

work has recently demonstrated that within-season movements by birds may actually be 

relatively common (Whittaker and Marzluff 2009, McClure and Hill 2012, Gow and Stutchbury 

2013) which violates the assumptions of commonly used species’ occupancy models (Rota et al. 

2009) and necessitates the application of dynamic models. Observed within-season movements 

appear to reflect shifts to higher quality sites (Betts et al. 2008, Gilroy et al. 2010) and often 

represent shifts upwards along elevation gradients (Brambilla and Rubolini 2009). Given that site 

quality may change over the breeding season as temperatures warm (Vatka et al. 2011), being 

sufficiently flexible to take advantage of new favorable microclimates should be adaptive. 

However, the lack of detailed under-canopy microclimate data has left the role of temperature in 

these movements unknown since generally climate stations are widely spaced and located in 

open areas with great distances between stations (Scherrer et al. 2011).  

Direct tracking of individual behavior to examine within-season movements (e.g., Gow 

and Stutchbury 2013) is logistically challenging, particularly when considering more than a 

single species. However, dynamic occupancy modeling offers a viable alternative for quantifying 

within-season movements (MacKenzie et al. 2003). These models allow changes in colonization 

and extinction processes across a season and have been shown to outperform static occupancy 
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models for many species (McClure and Hill 2012). Using this technique, the hypothesized 

drivers of settlement (colonization) and vacancy (extinction) processes can be examined to assess 

‘apparent movement’ of individuals across a landscape (Betts et al. 2008). 

In both 2012 and 2013, we sampled a forest bird community six times during the 

breeding season at 183 point count sites in complex mountainous terrain. We collected 

temperature data with sensors located at each of the count sites and calculated a suite of 

microclimate metrics expected to be of biological relevance (e.g., mean, minimum, and 

maximum temperatures and cumulative degree days). We used dynamic occupancy modeling to 

test the relative roles of local-scale temperatures and vegetation characteristics in apparent 

within-season movements while accounting for imperfect detection. We asked the following two 

questions: 1) Are forest bird species exhibiting apparent within-season movement? 2) To what 

extent are occupancy dynamics of birds predictable as a function of microclimate in relation to 

more traditional vegetation-based measures of habitat? We hypothesized that high vagility of 

most forest bird species combined with the heterogeneous thermal regime of mountain 

landscapes would enable within-season shifts toward sites exhibiting moderated temperatures. 

 

3.3 METHODS 

3.3.1 Study site 

We collected bird occurrence data at 183 sample locations within the H. J. Andrews 

Experimental Forest (HJAEF) watershed. The 6400-ha HJAEF spans an elevational gradient 

from 410-1630 m.a.s.l. and is located in the Western Cascades of Oregon, USA (44°12′ N, 

122°15′ W, Appendix 1). It is a forest mosaic comprised of a mix of old-growth forest, mature 

forests, ~60-yr old Douglas-fir (Pseudotsuga menzisii) plantations, alpine meadows, sitka alder 

(Alnus viridis) or vine maple (Acer circinatum) shrub fields, and landslides.  

3.3.2 Site selection 

We established our sample points so that they spanned gradients in elevation, climate, 

and forest vegetation structure. Specifically, we used a stratified, systematic, random design to 

select sample locations. We stratified across elevation, distance to road, and habitat type 

(plantation or mature/old-growth forest). Distance between all sampling points was ≥300m. 
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Sample points were categorized as transect, trail, or road (the latter two categories were to 

facilitate site access thereby increasing sample size). Transect points were selected by placing a 

random grid of points across a portion of the watershed using GIS (ESRI 2011). We separated 

each transect by 600m and points within a transect were 300m apart. We placed trail points 

randomly along existing and abandoned trails (<1m wide) at 300-m intervals using GIS. 

Selection of road points was a two-step process. First, we placed points randomly along 

maintained and abandoned gravel roads at 600-m intervals using Hawth’s tools (Beyer 2004) in 

GIS (ESRI 2011). Lastly, we chose a random direction and distance from the road (0, 50, or 

100m) for the final point placement. Our final dataset was comprised of 60 transect points, 68 

road points, and 55 trail points.  

3.3.3 Point counts 

We conducted point counts on six separate occasions from May – July in both 2012 and 

2013, which corresponded to spring arrival and subsequent breeding period for the majority of 

the bird species at HJAEF. Point counts were conducted during favorable weather conditions by 

trained observers. We switched the order in which points were visited and which observer 

conducted the survey for each sampling session to reduce potential bias. The mean (standard 

deviation [SD]) length of sample occasions was 5 (1.17) days and 6 (1.22) days in 2012 and 

2013, respectively. Mean (SD) break length between point count rounds was 4 (1.91) days in 

2012 and 5 (1.90) days in 2013. 

Point counts occurred between 05:15h and 10:30h corresponding to the period of peak 

singing activity. Each site visit consisted of a 10-min point count where we recorded all of the 

birds seen or heard within a 100-m radius. Each 10-minute point count was divided into three 3-

min 20-sec sub-counts where the point count was reinitiated (sensu Betts et al. 2008). The sub-

count during which an individual was first detected was recorded as a new record. We monitored 

the location of the individual birds in order to reduce the possibility of double-counting 

individuals. Multiple individuals were counted only when simultaneous singing or calling could 

be confirmed. 

We detected a total of 41 species during May – July 2012 and 2013. We calculated the 

mean prevalence for all species in each year by calculating the proportion of sites with at least 

one detection over the six sampling occasions out of all sample sites (N=183). We used a 0.2 
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prevalence cut-off to select our final set of species. Models for species with mean prevalence less 

than 0.2 often failed to converge due to a low detection/non-detection ratio. After applying this 

prevalence threshold, 15 species remained; we used these species to model within-season 

occupancy dynamics (Table 1).  

3.3.4 Environmental covariates 

Air temperature data – In order to measure the local microclimate, we placed HOBO data 

loggers (Onset HOBO Pendant Temperature/Light Data Logger 64K, model UA-002-64 [n=167] 

and Onset HOBO Water Temperature Pro v2 Data Logger, model U22-001 [n=16]) that recorded 

temperature every 20 minutes at each sample point. We summarized temperature measurements 

from data loggers between Jan 2012 and July 2013 (See methods and Appendices 1 and 2 from 

Chap. 2 for details on loggers, their placement and data processing). We used five temperature 

metrics that we expected to influence forest birds during the breeding season and/or alter timing 

of important phenological events upon which birds depend. These metrics included cumulative 

degree days >0oC January – March and >10oC April – June, both of which are expected to be 

important drivers of bud break and insect abundance (Fu et al. 2012), bird phenology (Both et al. 

2005), and bird distributions (Araújo et al. 2005). We included mean monthly temperatures 

(monthly mean, maximum, and minimum) from April – June. Mean maximum and mean 

minimum monthly temperatures capture temperature extremes and have been used to describe 

avian distributional boundaries (Root 1988) and predict abundance trends (Gutiérrez Illán et al. 

2014). Mean monthly temperature describes the general temperature conditions at a site and is a 

common metric in species-climate studies (Virkkala et al. 2008, Stralberg et al. 2009). We chose 

the months of April, May and June since this is the period when we expected the majority of 

within-breeding season dynamics to take place. 

3.3.5 Vegetation structure and composition 

To quantify the gradient in forest structure, we used the first two principal components 

(PC) from a Principal Components Analysis (PCA) of all our LiDAR-derived vegetation 

variables at the 25-m scale (19 variables, see Chap. 2 Appendix 3). PC1 and 2 explained 75% of 

the variation present in the forest structure metrics and appeared to effectively differentiate 

between plantations and older forests (Chap. 2 Fig. 6). PC1 explained 45% of variance in 
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vegetation structure and increasing values were associated with old-growth forest characteristics 

(Chap. 2 Fig. 6 and Appendix 5). PC2 explained 30% of variation in vegetation structure and 

higher values tended to be more associated with forest plantations. We quantified forest 

composition by measuring the proportion of deciduous basal area at a site using variable radius 

prism plots and counting deciduous trees and large shrubs >2cm DBH (big-leaf maple [Acer 

macrophyllum], vine maple, red alder [Alnus rubra], Sitka alder, Pacific dogwood [Cornus 

nutalli], beaked hazelnut [Corylus cornuta], cascara [Rhamnus purshiana], black cottonwood 

[Populus tricocarpa], bitter cherry [Prunus emarginata], Oregon white oak [Quercus garryana]). 

We chose to quantify the deciduous vegetation as our composition variable since amount of 

deciduous vegetation is often associated with abundance of leaf-gleaning forest birds and 

deciduous plant species are typically thought support higher abundances of insects (Hagar 2007, 

Ellis and Betts 2011). 

3.3.6 Occupancy models 

Apparent movement – We did not directly examine movements of individuals; rather we 

used patterns in settlement and vacancy from dynamic occupancy models to provide an index of 

within-season shifts. We therefore refer to changes in these parameters over the breeding season 

as ‘apparent movement’ (Betts et al. 2008, McClure and Hill 2012). Two potential biases have 

been identified with this approach to estimate within-season movements. Observed settlement 

and vacancy rates could partly result from temporary emigration and immigration in and out of 

the point count circle due to the combination of (a) variation in territory density and (b) 

territories not always falling completely within the point count radius (Chandler et al. 2011). For 

example, species with larger home ranges may be more likely to move out of a count circle while 

remaining within their original home ranges. In these cases, within-territory/home range 

movements could cause the appearance that a site has become vacant when the bird is actually 

still within its initial home range (i.e., site counted as vacant when it is not). Similarly, in areas of 

high density, multiple territories could overlap the count circle and the likelihood of detecting at 

least one individual within the count circle is higher, purely because more individuals are present. 

We addressed these potential biases in estimates of apparent movement in two ways. First 

we used information about the home range size for each species (Table 1, Poole 2005) to test 

whether species with larger home ranges show higher levels of within-season dynamics, which 
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would suggest artificially high apparent settlement and vacancy rates (Betts et al. 2008). 

Secondly, we used detections within a 100-m radius to increase the likelihood that entire 

territories were included within the boundaries of the sample plot. The majority of the species 

(12/15) we included in our study have territory sizes that are smaller than our sample plot (area 

of 100-m radius point count circle = 3.14 ha). 

We used dynamic occupancy models (MacKenzie et al. 2003) to estimate within-season 

movement dynamics as a function of microclimate conditions in the HJAEF. These models use 

detection histories from multiple surveys (i.e., our three sub-counts) over multiple seasons (i.e., 

the six site visits) to estimate four parameters: 1) detection probability (p), 2) initial site 

occupancy (ψ), 3) site colonization (γ), and 4) local site extinction (ε). Occupancy models are 

hierarchical in that they model the observation process (detection) independent from the 

ecological processes of interest (site occupancy, colonization, and extinction). We adapted the 

multi-season framework of dynamic occupancy models to estimate apparent movement within a 

breeding season. For our within-season application of dynamic occupancy models we refer to 

colonization as site ‘settlement’ (γ) and extinction as site ‘vacancy’ (ε). 

Dynamic occupancy models assume that populations are closed between j sub-counts and 

movement is explicitly modeled between t sampling occasions by the dynamic parameters (γ and 

ε). This is a Markovian process in that occupancy in time t is dependent on occupancy in time t – 

1. A site can go from unoccupied in time t – 1 to occupied in time t (settlement event) or from 

occupied in time t – 1 to unoccupied in time t (vacancy event). The model structure is as follows: 

 

Zi1 ~ Bernoulli(ψ) for i = 1, 2, ..., M 

Zit ~ Bernoulli(Zi,t-1(1 – εit) + (1 − Zi,t-1)γit) for t = 2, 3, …, T 

Yijt|Zit ~ Bernoulli(Zitp) for j = 1, 2, ..., Ji 

 

where Zi1 is the occupancy state (1 or 0) of site i during the first sampling occasion (t = 1, 

‘season 1’), Zit is the occupancy state in subsequent sapling occasions (t = 2, 3, …, T), and Yijt is 

the observed occurrence status (1 or 0) at site i in sub-count j during sampling occasion t. M is 

the total number of sample sites, T is the total number of sampling occasions, and J is the total 

number of sub-counts. We conducted three sub-counts (J = 3 X 3-min 20-sec sub-counts) during 
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each sampling occasion (T = 6) at each sample site (M = 183 total sites). If site i is not occupied 

at time t – 1 (Zi,t-1 = 0), and the success probability of the Bernoulli is 0 * (1 – εit) + (1 − 0) * γit, 

so the site is occupied (i.e., settled) in sampling occasion t with probability γit. Conversely, if site 

i is occupied in time t – 1 (Zi,t-1 = 1) and the success probability of the Bernoulli is given by 1 * 

(1 – εit) + (1 − 1) * γit, the site remains occupied (i.e., does not become vacant) in sampling 

occasion t with probability 1 – εit. It is important to note that colonization and extinction are not 

absolute; they are relative to the number of occupied and unoccupied sites in the previous 

sampling occasion. For example, if 20 of 100 sites were occupied in time t – 1 (20% occupied), 

with a vacancy rate of 30% and a settlement rate of 20%, 16 sites (20% of 80 unoccupied sites) 

would get settled, 6 sites (30% of 20 occupied sites) would be vacated, resulting in 30 sites being 

occupied in time t (20*[1-0.3] + [100 – 20]*0.2 = 30). 

We estimated the four parameters (p, ψ, γ, and ε) using maximum likelihood techniques 

based on site detection histories (Yijt) with the following likelihood equation (MacKenzie et al. 

2003, Fiske and Chandler 2011): 

! !!, !, !,!| !!"# = ! Pr!(
!

!!!
!!"#) 

Here, ψ1 refers to the initial occupancy in the first sampling occasion, where thereafter ε and γ 

determine site occupancy in the following sampling occasions (‘seasons’). p is the probability of 

detection given that site is occupied. Parameters can be modeled as a function of site- and 

survey-level covariates on the logit scale.  

3.3.7 Model selection 

In order to reduce our model set, we used a manual forward stepwise approach to select 

the variables that best explained detection probability and the site occupancy parameters (Olson 

et al. 2005, Chandler and King 2011). We selected survey- and site-level covariates we 

considered to be important in our system a priori (see temperature and vegetation metrics above). 

All continuous predictor variables were standardized (z-score = [x – mean]/SD, where x is a 

single covariate value for a site or survey) so that we could directly compare effect sizes. We 

compared support for models containing the different covariates using AIC model selection 

(Burnham and Anderson 2002). 



! 51 
Our model selection steps were as follows: 1) We first ranked univariate models for each 

of the covariates using AIC. 2) Then we constructed additive models including covariates based 

on and in order of their AIC ranking (highest to lowest). We added variables on order of support 

until additional covariates resulted in the model being more than 2 ∆AIC points below the top 

model. 3) Finally, we selected the most parameterized model (the one with the highest number of 

covariates) within 2 AIC points of the top model. This was almost always the top ranked model. 

The top temperature and vegetation metrics were combined in additive models. However, 

we never combined multiple temperature metrics in any additive models due to the high inter-

variable correlation we observed (Appendix 2). We did combine vegetation variables in additive 

models because they did not suffer from the same correlation issues (PC1 and 2 are orthogonal 

and our vegetation composition metric was not strongly correlated with either structural variable, 

Appendix 2). We also combined multiple survey-level covariates in additive models for 

detection. 

Detection & initial occupancy – First we selected top model for detection while holding 

all other parameters constant. We tested for differences in detection rates based on our eight 

temperature and vegetation variables (see above) in addition to six survey-level variables (i.e., 

survey time, number of days since May 1 [day of year], observer, stream noise, weather 

conditions [cloud cover and wind], and a temporal autocovariate). We included a temporal 

autocovariate because sub-counts were not independent temporally (initial detection of a species 

might enhance the likelihood that an observer detects the species in a subsequent interval). This 

autocovariate indicated whether an individual was detected in the previous sub-count. We used 

the top-ranked covariates for each species for detection in the remainder of the model selection 

steps. To determine the baseline occurrence patterns (i.e., initial occupancy) for each species in 

the first site visit (mid-May) we selected the top temperature metric while accounting for 

vegetation structure and composition (following the model selection steps listed above). During 

variable selection for both detection and occupancy, we held settlement and vacancy constant. 

Settlement & Vacancy – Our main focus was to understand how microclimates affect 

settlement and vacancy patterns during the breeding season while statistically accounting for 

variability in forest structure and composition. We first estimated mean settlement and vacancy 

rates to determine the degree to which species exhibited apparent within-season movement. We 
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considered species with mean vacancy or settlement probability less that 0.1 to be relatively 

static during the breeding season. Even though these rates are relative to the number of occupied 

sites in the previous time period, if estimated values approach zero it is an indication that 

occupancy patterns are more likely static. For both settlement and vacancy, we compared 

univariate models of our microclimate and vegetation metrics while holding the other dynamic 

parameter constant (e.g., vacancy was held constant while examining settlement and vice versa). 

We then combined the top variables for both settlement and vacancy into the same model to 

obtain the final model. All analyses were conducted in R version 3.1.1 (R Development Core 

Team 2011) using the ‘unmarked’ package (Fiske and Chandler 2011). 

3.3.8 Relative importance of microclimate and vegetation on occupancy dynamics 

Once we had identified the top models for each of the 15 species in each year, we 

assessed the relative importance of the temperature and vegetation metrics. We used the effect 

sizes and corresponding standard errors as a measure of their importance. In order to account for 

differences in precision of estimates, we divided all effect sizes by their corresponding standard 

errors (Ritchie et al. 2009). We then directly compared the absolute values to each other (as 

effects could be negative or positive) and deemed the variable with a larger absolute value as the 

more important metric. When more than one vegetation metric was in the top model, we used the 

one with the largest effect size. In the rare instance where none of the metrics were useful in 

explaining variability in the occupancy parameters we considered the effect size to be zero. We 

did this for initial occupancy, settlement, and vacancy. 

3.3.9 Model fit 

 MacKenzie and Bailey (2004) proposed a method for assessing model fit for single-

season occupancy models in which fit statistics are applied to combined detection histories. 

However this method performs poorly when the number of survey occasions and sub-counts 

(J*T) are large and continuous variables are used (Kery and Chandler 2012). Goodness-of-fit 

tests for dynamic occupancy models are still considered exploratory (Kery and Chandler 2012). 

Adapting R code from Kery and Chandler (2012), we used parametric bootstrapping to evaluate 

the goodness-of-fit of the best model for each species in each year. For each species, we 

simulated 250 datasets from its top model in a given year, each time we refitted the model to 
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these simulated data and computed a fit statistic (here sum of squares error [SSE]). The 

simulation resulted in a reference distribution of the fit statistic from which we computed a P-

value indicating the proportion of the reference distribution that was greater than the observed 

value. We used χ2 to compare observed and expected fit statistics because it has been shown to 

perform well at evaluating goodness-of-fit for logistic regression models (Hosmer et al. 1997, 

MacKenzie and Bailey 2004, Kery and Chandler 2012). Models with fit statistics that are higher 

than the mean fit statistic (SSE) from the simulated distribution are indicative of overdispersion 

in the data, meaning that there is still unexplained variability. Conversely, an observed fit 

statistic that is lower than the mean simulated statistic indicates underdispersion, meaning that 

the data are less variable than one would expect based on the underlying distribution used in the 

model. 

 

3.4 RESULTS 

3.4.1 Detection & initial occupancy 

In general, the temperature and vegetation metrics were good predictors of initial 

distributions of the HJAEF bird species (Fig. 1, Appendix 3). Temperature was the most 

important predictor (largest effect size) for 80% and 47% of species in 2012 and 2013, 

respectively. Of the species with temperature as a significant (P < 0.05) predictor in the top 

model (Fig. 1), roughly equal numbers were associated with warm sites (53%) versus cooler sites 

(47%) during initial occupancy on average across both years (Appendix 3). Vegetation (structure 

and/or composition) was a significant predictor of initial occupancy patterns for a substantial 

proportion of species in both years (2012: 33%, 2013: 47% of species, Fig. 1, Appendix 3) and 

was more important than temperature for 20% and 53% of species in 2012 and 2013, 

respectively.  

Temporal autocorrelation in sub-counts was an important predictor for detection 

probability for all species in both years (Appendix 4). Detection probability was always higher 

when an individual was detected in the previous sub-count. Detection probability decreased later 

in the morning (8 species), later in the breeding season (7 species), with higher levels of stream 

noise (8 species), and with increased cloud cover (6 species). For three species in 2012 and seven 

in 2013, we detected differences in detection probability by observer (Appendix 4). In addition to 
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influences of survey-related variables on detection, we observed significant (P < 0.05) effects of 

temperature (80% of species) and vegetation (73% of species) on detection probability in at least 

one year (Appendix 4). 

3.4.2 Apparent movement 

In both years, the majority of species showed mean settlement and vacancy rates >0.1 

throughout the breeding season indicating that overall occupancy patterns were dynamic 

(Appendix 5; settlement – 80.0% of species in both years; vacancy – 2012: 86.7%, 2013: 93.3%; 

overall: 86.7%). On average for all species, mean vacancy probability (Mean [SD] – 2012: 0.39 

[0.20], 2013: 0.38 [0.21], Appendix 5) tended to be higher than settlement probability (2012: 

0.22 [0.14], 2013: 0.22 [0.13], Appendix 5). The mean settlement and vacancy rates are 

interpreted as the change in occupancy that occurred between each sampling occasion (i.e., 

between 1 and 2, 2 and 3, 3 and 4, etc.) on average across all sites (not including any covariate 

effects). To reiterate, these rates are relative to the number of sites occupied in the previous 

sample session. 

Site-level temperature metrics were strong predictors of the apparent movement we 

observed and temperature was equally or more effective (1 to 1.7 times) as vegetation at 

predicting local site occupancy dynamics in both years (Fig. 1, Tables 2 & 3, Appendix 6). 

Temperature metrics were the most important predictors (larger effect sizes) for at least one 

dynamic parameter for 73.3% and 66.7% of species in 2012 and 2013, respectively (see Tables 2 

& 3 for effect sizes and standard errors [SE] from top models, see Appendix 6 for comparison of 

SE-adjusted effect sizes). Overall, species were almost as likely to be warm-associated (i.e., 

settle at warmer sites and/or vacate cooler sites; 53.3% of species) as cool-associated (i.e., settle 

at cooler sites and/or vacate warmer sites; 46.7% of species). We identified brown creeper 

(Certhia americana), chestnut-backed chickadee (Poecile rufescens), Hammond’s flycatcher 

(Empidonax hammondii), Pacific wren (Troglodytes pacificus), Pacific-slope flycatcher 

(Empidonax difficilis), Steller’s jay (Cyanocitta stelleri), Swainson’s thrush (Catharus ustulatus), 

and western tanager (Piranga ludoviciana) as warm-associated species based on their overall 

occupancy patterns (Appendix 7). The cool-associated species (Appendix 8) were golden-

crowned kinglet (Regulus satrapa), hermit thrush (Catharus guttatus), hermit warbler 

(Setophaga occidentalis), Oregon junco (Junco hyemalis), red-breasted nuthatch (Sitta 
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canadensis), varied thrush (Ixoreus naevius), and Wilson’s warbler (Cardellina pusilla). 

Preference for cool versus warm sites never switched for a species for any of the ecological 

parameters (Tables 2 & 3, Appendices 3 & 6). However, whether temperature alone, vegetation 

alone or the combined effect of vegetation and temperature were most important for a given 

parameter did vary within species between years (Tables 3 & 4). Species whose settlement 

patterns were largely temperature driven (larger effect size), 71.4% (2012) and 62.5% (2013) 

showed preference for sites with cooler microclimates (Table 2, Appendix 6). For species whose 

vacancy patterns were driven primarily by temperature, 77.8% (2012) and 55.6% (2013) were 

those that vacated warmer sites (Table 3, Appendix 6). 

Hermit warbler (Figs. 2 & 4) is an example of a cool-associated species where site-level 

dynamics were largely driven by temperature, and vegetation structure to a lesser extent. Hermit 

warblers were both less likely to settle sites (Fig. 2A) and more likely to vacate sites (Fig. 2C) 

that were warmer. Predicted distribution maps (Fig. 4) show that hermit warblers shift away from 

warmer sites and towards cooler sites. In contrast, Pacific wren, a warm-associated species, is an 

example of a species where both temperature and vegetation were important for within-season 

dynamics (Figs. 3 & 5). Pacific wrens were more likely to settle warmer sites (Fig. 3A) and 

vacate cooler sites (Fig. 3E). Pacific wrens were also more likely to settle sites with old-growth 

characteristics (Fig. 3B) and a higher deciduous composition (Fig. 3C). Finally, Pacific wrens 

were more likely to vacate even-aged vegetation stands such as plantations (Fig. 3D). The 

predicted distribution maps for this species (Fig. 5) highlight the strong vegetation component of 

apparent movement in addition to temperature. 

We found no relationship between home range size and probability of settlement (neither 

in 2012 nor 2013) or with vacancy in 2013. However, in 2012 we did find a positive relationship 

between home range size and mean vacancy probability (! ± SE = 0.005 ± 0.002, P = 0.052, r2 = 

0.204) supporting the hypothesis that large home ranges might result in biases to dynamic 

occupancy estimates. This pattern was driven by the species with the largest home ranges 

(Steller’s jay: 80ha; varied thrush: 7ha; and brown creeper: 4.2 ha). Mean home range size of the 

12 remaining species was 1.2 ha [range = 0.3 – 2.8ha], Table 1). When these three outliers were 

removed from the sample, the relationship disappeared (! ± SE = 0.022 ± 0.015, P = 0.16, r2 = 
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0.11) suggesting that this problem might exist only for species with home ranges much larger 

than the count circle (3.14ha). 

3.4.3 Model fit 

Our goodness-of-fit tests indicated no or minimal lack of fit due to overdispersion in our 

models (Appendix 9). Goodness-of-fit tests for Steller’s jay in 2012 and hermit thrush in 2013 

suggested slight overdispersion (P = 0.33 and 0.11, respectively). Three species (only in 2012) 

showed little to no difference between the observed and mean expected fit statistic (0.25 < P < 

0.75). We did find evidence for underdispersion in our data; the majority of species had fit 

statistics that were lower than the distribution of bootstrapped values (P > 0.75). Underdispersion 

is generally not considered a problem as it results in inflated standard errors, leading to more 

conservative estimates of covariate effects (Hosmer et al. 2013). The minimal evidence of 

overdispersion in our data indicated that spatial autocorrelation was unlikely (Haining et al. 

2009). However, spatial autocorrelation, a common property of ecological data, could potentially 

be problematic due to violation of sample independence assumptions (Legendre 1993). Therefore, 

we tested for spatial autocorrelation in our data by calculating Moran’s I for the residuals from 

the top model for each species (see Appendix 10 for results). Moran’s I values can range from 0 

to 1 and values > 0.3 are considered relatively large (Lichstein et al. 2002). We found no 

evidence for spatial autocorrelation in the residuals (mean [SD] Moran’s I for all species 2012 = 

-0.002 [0.014], 2013 = 0.001 [0.007]; mean [SD], P-values 2012 = 0.230 [0.046], 2013 = 0.237 

[0.031]) indicating that spatial autocorrelation was not an issue in our study (Appendix 10).  

3.4.4 Annual temperature consistency 

We examine year-to-year consistency in temperature metrics to determine if potential for 

microrefugia could be predictable. Temperature metrics within sites were highly consistent 

between years, despite 2013 being warmer overall during the breeding season months (Fig. 6). 

Sites were very similar from one year to the other with respect to cumulative degree days (Fig. 

6A-B, CDD>0JM: Pearson’s correlation coefficient [r] = 0.92, P = < 0.0001, CDD>10AJ: r = 

0.99, P = < 0.0001). Mean, maximum and minimum monthly temperatures from April – June 

were also consistent across years (Fig. 6C-E, mean: r = 0.99, P = < 0.0001, max: r = 0.98, P = < 

0.0001, min: r = 0.99, P = < 0.0001). Mean monthly mean and minimum from April – June were 
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the most common significant temperature predictors for dynamic occupancy parameters (Tables 

2 & 3, 2012: mean [33.3%] and min [40%], 2013: mean and min both [26.7%]). See Appendix 

11 for all model selection tables.  

 

3.5 DISCUSSION 

We present the first evidence that occupancy dynamics of forest birds can be explained 

by local temperature conditions. Climate is widely accepted to be a major driver of species 

distributions at broad spatial extents (Thuiller et al. 2004a, Thomas 2010, Boucher-Lalonde et al. 

2014), but here we demonstrate that temperature is a strong predictor of within-season 

distribution dynamics even at very fine spatial scales. 

Local habitat selection in birds has often been shown to depend on vegetation 

characteristics (Hildén 1965) such as structure (MacArthur et al. 1962, Seavy et al. 2009) and 

composition (Ellis and Betts 2011). However, local-scale temperature appears to be equal or of 

greater importance than vegetation for site occupancy by forest birds in our system. Clearly our 

findings do not downplay the important role of vegetation in species distributions; rather they 

highlight the need to account for microclimate variability when considering distribution changes. 

Occupancy dynamics for many species we examined depended on both microclimate and 

vegetation metrics. To the best of our knowledge, no other bird-occupancy studies have yet 

compared the role of local-scale temperature and vegetation a forest system. However, there is 

some previous evidence that the combined effects of vegetation and temperature influence avian 

occurrence patterns in other systems. For example, in an exurban environment, Lumpkin and 

Pearson (2013) found that both temperature and habitat characteristics (building density and 

forest cover) affected bird occurrence patterns. Further, previous work conducted at broad spatial 

scales has shown a strong influence of both vegetation and temperature on bird distributions 

(Cumming et al. 2014). 

Microclimate is known to be important for ectotherms due to thermoregulation 

requirements (Suggitt et al. 2012, Scheffers et al. 2014), but has only been recently considered 

for endotherms (Boyles et al. 2011, Bernardo 2014, Long et al. 2014). The influence of climate 

on endothermic species distributions has been almost exclusively explored at large spatial scales 

(Peterson et al. 2002, Mitikka et al. 2008, Stralberg et al. 2009, Thomas 2010), 104-fold larger 
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than the scale at which organisms generally make habitat selection decisions (Potter et al. 2013a). 

An important advance in our study was that we directly measured air temperature at the same 

sites where we counted birds; we did not use elevation as a proxy for temperature (Klemp 2003, 

Maggini et al. 2011) or interpolate temperature from widely spaced meteorological stations 

placed in open areas (Scherrer et al. 2011). The combination of dynamic occupancy modeling 

and high-resolution temperature data allowed us to elucidate clear changes in intra-season 

distributional patterns for multiple species along a microclimate gradient. 

We also found that most species of forest birds examined exhibited apparent within-

season movements. Our results add to growing evidence that within-season site occupancy is less 

static than traditionally assumed (Betts et al. 2008, McClure and Hill 2012). For example, 

McClure and Hill (2012) also found dynamic occupancy models outperformed static occupancy 

models in a southeastern U.S. forest bird community, suggesting birds were shifting sites within 

a breeding season. Radio tracking (Klemp 2003, Gow and Stutchbury 2013), territory mapping 

(Brambilla and Rubolini 2009), and mark-recapture studies (Gilroy et al. 2010) have also 

demonstrated within-season movements and site shifts in birds.  

Within-season shifts can be the result of three main processes: 1) habitat upgrading, 2) 

thermoregulation, and 3) resource tracking. Shifts are often thought to follow failed breeding 

attempts (Switzer 1997, Hoover 2003) or to represent upgrading along gradients in habitat 

quality (Betts et al. 2008). Models of habitat selection typically assume that when animals select 

a breeding site they posses the necessary (‘ideal’) information about site quality and dispersal 

capabilities to make the best choice (Fretwell and Lucas 1969, Pulliam and Danielson 1991). In 

reality, it may not be possible to obtain dependable site quality information quickly (Stamps 

2006) and it may take time for individuals to gain personal information (Doligez et al. 2002, 

Hoover 2003). This could result in a delay between when birds initially arrive at a location and 

settle at a final breeding site. Alternatively, some species could still be migrating and their 

presence at the HJAEF might be as transients on a stopover for refuel and rest (Moore 2000) 

rather than a first attempt at breeding. We started our sampling in mid-May when some late 

arrivers could still be making their way north or to higher elevations to their final breeding 

grounds.  
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Secondly, it is likely that some portion of the shifting distribution dynamics could be due 

to behavioral thermoregulation (Bernardo 2014). Mammals (Long et al. 2014) and birds (Dolby 

and Grubb 1999) have both been shown to alter their behavior in response to temperature 

conditions. Other studies have documented upward shifts along elevational gradients (e.g., 

Klemp 2003) which are suggested to indicate shifts toward climatically suitable sites amid 

seasonal warming.  

Finally, within season movement may enable birds to capitalize on ephemeral resources 

available in spatially distinct locations (Diggs et al. 2011). Within-season shifting could 

represent upgrading along ecological gradients in habitat quality to track changes in resources. 

For example, Betts et al (2008) found that as the breeding season progressed, black-throated blue 

warblers (Setophaga caerulescens) moved towards sites with characteristics known to increase 

reproductive success (Rodenhouse et al. 2003) such as higher elevations and sites with higher 

shrub densities. Hence, motivation behind settlement and vacancy decisions could potentially be 

linked to temperature-sensitive food resources – particularly arthropod abundance (Lack 1954, 

Martin 1987, Rodenhouse et al. 2003, Both et al. 2006). Temperature and degree days in late 

winter and spring are known to be strongly associated with important phenological events such 

as bud break (Yu et al. 2010, Fu et al. 2012), insect emergence (Both et al. 2009b), and insect 

abundance (Kingsolver et al. 2011).  

An important caveat of our work is that we did not measure movement directly through 

methods such as telemetry (e.g., Gow and Stutchbury 2013). In particular, we were only able to 

quantify ‘apparent movement’ within a season based on modeled settlement and vacancy rates 

(MacKenzie et al. 2006, McClure and Hill 2012). Despite the fact that our models were designed 

to account for imperfect detection, within-territory movements of birds into and outside of our 

count circle between sampling sessions could appear as settlement and vacancy (Betts et al. 

2008). However, based on simulation studies performed by Chandler et al. (2011), temporary 

emigration from a sample location is only likely to bias parameters estimates when it is not 

random. If patterns in temporary emigration are related to the environmental gradients of interest, 

then it could be erroneously identified as apparent movement. Viewed from the most 

conservative standpoint, our results still represent clear site occurrence patterns based on 

microclimate if ‘apparent movement’ is a function of higher abundances at preferred sites. 
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3.5.1 Implications 

The primary assumption of most standard occupancy modeling techniques is one of 

closure between sampling occasions within a season (MacKenzie et al. 2002). We added to the 

mounting evidence suggesting that this assumption may be frequently violated (Rota et al. 2009). 

Despite our sampling occasions occurring over relative short time intervals (on average 4 – 5 

days between sample occasions), we documented substantial changes in site occupancy over the 

breeding season for most species. This indicates that habitat selection is a dynamic process in 

heterogeneous mountain environments.  

We have provided evidence that high-resolution temperature data is useful for species 

distribution modeling. Though the logistics of obtaining such high resolution temperature data 

may be challenging (Bennie et al. 2014), we argue that that failing to incorporate local 

microclimate variability masks important occupancy patterns. The discrepancy in the assumed 

importance of climate versus vegetation on site selection processes at regional versus local scales 

could stem from the fact that we measure climate well at broad spatial scales and vegetation well 

at small spatial scales. Our results indicate that lack of fine-scale temperature data may be 

concealing the relative role of temperature and could lead to the appearance of vegetation as the 

key driver of distributions at fine scales (Luoto et al. 2007). 

While most species showed apparent site shifts in response to local temperature 

conditions, the direction of these responses varied by species (roughly equal numbers of species 

were cool- and warm-associated). Moritz and Agudo (2013) found that many species had highly 

variable responses to climate. Many range-shift studies have reported high variability in both the 

degree and direction of shifts (Lenoir et al. 2010, Chen et al. 2011). Microclimate heterogeneity 

and species-specific responses to local-scale temperature could explain some of the 

inconsistencies between predicted and observed responses to climate change (Lenoir et al. 2010, 

Buckley and Kingsolver 2012).  

Our results showing within-season movements for most species we examined suggest 

that forest bird species have the behavioral flexibility to track suitable microclimates within a 

breeding season (Boyles et al. 2011, Tuomainen and Candolin 2011). In montane landscapes, 

complex terrain could create buffered ‘microrefugia’ (Dobrowski 2010). This indicates that 

microclimate heterogeneity may be an important factor in providing options for behavioral 
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adaptation (Bonebrake et al. 2014) in the face of regional climate changes. Stable populations in 

heterogeneous landscapes could stem from increased options for tracking microclimate (Oliver et 

al. 2010). We detected weak evidence for population declines in species we identified as being 

‘cool-associated (mean trend [95% CIs] = -1.06 % change/year [-1.96 – -0.16]; Fig. 7) at the 

regional scale (Breeding Bird Survey 2002-2012 trends from the Northern Pacific Rainforest 

region [OR, WA, CA], Sauer et al. 2014) relative to their warm-associated counterparts (-0.16 % 

change/year [-0.99 – 0.68]). This suggests that at least regionally, buffering capacity may be 

insufficient to sustain stable populations for cool-associated species in the face of climate change 

(CIs for trends of cool-associated species do not include 0, where trends for warm-associated 

species do; Fig. 7). 

3.5.2 Conclusions 

We demonstrated that local-scale occupancy patterns of forest birds are strongly 

associated with fine-scale thermal regimes in mountainous landscapes. Further, we found 

considerable evidence that temperature is an important factor in determining within-season 

distribution dynamics. The correlative relationship between occupancy dynamics and fine-scale 

temperature patterns, even after accounting for the influence of vegetation and imperfect 

detection, suggests that birds are shifting towards potentially more suitable microclimates and 

away from less favorable ones. This behavioral flexibility to adapt to changes within a breeding 

season appears widespread as it was demonstrated by almost all members of the forest bird 

community we examined. Future efforts should explore the degree to which such vagility and 

apparent flexibility in site occupancy might propagate to buffer such species against the impact 

of long-term regional climate change. 
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TABLE 3.1. Species list for the 15 bird species we examined at the H. J. Andrews Experimental Forest.Prevalence (Prev.) is the 
number of points for which a species was detected at least once throughout the breeding season out of the total points (183) for each 
year. Home range values were obtained from the online Birds of North America accounts (Poole [Editor] 2005). 
 

Species common name Species scientific name 
Species 
code 

Prev. 
2012 

Prev. 
2013 

Home range 
(ha) 

Brown creeper Certhia americana BRCR 0.435 0.495 4.2 
Chestnut-backed chickadee Poecile rufescens CBCH 0.913 0.826 1.3 
Golden-crowned kinglet Regulus satrapa GCKI 0.674 0.647 1.6 
Hammond's flycatcher Empidonax hammondii HAFL 0.386 0.446 1 
Hermit thrush Catharus guttatus HETH 0.462 0.527 0.7 
Hermit warbler Setophaga occidentalis HEWA 0.875 0.951 0.35 
Oregon junco Junco hyemalis ORJU 0.620 0.663 0.38 
Pacific Wren Troglodytes pacificus PAWR 0.821 0.793 1.38 
Pacific-slope flycatcher Empidonax difficilis PSFL 0.761 0.853 2.5 
Red-breasted nutchatch Sitta canadensis RBNU 0.511 0.783 1.2 
Steller's jay Cyanocitta stelleri STJA 0.630 0.625 80 
Swainson's thrush Catharus ustulatus SWTH 0.674 0.723 1 
Varied thrush Ixoreus naevius VATH 0.609 0.565 7 
Western tanager Piranga ludoviciana WETA 0.277 0.342 2.8 
Wilson's warbler Cardellina pusilla WIWA 0.299 0.266 0.3 
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TABLE 3.2. Coefficients and standard errors for apparent settlement (γ) by species and year for top models.** = significant at P ≤ 0.05, 
* = significant at P ≤ 0.1. See Table 1 for species code definitions. See Appendix 8 for all model selection tables. 

 
 

Species Est SE Est SE Est SE Est SE Est SE Est SE Est SE Est SE Est SE

BRCR -1.902 0.174 0.686 0.173 ** -0.193 0.133
CBCH 0.187 0.185 0.194 0.183 -0.566 0.188 ** 0.356 0.167 **
GCKI -1.126 0.109 -0.151 0.128 -0.556 0.112 **
HAFL -2.670 0.287 0.397 0.189 ** -0.428 0.339
HETH -1.308 0.207 -0.445 0.170 ** 0.165 0.186
HEWA -0.387 0.154 -0.182 0.158 -0.532 0.156 **
ORJU -1.079 0.168 -0.391 0.164 ** -0.544 0.190 **
PAWR -0.433 0.118 0.641 0.138 ** 0.574 0.160 ** 0.494 0.134 **
PSFL -0.930 0.114 0.551 0.126 ** 0.258 0.125 **
RBNU -1.741 0.271 -0.332 0.286
STJA -1.068 0.204 -0.266 0.159 * 0.317 0.142 **
SWTH -0.929 0.150 -0.268 0.138 ** 0.232 0.128 *
VATH -1.432 0.140 -0.308 0.120 ** -0.532 0.132 **
WETA -2.851 0.256 0.540 0.187 ** 0.898 0.203 **
WIWA -2.953 0.188 -0.504 0.182 ** -0.384 0.171 **

BRCR -1.680 0.181 0.459 0.178 ** -0.233 0.138 * -0.343 0.224 -0.267 0.171
CBCH -0.635 0.135 0.320 0.150 ** -0.373 0.132 ** 0.276 0.160 *
GCKI -1.292 0.115 -0.126 0.121 -0.915 0.135 **
HAFL -2.186 0.179 0.468 0.161 ** 0.217 0.195
HETH -1.856 0.119 -0.472 0.120 ** -0.255 0.124 ** -0.320 0.115 **
HEWA -0.026 0.153 -0.429 0.171 ** -0.377 0.165 ** -0.642 0.164 **
ORJU -1.083 0.129 -0.498 0.141 ** -0.567 0.158 **
PAWR -0.943 0.119 0.562 0.136 ** 0.550 0.143 **
PSFL -0.477 0.112 0.435 0.126 ** 0.439 0.127 **
RBNU -0.116 0.258 -0.484 0.239 ** -0.458 0.232 ** -0.538 0.242 **
STJA -3.269 1.643 1.327 0.920
SWTH -1.133 0.116 0.194 0.109 * 0.357 0.105 **
VATH -1.522 0.130 -0.209 0.122 * -0.429 0.124 **
WETA -2.004 0.248 -0.640 0.164 ** 0.208 0.150
WIWA -3.107 0.302 -0.645 0.259 ** -0.420 0.258 **

MAX Apr-Jun MIN Apr-Jun

2012

2013

CDD >10 Apr-Jun MEAN Apr-Jun
Vegetation Temperature

Veg structure 1 Veg structure 2 Veg composition CDD >0 Jan-MarIntercept
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TABLE 3.3. Coefficients and standard errors for apparent vacancy (ε) by species and year for top models.** = significant at P ≤ 0.05, * 
= significant at P ≤ 0.1. See Table 1 for species code definitions. See Appendix 8 for all model selection tables. 

Species Est SE Est SE Est SE Est SE Est SE Est SE Est SE Est SE Est SE

BRCR 1.127 0.466 0.281 0.277 1.217 0.864
CBCH -0.536 0.141 -0.236 0.127 * 0.147 0.121 -0.218 0.129 *
GCKI 0.354 0.179 0.103 0.156 0.334 0.164 **
HAFL -0.523 0.393 -0.711 0.412 * -0.607 0.257 **
HETH 0.638 0.299 0.108 0.262 0.692 0.289 **
HEWA -1.012 0.158 0.177 0.134 0.539 0.209 **
ORJU 0.384 0.255 0.190 0.213 1.320 0.279 **
PAWR -0.501 0.133 -0.306 0.136 ** -0.697 0.159 **
PSFL -0.394 0.162 -0.261 0.164 0.287 0.128 ** -0.238 0.189
RBNU -1.223 0.488 0.282 0.360 0.688 0.461
STJA 1.045 0.306 -0.271 0.244 -0.229 0.252
SWTH -0.274 0.228 0.205 0.191
VATH 0.952 0.281 -0.031 0.213 0.650 0.249 **
WETA 0.814 0.465 -0.275 0.357 * -0.275 0.357
WIWA 0.904 0.401 0.262 0.280 1.689 0.484 **

BRCR 0.302 0.241 0.359 0.213 * -0.359 0.239
CBCH -0.568 0.209 -0.633 0.290 ** -0.319 0.184 *
GCKI 0.229 0.187 0.324 0.171 * 0.551 0.169 **
HAFL -0.340 0.324 -0.419 0.202 ** -0.351 0.253
HETH 0.641 0.212 0.342 0.184 * 0.153 0.197
HEWA -0.815 0.099 -0.059 0.100 0.428 0.107 **
ORJU -0.096 0.202 0.017 0.198 0.293 0.178 *
PAWR -0.686 0.132 0.381 0.118 ** -0.522 0.159 **
PSFL -0.615 0.145 -0.328 0.144 ** -0.409 0.171 **
RBNU -1.051 0.174 0.143 0.149 0.194 0.181 0.230 0.145
STJA -2.679 0.635 1.001 0.411 ** 0.693 0.543
SWTH -0.073 0.186 -0.358 0.163 ** -0.167 0.157 -0.141 0.183
VATH 1.045 0.260 -0.396 0.309 * 0.386 0.217
WETA 1.462 0.439 0.286 0.396
WIWA -4.657 1.777 -1.128 0.457 ** -4.615 2.339 ** -1.149 0.742

2012

2013

CDD >10 Apr-Jun MEAN Apr-Jun
Vegetation Temperature

Intercept Veg structure 1 Veg structure 2 Veg composition CDD >0 Jan-Mar MAX Apr-Jun MIN Apr-Jun
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FIGURE 3.1. The proportion of species in each year for each of the ecological parameters where 

the effect of 1) temperature alone (TEMP), 2) both vegetation and temperature (BOTH), or 3) 

vegetation alone (VEG) were significant (at P < 0.05) in the top model, or whether 4) neither 

vegetation nor temperature (NEITHER) were significant in the top model. Initial occupancy 

described the distribution in the first sample session (mid-May). Settlement and vacancy 

described patterns in ‘apparent movement’ between the second and sixth sample sessions (late-

May until early-July).  
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FIGURE 3.2. Hermit warbler (HEWA, Setophaga occidentalis) is an example of a species where 

local site-scale dynamics are largely driven by temperature and vegetation structure to a lesser 

extent. Hermit warblers were both less likely to settle sites (A) and more likely to vacate sites (C) 

that were warmer. Vegetation structure was not a significant predictor of either vacancy (B) or 

settlement (D). 
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FIGURE 3.3. Pacific wren (PAWR, Troglodytes pacificus) is an example of a species where both 

temperature and vegetation were important in within season dynamics. Pacific wrens were more 

likely to settle warmer sites (A) and vacate cooler sites (E). Pacific wrens were more likely to 

settle sites with old-growth characteristics (B) and higher deciduous composition (C). Wrens 

were more likely to vacate even-aged vegetation stands such as plantations (D). 
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FIGURE 3.4. Predicted maps for hermit warbler (A) initial occupancy, (B) settlement, (C) vacancy 

and (D) final occupancy patterns at the end of the sampling period. By the end of the season (D) 

hermit warblers have shifted away from warmer sites towards cooler sites.  
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FIGURE 3.5. Predicted maps for Pacific wren (A) initial occupancy, (B) settlement, (C) vacancy 

and (D) final occupancy patterns at the end of the sampling period. By the end of the season (D) 

hermit warblers have shifted away from plantation sites towards older forest sites sites. Predicted 

maps do not include proportion of deciduous basal area since it is a local-site vegetation variable. 
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FIGURE 3.6. Year to year correlations in fine-scale temperature metrics. Temperature patterns 

were highly consistent between the years despite 2013 being warmer.  
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FIGURE 3.7. Mean population trend estimates from BBS data grouped by species that showed 

cool vs warm associations in the H. J. Andrews dataset. We detected weak evidence for 

population declines in species we identified as being ‘cool-associated (mean trend [95% CIs] = -

1.06 %/year [-1.96 – -0.16]) at the regional scale (BBS) relative to their warm-associated 

counterparts (-0.16 %/year [-0.99 – 0.68]). CIs for trends of cool-associated species did not 

include 0, where trends for warm-associated species did. Breeding Bird Survey 2002-2012 trends 

from the Northern Pacific Rainforest region (OR, WA, CA; (Sauer et al. 2014).   
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73 4 THE IMPORTANCE OF SAMPLING SCALE AND IMPERFECT DETECTION IN 
ESTIMATING LONG-TERM AVIAN ABUNDANCE TRENDS 

 
 

ABSTRACT 

Bird population trends are often used as measures of ecosystem health and in 

conservation planning. However, drawing firm conclusions from such trends can be complicated 

due to potential for trend variability across spatial scales and biases caused by imperfect 

detection. We estimated bird population trends from 1999-2012 for 38 species at regional, 

landscape and local scales to address three questions: (1) Are trends consistent across scales? (2) 

Can life history and ecological traits explain these population trends? (3) Does imperfect 

detection have the potential to mask long-term trends? We derived regional trends from the 

Breeding Bird Survey, landscape-scale trends from a valley-wide survey in the Hubbard Brook 

Experimental Forest (HBEF), New Hampshire, and local trends from surveys on a 10-ha plot in 

the same valley. Abundance trends of most (68.5%) forest bird species at HBEF were relatively 

stable over the time period observed and were correlated with regional-scale trends (r = 0.40, P = 

0.013). However, more than double the number of species showed significant declines at the 

regional scale (N = 16, 42.1%) than in the undisturbed HBEF (N = 7, 18.4%). Life history and 

ecological traits did not explain any of the variability in HBEF trends. Regionally species that 

occur at higher elevations were more likely to be declining and species associated with older 

forests were more likely to be increasing. We attribute these differences to: (1) elevated rates of 

land-use change in the broader region and (2) that regional-scale models do not account for 

imperfect detection. Population trends calculated using traditional linear regression models, 

though correlated with detection models (r = 0.43), were prone to both under- and over-

estimating bird population trends. Using only raw abundance data we would have missed 

significant population trends in 13% of species and falsely identified trends for almost 20% of 

species. Our results highlight the importance of accounting for imperfect detection and sampling 

at appropriate spatial scales in generating reliable population trend estimates. Further, relatively 

stable breeding-ground habitat in the HBEF appears to translate into mostly stable bird 

populations over the 14 years observed. 
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74 4.1 INTRODUCTION 

Bird population trends are used frequently as an indicator of ecosystem health from local 

to global scales (Canterbury et al. 2000, Betts et al. 2010, Butchart et al. 2010). However, the 

reliability of such trends is frequently called into question for two primary reasons. First, trends 

in abundance may differ depending on the spatial scale investigated (Bohning-Gaese et al. 1994). 

Species distributions at large spatial scales are considered primarily climate-driven (Thuiller et al. 

2004a, Thomas 2010) and at finer scales, factors such as land cover and species interactions are 

hypothesized to play a larger role (Brown et al. 1995). Due to stochasticity in food resources, and 

variability in habitat change, abundance patterns at local scales may reflect very different 

processes than those acting at regional scales. Many studies are conducted at fine spatial scales 

yet aim to transfer these local patterns to the larger landscape (Urban 2005). However, the degree 

to which population trends are consistent across these spatial scales has rarely been examined 

(but see Holmes and Sherry 1988). Second, sampling techniques often introduce biases that can 

make inferences about populations problematic. Raw counts arise from a combination of two 

interrelated processes, the ecological (state) process and the observation process (Kéry 2011). 

Not accounting for such biases through study design and analysis can lead to biased estimates or 

a lack of power to detect important demographic patterns (Tyre et al. 2003, Guillera-Arroita et al. 

2010). By not accounting for detection probability in estimating abundance trends, researchers 

risk missing trends (type I error) or identifying trends that are not real and due to changes in 

detection over time rather than abundance (type II error).  

The Hubbard Brook Experimental Forest (HBEF), located in the White Mountains of 

New Hampshire, USA (43°56′ N, 71°45′ W; 222 – 1015 m.a.s.l.), encompasses a 3160-ha, 

forested valley and an 800-m elevational gradient. The HBEF has had no major anthropogenic 

disturbance since 1915 (Holmes 2011). We used HBEF valley-wide (landscape scale) bird 

surveys that have been conducted since 1999 and hierarchical models to estimate detection-

corrected abundance trends for 38 species over the last decade and a half (38,521 total 

detections). To determine the effects of imperfect detection on trends, we estimated abundance 

change for forest birds in the HBEF over 14 years (1999-2012) both with, and without the use of 

hierarchical models that incorporate bird detection probability (Kery et al. 2009). To test the 
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75 effects of scale on avian trends, we compared landscape-scale trend estimates to both regional 

(New Hampshire Breeding Bird Survey [BBS]) and local (10 ha-plot) scale population trends 

nested within the broader HBEF. Earlier work conducted in the same area indicated that most 

forest bird species were declining both locally (HBEF) and statewide from 1969-1986 (Holmes 

and Sherry 1988) and 50% of the most common species showed significant declines from 1969-

1998 in HBEF (Holmes and Sherry 2001).  

To elucidate possible mechanisms for population trends at HBEF and regionally, we 

investigated the role of species’ life history and ecological traits (Hansen and Urban 1992, Clark 

and Martin 2007). Life history characteristics govern a species’ capability to cope with 

environmental change therefore influencing the direction of population trends (Bennett and 

Owens 2002, Angert et al. 2011). We predicted that in New England, where succession over the 

past century has resulted in afforestation of agricultural fields and an increase in the amount of 

older forest (Thompson and DeGraaf 2001, Trani et al. 2001), species associated with mature 

forests should be increasing and early-seral specialists declining due to loss of habitat (King and 

Schlossberg 2014). Further, if climate change (e.g., warming temperatures) has influenced 

abundance trends at any scale, then we should observe decreasing trends in species that occur 

primarily at high elevations (Jiguet et al. 2007, Sekercioglu et al. 2008). Migratory and resident 

species may be responding to different climate signals (Moller et al. 2008) and their ability to 

adjust to changes in phenology have been shown to vary (Fraser et al. 2013, Townsend et al. 

2013). We therefore examined the influence of habitat specialization, elevational distribution, 

and migratory status on trends. We also included reproductive output, survival, and body mass, 

as they are traits that influence demography and subsequently population trends. Species with 

‘slower’ life histories, that is those with lower reproductive output, higher survival and generally 

larger body sizes, should be expected to take longer to respond to changes in the environment in 

comparison to species that are smaller, have larger broods, and have shorter life spans (Bennett 

and Owens 2002, Angert et al. 2011). 
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76 4.2 METHODS 

4.2.1 Study site 

HBEF Watershed – We used bird occurrence data collected throughout the HBEF valley. 

The forest is primarily contiguous second-growth (~90 yrs. old) and transitions from hardwood 

tree species at lower elevations to coniferous, montane species at high elevations (Fig. 1; see 

Schwarz et al. (2003) and Holmes (2011) for detailed study site descriptions). The extensive 

valley-wide dataset on forest bird populations consists of 371 sample points. Sample points were 

placed across the entire watershed using a systematic grid spaced 500 m (east-west) and 100- and 

200-m (north-south; Schwarz et al. 2003, Doran and Holmes 2005). Sample points therefore span 

large gradients in elevation, climate, and forest vegetation structure and composition.  

4.2.2 Watershed-Scale Avian Surveys 

Point counts were conducted between one and three times from 1999–2012 (no surveys 

conducted in 2003-04), during the breeding period (May – July). Point counts were carried out 

by trained observers under favorable weather conditions (no rain, low winds). Weather 

conditions describing cloud cover, precipitation, and wind were recorded for each survey. Birds 

were classified as either singing or calling and, when possible, we determined the sex of 

individual birds based on behavior (singing) and/or plumage differences through visual 

identification. We used only singing males to maximize the probability that the individual was 

occupying a territory at a particular site. For non-singing species, we used both auditory and 

visual detections. A total of 71 species were detected at HBEF over the period of the study. 

We classified locations of individual birds in two distance classes: 1) within 50 m and 2) 

50-100 m. The final dataset included only observations made within 50 m of the sample point to 

reduce the chances of double counting individuals. To reduce observer and temporal bias, the 

order of counts and observers were rotated across points over the course of the three visits. Four 

to seven days were required to visit all points once and visits were spaced by a break of 2 – 10 

days. 
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77 4.2.3 Estimating abundance trends with binomial mixture models for open populations 

We chose the a priori 1999-2012 average HBEF prevalence cutoff of 0.01 (sensu 

Cumming et al. 2014), because below this threshold there were not enough data points to 

estimate parameters. The cut-off resulted in retaining 38 of the 71 species (Appendix 1). We 

used binomial mixture models for open populations (Kery et al. 2009, Kery and Royle 2010) to 

estimate population trends for 38 species at HBEF. This is a hierarchical model in that it 

explicitly estimates both the observation and ecological processes. Spatially and temporally 

replicated counts are conducted at i sites over j surveys. Between surveys (j) populations are 

assumed to be closed (no emigration or immigration). In the multi-season extension of this 

model, which we use here, the population closure assumption is relaxed between years (k). 

Counts cijk are a function of the population size at each site (Nik) and are modeled as a result of a 

binomial process with index parameter Nik and success parameter pij. The population size at each 

site arises from a Poisson distribution with rate parameter λik. To estimate the population size in 

subsequent years and the trend in abundance, we estimate log(λik) as a log-linear Poisson 

regression where the intercept αi is the estimate of the abundance in the first year and is added to 

the effect of the rate parameter ri which reflects the annual rate of population growth. Both the 

detection and abundance parameters can be modeled as a function of covariates. 

 

The model structure is as follows where i = site and j = replicate: 

Ecological process:  

Ni | λi ~ Poi(λi) 

Observation process: 

cij | Ni ~ Bin(Ni, pij) 

 

The model extended to multiple years and to include covariate effects where k = year, w = 

covariate: 
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Nik ~ Poi(λik) 

log(λik) = αi + ri ✕ (k − 1) + βw ✕ xikw 

Observation process: 

cijk | Nik ~ Bin(Nik, pijk)  

Logit(pijk) = αijk + βw ✕ xijkw  

We fit our models in a Bayesian framework using modified code from Kery et al. (2009) 

and Kery and Royle (2010). We used the ‘rjags’ package in program R (R Development Core 

Team 2011) in conjunction with JAGS version 3.3.0 (Plummer 2003). In a Bayesian mode of 

inference, Markov chain Monte Carlo (MCMC) simulations are used to estimate model 

parameters. In the simulations, repeated draws are made from the posterior distribution to 

estimate model parameters and associated error. We used three consecutive chains consisting of 

500,000 iterations each with a ‘burn-in’ period of 250,000 iterations and thinned by 150 draws. 

This combination gave us a total of 3333 draws. Following Kery and Royle (2010), we used 

conventional uninformative priors for all parameters to indicate no previous knowledge of their 

potential values (see Appendix A for more details).  

4.2.4 Linear regression with raw counts 

We compared N-mixture models that account for imperfection detection with traditional 

methods for estimating abundance trends that assume perfect detection. Using the HBEF data, 

we calculated a single abundance value for each species in each year. We used the mean count at 

each site when there were multiple visits. We then averaged this mean count from all of the sites 

in that year. We used these values (mean abundance across all sites) and estimated the trend 

using linear regression in program R (R Development Core Team 2011). We used the same 

method to calculate the local 10-ha plot abundance trends based on the raw counts of the 

individuals. 
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79 4.2.5 Comparison of trends by spatial scale 

Hubbard Brook Long-term Research in Environmental Biology (LTREB) plot – Since 

1969, detailed data were collected on a gridded 10-ha plot located between 300-400 m.a.s.l. at 

HBEF. We used abundance data from the same time period as the HBEF valley-wide dataset 

(1999-2012) to estimate local-scale trends in the LTREB 10-ha plot. Imperfect detection was 

unlikely in this dataset because the survey protocol entailed two observers conducting 

synchronized, 5-minute counts every 50m along parallel, 500m line transects. The two transects 

were 100m apart, and over the hour-long surveys, observers mapped the locations and 

movements of all individuals encountered within a 100m strip centered on the transect line. One 

observer (RTH) typically mapped all birds on the 10ha plot for an additional 1-3 hours per week. 

See Holmes and Sturges (1975) and Holmes and Sherry (2001) for further detail. These data 

were collected weekly from late May through early July each year. Bird counts and territory 

maps were combined to generate abundance estimates for each species encountered. 

Regional (New Hampshire) BBS – We used the BBS data from the state of New 

Hampshire, which included 25 routes. Routes were located across multiple vegetation types 

(forest, edge, fields, successional) and distributed widely across the state.  Each route was visited 

by a volunteer observer in between late May and early July to conduct 3-min point counts along 

the 50 points that make up the route (each point is 0.8 km apart); see Sauer et al. (2014). Trend 

estimates were calculated using hierarchical models that account for differences in observers, 

years, and stratum directly in the model framework. BBS trends are modeled using Poisson 

regression for overdispersed data, implemented in a Bayesian framework. While this method 

does not explicitly account for imperfect detection, it includes parameters that describe variation 

in the observation process (Link and Sauer 2002, Sauer and Link 2011). For all trend estimates 

we evaluated significance at α = 0.10 and considered trends to be statistically significant if the 

90% confidence intervals did not overlap zero (Peterjohn and Sauer 1994). 

4.2.4 Life history traits 

For the 38 species included in the abundance trend analysis (based on the 0.01 prevalence 

cutoff), we compiled information on the following ecological and life history traits from Birds of 
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80 North America (BNA) online accounts (Poole 2005): 1) migratory status (resident, short-

distance migrant, or long-distance migrant), 2) survival, 3) reproductive output, and 4) body 

mass. We used the HBEF data to calculate additional traits including: 5) habitat specialization 

(See SSI below), 6) altitude at peak abundance (See details below), 7) forest age at peak 

abundance (measured with basal area and canopy height). We calculated a species specialization 

index (SSI) following Julliard et al. (2006). We used the average maximum abundance value for 

each year in each site and then related these values to vegetation classes at HBEF (hardwood, 

softwood, mixed – hardwood dominant, mixed – softwood dominant) by calculating the mean 

and standard deviation of the abundance values that fell into each of these four cover types. We 

then calculated the coefficient of variation (standard deviation/mean) for each species. This value 

was used to describe the degree to which a species is generalized in its use of available habitats. 

SSI values ranged from 1.77 (representing highly specialized) to 0.14 (reflecting high 

generalism). To calculate elevation and forest age at peak abundance, we used yearly mean 

maximum abundance for each sample plot then calculated the elevation, mean canopy height 

(LiDAR derived; Goetz et al. 2010), and basal area (DBH>10cm, 25-m radius from on-the-

ground vegetation surveys; Schwarz et al. 2003) at which maximum abundance occurred. 

Information regarding migratory status, survival, and reproductive output were obtained from 

species’ Birds of North America (BNA) accounts online (Poole 2005). Body mass was derived 

from Sibley (Sibley 2000) for consistency since the BNA accounts almost always contained a 

body mass measurement for each species; however they were often only for one sex, or in only 

one part of the species range. We used linear mixed effects models (lmne package in R; Bates 

2012) to model trends as a function of life history and ecological traits. We accounted for lack of 

independence within phylogenic groups by including family as a random effect (Sol et al. 2005, 

Amiel et al. 2011). 
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81 4.3 RESULTS 

4.3.1 Effects of spatial scale 

The trends observed at HBEF were significantly and positively correlated with statewide 

BBS trends (r = 0.40, P = 0.013; Fig. 2). While generally the trends corresponded at the two 

scales, some large differences existed. The majority (68.5%) of the HBEF species showed no 

significant trend in abundance over the 14-year period (Fig. 2A). Twenty-two species declined; 

however only seven (18.4%) of them significantly (90% credible intervals [CRIs] did not overlap 

zero, Fig. 2A). Fifteen species increased, five of which were significant (13.1%, Fig. 2A). In 

contrast, BBS trends for NH indicated that most species either declined or increased, rather than 

remaining stable (Fig. 2B). More than half of the species (52.6%) exhibited a significant trend 

(90% CRIs did not overlap zero). Across the state of New Hampshire, 16 species significantly 

declined (42.1%) and only four species significantly increased (10.5%).  

The trend estimates for the LTREB plot and HBEF were not significantly correlated (r = 

0.12, P = 0.57; Fig. 3). However, this appeared to be largely a result of trend estimate differences 

for white-breasted nuthatch (Sitta canadensis), which showed opposite significant trends 

between the two datasets. Removing this species resulted in a significant and positive correlation 

between the HBEF landscape-scale and local trends (r = 0.66, P = 0.0009). On the LTREB plot, 

only a subset of the species in the HBEF and BBS datasets were sampled (23 of the 38 species; 

Fig. 3A). Four species significantly declined (17.4%) and 10 significantly increased (43.5%), and 

the remainder showed no significant trend (39.1%).  

We found no evidence that life history and ecological traits explained bird population 

trends in the HBEF; all 95% confidence intervals overlapped zero (Fig. 4A). Conversely, The 

BBS trends indicated that high-elevation species were more likely to be declining than species 

more commonly found at middle and lower elevations (effect size ± SE [95% CIs]: ! =!-0.81 ± 

0.40 [-1.614, -0.001]). Additionally, variability in BBS trends were explained by a species’ mean 

canopy height and mean basal area as well as migratory status (Fig. 4B). Species that were more 

abundant in forest stands with taller canopies (! =!1.22 ± 0.35 [0.51, 1.92]) and larger basal area 

(! =!0.98 ± 0.37 [0.23, 1.72]) were also more likely to have increasing trends. Long-distance 
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82 migrants were more likely to be declining in abundance across NH (! =!-1.48 ± 0.67 [-2.83, -

0.13]).  

4.3.2 Effects of imperfect detection on population trends 

Population trend estimates from the hierarchical model, which accounted for imperfect 

detection, were correlated with the estimates from the linear regression using the raw counts 

from HBEF (Pearson’s correlation coefficient (r) = 0.43, P = 0.007; Fig. 5). However, we found 

substantial differences in individual species’ trend estimates between the two methods. First, 

hierarchical model trends estimates indicated that changes in abundance over time were larger 

than estimates from traditional linear regression models – particularly for species found to be 

significantly declining or increasing. Models ignoring imperfect detection also missed 

statistically significant trends for five species (two decreasing, three increasing). Further, using 

traditional regression models we identified seven significant trends (five decreasing, two 

increasing) that were not present in the trend results from the hierarchical models. Finally, 

hierarchical models showed much lower variability in the error around parameter estimates 

among species. This was possibly a result of sparse data for species that were difficult to detect. 

 

 

4.4 DISCUSSION 

Landscape-scale, avian population trends at HBEF were correlated with both BBS 

regional trends and local-scale LTREB plot trends. These correlations indicate some consistency 

in mechanisms driving trends across the spatial scales. However, despite these general 

similarities, we observed some important differences across scales. Most species in the HBEF 

showed a relatively stable trend in abundance from 1999 - 2012. In contrast, the number of 

significantly declining species statewide was more than double that of HBEF. Several possible 

explanations exist for these differences. First, BBS data does not exclusively account for 

detection probability. Variation in detection probability may be incorrectly associated with 

abundance (Kéry 2011) which results in estimating trends in the observation process rather than 

our ecological variable of interest. As noted above, had we not corrected for detection biases 
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83 within the watershed dataset we would have had different trends for 31.6% of the species we 

examined. Secondly, land-use changes over the sampling period are different at regional and 

watershed scales. HBEF is a contiguous tract of relatively undisturbed forest that has seen no 

anthropogenic change during the period in which we monitored bird populations. Conversely, 

regional sampling is not limited to undisturbed forest habitats and is subjected to land use change 

from two co-occurring processes: 1) human disturbance and 2) afforestation and succession. 

Thus, at the regional scale there is more disturbance and forest fragmentation from roads (Ortega 

and Capen 1999), rural housing development (Kluza et al. 2000), and forestry practices 

(Kittredge Jr et al. 2003) which have all been shown to affect birds. In New England, forest 

cover tends to be increasing and aging, resulting in a decrease in early-seral habitats as 

previously cleared land succeeds into woodland (King and Schlossberg 2014). Finally, BBS data 

relies heavily on roadside sampling to achieve desired spatial and temporal replication. While 

this is often necessary due to logistical constraints, it limits the scope of inference for populations 

beyond road networks and may influence detection probability (Bart et al. 1995, Keller and 

Scallan 1999). Additionally, land use changes next to roads may not be reflective of practices at 

larger scales (Betts et al. 2007). 

Population trends from the local-scale LTREB plot generally reflected trends from the 

landscape-scale. The yearly variation in abundance in the 10-ha LTREB plot was overall more 

variable, which was expected due to higher stochasticity at smaller spatial scales (Villard and 

Maurer 1996, Morrison et al. 2010). Abundance across the entire valley averages out this 

variability and provides a more even picture of the bird populations (Wiens 1989). Patchiness in 

habitat types and resources across the HBEF means that bird densities are likely not equal across 

the entire watershed. Sampling at fine spatial scales provides extremely high-resolution data that 

cannot be attained when sampling is conducted across entire landscapes; resolution is usually 

reduced with increases in spatial extent (Urban 2005, Betts et al. 2006). The spatial scale at 

which one samples will inevitably be a function of the type of information required to understand 

species distributions and drivers of population trends. 

None of the variation in the trends observed at HBEF could be explained by life history 

or ecological traits. Although the forest at HBEF has not changed as a result of human 
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84 disturbance in the recent decades, it has undergone natural succession (Siccama et al. 2007). 

HBEF is comprised of relatively contiguous mature forest without many early-seral habitats. 

While life history traits were not useful for describing population trends at HBEF, we did see 

examples of species’ trends suggesting change in abundance due to increasing forest age and 

changing structure. Species associated with mature forest structure (e.g., furrowed bark, tree 

cavities) all had increasing trends at the landscape scale (i.e., white-breasted nuthatch, pileated 

woodpecker [Dryocopus pileatus], black-and-white warbler [Mniotilta varia], and red-breasted 

nuthatch [Sitta canadiensis]). Beech bark disease, which results in more standing and downed 

dead trees (Houston 1994) may also lead to in an increase in bark-feeding specialists. As the 

forest across HBEF aged, we expected to see declines in second-growth associates. In part this 

was the case; American redstart (Setophaga ruticilla), Canada warbler (Cardellina canadensis), 

ruffed grouse (Bonasa umbellus), and veery (Catharus fuscescens) declined in abundance at 

HBEF; however two other early-seral associates, Nashville warbler (Vermivora ruficapilla) and 

white-throated sparrow (Zonotrichia albicollis), did not. Earlier trend analyses at the local scale 

at HBEF (1969-1998, 10-ha plot, Holmes and Sherry 2001) did, however, find a link between 

species trends and changes in the forest habitat due to natural succession at the local scale, so 

perhaps successional effects had mostly run their course by the time of our study initiation 

(1999). Forest birds in the HBEF did not appear to be declining as a result of climate change; 

high-elevation species were no more likely to be declining than their low-elevation counterparts. 

High-elevation species, such as blackpoll warbler (Setophaga striata), magnolia warbler 

(Setophaga magnolia), and yellow-bellied flycatcher (Empidonax flaviventris), did not indicate 

any decrease in abundance over time at HBEF. This is in contrast to some recent studies that cite 

shifts in species distributions or population declines as a result of warming temperatures (Both et 

al. 2006, Parmesan 2006, Devictor et al. 2008). One possible explanation is that despite warming 

temperatures across the HBEF and northern New Hampshire (Groffman et al. 2012, Climate 

Solutions New England 2014), little warming has been observed during the period during which 

bird sampling took place (Townsend et al. 2013). Other explanations include the possibility that 

responses to warming temperatures are lagged and we did not pick up on them over this time 
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85 period or that some species could be adapting behaviorally to changes in temperature regimes 

(Boyles et al. 2011). 

In contrast, particular traits appeared to be associated with species trends from BBS data. 

The clear successional signal in BBS trends likely occurs because it is a sample of a larger area 

where more succession and afforestation is taking place. Land-cover change as a result of 

increasing forest cover and increasing forest age has the potential to reduce species diversity as 

early-seral species decline. As the forest continues to grow and mature, early-seral species 

continue to decline and contribute to a loss in avian biodiversity in the region (Hunt 1998, King 

and Schlossberg 2014). Species occurring at higher elevations were more likely to be declining 

at the regional scale (i.e., BBS data). Six out of the 16 species significantly declining regionally 

are most common at elevations > 700m (blackpoll warbler [929.04m], Canada warbler [730.8m], 

white-throated sparrow [770.6m], red-breasted nuthatch [770.2m], yellow-bellied flycatcher 

[866.6m], and slate-colored junco [809.01m]). Temperature trends in the region showed 

increases in temperature over the last four decades (Clark and Martin 2007) with more warming 

taking place in the winter months (Huntington et al. 2009). In the western US (Gutiérrez Illán et 

al. 2014) found that similar changes in winter temperature and precipitation were strong 

predictors for population trends. 

Abundance trend estimates derived from raw counts were correlated with those 

accounting for imperfect detection – which is reassuring for long-term population estimates 

derived from un-corrected data (e.g., North American Bird Conservation Initiative 2013). 

Importantly, no trends reversed direction after accounting for imperfect detection. Congruence 

between these two methods suggests that studies that do not separate the observation process 

from the ecological process should not be dismissed. However, in our study, accounting for 

imperfect detection using more sophisticated sampling and analysis methods had clear 

advantages, namely more accurate trend detection as well as reduced error estimates. Because 

many of the species have low detection probabilities, abundance was severely underestimated 

when detection was assumed to be perfect. This is an important difference because we 

overlooked significant trends for five species and falsely identified trends in seven others using 

traditional, non-detection corrected models. Our findings are consistent with other tests; for 
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86 example, Kery et al. (2009) did not detect a population trend for sand lizards (Lacerta agilis) 

at their inland site when they used estimates from a Poisson regression that did not account for 

detection probability. Archaux et al. (2012) determined that even small differences in detection 

probabilty between treatments increased the chance of misidentifying a treatment effect when 

none existed. These other studies along with our findings highlight both type I and type II errors 

associated with traditional non-detection corrected methods; both errors are particularly 

problematic if estimates are used in the formulation of management and conservation decisions. 

In almost all bird population datasets, detection probabilities are less than one; therefore 

estimates of ecological parameters such as occupancy and abundance will be biased low and 

relationships with environmental covariates will obscured (Kéry 2011). Increasing both the 

precision of trend estimates and the ability to detect trends greatly improves our ability to make 

appropriate conservation recommendations. 

Conclusions 

We found that landscape-scale trend estimates were correlated with both regional and 

local population trends although correlations were tenuous. Differences in trends across scales 

were sufficient to suggest that trends collected at one scale may not necessarily be reflective of 

those in another. When possible, the scale at which populations are sampled should be matched 

to the scale of conservation management. Overall our results show that failing to account for 

detection biases can lead to unreliable trend estimation. Therefore, techniques to account for 

imperfect detection should be incorporated into trend analyses when suitable data exist. New 

studies designed to detect population trends should collect and structure data to allow estimation 

of detection probability. This forethought will reduce the possibility of both type I and II errors 

and will improve our ability to make inform conservation efforts. 
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FIGURES 

 

FIGURE 4.1. Map of the 3400-ha Hubbard Brook Experimental Forest study area showing valley-wide 371 sample points (black dots), 

LTREB plot (star), and elevational distribution (in meters). 

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Ü

0 1 2 3 40.5
Kilometers

! Survey Points

Elevation (m)

1003

182

 



!
 

88 

 
 

 



!
 

89 

 

FIGURE 4.2. A) Abundance trend estimates (% change/year) for 38 bird species at Hubbard 

Brook Experimental Forest in the White Mountains of New Hampshire from 1999-2012. Trend 

estimates account for sampling error due to uneven detection rates. Error bars are 90% credible 

intervals. B) Breeding bird survey abundance trend estimates for 38 bird species in the state of 

New Hampshire, USA from 1999-2012. Error bars are 90% credible intervals. Filled circles 

represent significant trends (90% CIs do not overlap 0). Open circles are stable, or non-

significant trends (90% CIs overlap 0). See Appendix 1 for definition of species codes. C) Direct 

comparison of abundance trends by species between HBEF and BBS. The solid line is 1:1 

(intercept = 0, slope = 1). The dotted lines divide the plot into four quadrants: top right = both 

trends are positive, top left = HBEF hierarchical models predict positive trend, traditional models 

predict negative trend, bottom right = traditional models predict positive trend, hierarchical 

models predict negative trend, and bottom left = both trends are negative.  
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91 FIGURE 4.3. A) 1999-2012 abundance trends from the long-term (LTREB) 30x30m plot at 

Hubbard Brook. Error bars are 90% confidence intervals. Filled circles represent significant 

trends (90% CIs do not overlap 0). Open circles are stable, or non-significant trends (90% CIs 

overlap 0). See Appendix 1 for definition of species codes. B) Direct comparison of abundance 

trends by species between HBEF and LTREB plot. The solid line is 1:1 (intercept = 0, slope = 1). 

The dotted lines divide the plot into four quadrants: top right = both trends are positive, top left = 

HBEF hierarchical models predict positive trend, traditional models predict negative trend, 

bottom right = traditional models predict positive trend, hierarchical models predict negative 

trend, and bottom left = both trends are negative. 
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93 FIGURE 4.4. A) Effect size estimates for the influence of life history traits on patterns in 

abundance trends from Hubbard Brook Valley. Estimates are from univariate generalized mixed 

models with family as the random effect. Error bars are 95% confidence intervals. B) Effect size 

estimates for the influence of life history traits on patterns in abundance trends from the New 

Hampshire Breeding Bird Survey. Estimates are from univariate generalized mixed models with 

family as the random effect. Error bars are 95% confidence intervals. SSI = species 

specialization index (see methods for how this variable is calculated), low value indicates a 

generalist species and a high number indicates a specialist species. Elev., Canopy Ht., and Basal 

Area refer to the mean elevation, canopy height, and basal area at which the species is most 

abundant. Migration: LD = long distance, SD = short distance. 
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95 FIGURE 4.5. A) HBEF trend estimates using linear regression that assumes perfect detection of 

all species (uses raw counts to infer ecological state of interest, in this case abundance). Filled 

circles represent significant trends (90% CIs do not overlap 0). Open circles are stable, or non-

significant trends (90% CIs overlap 0). See Appendix 1 for definition of species codes. B) Direct 

comparison of abundance trends by species between HBEF hierarchical models and traditional 

models using raw counts. The solid line is 1:1 (intercept = 0, slope = 1). The dotted lines divide 

the plot into four quadrants: top right = both trends are positive, top left = HBEF hierarchical 

models predict positive trend, traditional models predict negative trend, bottom right = traditional 

models predict positive trend, hierarchical models predict negative trend, and bottom left = both 

trends are negative. 
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FIGURE 4.6. Comparison of abundance trends between scales and modeling methods for four 

species. HBEF raw abundance and estimates from the hierarchical model are number of 

individuals in a point count circle (50-m radius around sample point). Abundance in the LTREB 

plot is the number of individuals within the 10-ha plot. The BBS produces an index of relative 

abundance per sampling route (25 miles in length). A) White-breasted nuthatch was increasing in 

BBS and HBEF datasets, but decreasing in the LTREB plot. B) Yellow-bellied flycatcher was 

declining in both BBS and HBEF. C) American redstart, was declining in all datasets and was 
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97 almost absent from HBEF at the end of the 14-year period. D) Blackburnian warbler was 

relatively stable at HBEF, increasing in the LTREB and decreasing in the BBS dataset.   
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98 5 CONCLUSION 
 

My dissertation research investigated fine-scale patterns in microclimate, the role of 

microclimate in avian occupancy dynamics, and stability of bird population trends in 

heterogeneous montane environments. I used a combination of novel modeling methods and 

sophisticated data collection approaches to explore assumptions underlying predictions of 

biodiversity responses to environmental changes. In this thesis I have demonstrated that scale is 

an important consideration in both quantifying environmental predictors and modeling avian 

distributions and population trends. Scale mattered for 1) understanding relative drivers of local-

scale microclimate, 2) uncovering the relative roles of temperature and vegetation in site 

occupancy dynamics of a forest bird community, and 3) consistency of avian population trends.  

I found that high microclimate variability existed at fine spatial scales (Chapter 2). 

Although elevation was the dominant driver in local-scale microclimate patterns, vegetation and 

microtopography also showed substantial relative contributions. Collection of high-resolution 

temperature data has been dismissed as being unrealistic due to the logistical difficulties 

involved (Bennie et al. 2014) and it has been assumed that this level of resolution will be no 

more relevant for biodiversity than information collected from widely-distributed meteorological 

stations (Xu et al. 2004). My results (Chapter 2 & 3) suggest that this view may be shortsighted. 

I showed that high-resolution temperature patterns can be accurately modeled using increasingly 

available remote sensing information. Elevation, microtopography, and LiDAR-derived 

vegetation structure metrics were able to explain the majority of variability in local microclimate 

and our models performed well at predicting on independent data. This suggests that efforts 

should be made to replicate my work in other systems to uncover general patterns that would 

permit widespread modeling of detailed temperature data across landscapes. 

The high relative importance of elevation and microtopography in temperature patterns 

that I observed was not surprising (Dobrowski 2010), but the capacity of vegetation structure to 

play a role in microclimate was greater than expected in previous work (Lookingbill and Urban 

2003). I showed that the role of vegetation structure in microclimate patterns was equivalent to 

that of microtopography (Chapter 3). Other studies are congruent with vegetation influences on 
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99 microclimate. However, most of these showed differences between dramatically different 

vegetation types such as forest and grassland (Suggitt et al. 2011) or forest and young plantations 

(Chen et al. 1993, Baker et al. 2014, Hardwick et al. 2015). Forest patch size can generate 

different microclimates in montane landscapes (Vanwalleghem and Meentemeyer 2009) and 

tropical systems (Ewers and Banks-Leite 2013). I observed mean monthly differences of several 

degrees when comparing >60 year old plantations with old-growth forest stands. I revealed that 

old growth tended to buffer sites against temperature extremes and keep sites both cooler in the 

summer and warmer in the winter; plantations and even-aged stands did not provide the same 

buffering capacity.  

In my third chapter, I discovered that high-resolution temperature data such as I collected 

in Chapter 2 can provide valuable insight into avian occupancy patterns. I showed that 

occupancy was dependent on temperature as much as or more than local vegetation 

characteristics. My results suggest that in addition to known influences at broad spatial scales 

(Thuiller et al. 2004a, Thomas 2010, Boucher-Lalonde et al. 2014), temperature may also play an 

important role in occupancy patterns at fine spatial scales. Previously, lack of fine-scale 

temperature data may have been masking the important role temperature can play in occupancy 

dynamics (Potter et al. 2013a).  

In Chapter 4 I tested the degree to which population trends are consistent across spatial 

scales. I found that landscape-scale trends were correlated with regional and local trends, but 

generally these correlations were tenuous. Trend differences depending on scale of data 

collection caution against the use of ecological data from one scale to infer to other scales 

(Bohning-Gaese 1997). In contrast, Holmes and Sherry (1988) found congruence between BBS 

(regional) and HBEF (local 10-ha plot) population trends for an earlier time period (1969-1986). 

This suggests that when processes underling population trends are consistent across scales 

parallel trends result, but population drivers are unlikely to always have equivalent rates at local, 

landscape and regional extents. 

More species were declining at the regional scale compared to within the HBEF during 

the 14-year period I examined. I hypothesized that this difference stemmed from the relatively 
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100 undisturbed and contiguous nature of the forest within HBEF compared to the regional scale. 

The HBEF is comprised of fairly even-aged older second-growth forests with little early-

successional forest present. In contrast, the regional landscape remains dynamic and has been 

subject to several different processes of habitat change. First, afforestation and succession are 

occurring across New England resulting in decreasing amounts of early-seral habitats (King and 

Schlossberg 2014). The decline of early-seral species I observed at the regional scale mirrors the 

trend in land cover and forest age transitions. Loss of these early-successional species at the 

HBEF scale may have largely finished before the period we examined. There were insufficient 

numbers of several early-seral associates to run the trend analysis models for these species, but 

these species were abundant in earlier time periods (Holmes and Sherry 2001). One of the few 

early-successional species (Hunt 1998) with sufficient numbers to permit trend modeling was 

American redstart (Setophaga ruticilla). This species was declining during earlier studies 

(Holmes and Sherry 2001) and at the end of my sampling period it was almost entirely absent 

from HBEF. Species associated with older forests were also increasing at the regional scale, 

which fits with the widespread pattern of afforestation and aging forest structures. Unlike HBEF, 

the regional scale has experienced fragmentation and habitat loss due to rural housing 

developments (Kluza et al. 2000), road networks (Ortega and Capen 1999), and timber harvest 

(Kittredge Jr et al. 2003) – all of which have been shown to influence birds. It is possible that 

these processes may have contributed to declining population trends in migrants and high-

elevation species at the regional scale. 

Heterogeneous landscapes such as complex mountainous environments have been shown 

to promote more stable population dynamics (Oliver et al. 2010) and longer-term persistence 

(Vegas-Vilarrubia et al. 2012), implying potential for buffering biodiversity from broader-scale 

changes. In mountainous landscapes, vagile organisms may adjust their use of local habitat in 

ways that allow them to persist in the face of climate change without necessitating broad-scale 

range shifts (Dolby and Grubb 1999, Kearney et al. 2009a). In Chapter 3 I showed the potential 

for behaviorally flexibility to track local microclimate maybe widespread in forest bird species. 

Given that HBEF is an undisturbed montane forest landscape, the effects of regional climate 
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101 change may be reduced for avian populations due to the lack of land cover change and 

increased availability of diverse microclimates. 

Future directions 

Inferences and observations from this work lead to further questions and hypotheses to be 

tested in future research: 

1. I hypothesized that buffered microclimates can act as microrefugia in mountainous 

terrain to slow avian population declines as the climate warms. I found that cool-associated 

species tended to be those more likely to be declining at the regional scale (BBS data; Chapter 

3). If mountainous terrain helps to provide options for microclimate buffering (Sears et al. 2011), 

then dividing BBS routes into topographically heterogeneous versus topographically simple 

routes, we should observe stable trends in heterogeneous routes and larger declines in simple 

routes. 

2. Are effects of temperature on avian occupancy dynamics driven by birds tracking 

ephemeral resources? Patterns in the diet of forest bird species could be examined across time 

and space. Arthropod data across sample sites could also be used to examine whether site 

vacancy/settlement rates are a function of prey availability. 

3. Can stable land cover buffer the effects of climate change? High-elevation species and 

migrants were significantly declining at the regional extent, but had stable populations within 

HBEF (Chapter 4). The combined effects of climate and land use have been hypothesized to 

represent a “deadly cocktail” for biodiversity (Travis 2003). While their combined effects on 

biodiversity are not well understood (de Chazal and Rounsevell 2009), each independently have 

been linked to widespread declines and range contractions in birds (Jetz et al. 2007). Comparing 

trends from BBS routes with disturbed versus stable land use histories would provide an 

opportunity to test whether trends of high-elevation species and migrants differ along routes 

depending on land use. 

Conservation and policy implications 
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102 1. Plantations and even-aged forest stands are less buffered than old-growth. My 

results highlight that typical forest management practices that result in even-aged stands 

(Franklin and Forman 1987) are substantially altering microclimate compared to old-growth 

stands. Plantations and even-aged stands were both warmer in the summer and cooler during the 

winter. Conserving remaining late-seral forests may help to buffer biodiversity from regional 

climate warming since these stands can be nearly 3oC cooler than managed stands. Measuring 

microclimate across seral stages is useful in that it can provide insight into the effects of different 

management techniques (Chen et al. 1999).  

2. Vegetation surrounding a site also influences local-scale temperature. Vegetation 

within 250m of a sample site had a large relative influence on fine-scale temperature patterns. 

This suggests that consideration needs to be given to the land cover of the surrounding area. 

Narrow forest elements and small patches of forest with high edge to interior ratios may not 

provide the equivalent insulating capacity as larger patches of forest. Retaining old-growth forest 

adjacent to managed stands could potentially be used to minimize the changes in microclimate 

that result from conversion of forest from older to younger and less structurally diverse stands 

(Baker et al. 2014). 

3. Birds have the behavioral flexibility to track favorable microclimates. At HJAEF, 

the majority of the bird species indicted some level of change in site occupancy patterns during 

the breeding season. I connected these dynamic occurrence patterns with local-scale vegetation 

and temperature conditions. While my results are correlative, they do provide substantial 

evidence for the importance of microclimate in determining fine-scale occupancy dynamics for 

bird species representing a range in life-history traits. This has far-reaching implications for the 

impact of climate change on biodiversity by demonstrating potential for behavioral adaptation 

via local distributional adjustments over relatively small temporal scales. The inherent variability 

in microclimate conditions found in heterogeneous montane landscapes could mitigate impacts 

of climate change for species with this adaptive capacity. 

4. Population trends are unlikely to be transferable across scales. I documented stable 

trends at HBEF, but found that many species were either significantly declining or increasing at 
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103 the regional scale. My results caution against attempts to use trend data collected at one scale 

to infer to another. Careful consideration should be taken when selecting the scale at which to 

measure ecological processes in order to make accurate and informative conclusions (Wiens 

1989). 

5. Detection needs to be accounted for to obtain accurate estimations of population 

trends and occurrence patterns. My test of the importance of explicitly incorporating detection 

probability in trend models in Chapter 4 revealed that failing to account for differences in 

detection can result in alarming differences in trends. Without having accounted for imperfect 

detection I would have both missed trends and identified trends where none were present. 

Assuming perfect detection, trends in detection could be mistaken for trends in abundance or 

occurrence, compromising the ability to make informed conservation and management decisions 

(Kery et al. 2009, Kéry 2011). This same issue may also have weakened my direct comparison of 

HBEF and BBS trends because of differences in data collection methods. While BBS trends are 

calculated using sophisticated methods that take observer variability into account, they do not 

explicitly separate the observation from the ecological processes (Sauer and Link 2011). In 

Chapter 3, variation in detection probability was well explained by multiple survey-level and 

site-level characteristics, suggesting that detection is indeed quite variable across many factors. 

The differences in detection probability along gradients in vegetation and temperature that I 

observed highlight that without having taken detection into account, I may have erroneously 

attributed changes in detection for ones in our ecological processes of interest. 

   



!
 

104 BIBLIOGRAPHY 
 

Amiel, J. J., R. Tingley, and R. Shine. 2011. Smart moves: Effects of relative brain size on 
establishment success of invasive amphibians and reptiles. PLoS One 6:e18277. 

Anderson, P. D., D. J. Larson, and S. S. Chan. 2007. Riparian buffer and density management 
influences on microclimate of young headwater forests of western Oregon. Forest 
Science 53:254-269. 

Angert, A. L., L. G. Crozier, L. J. Rissler, S. E. Gilman, J. J. Tewksbury, and A. J. Chunco. 2011. 
Do species' traits predict recent shifts at expanding range edges? Ecology Letters 14:677-
689. 

Araújo, M. B. and R. G. Pearson. 2005. Equilibrium of species' distributions with climate. 
Ecography 28:693-695. 

Araújo, M. B. and A. T. Peterson. 2012. Uses and misuses of bioclimatic envelope modeling. 
Ecology 93:1527-1539. 

Araújo, M. B., W. Thuiller, P. H. Williams, and I. Reginster. 2005. Downscaling European 
species atlas distributions to a finer resolution: implications for conservation planning. 
Global Ecology and Biogeography 14:17-30. 

Archaux, F., P.-Y. Henry, and O. Gimenez. 2012. When can we ignore the problem of imperfect 
detection in comparative studies? Methods in Ecology and Evolution 3:188-194. 

Ashcroft, M. B. 2010. Identifying refugia from climate change. Journal of Biogeography 
37:1407-1413. 

Baker, T. P., G. J. Jordan, E. A. Steel, N. M. Fountain-Jones, T. J. Wardlaw, and S. C. Baker. 
2014. Microclimate through space and time: Microclimatic variation at the edge of 
regeneration forests over daily, yearly and decadal time scales. Forest Ecology and 
Management 334:174-184. 

Bart, J., M. Hofschen, and B. G. Peterjohn. 1995. Reliability of the breeding bird survey: Effects 
of restricting surveys to roads. Auk 112:758-761. 

Bates, D. 2012. nlme: Linear and Nonlinear Mixed Effetcs Models. R Core team 3.1-104. 
Bellard, C., C. Bertelsmeier, P. Leadley, W. Thuiller, and F. Courchamp. 2012. Impacts of 

climate change on the future of biodiversity. Ecology Letters 15:365-377. 
Bennett, P. M. and I. P. F. Owens. 2002. Evolutionary Ecology of Birds - Life histories, Mating 

Systems and Extinction. 
Bennie, J., R. J. Wilson, I. M. D. Maclean, and A. J. Suggitt. 2014. Seeing the woods for the 

trees – when is microclimate important in species distribution models? Global Change 
Biology 20:2699-2700. 

Bernardo, J. 2014. Biologically grounded predictions of species resistance and resilience to 
climate change. Proceedings of the National Academy of Sciences 111:5450-5451. 

Betts, M. G., A. W. Diamond, G. J. Forbes, M. A. Villard, and J. S. Gunn. 2006. The importance 
of spatial autocorrelation, extent and resolution in predicting forest bird occurrence. 
Ecological Modelling 191:197-224. 

Betts, M. G., J. C. Hagar, J. W. Rivers, J. D. Alexander, K. McGarigal, and B. C. McComb. 2010. 
Thresholds in forest bird occurrence as a function of the amount of early-seral broadleaf 
forest at landscape scales. Ecological Applications 20:2116-2130. 



!
 

105 Betts, M. G., D. Mitchell, A. W. Dlamond, and J. Bety. 2007. Uneven rates of landscape 
change as a source of bias in roadside wildlife surveys. Journal of Wildlife Management 
71:2266-2273. 

Betts, M. G., N. L. Rodenhouse, T. S. Sillett, P. J. Doran, and R. T. Holmes. 2008. Dynamic 
occupancy models reveal within-breeding season movement up a habitat quality gradient 
by a migratory songbird. Ecography 31:592-600. 

Beyer, H. L. 2004. Hawth's Analysis Tools for ArcGIS. Available at 
http://www.spatialecology.com/htools. 

Bjornstad, O. N. 2013. ncf: spatial nonparametric covariance functions. R package version 1.1-5. 
Bohning-Gaese, K. 1997. Determinants of avian species richness at different spatial scales. 

Journal of Biogeography 24:49-60. 
Bohning-Gaese, K., M. L. Taper, and J. H. Brown. 1994. Avian community dynamics are 

discordant in space and time. Oikos 70:121-126. 
Bonebrake, T. C., C. L. Boggs, J. A. Stamberger, C. A. Deutsch, and P. R. Ehrlich. 2014. From 

global change to a butterfly flapping: biophysics and behaviour affect tropical climate 
change impacts. Proceedings of the Royal Society B-Biological Sciences 281:20141264. 

Both, C., R. G. Bijlsma, and M. E. Visser. 2005. Climatic effects on timing of spring migration 
and breeding in a long-distance migrant, the pied flycatcher Ficedula hypoleuca. Journal 
of Avian Biology 36:368-373. 

Both, C., S. Bouwhuis, C. M. Lessells, and M. E. Visser. 2006. Climate change and population 
declines in a long-distance migratory bird. Nature 441:81-83. 

Both, C., M. van Asch, R. G. Bijlsma, A. B. van den Burg, and M. E. Visser. 2009a. Climate 
change and unequal phenological changes across four trophic levels: constraints or 
adaptations? Journal of Animal Ecology 78:73-83. 

Both, C., C. A. M. Van Turnhout, R. G. Bijlsma, H. Siepel, A. J. Van Strien, and R. P. B. 
Foppen. 2009b. Avian population consequences of climate change are most severe for 
long-distance migrants in seasonal habitats. Proceedings of the Royal Society of London 
B: Biological Sciences 282:20091525. 

Both, C. and M. E. Visser. 2005. The effect of climate change on the correlation between avian 
life-history traits. Global Change Biology 11:1606-1613. 

Botkin, D. B., H. Saxe, M. B. Araujo, R. Betts, R. H. W. Bradshaw, T. Cedhagen, P. Chesson, T. 
P. Dawson, J. R. Etterson, D. P. Faith, S. Ferrier, A. Guisan, A. S. Hansen, D. W. Hilbert, 
C. Loehle, C. Margules, M. New, M. J. Sobel, and D. R. B. Stockwell. 2007. Forecasting 
the effects of global warming on biodiversity. BioScience 57:227-236. 

Boucher-Lalonde, V., A. Morin, and D. J. Currie. 2014. A consistent occupancy–climate 
relationship across birds and mammals of the Americas. Oikos 123:1029-1036. 

Boyles, J. G., F. Seebacher, B. Smit, and A. E. McKechnie. 2011. Adaptive thermoregulation in 
endotherms may alter responses to climate change. Integrative and Comparative Biology 
51:676-690. 

Brambilla, M. and D. Rubolini. 2009. Intra-seasonal changes in distribution and habitat 
associations of a multi-brooded bird species: implications for conservation planning. 
Animal Conservation 12:71-77. 

Brown, J. H. 1995. Macroecology. University of Chicago Press, Chicago, IL. 



!
 

106 Brown, J. H., D. W. Mehlman, and G. C. Stevens. 1995. Spatial variation in abundance. 
Ecology 76:2028-2043. 

Buckley, L. B. and J. G. Kingsolver. 2012. Functional and phylogenetic approaches to 
forecasting species' responses to climate change. Annual Review of Ecology, Evolution, 
and Systematics 43:205-226. 

Burnham, K. P. and D. R. Anderson. 2002. Model selection and multimodel inference: A 
practical information-theoretic approach. 2nd edition. Springer-Verlag, Inc., New York, 
NY. 

Butchart, S. H. M., M. Walpole, B. Collen, A. van Strien, J. P. W. Scharlemann, R. E. A. 
Almond, J. E. M. Baillie, B. Bomhard, C. Brown, J. Bruno, K. E. Carpenter, G. M. Carr, 
J. Chanson, A. M. Chenery, J. Csirke, N. C. Davidson, F. Dentener, M. Foster, A. Galli, J. 
N. Galloway, P. Genovesi, R. D. Gregory, M. Hockings, V. Kapos, J.-F. Lamarque, F. 
Leverington, J. Loh, M. A. McGeoch, L. McRae, A. Minasyan, M. H. Morcillo, T. E. E. 
Oldfield, D. Pauly, S. Quader, C. Revenga, J. R. Sauer, B. Skolnik, D. Spear, D. 
Stanwell-Smith, S. N. Stuart, A. Symes, M. Tierney, T. D. Tyrrell, J.-C. Vié, and R. 
Watson. 2010. Global Biodiversity: Indicators of Recent Declines. Science 328:1164-
1168. 

Canterbury, G. E., T. E. Martin, D. R. Petit, L. J. Petit, and D. F. Bradford. 2000. Bird 
communities and habitat as ecological indicators of forest condition in regional 
monitoring. Conservation Biology 14:544-558. 

Chandler, R. B. and D. I. King. 2011. Habitat quality and habitat selection of golden-winged 
warblers in Costa Rica: an application of hierarchical models for open populations. 
Journal of Applied Ecology 48:1038-1047. 

Chandler, R. B., J. A. Royle, and D. I. King. 2011. Inference about density and temporary 
emigration in unmarked populations. Ecology 92:1429-1435. 

Chen, I. C., J. K. Hill, R. Ohlemuller, D. B. Roy, and C. D. Thomas. 2011. Rapid range shifts of 
species associated with high levels of climate warming. Science 333:1024-1026. 

Chen, J., J. F. Franklin, and T. A. Spies. 1993. Contrasting microclimates among clearcut, edge, 
and interior of old-growth Douglas-fir forest. Agricultural and Forest Meteorology 
63:219-237. 

Chen, J., S. C. Saunders, T. R. Crow, R. J. Naiman, K. D. Brosofske, G. D. Mroz, B. L. 
Brookshire, and J. F. Franklin. 1999. Microclimate in forest ecosystem and landscape 
ecology: Variations in local climate can be used to monitor and compare the effects of 
different management regimes. BioScience 49:288-297. 

Clark, M. E. and T. E. Martin. 2007. Modeling tradeoffs in avian life history traits and 
consequences for population growth. Ecological Modelling 209:110-120. 

Climate Solutions New England. 2014. Climate change in northern New Hampshire: Past, 
present, and future. Sustainability Insititute at the University of New Hampshire, Durham, 
NH. 

Copeland, J. H., R. A. Pielke, and T. G. F. Kittel. 1996. Potential climatic impacts of vegetation 
change: A regional modeling study. Journal of Geophysical Research: Atmospheres 
101:7409-7418. 

Cumming, S. G., D. Stralberg, K. L. Lefevre, P. Sólymos, E. M. Bayne, S. Fang, T. Fontaine, D. 
Mazerolle, F. K. A. Schmiegelow, and S. J. Song. 2014. Climate and vegetation 



!
 

107 hierarchically structure patterns of songbird distribution in the Canadian boreal region. 
Ecography 37:137-151. 

Daly, C., D. R. Conklin, and M. H. Unsworth. 2010. Local atmospheric decoupling in complex 
topography alters climate change impacts. International Journal of Climatology 30:1857-
1864. 

de Chazal, J. and M. D. A. Rounsevell. 2009. Land-use and climate change within assessments 
of biodiversity change: A review. Global Environmental Change-Human and Policy 
Dimensions 19:306-315. 

De Frenne, P., F. Rodríguez-Sánchez, D. A. Coomes, L. Baeten, G. Verstraeten, M. Vellend, M. 
Bernhardt-Römermann, C. D. Brown, J. Brunet, J. Cornelis, G. M. Decocq, H. Dierschke, 
O. Eriksson, F. S. Gilliam, R. Hédl, T. Heinken, M. Hermy, P. Hommel, M. A. Jenkins, 
D. L. Kelly, K. J. Kirby, F. J. G. Mitchell, T. Naaf, M. Newman, G. Peterken, P. Petřík, J. 
Schultz, G. Sonnier, H. Van Calster, D. M. Waller, G.-R. Walther, P. S. White, K. D. 
Woods, M. Wulf, B. J. Graae, and K. Verheyen. 2013. Microclimate moderates plant 
responses to macroclimate warming. Proceedings of the National Academy of Sciences. 

Devictor, V., R. Julliard, D. Couvet, and F. Jiguet. 2008. Birds are tracking climate warming, but 
not fast enough. Proceedings of the Royal Society B-Biological Sciences 275:2743-2748. 

Diggs, N. E., P. P. Marra, and R. J. Cooper. 2011. Resource limitation drives patterns of habitat 
occupancy during the nonbreeding season for an omnivorous songbird. Condor 113:646-
654. 

Dobrowski, S. Z. 2010. A climatic basis for microrefugia: the influence of terrain on climate. 
Global Change Biology 17:1022-1035. 

Dobrowski, S. Z., J. T. Abatzoglou, J. A. Greenberg, and S. G. Schladow. 2009. How much 
influence does landscape-scale physiography have on air temperature in a mountain 
environment? Agricultural and Forest Meteorology 149:1751-1758. 

Dolby, A. S. and T. C. Grubb. 1999. Effects of winter weather on horizontal and vertical use of 
isolated forest fragments by bark-foraging birds. Condor 101:408-412. 

Doligez, B., E. Danchin, and J. Clobert. 2002. Public information and breeding habitat selection 
in a wild bird population. Science 297:1168-1170. 

Doran, P. J. and R. T. Holmes. 2005. Habitat occupancy patterns of a forest dwelling songbird: 
causes and consequences. Canadian Journal of Zoology 83:1297-1305. 

Dunstan, P. K., F. Althaus, A. Williams, and N. J. Bax. 2012. Characterising and predicting 
benthic biodiversity for conservation planning in deepwater environments. PLoS One 
7:e36558. 

Elith, J. and J. R. Leathwick. 2014. Boosted regression trees for ecological modeling. R vignette 
for package 'dismo'. 

Elith, J., J. R. Leathwick, and T. Hastie. 2008. A working guide to boosted regression trees. 
Journal of Animal Ecology 77:802-813. 

Ellis, T. M. and M. G. Betts. 2011. Bird abundance and diversity across a hardwood gradient 
within early seral plantation forest. Forest Ecology and Management 261:1372-1381. 

ESRI. 2011. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research 
Institute. 

Ewers, R. M. and C. Banks-Leite. 2013. Fragmentation impairs the microclimate buffering effect 
of tropical forests. PLoS One 8:e58093. 



!
 

108 Fiske, I. and R. Chandler. 2011. unmarked: An R Package for Fitting Hierarchical Models of 
Wildlife Occurrence and Abundance. Journal of Statistical Software 43:1-23. 

Franklin, J., F. W. Davis, M. Ikegami, A. D. Syphard, L. E. Flint, A. L. Flint, and L. Hannah. 
2013. Modeling plant species distributions under future climates: how fine scale do 
climate projections need to be? Global Change Biology 19:473-483. 

Franklin, J. E. and R. T. T. Forman. 1987. Creating landscape patterns by forest cutting: 
Ecological consequences and principles. Landscape Ecology 1:5-18. 

Franklin, J. F., T. A. Spies, R. V. Pelt, A. B. Carey, D. A. Thornburgh, D. R. Berg, D. B. 
Lindenmayer, M. E. Harmon, W. S. Keeton, D. C. Shaw, K. Bible, and J. Chen. 2002. 
Disturbances and structural development of natural forest ecosystems with silvicultural 
implications, using Douglas-fir forests as an example. Forest Ecology and Management 
155:399-423. 

Fraser, K. C., C. Silverio, P. Kramer, N. Mickle, R. Aeppli, and B. J. M. Stutchbury. 2013. A 
trans-hemispheric migratory songbird does not advance spring schedules or increase 
migration rate in response to record-setting temperatures at breeding sites. PloS One 8. 

Fretwell, S. D. and H. L. Lucas. 1969. On territorial behavior and other factors influencing 
habitat distribution in birds. Acta Biotheoretica 19:16-36. 

Fridley, J. D. 2009. Downscaling climate over complex terrain: high finescale (< 1000 m) spatial 
variation of near-ground temperatures in a montane forested landscape (Great Smoky 
Mountains). Journal of Applied Meteorology and Climatology 48:1033-1049. 

Fu, Y. H., M. Campioli, G. Deckmyn, and I. A. Janssens. 2012. The impact of winter and spring 
temperatures on temperate tree budburst dates: Results from an experimental climate 
manipulation. PLoS One 7:e47324. 

Gilroy, J. J., G. Q. A. Anderson, P. V. Grice, J. A. Vickery, and W. J. Sutherland. 2010. Mid-
season shifts in the habitat associations of Yellow Wagtails Motacilla flava breeding in 
arable farmland. Ibis 152:90-104. 

Goetz, S. J., D. Steinberg, M. G. Betts, R. T. Holmes, P. J. Doran, R. Dubayah, and M. Hofton. 
2010. Lidar remote sensing variables predict breeding habitat of a Neotropical migrant 
bird. Ecology 91:1569-1576. 

Gow, E. A. and B. J. M. Stutchbury. 2013. Within-season nesting dispersal and molt dispersal 
are linked to habitat shifts in a Neotropical migratory songbird. Wilson Journal of 
Ornithology 125:696-708. 

Groffman, P. M., L. E. Rustad, P. H. Templer, J. L. Campbell, L. M. Christenson, N. K. Lany, A. 
M. Socci, M. A. Vadeboncoeur, P. G. Schaberg, G. F. Wilson, C. T. Driscoll, T. J. Fahey, 
M. C. Fisk, C. L. Goodale, M. B. Green, S. P. Hamburg, C. E. Johnson, M. J. Mitchell, J. 
L. Morse, L. H. Pardo, and N. L. Rodenhouse. 2012. Long-term integrated studies show 
complex and surprising effects of climate change in the northern hardwood forest. 
Bioscience 62:1056-1066. 

Guillera-Arroita, G., M. S. Ridout, and B. J. T. Morgan. 2010. Design of occupancy studies with 
imperfect detection. Methods in Ecology and Evolution 1:131-139. 

Gutiérrez Illán, J., C. D. Thomas, J. A. Jones, W.-K. Wong, S. M. Shirley, and M. G. Betts. 2014. 
Precipitation and winter temperature predict long-term range-scale abundance changes in 
Western North American birds. Global Change Biology:n/a-n/a. 



!
 

109 Hagar, J. C. 2007. Wildlife species associated with non-coniferous vegetation in Pacific 
Northwest conifer forests: A review. Forest Ecology and Management 246:108-122. 

Haining, R., J. Law, and D. Griffith. 2009. Modelling small area counts in the presence of 
overdispersion and spatial autocorrelation. Computational Statistics & Data Analysis 
53:2923-2937. 

Hansen, A. J. and D. L. Urban. 1992. Avian response to landscape pattern: The role of species 
life histories. Landscape Ecology 7:163-180. 

Hardwick, S. R., R. Toumi, M. Pfeifer, E. C. Turner, R. Nilus, and R. M. Ewers. 2015. The 
relationship between leaf area index and microclimate in tropical forest and oil palm 
plantation: Forest disturbance drives changes in microclimate. Agricultural and Forest 
Meteorology 201:187-195. 

Hijmans, R. J., S. Phillips, J. Leathwick, and J. Elith. 2013. dismo: Species distribution modeling. 
R package version 0.8-17. http://CRAN.R-project.org/package=dismo. 

Hildén, O. 1965. Habitat selection in birds: A review. Annales Zoologici Fennici 2:53-75. 
Hitch, A. T. and P. L. Leberg. 2007. Breeding distributions of North American bird species 

moving north as a result of climate change. Conservation Biology 21:534-539. 
Holmes, R. T. 2011. Avian population and community processes in forest ecosystems: Long-

term research in the Hubbard Brook Experimental Forest. Forest Ecology and 
Management 262:20-32. 

Holmes, R. T. and T. W. Sherry. 1988. Assessing population trends of New Hampshire forest 
birds: Local vs. regional patterns. Auk 105:756-768. 

Holmes, R. T. and T. W. Sherry. 2001. Thirty-year bird population trends in an unfragmented 
temperate deciduous forest: Importance of habitat change. Auk 118:589-609. 

Hoover, J. P. 2003. Decision rules for site fidelity in a migratory bird, the prothonotary warbler. 
Ecology 84:416-430. 

Hosmer, D. W., S. Hosmer T Fau - Le Cessie, S. Le Cessie S Fau - Lemeshow, and S. 
Lemeshow. 1997. A comparison of goodness-of-fit tests for the logistic regression model. 

Hosmer, J., D. W., S. Lemeshow, and R. X. Sturdivant. 2013. Applied Logistic Regression. 3rd 
edition. John Wiley & Sons, Inc., Hoboken, New Jersey. 

Houston, D. R. 1994. Major new tree disease epidemics: Beech bark disease. Annual Review of 
Phytopathology 32:75-87. 

Huey, R. B., M. R. Kearney, A. Krockenberger, J. A. M. Holtum, M. Jess, and S. E. Williams. 
2012. Predicting organismal vulnerability to climate warming: roles of behaviour, 
physiology and adaptation. Philosophical Transactions of the Royal Society B-Biological 
Sciences 367:1665-1679. 

Hunt, P. D. 1998. Evidence from a landscape population model of the importance of early 
successional habitat to the American redstart. Conservation Biology 12:1377-1389. 

Huntington, T. G., A. D. Richardson, K. J. McGuire, and K. Hayhoe. 2009. Climate and 
hydrological changes in the northeastern United States: recent trends and implications for 
forested and aquatic ecosystemsThis article is one of a selection of papers from NE 
Forests 2100: A Synthesis of Climate Change Impacts on Forests of the Northeastern US 
and Eastern Canada. Canadian Journal of Forest Research 39:199-212. 

IPCC. 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and 
Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of 



!
 

110 the Intergovernmental Panel on Climate Change. Cambridge University Press, 
Cambridge, United Kingdom and New York, NY, USA. 

Jetz, W., D. S. Wilcove, and A. P. Dobson. 2007. Projected impacts of climate and land-use 
change on the global diversity of birds. PloS Biology 5:1211-1219. 

Jiguet, F., A.-S. Gadot, R. Julliard, S. E. Newson, and D. Couvet. 2007. Climate envelope, life 
history traits and the resilience of birds facing global change. Global Change Biology 
13:1672-1684. 

Julliard, R., J. Clavel, V. Devictor, F. Jiguet, and D. Couvet. 2006. Spatial segregation of 
specialists and generalists in bird communities. Pages 1237-1244. Wiley-Blackwell. 

Kearney, M., R. Shine, and W. P. Porter. 2009a. The potential for behavioral thermoregulation to 
buffer "cold-blooded" animals against climate warming. Proceedings of the National 
Academy of Sciences of the United States of America 106:3835-3840. 

Kearney, M., R. Shine, and W. P. Porter. 2009b. The potential for behavioral thermoregulation to 
buffer "cold-blooded" animals against climate warming. Proceedings of the National 
Academy of Sciences 106:3835-3840. 

Keller, C. M. E. and J. T. Scallan. 1999. Potential roadside biases due to habitat changes along 
breeding bird survey routes. Condor 101:50-57. 

Kéry, M. 2011. Towards the modelling of true species distributions. Journal of Biogeography:no-
no. 

Kery, M. and R. Chandler. 2012. unmarked vignette: Dynamic occupancy models in unmarked. 
Swiss Ornithological Institute and USGS Patuxent Wildlife Research Center. 

Kery, M., R. M. Dorazio, L. Soldaat, A. van Strien, A. Zuiderwijk, and J. A. Royle. 2009. Trend 
estimation in populations with imperfect detection. Journal of Applied Ecology 46:1163-
1172. 

Kery, M. and J. A. Royle. 2010. Hierarchical modelling and estimation of abundance and 
population trends in metapopulation designs. Journal of Animal Ecology 79:453-461. 

Kéry, M., J. A. Royle, and H. Schmid. 2005. Modeling avian abundance from replicated counts 
using binomial mixture models. Ecological Applications 15:1450-1461. 

King, D. I. and S. Schlossberg. 2014. Synthesis of the conservation value of the early-
successional stage in forests of eastern North America. Forest Ecology and Management 
324:186-195. 

Kingsolver, J. G., H. A. Woods, L. B. Buckley, K. A. Potter, H. J. MacLean, and J. K. Higgins. 
2011. Complex life cycles and the responses of insects to climate change. Integrative and 
Comparative Biology 51:719-732. 

Kittredge Jr, D. B., A. O. Finley, and D. R. Foster. 2003. Timber harvesting as ongoing 
disturbance in a landscape of diverse ownership. Forest Ecology and Management 
180:425-442. 

Klemp, S. 2003. Altitudinal dispersal within the breeding season in the Grey Wagtail Motacilla 
cinerea. Ibis 145:509-511. 

Kluza, D. A., C. R. Griffin, and R. M. Degraaf. 2000. Housing developments in rural New 
England: effects on forest birds. Animal Conservation 3:15-26. 

Lack, D. 1954. The Natural Regulation of Animal Numbers. Oxford University Press. 



!
 

111 Lefsky, M. A., W. B. Cohen, S. A. Acker, G. G. Parker, T. A. Spies, and D. Harding. 1999. 
LiDAR remote sensing of the canopy structure and biophysical properties of Douglas-fir 
western hemlock forests. Remote Sensing of Environment 70:339-361. 

Legendre, P. 1993. Spatial autocorrelation: Trouble or new paradigm. Ecology 74:1659-1673. 
Lenoir, J., J. C. Gegout, A. Guisan, P. Vittoz, T. Wohlgemuth, N. E. Zimmermann, S. Dullinger, 

H. Pauli, W. Willner, and J. C. Svenning. 2010. Going against the flow: potential 
mechanisms for unexpected downslope range shifts in a warming climate. Ecography 
33:295-303. 

Li, H., X. Deng, D.-Y. Kim, and E. P. Smith. 2014. Modeling maximum daily temperature using 
a varying coefficient regression model. Water Resources Research 50:3073-3087. 

Lichstein, J. W., T. R. Simons, S. A. Shriner, and K. E. Franzreb. 2002. Spatial autocorrelation 
and autoregressive models in ecology. Ecological Monographs 72:445-463. 

Likens, G. E., F. H. Bormann, N. M. Johnson, D. W. Fisher, and R. S. Pierce. 1970. Effects of 
forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook 
watershed-ecosystem. Ecological Monographs 40:23-47. 

Link, W. A. and J. R. Sauer. 2002. A hierarchical analysis of population change with application 
to Cerulean Warblers. Ecology 83:2832-2840. 

Loarie, S. R., P. B. Duffy, H. Hamilton, G. P. Asner, C. B. Field, and D. D. Ackerly. 2009. The 
velocity of climate change. Nature 462:1052-1055. 

Logan, M. L., R. K. Huynh, R. A. Precious, and R. G. Calsbeek. 2013. The impact of climate 
change measured at relevant spatial scales: new hope for tropical lizards. Global Change 
Biology 19:3093-3102. 

Long, R. A., R. T. Bowyer, W. P. Porter, P. Mathewson, K. L. Monteith, and J. G. Kie. 2014. 
Behavior and nutritional condition buffer a large-bodied endotherm against direct and 
indirect effects of climate. Ecological Monographs 84:513-532. 

Lookingbill, T. R. and D. L. Urban. 2003. Spatial estimation of air temperature differences for 
landscape-scale studies in montane environments. Agricultural and Forest Meteorology 
114:141-151. 

Lumpkin, H. A. and S. M. Pearson. 2013. Effects of exurban development and temperature on 
bird species in the southern Appalachians. Conservation Biology 27:1069-1078. 

Luoto, M. and R. K. Heikkinen. 2008. Disregarding topographical heterogeneity biases species 
turnover assessments based on bioclimatic models. Global Change Biology 14:483-494. 

Luoto, M., R. Virkkala, and R. K. Heikkinen. 2007. The role of land cover in bioclimatic models 
depends on spatial resolution. Global Ecology and Biogeography 16:34-42. 

MacArthur, R. H., J. W. MacArthur, and J. Preer. 1962. On bird species diversity II: Prediction 
of bird census from habitat measurements. The American Naturalist 96:167-174. 

MacKenzie, D., J. Nichols, J. Hines, M. Knutson, and A. Franklin. 2003. Estimating site 
occupancy, colonization, and local extinction when a species is detected imperfectly. 
Ecology 84:2200-2207. 

MacKenzie, D., J. Nichols, G. Lachman, S. Droege, J. Royle, and C. Langtimm. 2002. 
Estimating site occupancy rates when detection probabilities are less than one. Ecology 
83:2248-2255. 



!
 

112 MacKenzie, D., J. Nichols, J. Royle, K. Pollock, L. Bailey, and J. Hines. 2006. Occupancy 
estimation and modeling: Inferring patterns and dynamics of species occurrence. Elsevier 
Inc., Oxford, UK. 

MacKenzie, D. I. and L. L. Bailey. 2004. Assessing the Fit of Site-Occupancy Models. Journal 
of Agricultural, Biological & Environmental Statistics 9:300-318. 

Maggini, R., A. Lehmann, M. Kéry, H. Schmid, M. Beniston, L. Jenni, and N. Zbinden. 2011. 
Are Swiss birds tracking climate change?: Detecting elevational shifts using response 
curve shapes. Ecological Modelling 222:21-32. 

Martin, T. E. 1987. Food as a limit on breeding birds - a life-history perspective. Annual Review 
of Ecology and Systematics 18:453-487. 

McClure, C. J. W. and G. E. Hill. 2012. Dynamic versus static occupancy: How stable are habitat 
associations through a breeding season? Ecosphere 3. 

Means, J. E., S. A. Acker, B. J. Fitt, M. Renslow, L. Emerson, and C. J. Hendrix. 2000. 
Predicting forest stand characteristics with airborne scanning lidar. Photogrammetric 
Engineering & Remote Sensing 66:1367-1371. 

Mitikka, V., R. K. Heikkinen, M. Luoto, M. B. Araujo, K. Saarinen, J. Poyry, and S. Fronzek. 
2008. Predicting range expansion of the map butterfly in Northern Europe using 
bioclimatic models. Biodiversity and Conservation 17:623-641. 

Moller, A. P., D. Rubolini, and E. Lehikoinen. 2008. Populations of migratory bird species that 
did not show a phenological response to climate change are declining. Proceedings of the 
National Academy of Sciences 105:16195-16200. 

Moore, F. R. 2000. Stopover ecology of nearctic-neotropical landbird migrants: habitat relations 
and conservation implications. Studies in Avian Biology:1-33. 

Moritz, C. and R. Agudo. 2013. The future of species under climate change: Resilience or 
decline? Science 341:504-508. 

Morrison, C. A., R. A. Robinson, J. A. Clark, and J. A. Gill. 2010. Spatial and temporal variation 
in population trends in a long-distance migratory bird. Diversity and Distributions 
16:620-627. 

Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca, and J. Kent. 2000. 
Biodiversity hotspots for conservation priorities. Nature 403:853-858. 

North American Bird Conservation Initiative, U. S. C. 2013. The State of the Birds 2013 Report 
on Private Lands. U.S. Department of Interior, Washington, D.C. 

Odion, D. C. and D. A. Sarr. 2007. Managing disturbance regimes to maintain biological 
diversity in forested ecosystems of the Pacific Northwest. Forest Ecology and 
Management 246:57-65. 

Oke, T. R., J. M. Crowther, K. G. McNaughton, J. L. Monteith, and B. Gardiner. 1989. The 
micrometeorology of the urban forest. Philosophical Transactions of the Royal Society B: 
Biological Sciences 324:335-349. 

Oliver, T., D. B. Roy, J. K. Hill, T. Brereton, and C. D. Thomas. 2010. Heterogeneous 
landscapes promote population stability. Ecology Letters 13:473-484. 

Olson, G. S., R. G. Anthony, E. D. Forsman, S. H. Ackers, P. J. Loschl, J. A. Reid, K. M. 
Dugger, E. M. Glenn, and W. J. Ripple. 2005. Modeling of site occupancy dynamics for 
Northern Spotted Owls, with emphasis on the effects of Barred Owls. Journal of Wildlife 
Management 69:918-932. 



!
 

113 Ortega, Y. K. and D. E. Capen. 1999. Effects of forest roads on habitat quality for ovenbirds 
in a forested landscape. Auk 116:937-946. 

Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual 
Review of Ecology, Evolution, and Systematics 37:637-669. 

Parmesan, C. and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts 
across natural systems. Nature 421:37-42. 

Patsiou, T. S., E. Conti, N. E. Zimmermann, S. Theodoridis, and C. F. Randin. 2013. Topo-
climatic microrefugia explain the persistence of a rare endemic plant in the Alps during 
the last 21 millennia. Global Change Biology 20:2286–2300. 

Pearson, R. G. and T. P. Dawson. 2003. Predicting the impacts of climate change on the 
distribution of species: are bioclimate envelope models useful? Global Ecology & 
Biogeography 12:361-371. 

Pepin, N. and M. Losleben. 2002. Climate change in the Colorado Rocky Mountains: free air 
versus surface temperature trends. International Journal of Climatology 22:311-329. 

Peterjohn, B. G. and J. R. Sauer. 1994. Population trends of woodland birds from the North 
American Breeding Bird Survey. Wildlife Society Bulletin 22:155-164. 

Peterson, A. T., M. A. Ortega-Huerta, J. Bartley, V. Sanchez-Cordero, J. Soberon, R. H. 
Buddemeier, and D. R. B. Stockwell. 2002. Future projections for Mexican faunas under 
global climate change scenarios. Nature 416:626-629. 

Plummer, M. 2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs 
sampling. 

Poole, A., Editor. 2005. The Birds of North America Online: 
http://bna.birds.cornell.edu/BNA/. Cornell Laboratory of Ornithology, Ithaca, NY. 

Potter, K. A., H. Arthur Woods, and S. Pincebourde. 2013a. Microclimatic challenges in global 
change biology. Global Change Biology 19:2932-2939. 

Potter, K. A., H. A. Woods, and S. Pincebourde. 2013b. Microclimatic challenges in global 
change biology. Global Change Biology 19:2932-2939. 

Pulliam, H. R. and B. J. Danielson. 1991. Sources, sinks, and habitat selection: A landscape 
perspective on population-dynamics. The American Naturalist 137:S50-S66. 

R Development Core Team. 2011. R: A Language and Environment for Statistical Computing. R 
Foundation for Statistical Computing, Vienna, Austria. 

Ritchie, L. E., M. G. Betts, G. Forbes, and K. Vernes. 2009. Effects of landscape composition 
and configuration on northern flying squirrels in a forest mosaic. Forest Ecology and 
Management 257:1920-1929. 

Rodenhouse, N. L., T. S. Sillett, P. J. Doran, and R. T. Holmes. 2003. Multiple density-
dependence mechanisms regulate a migratory bird population during the breeding season. 
Proceedings of the Royal Society B-Biological Sciences 270:2105-2110. 

Root, T. 1988. Environmental factors associated with avian distributional boundaries. Journal of 
Biogeography 15:489-505. 

Rota, C. T., R. J. F. Jr, R. M. Dorazio, and M. G. Betts. 2009. Occupancy estimation and the 
closure assumption. Journal of Applied Ecology 46:1173-1181. 

Sauer, J. R., J. E. Hines, J. E. Fallon, K. L. Pardieck, J. D. J. Ziolkowski, and W. A. Link. 2014. 
The North American Breeding Bird Survey, Results and Analysis 1966 - 2012. Version 
02.19.2014. USGS Patuxent Wildlife Research Center, Laurel, MD. 



!
 

114 Sauer, J. R. and W. A. Link. 2011. Analysis of the North American Breeding Bird Survey 
Using Hierarchical Models. Auk 128:87-98. 

Scheffers, B. R., R. M. Brunner, S. D. Ramirez, L. P. Shoo, A. Diesmos, and S. E. Williams. 
2013. Thermal buffering of microhabitats is a critical factor mediating warming 
vulnerability of frogs in the Philippine biodiversity hotspot. Biotropica 45:628-635. 

Scheffers, B. R., D. P. Edwards, A. Diesmos, S. E. Williams, and T. A. Evans. 2014. 
Microhabitats reduce animal's exposure to climate extremes. Global Change Biology 
20:495-503. 

Scherrer, D. and C. Körner. 2011. Topographically controlled thermal-habitat differentiation 
buffers alpine plant diversity against climate warming. Journal of Biogeography 38:406-
416. 

Scherrer, D., S. Schmid, and C. Korner. 2011. Elevational species shifts in a warmer climate are 
overestimated when based on weather station data. International Journal of 
Biometeorology 55:645-654. 

Schwarz, P. A., T. J. Fahey, and C. E. McCulloch. 2003. Factors controlling spatial variation of 
tree species abundance in a forested landscape. Ecology 84:1862-1878. 

Sears, M. W., E. Raskin, and M. J. Angilletta. 2011. The world is not flat: Defining relevant 
thermal landscapes in the context of climate change. Integrative and Comparative 
Biology 51:666-675. 

Seavy, N. E., J. H. Viers, and J. K. Wood. 2009. Riparian bird response to vegetation structure: a 
multiscale analysis using LiDAR measurements of canopy height. Ecological 
Applications 19:1848-1857. 

Sekercioglu, C. H., S. H. Schneider, J. P. Fay, and S. R. Loarie. 2008. Climate change, 
elevational range shifts, and bird extinctions. Conservation Biology 22:140-150. 

Seo, C., J. H. Thorne, L. Hannah, and W. Thuiller. 2009. Scale effects in species distribution 
models: implications for conservation planning under climate change. Biology Letters 
5:39-43. 

Sheldon, K. S., S. Yang, and J. J. Tewksbury. 2011. Climate change and community 
disassembly: impacts of warming on tropical and temperate montane community 
structure. Ecology Letters 14:1191-1200. 

Sibley, D. A. 2000. The Sibley guide to birds. Alfred A. Knopf,, New York. 
Siccama, T. G., T. J. Fahey, C. E. Johnson, T. W. Sherry, E. G. Denny, E. B. Girdler, G. E. 

Likens, and P. A. Schwarz. 2007. Population and biomass dynamics of trees in a northern 
hardwood forest at Hubbard Brook. Canadian Journal of Forest Research 37:737-749. 

Sol, D., L. Lefebvre, and J. D. Rodríguez-Teijeiro. 2005. Brain size, innovative propensity and 
migratory behaviour in temperate Palaearctic birds. Proceedings of the Royal Society B: 
Biological Sciences 272:1433-1441. 

Stamps, J. A. 2006. The silver spoon effect and habitat selection by natal dispersers. Ecology 
Letters 9:1179-1185. 

Storlie, C., A. Merino-Viteri, B. Phillips, J. VanDerWal, J. Welbergen, and S. Williams. 2014. 
Stepping inside the niche: microclimate data are critical for accurate assessment of 
species' vulnerability to climate change. Biology Letters 10:20140576. 



!
 

115 Stralberg, D., D. Jongsomjit, C. A. Howell, M. A. Snyder, J. D. Alexander, J. A. Wiens, and 
T. L. Root. 2009. Re-shuffling of species with climate disruption: a no-analog future for 
California birds? PLoS One 4:e6825. 

Suggitt, A. J., P. K. Gillingham, J. K. Hill, B. Huntley, W. E. Kunin, D. B. Roy, and C. D. 
Thomas. 2011. Habitat microclimates drive fine-scale variation in extreme temperatures. 
Oikos 120:1-8. 

Suggitt, A. J., C. Stefanescu, F. Paramo, T. Oliver, B. J. Anderson, J. K. Hill, D. B. Roy, T. 
Brereton, and C. D. Thomas. 2012. Habitat associations of species show consistent but 
weak responses to climate. Biology Letters 8:590-593. 

Sunday, J. M., A. E. Bates, M. R. Kearney, R. K. Colwell, N. K. Dulvy, J. T. Longino, and R. B. 
Huey. 2014. Thermal-safety margins and the necessity of thermoregulatory behavior 
across latitude and elevation. Proceedings of the National Academy of Sciences 
111:5610-5615. 

Switzer, P. V. 1997. Factors affecting site fidelity in a territorial animal, Perithemis tenera. 
Animal Behaviour 53:865-877. 

Thomas, C. D. 2010. Climate, climate change and range boundaries. Diversity and Distributions 
16:488-495. 

Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. 
N. Erasmus, M. F. de Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A. S. van 
Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. Townsend Peterson, O. L. 
Phillips, and S. E. Williams. 2004. Extinction risk from climate change. Nature 427:145-
148. 

Thompson, F. R. and R. M. DeGraaf. 2001. Conservation approaches for woody, early 
successional communities in the eastern United States. Wildlife Society Bulletin 29:483-
494. 

Thuiller, W., M. B. Araujo, and S. Lavorel. 2004a. Do we need land-cover data to model species 
distributions in Europe? Journal of Biogeography 31:353-361. 

Thuiller, W., M. B. Araujo, R. G. Pearson, R. J. Whittaker, L. Brotons, and S. Lavorel. 2004b. 
Biodiversity conservation: Uncertainty in predictions of extinction risk. Nature 430. 

Tingley, M. W. and S. R. Beissinger. 2009. Detecting range shifts from historical species 
occurrences: new perspectives on old data. Trends in Ecology & Evolution 24:625-633. 

Tingley, M. W., M. S. Koo, C. Moritz, A. C. Rush, and S. R. Beissinger. 2012. The push and 
pull of climate change causes heterogeneous shifts in avian elevational ranges. Global 
Change Biology 18:3279-3290. 

Townsend, A. K., T. S. Sillett, N. K. Lany, S. A. Kaiser, N. L. Rodenhouse, M. S. Webster, and 
R. T. Holmes. 2013. Warm springs, early lay dates, and double brooding in a North 
American migratory songbird, the black-throated blue warbler. PloS One 8. 

Trani, M. K., R. T. Brooks, T. L. Schmidt, V. A. Rudis, and C. M. Gabbard. 2001. Patterns and 
trends of early successional forests in the Eastern United States. Wildlife Society Bulletin 
29:413-424. 

Travis, J. M. J. 2003. Climate change and habitat destruction: a deadly anthropogenic cocktail. 
Proceedings of the Royal Society of London Series B-Biological Sciences 270:467-473. 

Tuomainen, U. and U. Candolin. 2011. Behavioural responses to human-induced environmental 
change. Biological Reviews 86:640-657. 



!
 

116 Tyre, A. J., B. Tenhumberg, S. A. Field, D. Niejalke, K. Parris, and H. P. Possingham. 2003. 
Improving precision and reducing bias in biological surveys: Estimating false-negative 
error rates. Ecological Applications 13:1790-1801. 

Urban, D. L. 2005. Modeling ecological processes across scales. Ecology 86:1996-2006. 
Vanwalleghem, T. and R. K. Meentemeyer. 2009. Predicting forest microclimate in 

heterogeneous landscapes. Ecosystems 12:1158-1172. 
Vatka, E., M. Orell, and S. RytkÖNen. 2011. Warming climate advances breeding and improves 

synchrony of food demand and food availability in a boreal passerine. Global Change 
Biology 17:3002-3009. 

Vegas-Vilarrubia, T., S. Nogue, and V. Rull. 2012. Global warming, habitat shifts and potential 
refugia for biodiversity conservation in the neotropical Guayana Highlands. Biological 
Conservation 152:159-168. 

Villard, M. A. and B. A. Maurer. 1996. Geostatistics as a tool for examining hypothesized 
declines in migratory songbirds. Ecology 77:59-68. 

Virkkala, R., R. K. Heikkinen, A. Lehikoinen, and J. Valkama. 2014. Matching trends between 
recent distributional changes of northern-boreal birds and species-climate model 
predictions. Biological Conservation 172:124-127. 

Virkkala, R., R. K. Heikkinen, N. Leikola, and M. Luoto. 2008. Projected large-scale range 
reductions of northern-boreal land bird species due to climate change. Biological 
Conservation 141:1343-1353. 

von Arx, G., E. Graf Pannatier, A. Thimonier, and M. Rebetez. 2013. Microclimate in forests 
with varying leaf area index and soil moisture: potential implications for seedling 
establishment in a changing climate. Journal of Ecology 101:1201-1213. 

Watershed Sciences. 2008. LiDAR Remote Sensing Data Collection: HJ Andrews & Willamette 
National Forest. Corvallis, OR. 

Whittaker, K. A. and J. M. Marzluff. 2009. Species-specific survival and relative habitat use in 
an urban landscape during the postfledging period. Auk 126:288-299. 

Wiens, J. A. 1989. Spatial scaling in ecology. Functional Ecology 3:385-397. 
Wiens, J. A. and D. Bachelet. 2010. Matching the multiple scales of conservation with the 

multiple scales of climate change. Conservation Biology 24:51-62. 
Xu, M., Y. Qi, J. Chen, and B. Song. 2004. Scale-dependent relationships between landscape 

structure and microclimate. Plant Ecology 173:39-57. 
Yao, X., B. Fu, Y. Lü, F. Sun, S. Wang, and M. Liu. 2013. Comparison of four spatial 

interpolation methods for estimating soil moisture in a complex terrain catchment. PLoS 
One 8:e54660. 

Yu, H., E. Luedeling, and J. Xu. 2010. Winter and spring warming result in delayed spring 
phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences 
107:22151-22156. 

 



!
 

117 
APPENDICES 

 
APPENDIX 2.1. Details concerning deployment and maintenance of temperature sensors. 

All HOBOs were placed 1.5m from the ground. We used a flexible fiberglass post to support the 

logger and to allow for bending of the entire unit under the weight of snow. For a sun shield, we 

used half of a 3-inch diameter schedule 40 PVC pipe, cut to 6-in in length (Fig. S1). We oriented 

the entire setup to face south using a compass. We set them to record temperature every 20 

minutes. We offloaded data from the units twice a year (May and July) and changed the batteries 

once a year based on sampling frequency (generally on the second offload session of each year). 

 

Figure S1. Photo of HOBO temperature sensor in the field. Loggers were 1.5m off ground and 

shaded with a white PVC hood.  
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APPENDIX 2.2. Details about temperature data processing (cleaning, flagging, pruning, and 
filling). 

  

We first compiled offloaded files into a continuous time series by site. We used a Python 

script (http://www.python.org) to flag, clean, average, and fill datasets. Flagging identified 

several problems including no data, incorrect logging intervals, extreme values, jumps in values, 

and periods when the logger was under snow. Data for which the logger had recorded date and 

time but no temperature were flagged as no data. Incorrect logging intervals were not separated 

by the programmed interval of 15 or 20 minutes, associated with missing values. Values outside 

of the sensor range (-20° to 70°C) were flagged as extreme. Jumps in values were defined as a 

change in temperature of more than 5°C in one time interval and appeared to be related to 

infrequent faulty readings. Our method for flagging snow used a forward rolling window. If the 

variation in temperatures within a 24-hr period was less than 0.5°C and the temperatures were 

below 1°C, we considered that time period to indicate snow. To account for the forward rolling 

window, we also flagged periods in which snow was present in the past 24-hrs. 

After flagging, we pruned all flagged lines with the exception of incorrect logging 

intervals. We used these cleaned files and averaged the data hourly, noting the number of 

readings which contributed to each hourly value. We saved each cleaned hourly value to use for 

filling. Each cleaned file was regressed using a linear regression (NumPy) against each other 

file. We then preferentially filled each file using cleaned (unfilled) data and the corresponding 

regressions from other sites based on their fit. Thus, a site with an R2 of 0.99 was used before a 

site with an R2 of 0.98. Predicted values were calculated using the regression equation and 

included in the filled dataset along with the corresponding regression and fit for quality 

control. This filling continued until all of the programmed date range was filled or until further 

filling was no longer possible.  
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APPENDIX 2.3. Predictor variables used to predict patterns in microclimate metrics.Variables were put into categories: elevation (ELV), 
microtopography (TOPO), and vegetation structure (VEG). All of the vegetation variables were derived from LiDAR data collected at 
the HJAEF in 2008 during the leaf-on period (Watershed Services 2008). 

 

  

Variable name Category Description
Mean elevation ELV Mean elevation (m), bare Earth LiDAR

SD elevation TOPO Standard deviation of elevation (m), bare Earth LiDAR
Mean slope TOPO Mean slope (%), bare Earth LiDAR
Mean eastness TOPO Mean sin(aspect * pi/180), values between 1 and -1
Mean northness TOPO Mean cos(aspect * pi/180), values between 1 and -1
SD slope TOPO Standard deviation of slope (%), bare Earth LiDAR

Topo index TOPO Topo index is calculated by subtracting the mean elevation within a radius around the point from the elevation value at the 
sample point itself. Negative values are on local low spots, positive values are on local high spots (following Daly 2010).

Elevation range TOPO Range in elevation (maximum - minimum), bare Earth LiDAR

Mean canopy height VEG Mean LiDAR vegetation height (m)
Mean biomass VEG Mean biomass, derived from LiDAR vegetation dataset 
Mean cover 0-2m VEG Mean canopy point density of points 0-2m off the ground (all vegetation LiDAR returns)
Mean cover 2-10m VEG Mean canopy point density of points 0-2m off the ground (all vegetation LiDAR returns)
Mean cover >10m VEG Mean canopy point density of points 0-2m off the ground (all vegetation LiDAR returns)
Mean coef of variation VEG Mean height metric from first returns only, coefficient of variation exclude points below 1 meter , vegetation LiDAR
Mean HOME VEG Mean height of median energy (HOME, m), HOME is the height at which 50% of energy returned

Mean VDR VEG
Mean vertical distribution ratio (VDR, unit-less), Calculated as (canopy height – HOME)/canopy height. VDR can be 
defined as “a normalized ratio between the canopy height and HOME products, which provided an index of the vertical 
distribution of intercepted canopy elements (Goetz et al. 2010).

SD canopy height VEG Mean canopy height (m), vegetation LiDAR
SD biomass VEG Standard deviation of biomass (Mg/ha), derived from LiDAR vegetation dataset
SD cover 0-2m VEG Standard deviation of canopy point density of points 0-2m off the ground (all vegetation LiDAR returns)
SD cover 2-10m VEG Standard deviation of canopy point density of points 2-10m off the ground (all vegetation LiDAR returns)
SD cover >10m VEG Standard deviation of canopy point density of points >10m off the ground (all vegetation LiDAR returns)
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APPENDIX 2.4. BRT model settings (Learning rate, No. trees), performance diagnostics (Deviance, Deviance SE, CV corr, CV SE), 
and tests for spatial autocorrelation in the BRT model residuals (Moran’s I and P). In order to reach 1000 trees for some models, we 
were required to reduce the learning rate below 0.01 (the suggested starting value for this parameter). The ‘Units’ and ‘Transf’ 
columns indicate the temperature metric units and any transformation done before modeling. SE = standard error, No. = number, CV = 
cross-validation, corr = correlation. 

 

Temperature metric Units Transf Deviance Deviance SE Learning rate No. trees CV corr CV SE Moran's I P

CDD >0°C Jan-Mar dd dd/100 0.12474 0.02264 0.005 1500 0.694 0.062 -0.026 0.200
CDD >0°C Apr-Jun dd dd/100 0.14674 0.01593 0.01 1100 0.957 0.006 -0.014 0.175
CDD >10°C Apr-Jun dd dd/100 0.02971 0.00443 0.008 1300 0.898 0.016 -0.012 0.180
SD wkly T Jan-Mar °C NA 0.04922 0.01283 0.006 1700 0.835 0.028 -0.007 0.268
SD wkly T Apr-Jun °C NA 0.50022 0.06532 0.01 2200 0.807 0.026 -0.004 0.271
MEAN mo mn Apr-Jun °C NA 0.18916 0.02287 0.008 1350 0.952 0.008 -0.015 0.176
MAX mo mn Apr-Jun °C NA 0.93530 0.18974 0.006 1250 0.870 0.029 -0.006 0.267
MIN mo mn Apr-Jun °C NA 0.14526 0.01026 0.01 1800 0.941 0.008 -0.009 0.136
MAX T warmest mo °C °C/100 0.00022 0.00006 0.004 1600 0.754 0.037 -0.008 0.283
MIN T coldest mo °C NA 0.05045 0.00822 0.006 1350 0.978 0.004 0.003 0.146

CDD >0°C Jan-Mar dd dd/100 0.18154 0.01591 0.008 1050 0.690 0.056 -0.022 0.144
CDD >0°C Apr-Jun dd dd/100 0.12225 0.01517 0.01 1550 0.961 0.008 -0.010 0.191
CDD >10°C Apr-Jun dd dd/100 0.03614 0.00459 0.01 1700 0.915 0.012 -0.007 0.210
SD wkly T Jan-Mar °C NA 0.06759 0.00839 0.005 1100 0.783 0.033 -0.015 0.169
SD wkly T Apr-Jun °C NA 0.01020 0.00114 0.01 1250 0.932 0.009 -0.006 0.247
MEAN mo mn Apr-Jun °C NA 0.14378 0.01511 0.01 1650 0.964 0.004 -0.008 0.201
MAX mo mn Apr-Jun °C NA 1.14407 0.22446 0.004 1050 0.838 0.034 -0.007 0.250
MIN mo mn Apr-Jun °C NA 0.16573 0.01890 0.01 1650 0.904 0.030 -0.008 0.137

2012

2013
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APPENDIX 2.5. Results from a PCA of all vegetation structure predictor variables and box plots 
comparing on the ground basal area measurements to forest type (plantation vs. old-
growth/mature forest) categorizations. 

Principal components importance (1st 8 out of 11): 

 
Contributions of vegetation variables for 1st 8 components: 
 

 
 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 
Standard deviation 2.218 1.818 1.020 0.883 0.756 0.392 0.367 0.221 
Proportion of Variance 0.447 0.300 0.095 0.071 0.052 0.014 0.012 0.004 
Cumulative Proportion 0.447 0.747 0.842 0.913 0.965 0.979 0.991 0.996 

 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 
Mn biomass 0.407 -0.190 0.076 -0.141 0.115 -0.111 -0.371 0.296 
SD biomass 0.328 -0.341 0.060 0.003 0.074 -0.612 0.342 -0.167 
Mn can ht 0.444 0.023 0.067 -0.045 0.012 0.195 -0.239 0.165 
SD can ht 0.320 -0.372 -0.014 -0.068 -0.130 -0.055 0.222 -0.223 
Mn cover >10m 0.357 0.263 0.072 0.141 -0.261 0.355 0.666 0.287 
SD cover >10m -0.110 -0.385 -0.066 0.229 -0.834 0.035 -0.232 0.058 
Mn cover 2-10m -0.115 -0.200 0.649 0.653 0.232 0.009 -0.024 0.174 
SD cover 2-10m 0.144 -0.094 -0.713 0.619 0.264 0.073 -0.036 -0.020 
HOME 0.440 0.080 0.055 -0.015 0.005 0.163 -0.323 0.054 
CV can ht -0.033 -0.511 0.078 -0.169 0.224 0.642 0.077 -0.383 
VDR -0.241 -0.418 -0.195 -0.250 0.164 0.026 0.175 0.736 
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Figure S2. Box plots comparing on-the-ground basal area measurements to forest type 

(plantation vs. old-growth/mature forest) categorizations.
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APPENDIX 2.6. Summary statistics for all temperature metrics and results from Welch two-
sample t-tests comparing temperature metrics measured in both 2012 and 2013. 

 

  

Temperature metric Units Mean SD Min Max Mean SD Min Max 95 LCL 95 UCL t df P
CDD >0°C Jan-Mar dd 162.16 49.13 46.26 348.19 195.16 62.06 35.30 359.65 -44.51 -21.49 -5.64 345.79 3.54E-08
CDD >0°C Apr-Jun dd 754.45 127.47 448.90 979.71 886.10 125.59 608.45 1104.44 -157.67 -105.64 -9.95 363.92 < 2.2E-16
CDD >10°C Apr-Jun dd 115.06 38.64 29.97 206.45 188.42 46.98 90.10 302.74 -82.20 -64.51 -16.31 350.93 < 2.2E-16
sd wkly T Jan-Mar °C 1.62 0.39 0.79 2.69 2.60 0.41 1.23 3.59 -1.06 -0.90 -23.24 362.99 < 2.2E-16
sd wkly T Apr-Jun °C 3.78 0.17 3.34 4.53 4.86 0.27 4.20 5.54 -1.13 -1.04 -46.31 306.49 < 2.2E-16
MEAN mo mn Apr-Jun °C 8.25 1.44 4.78 10.76 9.72 1.40 6.57 12.13 -1.76 -1.18 -9.88 363.75 < 2.2E-16
MAX mo mn Apr-Jun °C 12.85 2.01 8.66 17.56 14.51 1.98 10.42 18.99 -2.07 -1.25 -7.94 363.96 2.55E-14
MIN mo mn Apr-Jun °C 4.65 1.16 1.77 6.34 5.93 1.07 2.79 7.56 -1.52 -1.06 -11.04 362.05 < 2.2E-16
MAX T warmest mo °C 25.22 2.16 19.97 33.08 NA NA NA NA NA NA NA NA NA
MIN T coldest mo °C -1.14 1.10 -4.27 0.76 NA NA NA NA NA NA NA NA NA

2012 summary statistics 2013 summary statistics Welch two-sample t-test results
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APPENDIX 3.1. Map of the H. J. Andrews Experimental Forest, Blue River, Oregon with the 183 
sample locations. Sample points are for both bird and temperature data. The elevation gradient is 
in meters. Hillshading shows the underlying topography of the study area.  
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APPENDIX 3.2. Pearson’s correlation coefficients between all predictor variables. 

 

 

CDD >0 J-M CDD >10 A-J Max T A-J Min T A-J Mean T A-J Veg str (PC1) Veg str (PC 2) Veg comp (decid BA)
CDD >0 J-M 1 0.79 0.57 0.70 0.70 0.15 0.19 -0.01
CDD >10 A-J 1 0.90 0.87 0.96 0.14 0.21 0.15
Max T A-J 1 0.70 0.89 0.01 0.16 0.31
Min T A-J 1 0.94 0.43 0.20 0.08
Mean T A-J 1 0.26 0.21 0.20
Veg str (PC1) 1 0.00 -0.29
Veg str (PC 2) 1 0.19
Veg comp (decid BA) 1
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APPENDIX 3.3. Constant rates for all parameters. 

 

 

Species Est SE Est SE Est SE Est SE

BRCR 0.587 0.028 0.261 0.058 0.202 0.031 0.608 0.074
CBCH 0.622 0.014 0.654 0.048 0.497 0.039 0.338 0.033
GCKI 0.675 0.018 0.292 0.043 0.284 0.026 0.511 0.042
HAFL 0.665 0.026 0.352 0.050 0.057 0.016 0.259 0.061
HETH 0.752 0.022 0.206 0.077 0.216 0.032 0.576 0.070
HEWA 0.782 0.010 0.703 0.042 0.364 0.032 0.264 0.026
ORJU 0.671 0.019 0.603 0.155 0.001 0.008 0.032 0.019
PAWR 0.836 0.009 0.558 0.038 0.316 0.025 0.278 0.031
PSFL 0.742 0.013 0.398 0.041 0.309 0.028 0.346 0.032
RBNU 0.482 0.023 0.577 0.066 0.119 0.034 0.094 0.038
STJA 0.438 0.027 0.428 0.072 0.260 0.038 0.717 0.064
SWTH 0.737 0.018 0.116 0.052 0.277 0.029 0.419 0.056
VATH 0.676 0.021 0.296 0.053 0.249 0.031 0.589 0.063
WETA 0.555 0.036 0.259 0.063 0.112 0.024 0.507 0.108
WIWA 0.628 0.032 0.225 0.045 0.037 0.011 0.241 0.073

BRCR 0.588 0.025 0.302 0.056 0.211 0.029 0.495 0.077
CBCH 0.607 0.016 0.472 0.051 0.340 0.032 0.353 0.047
GCKI 0.716 0.016 0.407 0.052 0.223 0.023 0.410 0.040
HAFL 0.768 0.018 0.406 0.069 0.096 0.019 0.265 0.061
HETH 0.725 0.020 0.143 0.028 0.150 0.015 0.587 0.070
HEWA 0.799 0.009 0.776 0.037 0.449 0.036 0.293 0.021
ORJU 0.664 0.018 0.301 0.058 0.227 0.028 0.351 0.093
PAWR 0.809 0.011 0.511 0.041 0.250 0.022 0.288 0.026
PSFL 0.740 0.012 0.477 0.045 0.380 0.032 0.261 0.031
RBNU 0.686 0.013 0.738 0.055 0.391 0.067 0.204 0.038
STJA 0.462 0.025 0.731 0.129 0.002 0.021 0.058 0.026
SWTH 0.737 0.017 0.064 0.022 0.241 0.020 0.449 0.043
VATH 0.704 0.021 0.265 0.043 0.204 0.022 0.731 0.046
WETA 0.629 0.034 0.085 0.026 0.125 0.022 0.830 0.056
WIWA 0.748 0.026 0.174 0.045 0.054 0.015 0.156 0.063

2012

Detection Occupancy Colonization

2013

Extinction
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APPENDIX 3.4. Coefficients and standard errors for detection probability (p) by species and year for top models. ** = significant at P ≤ 
0.05, * = significant at P ≤ 0.1. See Appendix 8 for all model selection tables. 

 

Species Est SE Est SE Est SE Est SE Est SE Est SE Est SE Est SE Est SE

BRCR -0.696 0.269 0.242 0.213 -0.224 0.205
CBCH -0.102 0.104 0.173 0.068 **
GCKI 0.163 0.149 -0.164 0.096 * -0.388 0.111 **
HAFL -0.720 0.297 0.418 0.110 ** -0.070 0.100 0.377 0.128 **
HETH -1.283 0.326 -0.594 0.153 **
HEWA 0.560 0.160 0.284 0.074 **
ORJU -0.961 0.172 -0.298 0.095 ** 0.068 0.105
PAWR 1.085 0.130
PSFL 0.377 0.131 0.474 0.110 ** 0.391 0.102 ** 0.035 0.111
RBNU -1.780 0.188 -0.088 0.108 ** -0.267 0.141 * -0.317 0.129 **
STJA -0.743 0.333 -0.120 0.115
SWTH -0.946 0.188 -0.011 0.103 -0.346 0.097 **
VATH -0.328 0.217 0.225 0.110 ** -0.318 0.144 **
WETA -0.960 0.285 -0.238 0.148 0.437 0.175 ** 0.429 0.206 **
WIWA 0.246 0.252 0.439 0.222 **

BRCR -0.709 0.241 0.409 0.155 ** 0.060 0.252 0.377 0.147 **
CBCH -0.567 0.179 -0.270 0.099 ** 0.210 0.088 **
GCKI -0.140 0.198 -0.318 0.106 **
HAFL -0.766 0.291 0.441 0.133 **
HETH 0.861 0.213 -0.156 0.098 *
HEWA 0.795 0.099 -0.114 0.071 * -0.084 0.069
ORJU -0.257 0.172 -0.146 0.086 *
PAWR 0.721 0.180 -0.176 0.075 **
PSFL 0.212 0.155 0.130 0.079 * 0.249 0.093 **
RBNU -0.558 0.109 0.032 0.073 -0.235 0.071 **
STJA -1.424 0.183 -0.094 0.086 0.148 0.087 *
SWTH 0.042 0.268 -0.306 0.107 **
VATH -0.181 0.215 -0.347 0.130 ** -0.140 0.121
WETA -0.925 0.398 0.223 0.153 0.582 0.144 **
WIWA -1.343 0.230 -0.347 0.140 ** -0.839 0.175 **

CDD >10 Apr-Jun MEAN Apr-Jun

2012

2013

Vegetation Temperature
Intercept Veg structure 1 Veg structure 2 Veg composition CDD >0 Jan-Mar MAX Apr-Jun MIN Apr-Jun
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Species Est SE Est SE Est SE Est SE Est SE Est SE Est SE Est SE Est SE Est SE Est SE Est SE

BRCR -0.696 0.269 1.120 0.286 ** -0.372 0.129 ** -0.358 0.122 **
CBCH -0.102 0.104 0.859 0.132 ** -0.116 0.059 ** -0.189 0.070 ** -0.256 0.064 **
GCKI 0.163 0.149 0.667 0.179 **
HAFL -0.720 0.297 1.454 0.291 ** -0.538 0.125 ** 0.218 0.127 * -0.376 0.699 -0.450 0.282 * -1.408 0.292 ** 1.016 1.279 0.048 0.324
HETH -1.283 0.326 1.828 0.364 ** -0.025 0.118 0.676 0.149 ** -1.001 0.168 **
HEWA 0.560 0.160 1.152 0.149 ** -0.161 0.075 ** -0.589 0.081 ** 0.987 0.535 * -0.709 0.182 ** -0.018 0.186 0.797 0.814 -0.129 0.185
ORJU -0.961 0.172 1.664 0.202 ** 0.985 0.091 **
PAWR 1.085 0.130 0.746 0.165 ** -0.398 0.074 ** 0.161 0.074 ** -0.332 0.087 **
PSFL 0.377 0.131 0.750 0.157 ** -0.399 0.081 **
RBNU -1.780 0.188 1.099 0.198 ** -0.448 0.088 ** -0.312 0.082 ** -1.081 0.140 **
STJA -0.743 0.333 0.683 0.271 ** 0.921 0.442 ** -0.798 0.287 ** -0.567 0.273 ** -0.014 0.567 0.423 0.287
SWTH -0.946 0.188 1.435 0.219 ** -0.564 0.091 ** 0.946 0.148 ** -0.394 0.117 **
VATH -0.328 0.217 0.928 0.237 ** -0.628 0.107 **
WETA -0.960 0.285 0.540 0.319 * -0.336 0.139 ** -0.507 0.185 **
WIWA 0.246 0.252 0.741 0.292 ** -0.239 0.159

BRCR -0.709 0.241 1.155 0.255 **
CBCH -0.567 0.179 0.900 0.163 ** -0.363 0.064 ** 0.319 0.186 * 0.405 0.188 ** 0.453 0.198 **
GCKI -0.140 0.198 0.563 0.171 ** -0.250 0.084 ** 0.172 0.087 ** 0.714 0.252 ** 0.944 0.236 ** 0.659 0.228 **
HAFL -0.766 0.291 1.534 0.296 ** -0.329 0.133 ** 0.147 0.117 1.177 0.302 ** 0.765 0.351 ** 0.301 0.288
HETH 0.861 0.213 0.625 0.236 ** -0.611 0.266 ** -0.626 0.289 ** -0.123 0.433
HEWA 0.795 0.099 0.778 0.129 ** 0.103 0.065 -0.508 0.074 **
ORJU -0.257 0.172 1.106 0.202 ** -0.237 0.080 ** 0.482 0.094 **
PAWR 0.721 0.180 0.909 0.160 ** -0.313 0.075 ** 0.297 0.085 ** -0.045 0.078 0.260 0.213 -0.196 0.225 0.474 0.225 **
PSFL 0.212 0.155 0.813 0.140 ** -0.086 0.070 0.612 0.179 ** 0.096 0.192 0.286 0.188
RBNU -0.558 0.109 1.204 0.140 ** -0.998 0.083 **
STJA -1.424 0.183 2.026 0.202 ** -0.160 0.071 ** -0.178 0.084 ** -0.236 0.165 -1.401 0.213 ** -0.900 0.192 **
SWTH 0.042 0.268 0.906 0.248 ** 0.530 0.167 **
VATH -0.181 0.215 1.122 0.253 ** -0.409 0.118 ** -0.366 0.122 **
WETA -0.925 0.398 1.614 0.451 **
WIWA -1.343 0.230 2.497 0.296 ** -0.030 0.113

Observer 5 Observer 6

2012

2013

Wind Observer 2 Observer 3 Observer 4Intercept Temporal autocov Survey Time Day of Year Weather Stream noise
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APPENDIX 3.5. Coefficients and standard errors for initial occupancy. Coefficients and standard errors for initial occupancy (ψ) by 
species and year for top models. ** = significant at P ≤ 0.05, * = significant at P ≤ 0.1. See Appendix 8 for all model selection tables. 

CDD >10 Apr-Jun MEAN Apr-Jun
Species Est SE Est SE Est SE Est SE Est SE Est SE Est SE Est SE Est SE

BRCR -2.148 0.469 -1.708 0.823 ** 0.603 0.300 **
CBCH 0.585 0.211 0.298 0.219 0.409 0.213 **
GCKI -1.336 0.219 -0.242 0.193 -0.795 0.219 **
HAFL -0.784 0.240 0.425 0.205 ** 0.463 0.257 * 0.179 0.222
HETH -1.113 0.554 0.467 0.457 0.624 0.436
HEWA 0.841 0.203 -0.166 0.203 -0.583 0.210 **
ORJU 2.198 2.525 -1.211 1.104 -3.246 2.636
PAWR 0.229 0.171 0.240 0.186 0.814 0.199 **
PSFL -0.730 0.190 0.158 0.219 -0.627 0.189 ** -0.272 0.238 0.875 0.238 **
RBNU -0.127 0.266 -0.557 0.248 ** -0.566 0.337 * -0.675 0.257 **
STJA -0.330 0.331 -0.493 0.287 * 0.520 0.317 *
SWTH -2.424 0.643 0.134 0.329 -0.926 0.533 *
VATH -1.361 0.252 -0.195 0.251 -0.662 0.264 **
WETA -1.696 0.318 -0.291 0.292 0.550 0.273 **
WIWA -1.734 0.238 -0.448 0.228 ** -0.356 0.223

BRCR -1.590 0.395 -0.404 0.259 -1.431 0.695 ** -0.576 0.317 *
CBCH -0.253 0.200 -0.384 0.193 ** -0.270 0.230 0.372 0.204 *
GCKI -1.006 0.210 -0.224 0.208 -1.459 0.242 **
HAFL -1.582 0.264 0.083 0.214 0.643 0.223 ** 1.054 0.272 **
HETH -1.868 0.236 -0.384 0.320 0.156 0.224
HEWA 1.167 0.204 -0.114 0.193 -0.440 0.213 **
ORJU -0.979 0.285 -0.378 0.265 -0.376 0.248
PAWR 0.037 0.180 0.550 0.195 ** 0.379 0.193 **
PSFL -0.489 0.186 0.395 0.199 ** -0.375 0.173 ** 0.981 0.237 **
RBNU 0.947 0.271 -0.504 0.258 ** 0.302 0.258
STJA 1.203 0.593 -0.284 0.258 0.656 0.384 *
SWTH -2.759 0.412 0.292 0.355 0.248 0.267
VATH -1.220 0.234 0.013 0.221 -0.725 0.223 **
WETA -3.394 0.709 1.344 0.508 ** 1.251 0.617 **
WIWA -2.083 0.377 -0.288 0.300 -0.954 0.339 **

2012

2013

Veg composition CDD >0 Jan-Mar MIN Apr-JunMAX Apr-JunVeg structure 1 Veg structure 2 
Vegetation Temperature

Intercept
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APPENDIX 3.6. Comparison of effect sizes between fine-scale temperature and vegetation for settlement and vacancy probability in the 
top models by species and year. See Table 3.1 for species codes. 

  

Species Veg Est/SE Temp Est/SE Abs diff Larger effect Veg Est/SE Temp Est/SE Abs diff Larger effect
BRCR 3.975 0.000 3.975 Veg 1.409 0.000 1.409 Veg
CBCH -3.013 2.131 0.882 Veg -1.860 -1.697 0.162 Veg
GCKI -1.184 -4.974 -3.790 Temp 0.657 2.038 -1.381 Temp
HAFL 2.107 -1.262 0.845 Veg -1.728 -2.361 -0.633 Temp
HETH -2.615 0.888 1.727 Veg 0.414 2.396 -1.982 Temp
HEWA -1.147 -3.400 -2.252 Temp 1.321 2.575 -1.254 Temp
ORJU -2.384 -2.862 -0.478 Temp 0.893 4.739 -3.846 Temp
PAWR 4.647 3.673 0.974 Veg -2.249 -4.394 -2.145 Temp
PSFL 4.387 2.068 2.319 Veg 2.241 -1.264 0.977 Veg
RBNU 0.000 -1.160 -1.160 Temp 0.000 1.493 -1.493 Temp
STJA -1.668 2.234 -0.566 Temp -1.114 -0.908 0.206 Veg
SWTH -1.942 1.807 0.134 Veg 1.074 0.000 1.074 Veg
VATH -2.561 -4.025 -1.464 Temp -0.144 2.615 -2.471 Temp
WETA 2.891 4.421 -1.530 Temp 1.684 -0.770 0.914 Veg
WIWA -2.773 -2.248 0.524 Veg 0.938 3.488 -2.551 Temp

BRCR 2.579 -1.562 1.017 Veg 1.686 -1.503 0.183 Veg
CBCH -2.826 1.718 1.108 Veg -2.181 -1.730 0.451 Veg
GCKI -1.041 -6.792 -5.751 Temp 1.892 3.265 -1.374 Temp
HAFL 2.907 1.113 1.794 Veg -2.068 -1.383 0.685 Veg
HETH -3.933 -2.769 1.165 Veg 1.857 0.777 1.080 Veg
HEWA -2.509 -3.921 -1.413 Temp -0.585 3.996 -3.411 Temp
ORJU -3.532 -3.601 -0.069 Temp 0.088 1.649 -1.560 Temp
PAWR 4.132 3.842 0.290 Veg 3.242 -3.282 -0.040 Temp
PSFL 3.452 3.459 -0.006 Temp -2.273 -2.394 -0.121 Temp
RBNU -2.025 -2.222 -0.197 Temp 1.071 1.581 -0.511 Temp
STJA 0.000 1.442 -1.442 Temp 0.000 1.275 -1.275 Temp
SWTH 1.780 3.413 -1.633 Temp -2.203 -0.770 1.433 Veg
VATH -1.713 -3.473 -1.759 Temp -1.283 1.779 -0.495 Temp
WETA -3.902 1.394 2.509 Veg 0.000 0.722 -0.722 Temp
WIWA -2.490 -1.628 0.863 Veg -1.973 -1.548 0.425 Veg

2012

2013

VacancySettlement
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APPENDIX 3.7. Predicted occupancy probability as a function of temperature and vegetation in the final sampling session of 2012 
(session 6; late June to mid-July) for the warm-associated species. See Table 3.1 for species codes. 
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APPENDIX 3.8. Predicted occupancy probability as a function of temperature and vegetation in the final sampling session of 2012 
(session 6; late June to mid-July) for the cool-associated species. See Table 3.1 for species codes. 

 

 

 



!
 

133 
APPENDIX 3.9. Goodness-of-fit bootstrap results for top models of all species in 2012 and 2013. 

 

  

Species Obs Mn BS SD BS Mn Obs - BS Mn Obs - BS P No. sim

BRCR 3178.86 3224.03 214.97 -45.17 214.97 0.54 250
CBCH 3140.72 3293.23 22.84 -152.50 22.84 1.00 250
GCKI 3149.57 3289.50 66.60 -139.93 66.60 0.98 250
HAFL 3145.32 3303.28 257.10 -157.96 257.10 0.70 250
HETH 2929.98 3306.93 300.91 -376.94 300.91 0.94 250
HEWA 2851.23 3297.28 36.53 -446.05 36.53 1.00 250
ORJU 3160.45 3238.05 123.96 -77.60 123.96 0.78 250
PAWR 2853.67 3291.20 59.92 -437.53 59.92 1.00 250
PSFL 3085.99 3289.16 84.78 -203.18 84.78 0.99 250
RBNU 2863.99 3299.70 502.15 -435.71 502.15 0.96 250
STJA 3313.38 3296.52 50.86 16.86 50.86 0.33 250
SWTH 2753.01 3241.17 297.53 -488.16 297.53 0.99 250
VATH 3039.51 3284.69 95.67 -245.18 95.67 1.00 250
WETA 3006.59 3259.89 538.26 -253.30 538.26 0.67 250
WIWA 3025.45 3290.73 177.33 -265.28 177.33 0.94 250

BRCR 2960.58 3239.94 212.65 -279.36 212.65 0.97 250
CBCH 3176.44 3292.38 45.24 -115.94 45.24 0.98 250
GCKI 3160.40 3291.25 98.24 -130.84 98.24 0.93 250
HAFL 3146.81 3279.96 158.35 -133.15 158.35 0.78 250
HETH 3383.27 3283.91 79.92 99.36 79.92 0.10 250
HEWA 3017.91 3291.32 35.90 -273.40 35.90 1.00 250
ORJU 3180.79 3294.59 69.57 -113.80 69.57 0.94 250
PAWR 3040.74 3295.62 94.70 -254.88 94.70 1.00 250
PSFL 3083.74 3298.29 95.66 -214.55 95.66 1.00 250
RBNU 2871.31 3279.62 105.40 -408.30 105.40 1.00 250
STJA 3212.45 3307.01 143.46 -94.56 143.46 0.82 250
SWTH 2993.44 3260.54 120.80 -267.10 120.80 0.97 250
VATH 3041.48 3293.75 86.44 -252.26 86.44 1.00 250
WETA 2927.75 3227.14 397.19 -299.39 397.19 0.84 250
WIWA 2985.06 3260.00 395.22 -274.94 395.22 0.79 250

2012

2013
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APPENDIX 3.10. Results from tests for spatial autocorrelation in the residuals from the top models 
for all species in 2012 and 2013. 

 

  2012   2013 
Species Moran's I P   Moran’s I P 
BRCR 0.003 0.244 

 
0.010 0.203 

CBCH 0.016 0.233 
 

0.007 0.206 
GCKI 0.003 0.275 

 
-0.003 0.240 

HAFL 0.002 0.251 
 

0.001 0.328 
HETH -0.013 0.225 

 
0.007 0.229 

HEWA -0.022 0.139 
 

-0.009 0.244 
ORJU -0.004 0.304 

 
-0.007 0.251 

PAWR 0.002 0.264 
 

0.007 0.215 
PSFL 0.001 0.291 

 
0.002 0.244 

RBNU -0.001 0.200 
 

0.005 0.189 
STJA 0.030 0.206 

 
0.002 0.236 

SWTH -0.026 0.193 
 

0.003 0.246 
VATH 0.002 0.176 

 
-0.017 0.234 

WETA -0.012 0.186 
 

0.000 0.243 
WIWA -0.009 0.262   0.002 0.239 
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APPENDIX 3.11. Google docs site for AIC model selection tables.  

All AIC model selection tables and associated coefficients at for 2012 and 2013 for all species 

can be found at Google docs site: 

 https://drive.google.com/folderview?id=0B-YYc7ZHlj85cnBFdHd4RzMwRUk&usp=sharing 

Column names for the model coefficients use the following notation: coefficient = 

parameter(covariate) and standard error = SEparameter(covariate). Parameter abbreviations are p 

= detection probability, psi = initial occupancy, col = colonization/settlement, ext = 

extinction/vacancy.  Parameter(Int) refers to the intercept. ‘nPars’ is the number of parameters 

estimated in the model. Each model is ranked by its AIC score, which represents how well the 

model fits the data. A lower ∆AIC (delta) value is indicative of a better model. The probability 

that the model (of the models tested) would best explain the data is indicated by AICwt. 
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APPENDIX 4.1. Species list and life history traits used in analysis. Detection method and sex indicate the types of detections used for 
each species. Det. meth = song and Sex = male means that we only included detections of singing males. Det. meth. = any and Sex = 
all indicates that for a given species we included any detection (song, call, visual) and both sexes and unknown sex individuals. 
Prevalence is the mean proportion of sites occupies across the entire Hubbard Brook Valley for all years of the study (1999-2012). SSI 
= species specialization index (see methods for how this variable is calculated), low value indicates a generalist species and a high 
number indicates a specialist species. Mean Elv, CH, and BA refer to the mean elevation, canopy height, and basal area at which the 
species is most abundant. Migration: LD = long distance, SD = short distance, RES = resident. Migration, survival, reproductive 
output from BNA accounts. Body mass obtained from Sibley (Sibley 2000). 

 

Species common name Species code Family Scientific name Det. Meth. Sex Prevalence SSI Mean Elv Mean CH Mean BA Migration Survival Repro. output Body mass
American redstart AMRE PARULIDAE Setophaga ruticilla song male 0.069 0.75 587.08 30.11 40.81 LD 0.48 3.82 8.3
Black-and-white warbler BAWW PARULIDAE Mniotilta varia song male 0.033 0.39 623.73 24.37 31.62 LD 0.71 5 10.7
Black-capped chickadee BCCH PARIDAE Poecile atricapillus any all 0.175 0.14 785.30 31.30 42.80 RES 0.51 7 11
Blue-headed vireo BHVI VIREONIDAE Vireo solitarius song male 0.166 0.21 653.01 25.07 35.31 SD NA 4 16
Blackburnian warbler BLBW PARULIDAE Setophaga fusca song male 0.533 0.14 659.59 27.89 38.37 LD NA 4 9.8
Blue jay BLJA CORVIDAE Cyanocitta cristata any all 0.042 0.14 710.30 29.22 39.18 RES 0.53 5 85
Blackpoll warbler BLPW PARULIDAE Setophaga striata song male 0.084 0.60 929.04 20.55 33.57 LD NA 8 13
Brown creeper BRCR CERTHIIDAE Certhia americana song male 0.143 0.31 637.16 24.48 33.89 SD 0.44 5.8 8.4
Black-throated blue warbler BTBW PARULIDAE Setophaga caerulescens song male 0.620 0.41 726.09 30.02 39.04 LD 0.87 7.6 10.2
Black-throated green warbler BTNW PARULIDAE Setophaga virens song male 0.629 0.21 717.64 28.71 38.64 LD 0.67 4 8.8
Canada warbler CAWA PARULIDAE Cardellina canadensis song male 0.057 0.28 730.83 24.34 31.66 LD NA 4.8 10.3
Cedar waxwing CEDW BOMBYCILLIDAE Bombycilla cedrorum any all 0.020 0.57 712.53 25.96 37.81 LD 0.45 8 32
Chimney swift CHSW APODIDAE Chaetura pelagica any all 0.043 0.73 633.89 27.27 35.78 LD 0.63 4.16 23
Downy woodpecker DOWO PICIDAE Picoides pubescens any all 0.010 1.77 567.68 28.31 36.73 RES NA 4.81 27
Eastern wood-pewee EAWP TYRANNIDAE Contopus virens song male 0.011 1.04 472.17 27.53 33.67 LD NA 3 14
Golden-crowned kinglet GCKI REGULIDAE Regulus satrapa song male 0.173 0.62 727.57 23.29 35.22 RES 0.11 17.2 6
Hairy woodpecker HAWO PICIDAE Picoides villosus any all 0.086 0.31 659.31 27.27 36.57 RES NA 4 66
Hermit Thrush HETH TURDIDAE Catharus guttatus song male 0.103 0.57 611.32 26.23 35.04 SD 0.48 3.36 31
Magnolia warbler MAWA PARULIDAE Setophaga magnolia song male 0.157 0.72 856.38 22.97 35.38 LD 0.41 4 8.7
Yellow-rumped warbler YRWA PARULIDAE Setophaga coronata song male 0.260 0.48 749.63 24.00 35.36 SD 0.45 4 12.3
Nashville warbler NAWA PARULIDAE Oreothlypis ruficapilla song male 0.026 0.97 835.89 20.61 33.96 LD 0.36 4.71 8.7
Ovenbird OVEN PARULIDAE Seiurus aurocapilla song male 0.474 0.81 661.68 29.87 39.03 LD 0.57 4 19.5
Pileated woodpecker PIWO PICIDAE Dryocopus pileatus any all 0.010 0.74 568.98 26.69 34.63 RES 0.54 4 290
Purple finch PUFI FRINGILLIDAE Haemorhous purpureus song male 0.039 0.47 712.66 21.71 32.63 SD 0.71 8 25
Rose-breasted grosbeak RBGR CARDINALIDAE Pheucticus ludovicianus song male 0.015 0.66 534.15 25.96 34.02 LD 0.61 4 45
Red-breasted nuthatch RBNU SITTIDAE Sitta canadensis any all 0.050 0.53 770.24 23.95 35.56 RES NA 5.8 10
Red-eyed vireo REVI VIREONIDAE Vireo olivaceus song male 0.491 0.67 663.09 30.70 39.89 LD 0.53 3.1 17
Ruby-throated hummingbird RTHU TROCHILIDAE Archilochus colubris any all 0.011 0.90 538.91 24.64 32.87 LD 0.31 2 3.2
Ruffed grouse RUGR PHASIANIDAE Bonasa umbellus any all 0.020 0.69 694.60 24.85 32.51 RES 0.34 11.5 580
Dark-eyed junco DEJU EMBERIZIDAE Junco hyemalis song male 0.119 0.60 809.01 22.47 33.63 SD 0.49 4 19
Scarlet tanager SCTA CARDINALIDAE Piranga olivacea song male 0.060 1.07 474.87 25.88 34.59 LD NA 3.8 28
Swainson's thrush SWTH TURDIDAE Catharus ustulatus song male 0.161 0.34 695.94 24.38 34.89 LD 0.57 3.53 31
Veery VEER TURDIDAE Catharus fuscescens song male 0.012 1.36 440.83 26.72 36.00 LD NA 4 31
White-breatsed nuthatch WBNU SITTIDAE Sitta carolinensis any all 0.026 0.38 597.39 27.09 35.73 RES 0.63 6.4 21
Winter wren WIWR TROGLODYTIDAE Troglodytes hiemalis song male 0.199 0.36 667.11 24.31 34.44 SD 0.39 14 9
White-throated sparrow WTSP EMBERIZIDAE Zonotrichia albicollis song male 0.033 0.80 770.57 21.24 33.34 SD 0.26 4 26
Yellow-bellied flycatcher YBFL TYRANNIDAE Empidonax flaviventris song male 0.064 0.73 866.63 19.21 31.52 LD NA 9 11.5
Yellow-bellied sapsucker YBSA PICIDAE Sphyrapicus varius any all 0.118 1.01 604.37 27.93 35.83 SD NA 4.23 50
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APPENDIX 4.2. Map of the Hubbard Brook Experimental Forest study area showing forest cover 
types. W = Water, Sh = Mixed, softwood-dominated, S = Softwood, N = non-forest, Hs = Mixed, 
hardwood-dominated, H = Hardwood. 

  

  

H
Hs
N
NA
S
Sh
W
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138 APPENDIX 4.3. Prior distributions for model parameters. 

 

Prior distributions: detection intercept (p0) ~ uniform distribution between 0 and 1, log lambda 

(abundance intercept) uniform between -5 and 5, r (abundance rate of change) ~ dunif(-1,1), all 

covariates for detection (wind, sky, time, day) ~ dunif(-3,3). 


