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Despite advances in the understanding of rain-on-snow storms and their 

resulting peak flows, little is understood about the response of snowmelt to 

precipitation and the relative timing of the two at multiple temporal scales within 

such events. To address this issue, climate, snowmelt, and streamflow data were 

analyzed for 26 large storms in the H.J. Andrews Experimental Forest in the western 

Cascades of Oregon. Cumulative net snowmelt was plotted against precipitation for 

each storm to identify net snowmelt response categories, which were then used to 

summarize climatic and streamflow data, while the timing of precipitation and net 

snowmelt was assessed at multiple temporal scales and time ranges with wavelet 

coherence. 

Five precipitation-net snowmelt response categories were identified: flat; 

persistent melt; persistent accumulation; late melt; and late accumulation. Persistent 

melt events, which were characterized by concomitantly increasing cumulative net 

snowmelt and precipitation, had the highest mean peak flow and water available for 

runoff values of the response categories. Large, contiguous regions of significant 

wavelet coherence at multiple temporal scales were observed in both the persistent 

melt and persistent accumulation categories, but the phase difference distributions 

indicated differing snowpack dynamics with pulses of precipitation leading pulses of 



 

 

    

 

     

  

 

 

 

  

   

   

  

snowmelt in the former and precipitation being absorbed by the snowpack in the 

latter. 

High water available for runoff totals and peak flows were observed in each of 

the five response categories, but a dewpoint temperature consistently above 0.5°C, 

elevated wind speeds, and a high fraction of precipitation falling as rain in the 

persistent melt category facilitated rapid snowmelt rates which were often 

synchronized with precipitation. Wavelet coherence showed this synchronization to 

be significant across all temporal scales and time periods for the two largest peak 

flows in the study, indicating that tightly coupled rainfall-synchrony is essential in 

generating an extreme rain-on-snow flood. By quantifying the amount and timing of 

net snowmelt, the categorization scheme provides a means of distinguishing among 

rain-on-snow events and predicting peak discharge magnitude. 
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1. INTRODUCTION 

Many processes contribute to extreme floods, but rain-on-snow events in the 

Pacific Northwest are among the most extreme in the US (O’Connor and Costa, 

2004). In Oregon, Washington, and California, rain-on-snow floods are responsible 

for a majority of all flood fatalities in the month of January (Ashley and Ashley, 

2008) and single events have produced billions of dollars in damages (U.S.A.C.E., 

1996). 

Despite their importance, the precipitation, snowmelt, and streamflow 

dynamics of the largest rain-on-snow events are not well understood. In western 

Oregon, extreme floods are always rain-on-snow events, but not all rain-on-snow 

events produce large peak flows (Jones and Perkins, 2010). Several mechanisms 

influence rain-on-snow event peak magnitude: snowmelt augmentation of water 

available for runoff (WAR); the influence of climatic variables, logging, and land-use 

change on snowmelt; and the effect of basin topography and tributary synchrony on 

peak streamflow. 

Snowmelt augmented water available for runoff by 4% to 37% during the 

largest rain-on-snow events, which were associated with steeper hydrograph rise and 

higher peak discharges than rain-only events for two streams in western Oregon (Harr 

1981).  Rain-on-snow peak discharges were larger in clearcut compared to 

unharvested basins Harr (1986). Snowmelt during ROS events is dominated by latent 

and sensible heat, the turbulent energy exchanges (U.S.A.C.E., 1956). Because these 

energy terms depend on wind speed, open or exposed areas experience higher latent 

and sensible heat exchanges than forested sites and contribute more snowmelt (Harr 

1981, van Heeswijk et al., 1996; Marks et al., 1998; Marks et al., 2001). 

Basin topography, antecedent soil moisture, and snowpack presence/absence 

affect storm hydrograph shape and peak discharge (Perkins and Jones 2008). 

Generally, the presence of a snowpack increased the duration of stormflow and peak 

flow magnitude, while basins with short, steep slopes experienced a quicker, steeper 

hydrograph response than basins with long, shallow slopes. Synchronized streamflow 

from headwater basins augments peak discharges in higher order catchments, and 

forest harvest may further augment extreme rain-on-snow peak flows by increasing 
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the area that experiences synchronized snowmelt during a storm (Jones and Perkins 

2010). 

Despite these advances, little is known about the snowmelt dynamics and 

precipitation interactions with the snowpack at sub-daily time scales during storm 

events, and the effect of these interactions on peak discharges.  Data on the relative 

timing and phase of precipitation and snowmelt, as well as data on peak discharges 

from the transient snow zone are rare.  However, the H.J. Andrews Experimental 

Forest in western Oregon provides long-term data on precipitation, temperature, 

snowmelt, and streamflow measured in the same location within the transient snow 

zone.  These data, combined with streamflow from the larger drainage basin 

downstream, provide the opportunity to address the following research questions: 

1.	 How do rain-on-snow events differ in the response of snowmelt to 

precipitation? 

2.	 How are differences in snowmelt during storm events related to climate, 

water available for runoff, and peak discharge? 

3.	 How is the timing of precipitation related to the timing of snowmelt at 

multiple temporal scales during rain-on-snow events? 
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2. STUDY SITE AND METHODS 

2.1. Study site description 

The H.J. Andrews Experimental Forest is located on the western slope of the 

Oregon Cascades, and it comprises the 5th-order, westward-facing 6400-ha Lookout 

Creek basin (Figure 2.1). Elevation ranges from 410 m to 1630 m and slopes are 

typically steep (40% average), with subbasin slopes ranging from 25% to 60%.  The 

geology and geomorphology of the Lookout Creek basin are both shaped by the 

region’s volcanic past and recent geomorphic processes. Lava flows, ash flows, and 

other rocks of volcanic origin underlie most of the Andrews, with ridge-capping 

basalt flows occurring as recently as 4 million years ago. Since then glacial, fluvial, 

and mass wasting processes have shaped the Andrews’ geomorphology. Glaciers 

carved out the u-shaped valleys seen in the upper elevations of the forest, while 

stream erosion and debris flows and slides are the dominant processes that shaped the 

steep, narrow valleys on the west side of the Andrews. Deep, slow-moving earthflows 

occupy central portions of the Andrews Forest and are characterized by flatter slopes 

(Swanson and James, 1975; Swanson and Swanston, 1977; Swanson and Jones, 

2002). 

The climate of the Andrews is marine west coast with cool, wet winters and 

warm, dry summers. More than 80% of precipitation occurs between November and 

April (Perkins and Jones, 2008). Mean annual precipitation (MAP) at the Central 

Meteorological Station (CS2MET) is 2200 mm and MAP is estimated to vary from 

1900 mm at elevations of 400 to 700 m in the southwest corner of the Andrews 

Forest, to over 2900 mm along the southern bounding ridge of the Andrews Forest 

(Lookout Ridge, up to 1400 m elevation). However, benchmark climate stations are 

mostly located in a rain shadow north and east of Lookout Ridge (Perkins and Jones, 

2008). CS2MET, the Hi-15 Meteorological Station (H15MET), the Vanilla Leaf 

Meteorological Station (VANMET), and Upper Lookout Meteorological Station 

(UPLMET) have 13 years (1999-2011) of complete, overlapping precipitation 

records. During this time CS2MET, H15MET, and VANMET all averaged ~2150 
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mm of precipitation per year. Only UPLMET received appreciably enhanced 

precipitation at 2580 mm per year (table 2.1). 

Figure 2.1. The location of the H.J. Andrews Experimental Forest within Oregon (a) and selected 
climate and streamflow stations in the study site (b). 
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Table 2.1. MAP (1999-2011) at four of the H.J. Andrews climate stations. 

Met Station Elevation (m) Mean annual 
precipitation 

(mm) 
CS2MET 482 2160 
H15MET 909 2140 
UPLMET 1298 2580 
VANMET 1268 2150 

Winter precipitation falls as a mix of rain and snow, with the percentage of 

snow increasing with elevation. Lower elevations in the Andrews (< 800 m) are in the 

transient snow zone and snowpacks rarely last longer than two weeks, while 

snowpacks at elevations above 800 m may last throughout the winter and into late 

spring. In addition, areas above 800 m experience more rain-on-snow events than 

low-elevation sites (Jones and Perkins, 2010). 

Vegetation in the low-to-mid elevations of the Andrews (400 to 1050 m) is 

dominated by Douglas fir (Pseudotsuga menziesii), western hemlock (Tsuga 

heterophylla), and western red cedar (Thuja plicata). Upper elevations (above 1050 

m) are composed of a mix of Pacific silver fir (Abies amabilis) and western hemlock, 

with some Douglas fir. Due to wildfires, most trees in the upper elevations are 

younger than the old growth in the lower elevations. Noble firs between 150 and 175 

years old dominate the higher wildfire-affected stands (Franklin and Dyrness, 1971). 

Soils at the Andrews are highly porous Inceptisols and Andisols (Brown and 

Parsons, 1973; Ranken, 1974). The infiltration rates of these soils are typically much 

higher than maximum precipitation rates, and therefore overland flow is not observed 

in the forest (Dyrness, 1969). Subsurface flow and channel interception are the two 

dominant pathways by which precipitation enters streams in the Andrews (Harr, 

1977). Due to the region’s maritime climate, frozen soils are only observed between 1 

and 2 days per year (Jones and Perkins, 2010). 

The Lookout Creek gage is at an elevation of 422 m. Approximately 25% of 

the basin has been affected by logging treatments such as clear-cuts and selective 

harvests. The majority of harvests and road installations were performed before 1970 

and young stands range in age from 50 to 70 yrs. Several of the subbasins were 
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selectively harvested while others were 100% clear-cut (Jones and Grant, 1996). 

Streamflow in the Andrews follows a distinct seasonal pattern with discharge 

peaking in the winter months—typically achieving maximum daily flow in December 

or January—and reaching a minimum in late summer. The highest flood peaks on 

Lookout Creek are typically caused by rain-on-snow events (Harr, 1981; Harr, 1986) 

and the largest flows occur between November and March. Discharge from the 

Andrews’ subbasins follows the same general pattern, but the higher basins 

experience reduced December to January flows and augmented March to June flows 

due to rain shadow effects and spring snowmelt (Jones and Perkins, 2010). 

WS8 is a 21.4-ha subbasin within the greater Lookout Creek basin that drains 

a small first-order stream in the northern section of the Andrews. Elevation in WS8 

ranges from 970 to 1180 m. WS8 is one of the Andrews’ unlogged control watersheds 

and its 150 to 500-yr-old stands are dominated by Douglas fir, western hemlock, and 

Pacific silver fir (Dyrness and Hawk, 1972). Slopes are relatively shallow, at a 25% 

average, and the basin has a southerly exposure. 

2.2. Storm selection 

Storms examined in this study are high-magnitude events, which are defined 

as those with 3-day precipitation totals greater than 150 mm at CS2MET and/or peak 

streamflow at Lookout Creek greater than 3.3 mm h-1. The study period is limited to 

days in between 1992-03-12 and 2012-09-15, the dates for which both snowmelt 

lysimeter and dewpoint temperature data were available at H15MET, the station with 

longest continuously running snowmelt lysimeter. These criteria produced a total of 

30 events, but 4 were removed due to missing snowmelt and/or dewpoint temperature 

data. The full list of events can be viewed in Appendix A. Additionally, each storm 

was analyzed using a 10-day window with the event’s peak flow occurring on the 6th 

day of the window. This window size was selected to encompass the entirety of each 

storm event without including potentially overlapping events, to provide a consistent 

scale of analysis among storms, to examine the temporal evolution of storms, and to 

minimize the edge effects of wavelet coherence. 
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Figure 2.2. Storm selection. Shaded region (a) denotes events selected where peak streamflow was 
greater than 3.3 mm h-1 , (b) denotes events with 3-day precipitation greater than 150 mm, and (c) 
denotes the event met both criteria. 
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Figure 2.3. Residuals from the linear regression of peak streamflow as predicted by 3-day precipitation 
(pkflow = 0.04 + 0.01*ppt3day; r2 = 0.54). As 3-day precipitation increases, so does the magnitude of 
the residuals. 
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2.3. Data 

2.3.1. Observed variables 

Data from CS2MET, H15MET, VANMET, UPLMET, CENMET, WS8 and 

Lookout Creek were accessed through the forest’s HF004 (Johnson and Rothacher, 

2013) and MS001 (Daly and McKee, 2013) datasets, which are available on the 

Andrews website: http://andrewsforest.oregonstate.edu/. For further information on 

H.J. Andrews climate stations and available data, the reader is referred to the forest’s 

website. 

Streamflow data consisted of instantaneous streamflow data from Lookout 

Creek and one-hour streamflow data from WS8.  Climate data consisted of air 

temperature, precipitation, dewpoint temperature, wind speed, and lysimeter output at 

1-hour intervals from the H15MET. 

Precipitation data at H15MET were obtained using an 8-inch diameter, heated 

raingage located 4.1 m above ground level with a pressure transducer and Campbell 

Scientific data logger. Measurements were taken every 10 seconds, summarized by 5-

minute intervals, and recorded to the nearest 0.01 mm. 

Snowmelt data were obtained from the H15MET snowmelt lysimeter, which 

is an open-topped wooden box (2.3 m x 2.3 m x 0.3 m) installed at ground level 

(Figures 2.4 and 2.5). The box is lined with hypalon rubber sheeting, and snowmelt is 

directed to a drain in the lowest corner of the lysimeter.  The outflow empties into a 

tipping bucket gage, which records every 10 seconds using a CR10 recorder. Data are 

summarized at 5-minute intervals, and recorded to the nearest 0.01 mm. 

http:http://andrewsforest.oregonstate.edu
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Figure 2.4. Top (a) and side (b) views of the H15MET snowmelt lysimeter. 
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Figure 2.5. H15MET instrumentation. Snowmelt lysimeter in foreground with shelter in background. 
Image courtesy of Al Levno, H.J. Andrews Experimental Forest. 

Snowmelt data are available from the H15MET lysimeter from 1990-10-02 to 

2012-09-15. Over the 22 years of snowmelt measurements, there are 6314 h (263.1 d) 

of missing data, which account for 3.3% of the dataset. The total gross output from 

the lysimeter is consistent with total precipitation as measured at H15MET on a 

water-year (October 1 through September 30) basis (Figure 2.6). Over the duration of 

overlapping precipitation and lysimeter records, the average per-water-year bias is 1.9 

× 10-4 % with slightly more water being measured in the lysimeter than the 

precipitation gage (per-water-year bias ranged from -11.8% to 18.0%; r2 = 0.85). On 

average, precipitation slightly exceeds total melt in years with precipitation < 2000 

mm, but total melt exceeds precipitation in years with precipitation > 2000 mm. The 

differences could arise from the sublimation and evaporation of water from the 

lysimeter (when total water year lysimeter output < total water year precipitation) or 

from wind deposition of excess snow into the lysimeter (when total water year 

lysimeter output < total water year precipitation). 
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Figure 2.6. Cumulative lysimeter output plotted against cumulative precipitation per water year. Black 
line represents the linear regression of lysimeter output (melt) as predicted by precipitation (ppt). 

Air temperature and relative humidity data were recorded using Campbell 

HMP35C (1992-03-12 to 2002-09-02) and HMP45C (2002-09-02 to present) probes 

located 4.5 m above ground level. Both probes utilize Vaisala capacitive relative 

humidity sensors, while the HMP35C uses a Fenwal Electronics thermistor and the 

HMP45C uses a platinum resistance thermometer to measure temperature. The 

precision for both instruments is +/- 2% and observations were recorded to the nearest 

0.1°C and 0.1% using a Campbell Scientific data logger at 10-second intervals. 

Additionally, the MS001 dataset provides dewpoint temperature calculated from air 

temperature and relative humidity. Please visit the Andrews website for further 

documentation: http://andrewsforest.oregonstate.edu/lter/data/studies/ms01/ 

meta/template.cfm?page=instlist&topnav=135#DEW_CALC. 
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http://andrewsforest.oregonstate.edu/lter/data/studies/ms01
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Wind speed data were collected using an RM Young Model 05103 Wind 

Monitor located 5 m above ground level. The propeller-type anemometer has an 

operational range of 0 to 100 m s-1 and an accuracy range of ± 0.3 m s-1. Hourly wind 

speed averages were recorded to the nearest 0.1 m s-1 using a Campbell Scientific data 

logger. 

Snowpack data were collected at VANMET (1987-06-18 to 2006-11-05), 

UPLMET (1994-10-12 to 2009-07-14), and CENMET (1996-10-17 to 2007-01-25) 

using Park Mechanical pressure snow pillows and Druck pressure transducers 

installed at ground level (there is no snow pillow at H15MET). Observations were 

recorded hourly or every 5 minutes using a Campbell Scientific data logger. 

In addition to sites in the Andrews, data from the three closest Natural 

Resources Conservation Service Snowpack Telemetry (SNOTEL) stations were 

included in the study: Jump Off Joe (1070 m), McKenzie (1450 m), and Roaring 

River (1510 m). These sites are all higher than H15MET, but were used to assess the 

presence/absence of a snowpack because of the narrow date range and number of 

missing observations of the snow pillows at the Andrews. The three SNOTEL 

stations use stainless-steel and hypalon snow pillows installed at ground level with 

Sensotec pressure transducers to measure snow water equivalent (SWE, the depth of 

liquid water contained in a snowpack). Data were summarized daily and recorded to 

the nearest 0.1 in. 

2.3.2. Calculated variables 

Net snowmelt was defined as: 

𝑀𝑒𝑙𝑡𝑛𝑒𝑡(𝑡) = 𝐿𝑦𝑠 (𝑡) − 𝑃(𝑡)𝑜𝑢𝑡

where 𝐿𝑦𝑠𝑜𝑢𝑡 is the gross output from the snowmelt lysimeter and P is precipitation, 

both measured at time t. When Meltnet is negative, moisture from precipitation is 

being held in the snowpack, i.e. SWE is increasing, and moisture is being released 

from the pack when Meltnet is positive, i.e. SWE is decreasing. When Meltnet is zero, 

either no precipitation/net snowmelt is occurring or the depth of precipitation at that 
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time step is equal to the moisture output from the snowpack, i.e. SWE remains 

constant. 

Precipitation phase at H15MET was determined using dewpoint temperature 

in accordance with the methodology of Marks et al. (2013). Precipitation falling at a 

dewpoint temperature at or below -0.5°C was considered to be all snow, at or above 

0.5°C all rain, and in between was considered mixed phase. To separate rain and 

snow totals in the mixed phase, a linear relationship was used where each 0.1°C rise 

above -0.5°C corresponded to a 10% increase in the percentage of rain falling (Figure 

2.7). The phase data were used to color-code the precipitation-snowmelt “worm” 

plots (Chapter 3.1) and calculate the liquid-equivalent depth of snow and water that 

fell at H15MET during the study period. 
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Figure 2.7. Percent rain as a function of dewpoint temperature. All precipitation below -0.5°C is 
classified as snow, while all precipitation above 0.5°C is classified as rain, with a linearly changing 
mix of the precipitation phases between the two threshold temperatures. 

2.3.3. Cumulative and total variables 

In addition to the observed and calculated data, cumulative and total variables 

were generated for each storm’s 10-day window. Cumulative precipitation is the 

depth of precipitation (mm) accumulated up to time t in a storm. Cumulative net 

snowmelt is the depth of liquid water (mm) released by the snowpack—as calculated 

by Meltnet—up to time t in a storm. When cumulative net snowmelt is negative, water 
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has been retained within the snowpack up to that point in time (cumulative 

precipitation > cumulative gross lysimeter output) and water has been released by the 

snowpack when cumulative net snowmelt is positive (cumulative precipitation < 

cumulative gross lysimeter output). 

In order to define snowmelt-response categories, “worm” plots were 

constructed with cumulative precipitation on the x-axis and cumulative net snowmelt 

on the y-axis. Each point represents an hourly observation, with a wider distance 

between points indicating more intense precipitation and/or melt. In addition, once 

the response categories were defined, the cumulative values were averaged for all 

storms in a given category at each time step to generate mean response plots. These 

plots are meant for illustration purposes and should not be interpreted as the predicted 

response for a given event. 

Total precipitation and total net snowmelt are the sums of all hourly 

precipitation and net snowmelt values within the 10-day storm window. Total WAR 

is the sum of total precipitation and total net snowmelt. The total WAR-to-total 

precipitation ratio is calculated by dividing total WAR by total precipitation. The rain 

fraction is the proportion of precipitation that fell as rain during a storm, where 1 

corresponds to an all-rain event and 0 corresponds to an all-snow event. Mean values 

for dewpoint temperature, air temperature, and wind speed are calculated by 

averaging hourly observations across the 10-day storm window. 

2.3.4. Hourly melt rate categorization 

Hourly net snowmelt rates were calculated for all hours in the dataset (n = 26 

storms × 10 days × 24 hours = 6240 hourly rates) and categorized: 

• None/gain: net snowmelt rate ≤ 0 mm h-1 

• Low: 0 mm h-1 < net snowmelt rate ≤ 1 mm h-1 

• Medium: 1 mm h-1 < net snowmelt rate ≤ 2 mm h-1 

• High: 2 mm h-1 < net snowmelt rate ≤ 3 mm h-1 

• Very high: 3 mm h-1 < net snowmelt rate 
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2.3.5. ANOVA and Tukey-Kramer test 

The cumulative precipitation-cumulative net snowmelt “worm” plots 

described in Chapter 2.3.3 above were used to define response categories. An analysis 

of variance (ANOVA) was performed on the hydrologic and climatic data of the 

response categories to determine whether one of the categories was significantly 

different from the others. The Tukey-Kramer test was then used to assess the 

significance of all pairwise differences in means of the climatic and hydrologic 

variables of the response categories (Ramsay et al., 2013). 

2.3.6. Data analysis and visualization 

Data analysis was performed using R version 3.0.3 (R Core Team, 2014) with the 

RStudio version 0.98 interface (RStudio, 2013). R’s base plotting routine, the ggplot2 

package (Wickham, 2009), and gridExtra (Baptiste, 2012) were used to visualize the 

data. Additionally, the zoo (Zeilis and Grothendieck, 2005), xts (Ryan and Ulrich, 

2014), and plyr (Wickham, 2011) packages were used for time series analysis and 

data management, and the multcomp (Hothorn et al., 2008) package was used for the 

Tukey-Kramer tests. 

2.4. Wavelet analysis 

2.4.1. Introduction 

Wavelet analysis is an ideal tool for time series analysis in the geosciences. 

Much like traditional Fourier analysis, wavelet analysis can identify the dominant 

frequencies of variability within a dataset while also identifying the points in time 

where the strongest fluctuations occur. Fourier analysis presents results solely in the 

frequency space, while wavelet analysis presents results in time-frequency space, 

giving the researcher distinct advantages (e.g., noting when shifts in the data occur or 

visual trend identification). Furthermore, wavelet analysis is robust to non-stationary 

data, a common concern in the geosciences (Torrence and Compo, 1998). 

The form of wavelet analysis applied here relies on the continuous wavelet 

transform, which utilizes a scaled mother wavelet to interpret variations in the data 
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across frequencies and time. Results from the analysis are presented via a 2-

dimensional surface plot with the color denoting the power of the continuous wavelet 

transform at a given time and frequency. The mother wavelet, which can be 

simplified as a band-pass filter, is scaled based on time for each period of interest 

(Grinsted et al., 2004; Cazelles et al., 2008). At small periods, the mother wavelet is 

small in order to identify high-frequency variability in the data, and its scale increases 

with period to identify successively larger-scale data fluctuations. There are various 

choices of mother wavelets, but all must fit the criteria of having a mean of zero and 

being localized in time-frequency space (Farge, 1992). Additionally, the shape of the 

chosen mother wavelet should reflect the variation in the observed data (Torrence and 

Compo, 1998). Typically, the Morlet mother wavelet is used for geoscience 

applications as its profile is well suited to picking up fluctuations in smoothly varying 

data (Torrence and Compo, 1998) and it provides an acceptable compromise in time-

frequency resolution (Grinsted et al., 2004). 

Wavelet analysis has been used in a variety of geoscience studies, including: 

identifying multi-year variability in the El Niño Southern Oscillation (ENSO) (e.g., 

Gu and Philander, 1995; Wang and Wang, 1996; and Torrence and Compo, 1998); 

identifying multiple timescales of variability in central England temperature data 

(Baliunas et al., 1997); characterizing patterns of streamflow and their connection to 

precipitation in remote French Guyana catchments (Gaucherel, 2002); identifying the 

dominant timescales of variability of streamflow in the Amazon, Parana, Orinoco, 

and Congo Rivers (Labat et al., 2005); analyzing the temporal modes of variability 

for precipitation, temperature, and discharge on the Iberian peninsula (Andreo et al., 

2006); and determining the temporal scales of variability for discharge from 55 of the 

world’s largest rivers (Labat, 2008) 

For research where the relationship between two variables is of interest, the 

cross wavelet transform and wavelet coherence are available. In essence, the cross 

wavelet transform is the product of the continuous wavelet transforms of the two time 

series and its use is relatively limited. The cross wavelet transform is not normalized 

and it is sensitive to large fluctuations in either series, which allows the method to 

produce regions of supposedly high common power even when the two variables are 
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independent (Maraun and Kurths, 2004; Schaefli et al., 2007). Therefore, care must 

be taken when interpreting the results of the cross wavelet transform. Generally, 

wavelet coherence, which uses information from the cross wavelet transform, should 

be used when examining the covariation of two variables in a dataset. Wavelet 

coherence acts as a localized correlation coefficient that allows the researcher to 

quantify the relationship between two variables at specific points in time and at 

multiple periods (Grinsted et al., 2004). This is accomplished by normalizing the 

squared cross wavelet transform by the product of the squared continuous wavelet 

transform of each time series, thus bounding the possible values between 0 (no 

relationship in the frequencies) and 1 (a perfect linear relationship) (Grinsted et al., 

2004; Schaefli et al., 2007). Again, one must be careful when interpreting the results 

as a significant relationship may be presented in a wavelet coherence plot even when 

the two series are varying out of phase, i.e. variable x is increasing and y is 

decreasing. Although their frequencies may be similar, as indicated by a high wavelet 

coherence value, an increase in x is not accompanied by an increase in y (Grinsted et 

al., 2004). Therefore, one should note the phase when plotting wavelet values in order 

to present the whole picture. 

Cross wavelet analysis and wavelet coherence have been used in a variety of 

geoscience studies, including: identifying the scales at which and the time periods 

when the Arctic Oscillation (AO) and Baltic Sea ice are coupled (Grinsted et al., 

2004); examining the precipitation-temperature relationship during large flood events 

in the Swiss Alps (Schaefli et al., 2007); correlating climatic indices, such as the 

North Atlantic Oscillation, AO, Southern Oscillation, Pacific Decadal Oscillation, 

and ENSO, with annual continental freshwater discharge at various timescales (Labat, 

2010); linking relative humidity to shortwave radiation measurements in the tropical 

Atlantic Ocean (Veleda et al., 2012); and relating precipitation to discharge in various 

northern hemisphere catchments at daily to seasonal timescales (Carey et al., 2013). 

Wavelet coherence was chosen for this study because previous research has 

shown it to be uniquely suited to identifying the relationship between two variables 

over time and at multiple frequencies. Therefore it should provide valuable insight 

into the rainfall-snowmelt dynamics of selected storms. 
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2.4.2. Implementation and math 

Wavelet analysis was performed using the biwavelet package for R (Gouhier, 

2014), which is based on the WTC MATLAB package detailed in Grinsted et al. 

(2004) and the wavelet program outlined in Torrence and Compo (1998). The 

relevant equations and methodology are outlined below, but the reader is encouraged 

to see Torrence and Compo (1998), Grinsted et al. (2004), Labat (2005), and Cazelles 

et al. (2008) for further information. Plotting was done using R’s base plot function 

with output generated by the biwavelet package. 

Calculating wavelet coherence with the biwavelet package requires the 

following inputs: 

1. Time series x: 1-hour precipitation as measured at H15MET 

2. Time series y: 1-hour net snowmelt from the H15MET snowmelt lysimeter 

3. Mother wavelet selection: Morlet 

4. Number of Monte Carlo randomizations: 1000 

One-hour precipitation and net snowmelt data from the 6 days preceding, the 

day of, and the 3 days following the peak flow for a given event were used to create a 

10-day window with 240 unique observations. The mother wavelet chosen for this 

study was the Morlet wavelet for the reasons described above. In order to assess the 

significance of wavelet coherence, 1000 Monte Carlo randomizations were used 

against the null hypothesis of first-order autoregressive (AR1) noise. 

The Morlet mother wavelet is defined by the following function: 

𝜓� 𝜂 = 𝜋��
� 
𝑒𝑖𝜛�𝜂𝑒�

� 
�𝜂� 

where 𝑖 is the imaginary unit (the Morlet mother wavelet has both real and imaginary 

components), 𝜂 is the unit-less time parameter and 𝜛0 is the unit-less frequency 

parameter. For the Morlet mother wavelet in this study 𝜛0 = 6 as it provides an 

effective compromise between time and frequency localization (Grinsted et al., 2004). 
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The Morlet mother wavelet is then used to calculate the continuous wavelet 

transform and cross-wavelet transform for the time series. The continuous wavelet 

transform for a time series xn (from n = 1 to N) with a uniform timestep (𝛿𝑡) is: 

𝑊𝑛 
𝑋 𝑠 = 

𝛿𝑡 
𝑠 

𝑥𝑛� 

𝑁 

𝑛��� 

𝜓� 𝑛� − 𝑛 
𝛿𝑡 
𝑠 

where s is the wavelet scale. 

The cross wavelet transform for two time series is the complex conjugate of 

the continuous wavelet transforms for data series x and y: 

𝑋𝑌 = 𝑊𝑋𝑌 ∗𝑊

Wavelet coherence is then calculated as: 

𝑋𝑌(𝑠)𝑆 𝑠��𝑊𝑛𝑅� 𝑠 = 𝑛 
𝑆 𝑠�� 𝑊𝑋(𝑠) ∙ 𝑆 𝑠�� 𝑊𝑌(𝑠)𝑛 𝑛 

where S is the smoothing function. The value of wavelet coherence at a given point 

would always be 1 if the cross wavelet transform and continuous wavelet transforms 

were not smoothed in scale and time. For more information on smoothing functions, 

please see Torrence and Compo (1998) and Grinsted et al. (2004). 

2.4.3. Interpreting the output: Zero-padding, the cone of influence, significance 
testing, and phase difference 

As the period of analysis increases, the scale of the Morlet mother wavelet 

increases. This allows for the detection of multiple scales of fluctuations in the data, 

which is partially what makes wavelet analysis such an effective tool in the 

geosciences. However, as the scale of the mother wavelet increases, so does its 

overlap at the edge of the dataset (Torrence and Compo, 1998). Therefore, extra zero 

values are inserted at the beginning and end of the dataset at successively larger 

periods. As these zeros were not actually observed, it is essential that the sections of 

wavelet power and coherence that include these values (i.e., they were overlapped by 
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the mother wavelet) not be considered as actual results. A cone of influence (denoted 

by a white dashed line) is thus included in the plots to visually identify the regions 

free of edge effects. All power and coherence values within the cone were generated 

using only observed data. 

Areas of significant wavelet coherence (at the 95% level) are bounded on the 

output plots by black contour lines. Significance values are computed by comparing 

1000 Monte Carlo randomizations of wavelet coherence values to the null hypothesis 

of background red noise using the lag-1 autoregressive model (AR1), shown by 

Torrence and Compo (1998) to be effective at representing variability in the 

geosciences. The AR1 model is used to randomly generate two time series with 

lengths equal to the observed time series—240 data points in this case—and then 

wavelet coherence for the artificial data is calculated as above. The 1000 

permutations are then used to create a 95% confidence limit based on a χ2 

distribution. Wavelet coherence values above this level in the observed dataset are 

said to be statistically significant. 

Furthermore, the scale-dependent phase difference between the continuous 

wavelet transforms of the two variables is presented on the plot with black arrows. In 

addition to its other advantages, the Morlet mother wavelet is used here as only 

mother wavelets with imaginary components can be used to calculate the phase 

difference (Cazelles et al., 2008). The arrows point right when the two are in phase, 

left when in anti-phase, down when x leads y, and up when y leads x. The phase 

relationship is indicative of the physical processes occurring during the event. When 

power is increasing in x and decreasing in y (i.e., the two variables are in anti-phase), 

precipitation is increasing while net melt is decreasing, meaning precipitation is being 

stored in the snowpack. The phase differences were also extracted for days 4 through 

7 and periods of 12 to 32 hours to examine the mid-storm, mid-period phase 

difference distribution per event. The selected time window encompasses each 

event’s peak flow and main period of precipitation. The period range allows for an 

assessment of the phase relationship between precipitation and snowmelt at multiple 

temporal scales during the window. 
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3.	 RESULTS 

3.1. Snowmelt response to cumulative precipitation and temperature 

Five categories of cumulative net snowmelt response to cumulative precipitation were 

observed in the 26 storms at H15MET (Figure 3.1): 

1.	 Flat (=): Net snowmelt fluctuates between positive and negative values over 

the course of the storm event, and cumulative net snowmelt is less than 10% 

of cumulative precipitation (n = 4). 

2.	 Persistent melt (+): Cumulative net snowmelt increases with cumulative 

precipitation throughout most of the storm event (n = 7). 

3.	 Persistent accumulation (-): Cumulative net snowmelt decreases with 


cumulative precipitation throughout most of the storm event (n = 6).
 

4.	 Late melt (-/+): Cumulative net snowmelt decreases, and then increases with 

cumulative precipitation throughout the storm event (n = 6). 

5.	 Late accumulation (+/-): Cumulative net snowmelt initially rises or stays 

constant, but then declines with cumulative precipitation throughout the storm 

event (n = 3). 
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Figure 3.1. Cumulative net snowmelt as a function of cumulative precipitation, averaged for storms in 
each response category. When the slope of the response curve is negative, some precipitation is being 
retained by the snowpack. When the slope is positive, snowmelt augments precipitation. The grey 
shading denotes the standard error of cumulative net snowmelt for each response category. 

Please see Appendix B and C for a complete listing of storm statistics, 

Appendix D for SWE data, and Appendix E for Lookout Creek streamflow, dewpoint 

temperature and wind speed. 



 

 

  

   

  

 

 

 

 
 

                
 

   
 

 

   

    

 

    

    

   

  

   

  

23 

3.1.1. Flat (=) category 

Storms in the flat category experience small fluctuations in cumulative net 

snowmelt in response to cumulative precipitation (Figure 3.2). Maximum (minimum) 

net snowmelt contribution to total water available for runoff is less than 10% of 

cumulative total precipitation. 

C
um

ul
at

ive
 n

et
 s

no
w

m
el

t (
m

m
)

−40 

80 

40 

0 100 200 300 

Start date 
1995−12−25 
1998−11−16 
2007−10−15 
2012−03−25 

Phase 
Rain 
Mixed 
None 

Response category: Flat 

0 

−80 

Cumulative precipitation (mm) 

Figure 3.2. Cumulative net snowmelt as a function of cumulative precipitation for four storm events in 
the flat response category. Each point corresponds to an hourly observation; therefore, points spaced 
farther apart in the horizontal (vertical) are indicative of higher rates of precipitation (net snowmelt). 

The 1995-12-25 storm event received the lowest total precipitation (182.1 

mm) in this category, and total net snowmelt was 11.0 mm (6% of cumulative 

precipitation). Dewpoint temperature was typically < 0.5°C in the first three days of 

the 10-day window, but no precipitation fell.  On day 4, dewpoint temperature rose 

to > 0.5°C and all of the precipitation in the event fell as rain. Wind speed was < 0.4 

m s-1 during most of the event, but rose to > 0.6 m s-1 during the period of 

precipitation. Peak streamflow was 1.5 and 2.0 mm h-1 at WS8 and Lookout Creek 

(Figure 3.3, Table 3.1). 

The 1998-11-16 storm received the highest total precipitation (328.3 mm) in 

this category, and total net snowmelt was 20.2 mm. Dewpoint temperature was 
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typically > 0.5°C, with two periods below the mixed-phase threshold during days 7 

and 9, and nearly all precipitation fell as rain. Wind speed fluctuated between 0 and 

0.8 m s-1 throughout the event. Peak streamflow was 2.1 and 3.0 mm h-1 at WS8 and 

Lookout Creek (Figure 3.3, Table 3.1). 

The 2007-10-15 storm received the second lowest total precipitation (202.0 

mm) in this category, and total net snowmelt was 2.0 mm. Dewpoint temperature was 

typically > 0.5°C, with two periods below the mixed-phase threshold during days 3 

and 6, and nearly all precipitation fell as rain. Wind speed fluctuated between 0 and 

0.6 m s-1 throughout the event with one spike over 0.8 m s-1. Peak streamflow was 1.1 

and 0.6 mm h-1 at WS8 and Lookout Creek (Figure 3.3, Table 3.1). 

The 2012-3-25 storm received the lowest total precipitation (200.5 mm) in this 

category, and total net snowmelt was -12.5 mm. Dewpoint temperature observations 

during this storm were storm were erroneously high (> 30°C). Wind speed fluctuated 

between 0 and 0.6 m s-1 throughout the event. Peak streamflow was 3.1 and 3.8 

mm h-1 at WS8 and Lookout Creek (Figure 3.3, Table 3.1). 

Table 3.1. Selected climatic and hydrologic data for storms in the flat category. *Dewpoint data 
removed due to error in measurement. 

Mean Mean WS8 Lookout 
Total Total Total dew. wind peak Creek 
ppt. net melt WAR temp. speed flow peak flow 

Start date (mm) (mm) (mm) (°C) (m s-1) (mm h-1) (mm h-1) 
1995-12-25 182.1 11.0 193.1 3.8 0.2 1.5 2.0 
1998-11-16 328.3 20.2 348.5 3.2 0.2 2.1 3.0 
2007-10-15 202.0 2.0 204.1 6.0 0.1 1.1 0.6 
2012-03-25 200.5 -12.5 187.9 31.7* 0.2 3.1 3.8 
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Figure 3.3. WS8 streamflow (a) and cumulative WAR (b) plotted against time for each event in the flat 
response category. The steepness of the cumulative WAR line represents combined snowmelt and 
precipitation intensity. 
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3.1.2. Persistent melt (+) category 

The seven events in the persistent net snowmelt category are characterized by 

more or less continuously positive net snowmelt with only brief periods of net water 

absorption by the snowpack when dewpoint temperature fell below 0.5°C (Figure 

3.4). Response category: Rise 
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Figure 3.4. Cumulative net snowmelt as a function of cumulative precipitation for seven storm events 
in the persistent melt response category. Each point corresponds to an hourly observation; therefore, 
points spaced farther apart in the horizontal (vertical) are indicative of higher rates of precipitation (net 
snowmelt). 

The 1995-01-08 storm received the second lowest total precipitation (200.8 

mm) in this category, and total net snowmelt was 122.5 mm. Dewpoint temperature 

was typically > 0.5°C, with a pronounced decrease on day 8 below the mixed-phased 

threshold. Wind speed fluctuated between 0 and 1.0 m s-1 in the event’s opening 3 

days before tapering off to less than 0.5 m s-1. Peak streamflow was 2.4 and 2.9 mm 

h-1 at WS8 and Lookout Creek (Figure 3.5, Table 3.2). 

The 1995-11-26 storm received the 3rd highest total precipitation (256.1 mm) 

in this category, and total net snowmelt was 53.7 mm. Dewpoint temperature was > 

0.5°C throughout the event, and all precipitation fell as rain. Wind speed fluctuated 
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between 0 and 0.8 m s-1 throughout the event. Peak streamflow was 1.5 and 1.6 mm 

h-1 at WS8 and Lookout Creek (Figure 3.5, Table 3.2). 

The 1996-02-02 storm received the second highest total precipitation (309.6 

mm) in this category, and total net snowmelt was 133.4 mm. Dewpoint temperature 

was typically > 0.5°C, with two periods below the mixed-phase threshold during days 

1, 2 and 9, and nearly all precipitation fell as rain. Wind speed stayed a constant 0.5 

to 0.6 m s-1 days 4 through 7 with lower values before and higher after. Peak 

streamflow was 6.6 and 13.2 mm h-1 at WS8 and Lookout Creek (Figure 3.5, Table 

3.2). 

The 1997-01-26 storm received the lowest total precipitation (184.1 mm) in 

this category, and total net snowmelt was 68.1 mm. Dewpoint temperature was 

typically > 0.5°C, with two periods below the mixed-phase threshold during days 2 

and 9, and nearly all precipitation fell as rain. Wind speed fluctuated between 0 and 

0.8 m s-1 throughout the event with a spike above 1.0 m s-1 on day 10. Peak 

streamflow was 2.6 and 3.6 mm h-1 at WS8 and Lookout Creek (Figure 3.5, Table 

3.2). 

The 2005-12-27 storm received the highest total precipitation (343.3 mm) in 

this category, and total net snowmelt was 37.7 mm. Dewpoint temperature was 

typically > 0.5°C, with three periods below the mixed-phase threshold during days 5, 

7 and 10, and nearly all precipitation fell as rain. Wind speed fluctuated between 0 

and 0.8 m s-1 throughout the event with a spike above 1.0 m s-1 on day 8. Peak 

streamflow was 3.7 and 5.0 mm h-1 at WS8 and Lookout Creek (Figure 3.5, Table 

3.2). 

The 2006-12-09 storm received the median total precipitation (237.1 mm) in 

this category, and total net snowmelt was 91.1 mm. Dewpoint temperature was > 

0.5°C days 1 through 6 before dropping below -0.5 °C on day 7, and nearly all 

precipitation fell as rain (little precipitation occurred following the transition to colder 

temperatures). Wind speed fluctuated between 0 and 1.5 m s-1 days 1 through 6 before 

dropping to 0.0 m s-1 on day 7. Peak streamflow was 4.0 and 3.7 mm h-1 at WS8 and 

Lookout Creek (Figure 3.5, Table 3.2). 
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The 2011-01-11 storm received the third lowest total precipitation (233.5 mm) 

in this category, and total net snowmelt was 102.8 mm. Dewpoint temperature was 

typically > 0.5°C, with two periods below the mixed-phase threshold during days 1 

and 10, and nearly all precipitation fell as rain. Wind speed fluctuated between 0 and 

0.3 m s-1 days 2 through 7. Peak streamflow was 3.9 and 7.5 mm h-1 at WS8 and 

Lookout Creek (Figure 3.5, Table 3.2). 

Table 3.2. Selected climatic and hydrologic data for storms in the persistent melt category. 

Mean Mean WS8 Lookout 
Total Total Total dew. wind peak Creek 

Start date 
ppt. 

(mm) 
net melt 

(mm) 
WAR 
(mm) 

temp. 
(°C) 

speed 
(m s-1) 

flow 
(mm h-1) 

peak flow 
(mm h-1) 

1995-01-08 200.8 122.5 323.3 1.9 0.3 2.4 2.9 
1995-11-22 256.1 53.7 309.8 6.4 0.2 1.5 1.6 
1996-02-02 309.6 133.4 443.1 1.3 0.5 6.6 13.2 
1997-01-26 184.1 68.1 252.1 2.8 0.2 2.6 3.6 
2005-12-25 343.3 37.7 381.0 3.1 0.2 3.7 5.0 
2006-12-09 237.1 91.1 328.2 0.1 0.2 4.0 3.7 
2011-01-11 233.5 102.8 336.2 1.9 0.1 3.9 7.5 
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Figure 3.5. WS8 streamflow (a) and cumulative WAR (b) plotted against time for each event in the 
persistent melt response category. The steepness of the cumulative WAR line represents combined 
snowmelt and precipitation intensity. 
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3.1.3. Persistent accumulation (-) category 

Net snowmelt is a more or less continuously declining function of cumulative 

precipitation in the six events in the persistent accumulation category (Figure 3.6). 

This category is characterized by dewpoint temperature < 0.5°C, snow and mixed-

phase precipitation, and low water available for runoff with short periods of dewpoint 

temperature > 0.5°C and rain. 

Response category: F 
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Figure 3.6. Cumulative net snowmelt as a function of cumulative precipitation for six storm events in 
the persistent accumulation response category. Each point corresponds to an hourly observation; 
therefore, points spaced farther apart in the horizontal (vertical) are indicative of higher rates of 
precipitation (net snowmelt). 

The 1996-01-15 storm received the lowest total precipitation (265.6 mm) in 

this category, and total net snowmelt was -176.2 mm. Dewpoint temperature was 

typically < 0.5°C, with two periods above the mixed-phase threshold during days 1, 2, 

and 5, and precipitation was nearly split between rain (57%) and snow (43%). Wind 

speed fluctuated between 0 and 1.0 m s-1 days 1 through 5 before the measurements 

cut out. Peak streamflow was 0.6 and 0.7 mm h-1 at WS8 and Lookout Creek (Figure 

3.7, Table 3.3). 
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The 1996-11-29 storm received the third highest total precipitation (338.0 

mm) in this category, and total net snowmelt was -109.6 mm. Dewpoint temperature 

was typically < 0.5°C, with three periods above the mixed-phase threshold during 

days 1 and 2, 6 and 7, and 9 and 10, and precipitation was mostly rain (81%). Wind 

speed fluctuated between 0 and 1.0 m s-1 throughout the event, but there were several 

periods of missing observations. Peak streamflow was 2.5 and 3.3 mm h-1 at WS8 and 

Lookout Creek (Figure 3.7, Table 3.3). 

The 2006-11-02 storm received the third lowest total precipitation (334.7 mm) 

in this category, and total net snowmelt was -273.3 mm. Dewpoint temperature was > 

0.5°C days 1 through 7, with three periods below the mixed-phase threshold during 

days 8 through 10, and precipitation was nearly all rain. Wind speed fluctuated 

between 0 and 0.6 m s-1 throughout the event. Peak streamflow was 1.2 and 1.9 mm 

h-1 at WS8 and Lookout Creek (Figure 3.7, Table 3.3). 

The 2008-12-23 storm received the second highest total precipitation (355.4 

mm) in this category, and total net snowmelt was -95.3 mm. Dewpoint temperature 

was typically < 0.5°C, with two periods above the mixed-phase threshold during days 

6 and 10, and precipitation was mostly rain (70%). Wind speed was 0 m s-1 days 1 

through 5 and had two periods of up to 0.8 m s-1 on days 6,7, and 10. Peak streamflow 

was 2.9 and 3.2 mm h-1 at WS8 and Lookout Creek (Figure 3.7, Table 3.3). 

The 2008-12-27 storm received the highest total precipitation (385.6 mm) in 

this category, and total net snowmelt was -68.3 mm. Dewpoint temperature was 

typically < 0.5°C, with two periods above the mixed-phase threshold during days 2, 6 

and 7, and precipitation was mostly rain (80%). Wind speed was 0 m s-1 most days 

with two periods of up to 0.8 m s-1 on days 2 and 3 and 6 and 7. Peak streamflow was 

2.9 and 4.6 mm h-1 at WS8 and Lookout Creek (Figure 3.7, Table 3.3). (Note: 2008-

12-23 and 2008-12-27 shared six days of overlap, but both were included as they each 

registered that met the storm selection criteria). 

The 2012-01-14 storm received the second lowest total precipitation (330.5 

mm) in this category, and total net snowmelt was -101.0 mm. Dewpoint temperature 

was typically < 0.5°C, except for erroneous measurements on days 1 and 2 and a 

period above the mixed-phase threshold on days 7 and 8. Precipitation was nearly 
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split between rain (57%) and snow (43%). Wind speed was typically 0 m s-1 days 1 

through 5 before peaking above 0.5 m s-1 days 6 through 8. Peak streamflow was 2.7 

and 3.5 mm h-1 at WS8 and Lookout Creek (Figure 3.7, Table 3.3). 

Table 3.3. Selected climatic and hydrologic data for storms in the persistent accumulation category. 

Mean Mean WS8 Lookout 
Total Total Total dew. wind peak Creek 

Start date 
ppt. 

(mm) 
net melt 

(mm) 
WAR 
(mm) 

temp. 
(°C) 

speed 
(m s-1) 

flow 
(mm h-1) 

peak flow 
(mm h-1) 

1996-01-15 265.6 -176.2 89.4 0.1 0.3 0.6 0.7 
1996-11-29 338.0 -109.6 228.4 0.4 0.1 2.5 3.3 
2006-11-02 334.7 -273.3 61.4 6.3 0.1 1.2 1.9 
2008-12-23 355.4 -95.3 260.1 -0.6 0.1 2.9 3.2 
2008-12-27 385.6 -68.3 317.2 -0.5 0.1 2.9 4.6 
2012-01-14 330.5 -101.0 229.5 4.0 0.1 2.7 3.5 
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Figure 3.7. WS8 streamflow (a) and cumulative WAR (b) plotted against time for each event in the 
persistent accumulation response category. The steepness of the cumulative WAR line represents 
combined snowmelt and precipitation intensity. 
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3.1.4. Late melt (-/+) category 

An initial period of snowpack absorption of precipitation followed by a later 

period of snowmelt defines the six events in the late melt category (Figure 3.8). This 

category is characterized by initial dewpoint temperature < 0.5°C, snow and mixed-

phase precipitation and negative net snowmelt, followed by a multi-day period of 

dewpoint temperature > 0.5°C, rain, and positive net snowmelt. 

Response category: FnR 
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Figure 3.8. Cumulative net snowmelt as a function of cumulative precipitation for six storm events in 
the late melt response category. Each point corresponds to an hourly observation; therefore, points 
spaced farther apart in the horizontal (vertical) are indicative of higher rates of precipitation (net 
snowmelt). 

The 1996-11-14 storm received the third highest total precipitation (314.2 

mm) in this category, and total net snowmelt was 10.1 mm. Dewpoint temperature 

was near 0.5°C days 1 through 5 before rising on day 6, and precipitation was 

primarily rain. Wind speed fluctuated between 0 and 0.3 m s-1 for most of the events 

with spikes above 0.6 m s-1 on days 4 and 6. Peak streamflow was 4.4 and 4.9 mm h-1 

at WS8 and Lookout Creek (Figure 3.9, Table 3.4). 

The 1996-12-21 storm received the highest total precipitation (343.2 mm) in 

this category, and total net snowmelt was -27.8 mm. Dewpoint temperature was 

typically < 0.5°C days 1 through 4 before rising on the latter part of day 4, and 
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precipitation was primarily rain. Wind speed fluctuated between 0 and 0.6 m s-1 for 

most of the event. Peak streamflow was 3.3 and 3.9 mm h-1 at WS8 and Lookout 

Creek (Figure 3.9, Table 3.4). 

The 1998-12-23 storm received the second highest total precipitation (334.8 

mm) in this category, and total net snowmelt was 34.7 mm. Dewpoint temperature 

was < 0.5°C days 1 through 3 (with periods < 5.0°C on days 1 and 2) before rising on 

day 4, and precipitation was primarily rain. Wind speed fluctuated between 0 and 0.6 

m s-1 for most of the event with a maximum over 1.0 m s-1 on days 5 and 6. Peak 

streamflow was 3.4 and 5.6 mm h-1 at WS8 and Lookout Creek (Figure 3.9, Table 

3.4). 

The 1999-11-21 storm received the third lowest total precipitation (286.2 mm) 

in this category, and total net snowmelt was 19.3 mm. Dewpoint temperature was 

typically < 0.5°C days 1 through 3 before rising on day 4, and precipitation was 

primarily rain. Wind speed was 0 m s-1 days 1 through 3 and fluctuated between 0 and 

1.0 m s-1 from day 4 on. Peak streamflow was 2.9 and 5.2 mm h-1 at WS8 and 

Lookout Creek (Figure 3.9, Table 3.4). 

The 2003-03-03 storm received the lowest total precipitation (196.1 mm) in 

this category, and total net snowmelt was 31.9 mm. Dewpoint temperature fluctuated 

around 0.5°C days 1 through 5 before rising on the latter part of day 5, and 

precipitation was primarily rain. Wind speed fluctuated between 0 and 0.8 m s-1 

throughout the event. Peak streamflow was 1.0 and 1.3 mm h-1 at WS8 and Lookout 

Creek (Figure 3.9, Table 3.4). 

The 2004-12-04 storm received the second lowest total precipitation (211.6 

mm) in this category, and total net snowmelt was 19.8 mm. Dewpoint temperature 

was typically < 0.5°C days 1 through 4 before rising on day 5, and precipitation was 

primarily rain. Wind speed was generally 0 m s-1 days 1 through 4 and then fluctuated 

between 0 and 0.8 m s-1 for the rest of the event with a spike to 1.5 m s-1 on day 9. 

Peak streamflow was 1.2 and 1.9 mm h-1 at WS8 and Lookout Creek (Figure 3.9, 

Table 3.4). 
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Table 3.4. Selected climatic and hydrologic data for storms in the late melt category. 

Mean Mean WS8 Lookout 
Total Total Total dew. wind peak Creek 

Start date 
ppt. 

(mm) 
net melt 

(mm) 
WAR 
(mm) 

temp. 
(°C) 

speed 
(m s-1) 

flow 
(mm h-1) 

peak flow 
(mm h-1) 

1996-11-14 314.2 10.1 324.2 1.9 0.1 4.4 4.9 
1996-12-21 343.2 -27.8 315.4 1.4 0.4 3.3 3.9 
1998-12-23 334.8 34.7 369.5 0.4 0.2 3.4 5.6 
1999-11-21 286.2 19.3 305.4 3.5 0.2 2.9 5.2 
2003-03-03 196.1 31.9 228.0 2.2 0.2 1.0 1.3 
2004-12-04 211.6 19.8 231.4 2.6 0.2 1.2 1.9 
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Figure 3.9. WS8 streamflow (a) and cumulative WAR (b) plotted against time for each event in the late 
melt response category. The steepness of the cumulative WAR line represents combined snowmelt and 
precipitation intensity. 
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3.1.5. Late accumulation (+/-) category 

The three events in the late accumulation category are characterized by early 

periods of flat or increasing cumulative net snowmelt and late periods of snowpack 

accumulation triggered by changes in precipitation phase, which is controlled by 

dewpoint temperature (Figure 3.10). 

Response category: FnR 
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Figure 3.10. Cumulative net snowmelt as a function of cumulative precipitation for six storm events in 
the late melt response category. Each point corresponds to an hourly observation; therefore, points 
spaced farther apart in the horizontal (vertical) are indicative of higher rates of precipitation (net 
snowmelt). 

The 2003-12-08 storm received the lowest total precipitation (193.0 mm) in 

this category, and total net snowmelt was -8.9 mm. Dewpoint temperature fluctuated 

above and below 0.5°C days 1 through 6 before falling on day 7, and precipitation 

was mostly rain (72%). Wind speed fluctuated between 0 and 0.8 m s-1 throughout the 

event with sustained periods at 0 m s-1. Peak streamflow was 2.6 and 3.4 mm h-1 at 

WS8 and Lookout Creek (Figure 3.11, Table 3.5). 

The 2005-03-03 storm received the highest total precipitation (213.8 mm) in 

this category, and total net snowmelt was -36.7 mm. Dewpoint temperature typically 

fluctuated above and below 0.5°C throughout the event with two sustained periods > 

0.5°C, and precipitation was mostly rain (82%). Wind speed fluctuated between 0 and 
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0.6 m s-1 throughout the event with sustained periods at 0 m s-1. Peak streamflow was 

1.0 and 1.2 mm h-1 at WS8 and Lookout Creek (Figure 3.11, Table 3.5). 

The 2007-11-13 storm received the median total precipitation (197.9 mm) in 

this category, and total net snowmelt was -28.0 mm. Dewpoint temperature was 

typically > 0.5°C days 1 through 6 before dropping on day 7, and precipitation was 

mostly rain (89%). Wind speed fluctuated between 0 and 0.6 m s-1 throughout the 

event with sustained periods at 0 m s-1. Peak streamflow was 1.6 and 1.3 mm h-1 at 

WS8 and Lookout Creek (Figure 3.11, Table 3.5). 

Table 3.5. Selected climatic and hydrologic data for storms in the late accumulation category. 

Mean Mean WS8 Lookout 
Total Total Total dew. wind peak Creek 

Start date 
ppt. 

(mm) 
net melt 

(mm) 
WAR 
(mm) 

temp. 
(°C) 

speed 
(m s-1) 

flow 
(mm h-1) 

peak flow 
(mm h-1) 

2003-12-08 193.0 -8.9 184.1 0.5 0.1 2.6 3.4 
2005-03-23 213.8 -36.7 177.1 1.3 0.1 1.0 1.2 
2007-11-13 197.9 -28.0 169.8 2.9 0.1 1.6 1.3 
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Figure 3.11. WS8 streamflow (a) and cumulative WAR (b) plotted against time for each event in the 
late accumulation response category. The steepness of the cumulative WAR line represents combined 
snowmelt and precipitation intensity. 
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3.1.6. Category comparisons 

Total water available for runoff (WAR) is highest for the persistent melt 

category and lowest for the late accumulation category (Figures 3.2 and 3.13b) and 

differs significantly among categories (ANOVA F = 2.84, p < 0.01), but the only 

significant pairwise differences are between the persistent net melt (+) category vs. 

the persistent accumulation (-) category (difference 141 mm, p < 0.01) and (+) vs. the 

late accumulation (+/-) category (difference = 162 mm, p < 0.02). The ratio of total 

WAR to total precipitation is highest for the persistent melt category (+) and lowest 

for the persistent accumulation (-) category (Figure 3.13a) and differs significantly 

among categories (ANOVA F = 20.56, p < 0.0001). This ratio is significantly higher 

for the (+) category than for the (=), (-), (-/+), or (+/-) category (differences = 0.4, 0.8, 

0.3, 0.5; p < 0.02); the ratio is also significantly lower for the (-) category compared 

to the flat (=) and late melt (-/+) categories (differences = 0.4, 0.5, p < 0.003). 
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Figure 3.12. The mean cumulative water available for runoff (WAR, precipitation plus net snowmelt) 
curves plotted against time for each response category. 
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Figure 3.13. WAR-to-precipitation ratio (a) and total WAR (b) boxplots for each response category. 
Values above the dashed line in (a) correspond to storms where total WAR was augmented by positive 
total net snowmelt, while values below the line correspond to storms where negative total net 
snowmelt reduced total WAR relative to total precipitation. The letter above each box represents that 
response category’s grouping according to the Tukey-Kramer test. The means of response categories 
displaying the same group letter are not statistically different from one another at the p < 0.05 level. 
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Figure 3.14. Total WAR plotted against total precipitation for all storms. The dashed line represents a 
1:1 relationship between the two variables. The farther a point lies above (below) the line, the greater 
the degree of WAR augmentation (reduction) by net snowmelt. 

Total net snowmelt (Figure 3.15a) is highest for the persistent melt category 

(+) and lowest for the persistent accumulation (-) category, and differs significantly 

among categories (ANOVA F = 22; p < 0.0001). Snowmelt is significantly higher for 

the (+) category than for the (=), (-), (-/+), and (+/-) categories (differences = 81.8 

mm, 224.3 mm, 72.4 mm, 111.5 mm; p < 0.05) and it is significantly lower for the (-) 

category than the (=), (+), (-/+), and (+/-) categories (differences = -142.5 mm, -224.3 

mm, -151.9 mm, -112.7 mm; p < 0.002). 

Rain fraction (Figure 3.15b) is highest for the (=) category and lowest for the 

(-) category, and differs significantly among categories (ANOVA F = 8.6; p < 

0.0003). The only significant pairwise differences are between the (-) category and 

the (=), (+), and (-/+) categories (differences = 0.25, 0.23, 0.16; p < 0.002). 

Mean dewpoint and air temperature (Figure 3.16) are highest for the (=) and 

(+) categories, but there are no significant differences among groups (ANOVA F = 
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2.4 and 2.0; p < 0.09 and 0.2). There are also no significant differences among groups 

in wind speed (ANOVA F = 1.6, p < 0.3). 
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Figure 3.15. Total net snowmelt (a) and rain fraction (b) values per response category. The letter above 
each box represents that response category’s grouping according to the Tukey-Kramer test. The means 
of response categories displaying the same group letter are not statistically different from one another 
at the p < 0.05 level. 
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Figure 3.16. Mean dewpoint (a) and air temperature (b) values per response category. There are no 
significant differences at the p < 0.05 level between response categories according to the Tukey-
Kramer test. 
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Figure 3.17. Mean wind speed values per response category. There are no significant differences at the 
p < 0.05 level between response categories according to the Tukey-Kramer test. 
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WS8 and Lookout Creek peak flow are highest for (+) events, but there are no 

significant differences among groups (ANOVA F = 1.9 and 1.6; p < 0.2). The (+) 

category contains the 1st, 3rd, 4th, and 5th ranked WS8 peak flow values and the 1st , 

2nd, and 5th ranked Lookout Creek peak flow values. The (-/+) category includes the 

rest of the top-five ranked peak flows at WS8 and Lookout Creek. 
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Figure 3.18. WS8 (a) and Lookout Creek peak flow values (b) per response category. There are no 
significant differences at the p < 0.05 level between response categories according to the Tukey-
Kramer test. 

All but one of the persistent melt (+) events fall above the dashed lines in 

Figure 3.19 and the category is ranked highest in flow augmentation (Table 3.6), 

which is defined as the mean of the category’s residuals from the linear regression in 

Figure 3.19. Late melt (-/+) storms are ranked 2nd in mean flow augmentation and 

two-thirds of these storms lie above the augmentation line for WS8 (they are split 

evenly above and below the augmentation line for Lookout Creek). The flat (=) and 

late accumuluation (+/-) categories each contribute one event above the dashed lines, 

but both have negative mean augmentation values, meaning peak flow was lower than 

what would be expected based on precipitation alone. All persistent accumulation (-) 
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events lie below the dashed line and the category is ranked lowest in mean flow 

augmentation. 
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Figure 3.19. WS8 (a) and Lookout Creek (b) peak flow plotted against H15MET total precipitation per 
storm. The dashed line represents the linear regression of peak flow as predicted by total precipitation. 
In this case, the line is used to represent a border above which peak flow values are higher and below 
which values are lower than what might be expected based on total precipitation alone. 
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6 

Table 3.6. Mean peak flow and peak flow augmentation values for WS8 and Lookout Creek per 
response category. Mean augmentation is defined as the average of the residuals of each category from 
the linear regressions in Figure 3.19a and b. 

Response category Mean WS8 Mean WS8 Mean Mean Lookout 
peak flow peak flow Lookout Creek peak flow 
(mm h-1) augmentation Creek peak augmentation 

(mm h-1) flow (mm h-1) (mm h-1) 
Flat 2.0 -0.3 2.3 -0.7 
Persistent melt 3.6 1.1 5.3 2.0 
Persistent accumulation 2.1 -0.9 2.9 -1.6 
Late melt 2.7 0.0 3.8 0.1 
Late accumulation 1.7 -0.3 2.0 -0.7 

For the 26 storm events total water available for runoff explains 64% and 68% 

of the variation in WS8 and Lookout Creek peak flow (Figures 3.20 and 3.21) while 

WS8 peak flow explains 89% of the variation in Lookout Creek peak flow (Figure 

3.22). 
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Figure 3.20. WS8 peak flow plotted against total water available for runoff (WAR). The black line 
represents the quadratic regression of WS8 peak flow (ws8pk) as predicted by WAR (war). 
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2lopk  = 4 −0.032 u war+ 1e−04 u war , r2 = 0.678 
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Figure 3.21. Lookout Creek peak flow plotted against total water available for runoff (WAR). The 
black line represents the quadratic regression of Lookout Creek peak flow (lopk) as predicted by WAR 
(war). 
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Figure 3.22. Lookout Creek peak flow plotted against WS8 peak flow. The black line represents the 
quadratic regression of Lookout Creek peak flow (lopk) as predicted by WS8 peak flow (ws8pk). 
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3.1.7. SNOTEL snow water equivalent data 

At least 20 mm of SWE was recorded at one of the SNOTEL stations (Figures 

3.23, 3.24, and 3.25) at the start of each event except for two (1995-11-22 and 2007-

10-15). On average, persistent melt events had the greatest SWE at event start (375.1 

mm), followed by flat (224.6 mm), late melt (205.5 mm), persistent accumulation 

(161.0 mm), and late accumulation (119.7). Please see Appendix D for complete 

SNOTEL and H.J. Andrews SWE data. 
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Figure 3.23. Daily SWE data for the three SNOTEL stations (joj = Jump off Joe; mck = McKenzie; riv 
= Roaring River) closest to the H.J. Andrews for flat storms. Start = SWE at event start; Max = 
maximum recorded SWE; End = SWE at event end. 
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Figure 3.24. Daily SWE data for the three SNOTEL stations (joj = Jump off Joe; mck = McKenzie; riv 
= Roaring River) closest to the H.J. Andrews for persistent melt (a) and persistent accumulation (b) 
storms. Start = SWE at event start; Max = maximum recorded SWE; End = SWE at event end. 
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Figure 3.25. Daily SWE data for the three SNOTEL stations (joj = Jump off Joe; mck = McKenzie; riv 
= Roaring River) closest to the H.J. Andrews for late melt (a) and late accumulation (b) storms. Start = 
SWE at event start; Max = maximum recorded SWE; End = SWE at event end. 
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3.1.8. Wind, temperature, and precipitation characteristics of net snowmelt 

Hourly net snowmelt rates (mm h-1) were positively related to wind speed, air 

and dewpoint temperature, and precipitation within and among storms (Figures 3.26, 

3.27, and 3.28, Table 3.7).  Wind speed, air and dewpoint temperature, and 

precipitation were lowest during hours with zero net snowmelt and highest during 

hours with > 2 mm h-1 net snowmelt rates.  Hourly precipitation increased for 

categories with > 1 mm h-1 net snowmelt rates when hourly precipitation was lagged 

by 1 hour. 
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Figure 3.26. Hourly wind speed for the five net snowmelt categories. 
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Figure 3.27. Hourly dewpoint (a) and air temperature (b) for the five net snowmelt categories. 
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Figure 3.28. Precipitation values for the five net snowmelt (a) and lag-1 net snowmelt (b) categories.
 
The lag-1 categories were assigned by lagging the precipitation values by 1 hour behind net snowmelt. 
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Table 3.7. Mean wind speed, temperature, and precipitation values for the five net snowmelt 
categories. 

Net Mean wind Mean dewpoint Mean air Mean Mean ppt. for lag-
snowmelt speed temperature temperature precipitation 1 melt category 
category (m s-1) (°C) (°C) (mm h-1) (mm h-1) 
None/Gain 0.1 1.5 1.7 1.0 0.8 
Low 0.2 3.1 3.5 1.0 1.1 
Medium 0.4 4.0 4.9 2.3 2.8 
High 0.5 4.8 6.0 3.7 4.7 
Very High 0.5 5.1 6.3 3.2 6.1 
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3.2. Wavelet coherence and the relative timing of pulses of precipitation and net 
snowmelt 

Wavelet coherence plots were interpreted to examine the relative timing of 

pulses of precipitation and snowmelt (Figure 3.29). The term phase difference in this 

section refers to the difference in the cycles of the wavelet power of precipitation and 

net snowmelt (not precipitation phase) (Figure 3.30). Additional wavelet coherence 

and phase difference distribution plots are presented in Appendix E and F. 

Figure 3.29. How to read a wavelet coherence plot. 

The left circle (a) in Figure 3.29 denotes the period of analysis, i.e. the scale 

of the mother wavelet (the higher the period, the larger the mother wavelet). The 

mother wavelet picks up small-scale (high-frequency) fluctuations at low periods and 

large-scale (low-frequency) fluctuations at high periods. Additionally, the range of 

periods is limited at the lower end by the temporal resolution of precipitation and net 

snowmelt observations and at the upper end by the largest scale of the mother wavelet 

that would calculate values inside the cone of influence. The upper left arrow (b) 

shows a phase difference arrow. When precipitation and snowmelt are in phase (their 

cycles of wavelet power hit their maxima and minima simultaneously), the arrow 

points to the right. When the two are in anti-phase (the wavelet power cycle of one 

variable reaches its minima while the other reaches is maxima), the arrow points to 
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the left. A downward-pointing arrow denotes the cycle of precipitation wavelet power 

is leading net snowmelt, and vice-versa for an upward-pointing arrow (for a more 

detailed explanation on phase differences, please see Figure 3.30). The center arrow 

(c) marks the cone of influence. Values inside the cone are free from edge effects that 

result from the increasing scale of the mother wavelet and the resulting dataset-edge 

overlap. The upper right arrow (d) shows the contour line that marks significant 

regions of wavelet coherence against a null hypothesis of random red noise. Wide but 

short areas of significant coherence, as can be seen in the horizontal band from 16 to 

32 h, are indicative of a strong relationship between precipitation and net snowmelt 

across the dataset at that temporal scale. Conversely, narrow but tall areas of 

significant coherence, as can be seen from 1998-12-24 to 1998-12-26, are indicative 

of a strong relationship between precipitation and net snowmelt across temporal 

scales at that time range in the dataset. The right circle (e) encompasses the wavelet 

coherence color bar. Dark blue denotes low coherence and dark red marks high 

coherence. Wavelet coherence is squared, so high coherence may be observed 

whether precipitation and net snowmelt are in or out of phase. Therefore, one must 

note the direction of the phase difference arrow when interpreting wavelet coherence 

results. The black box (f) marks the region from which phase difference values were 

extracted to create the mid-storm, mid-period phase difference distribution. 
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Figure 3.30. How to interpret phase difference values. 
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For each time step and period, the local—as defined by the scale of the mother 

wavelet—phase difference is calculated, which is denoted in the wavelet coherence 

plot by a black arrow (Figure 3.29). In each box in Figure 3.30 above, red represents 

variable x (precipitation) and blue represents y (net snowmelt). The numbers 

correspond to the cycle of wavelet power from which the phase difference is 

computed (1 is always compared to 1, 2 always to 2, etc.). The dotted line represents 

the maximum of x for cycle 1 and the dashed line represents the maximum of y for 

cycle 1. The number between the two lines is the phase difference. Box (a) shows 

when the two variables are perfectly in phase (i.e., x reaches its maximum 

concomitantly with y). Box (b) shows when the maximum of x leads y by π/2. Boxes 

(c) and (d) show when the two variables are in anti-phase (i.e., x reaches its maximum 

when y reaches its minimum, and vice-versa). Box (e) shows when the maximum of x 

trails y by -π/2. 

3.2.1. Flat category 

The storm of 2007-10-15 is characterized by significant coherence only at 

smaller temporal scales (< 16 h), and regions of significant coherence are generally 

small and disconnected (Figure 3.31).  At the 12-32-hour time scale, there is no 

strongly dominant phase difference (Figure 3.32).  The other storms in this category 

display varied patterns in wavelet coherence (Appendix E), while only the 1995-12-

25 and 1998-11-16 storms exhibit a dominant mid-storm, mid-period phase difference 

distribution (Appendix F). 
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Figure 3.31. Wavelet coherence plot for the 2007-10-15 event. 
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Figure 3.32. Mid-storm, mid-period phase difference histogram for the 2007-10-15 event. Bins display 
the number of phase difference observations in a given range between –π and π for each storm’s 
middle four days at time scales between 12 and 32 h. See Figure 3.30 for an explanation of phase 
differences.  
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3.2.2. Persistent melt category 

 The storm of 1996-02-02 is characterized by a large contiguous region of 

significant coherence across temporal scales (Figure 3.33).  At the 12-32-hour time 

scale, the phase difference distribution peaks at π/2 (Figure 3.34).  The 2011-01-11 

storm displays a similar wavelet coherence pattern and mid-storm, mid-period phase 

difference distribution (Appendix E and F). The other storms in this category express 

varying patterns of wavelet coherence, and only the 1995-11-22 and 2005-12-25 

storms exhibit a mid-storm, mid-period phase difference distribution that does not 

peak at π/2 (Appendix E and F).  
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Figure 3.33. Wavelet coherence plot for the 1996-02-02 event. 
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WTC phase difference distribution (12−32 h): 1996−02−04 to 1996−02−08 
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Figure 3.34. Phase difference histogram for the 1996-02-02 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 
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3.2.3. Persistent accumulation category 

 The storm of 1996-01-19 is characterized by a large contiguous region of 

significant coherence at all temporal scales (Figure 3.35).  At the 12-32-hour time 

scale, the phase difference distribution peaks at –π and π (Figure 3.36).  The 2006-11-

02 storm displays a similar wavelet coherence pattern and mid-storm, mid-period 

phase difference distribution (Appendix E and F). The other storms in this category 

express similar, but less contiguous, patterns of wavelet coherence at multiple 

temporal scales (Appendix E), and the associated mid-storm, mid-period phase 

difference distributions display peaks at π (2008-12-23 and 2012-01-14) and π/2 

(1996-11-29 and 2008-12-27) (Appendix F). 
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Figure 3.35. Wavelet coherence plot for the 1996-01-15 event. 

 

 



 

 

 
              

             
             

 
 

 
  

65 

WTC phase difference distribution (12−32 h): 1996−01−17 to 1996−01−21 
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Figure 3.36. Phase difference histogram for the 1996-01-15 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 
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3.2.4. Late accumulation (late melt) category 

 The storm of 1996-11-14 is characterized by an early region of significant 

coherence at smaller temporal scales (< 16 h), and a region of significant coherence at 

larger time scales (32-64 h) that lasts throughout the event (Figure 3.37).  At the 12-

32-hour time scale, there is no strongly dominant phase difference (Figure 3.38).  The 

early region of significant coherence is displayed by the other storms in this category 

and the phase difference arrows typically point left in this region, indicating an anti-

phase relationship (Appendix E). Mid-storm, mid-period phase difference 

distributions are varied for this category with four storms peaking between 0 and π 

(1996-12-21, 1998-12-23, 1999-11-21 and 2004-12-04) and the other (2003-03-03) 

displaying no dominant distribution (Appendix F).  
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Figure 3.37. Wavelet coherence plot for the 1996-11-14 event. 
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WTC phase difference distribution (12−32 h): 1996−11−16 to 1996−11−20 
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Figure 3.38. Phase difference histogram for the 1996-11-14 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 
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3.2.5. Late melt category 

 The storm of 2005-03-23 is characterized by early and late periods of 

significant coherence at temporal scales < 32 h (Figure 3.39).  At the 12-32-hour time 

scale, there is no strongly dominant phase difference (Figure 3.40). The late period of 

significant coherence is displayed by the other storms in this category and the 2003-

12-08 storm also exhibits a band of significant coherence at 16-32 h from the 12th 

through 16th (Appendix E). The 2007-11-13 storm displays no dominant mid-storm, 

mid-period phase difference distribution, while the distribution for 2003-12-08 peaks 

at π/4 (Appendix F). 
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Figure 3.39. Wavelet coherence plot for the 2005-03-23 event. 

 

 



 

 

 
          

             
             

 
  

69 

WTC phase difference distribution (12−32 h): 2005−03−25 to 2005−03−29 
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Figure 3.40. Phase difference histogram for the 2005-03-23 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 
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4. DISCUSSION 

4.1. Precipitation-net snowmelt response categories 

Storm events with the greatest amount of snowmelt augmentation of 

precipitation (persistent melt category) were associated with the highest peak flows at 

WS8 and Lookout Creek. By quantifying the amount and timing of net snowmelt, the 

categorization scheme distinguishes among rain-on-snow events, and provides a 

means of predicting peak discharge magnitude. 

4.2. What drives net snowmelt? 

Net snowmelt occurs once a snowpack is ripe, meaning it is isothermal at 0°C 

and its water holding capacity is satisfied (USACE, 1956). In order for a non-

isothermal, dry snowpack to become ripe and commence net snowmelt, energy must 

be added to the system. This energy can come in several forms: shortwave and 

longwave radiation; latent and sensible heat; advective heat from rainwater; and heat 

conducted from the ground (USACE, 1956). At seasonal timescales, shortwave and 

longwave radiation play dominant roles in driving melt (Mazurkiewicz et al., 2008), 

while at shorter event timescales, particularly during rain-on-snow storms, the 

turbulent fluxes—latent and sensible heat—dominate (e.g., Harr, 1981; Berris and 

Harr, 1987; van Heeswijk et al., 1996; Marks et al., 1998). 

For storms examined in this study, periods of rapid snowmelt (> 2.0 mm h-1) 

were accompanied by high winds, consistent with van Heeswijk et al. (1996). The 

events with the highest melt totals also had the 1st- and 3rd-ranked average wind 

speed. The 1996-02-02 storm, which had the highest average wind speed, was the 

only event which had consistently high wind speed during the time period of 

maximum melt and peak streamflow. Such a pattern is likely responsible for the 

storm’s supersized melt as described by Marks et al. (1998). 

Dewpoint temperature and its effect on precipitation phase explained net 

snowmelt magnitude and timing. Increasing dewpoint temperature above 0.5°C was 

associated with shifts from net negative to net positive snowmelt, and vice-versa.   

While rain accounted for 66% of precipitation time, 91% of net snowmelt time 
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coincided with rain. In contrast, mixed precipitation and snow accounted for 24%, 

and 10% of precipitation time, but only 8% and 2% of net snowmelt time coincided 

with mixed precipitation and snow, respectively. 

Advective heat from rainfall typically comprises a small portion of the rain-

on-snow energy budget (e.g., USACE, 1956; Harr, 1981; van Heeswijk, 1996). 

Nevertheless, higher rates of snowmelt (> 2.0 mm h-1) were associated with higher 

rates of precipitation. This may occur because heavy precipitation coincides with high 

wind and warmer temperature, enhancing net snowmelt. On the other hand, high rates 

of precipitation may push meltwater through the snowpack matrix like a piston, a 

notion suggested by Jones and Perkins (2010) based off the catchment hydrology 

work of Torres et al. (1998), Torres (2002), and Ebel and Loague (2008). The latter 

effect may account for the strong positive relationship between precipitation and net 

snowmelt values lagged by 1 hour (Figure 3.28; Table 3.7; for a discussion of time 

lag through the snowpack matrix, please see Chapter 4.3 below). 

4.3. Wavelet coherence: Assessing the timing of precipitation and net snowmelt 

The two largest Lookout Creek peak discharge events in the study (1996-02-

02, 2011-01-11) and two of the smallest events (1996-01-15, and 2006-11-02) 

displayed a pattern of significant wavelet coherence at multiple time scales over 

several days, indicating a tightly linked relationship between precipitation and 

snowmelt. However, pulses of snowmelt were tightly coupled to pulses of 

precipitation in the former (large) events, but out of phase in the latter (small) events. 

Cazelles and Stone (2003) noted the peakedness of a phase difference distribution can 

represent the synchrony between two variables, with larger peaks representing greater 

synchrony. Therefore, the strongly peaked mid-storm, mid-period phase difference 

histograms (Appendix F) of these four events are indicative of high degrees of 

rainfall-net snowmelt synchrony. 

For the two large events, the π/2 distribution peak corresponds to a system 

where pulses of precipitation lead pulses of snowmelt, implying that precipitation 

pushes snowmelt through the snowpack matrix. Such an idea is consistent with the 

timing of the two measurements (Figure 4.1). Precipitation is recorded near-
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instantaneously in the heated raingage, while lysimeter outflow measures snowmelt 

and precipitation that has already traveled through the snowpack (if one is present and 

deep enough to cause a temporal lag) and the snowmelt lysimeter instrumentation. A 

perfect synchrony of concomitant precipitation and net snowmelt would only be 

hypothetically possible in a shallow, fully ripe snowpack. In fact, such a relationship 

was only observed during two events: 1995-11-22 and 1995-12-25. In both instances, 

pre-event SWE was limited. 

The nature of the observed temporal lag is complicated by how water moves 

through the snowpack. Unlike soil, the snowpack matrix is inherently dynamic with 

flow pathways constantly changing as snow and ice crystals undergo metamorphosis. 

Once the snowpack is ripe and its water holding capacity has been satisfied, water can 

move through the snowpack in several ways, including: as a Darcian front 

(Wankiewicz, 1978), through preferential flow pathways such as flow fingers (Marsh, 

1999), or as a kinematic wave (Jones and Perkins, 2010). It is also unknown whether 

the snowpack’s water output is being sourced from meltwater, precipitation, or a 

combination of the two. 

In the two small storms, precipitation reached its maximum when net 

snowmelt reached its minimum. This relationship is representative of a system where 

incoming precipitation is being stored within the snowpack. 

Net snowmelt appears to effectively augment peak discharge in any storm in 

which net snowmelt pulses lag precipitation pulses by π/2.  For example, precipitation 

led net snowmelt by π/2 during the middle portion of the 2008-12-27 storm, a 

persistent accumulation event with negative net snowmelt, which nevertheless 

produced a peak flow of 4.6 mm h-1 at Lookout Creek, the highest of the category.  
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Figure 4.1. Conceptual diagram of the timing of precipitation and net snowmelt. The dashed arrows 
represent water moving through the system and time is denoted by the solid arrow on the left with time 
progressing from top to bottom. 

4.4. Potential issues and limiters 

The rainfall-net snowmelt classification scheme developed for this paper 

depends on the accuracy of the snowmelt lysimeter data. Although these data were 

not used to make predictions or assign treatment effects to the various response 

categories, inaccuracies could lead to the misclassification of events, which would 

affect the conclusions drawn from the characteristics of each category. Despite these 

considerations, it is reasonable to assume the snowmelt data were accurate given the 

lysimeter’s low water year bias and the observed coupling between precipitation 

phase and net snowmelt. 

Snow pillow data are lacking at H15MET. Although there is a snow pillow at 

VANMET, a few km away and in the same elevation range and aspect as WS8, it has 

many missing values and reported values are not consistent with the lysimeter 

(sometimes showing no snowpack when the lysimeter is recording positive net 
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snowmelt or reporting SWE change figures that are vastly different from the 

lysimeter). Therefore, SNOTEL and Andrews SWE data are presented as a reference 

only. Additionally, limited snowpack data in the Andrews has hindered past modeling 

efforts (Perkins and Jones, 2008), making a true assessment of pre-event SWE 

difficult. Sproles et al. (2013) reported a validated model for SWE in the McKenzie 

River Basin—in which Lookout Creek is located—but also noted issues with the 

Andrews SWE data. 

This study had a small sample size (n = 26). By expanding the precipitation 

and peak streamflow selection ranges, it is conceivable that other precipitation-net 

snowmelt response categories could be observed. In addition, a larger sample size 

might alter the distribution of the events among categories. Generally, the frequency 

of rain-on-snow events increases in mountain environments with increases in 

elevation and decreases in cold-season average temperature (McCabe et al., 2007; 

Pradhanang et al., 2013), meaning a change in study site could alter the distribution 

and/or categorization of event types. Furthermore, the small sample size made it 

difficult to find significant differences between the response categories using the 

Tukey-Kramer test. Perhaps a larger storm selection would lead to more statistically 

significant differences. 

These analyses were restricted to the snowpack; soil moisture and soil 

temperature were not considered despite their obvious effect on runoff. Using 

modeled data for the Andrews, Perkins and Jones (2008) showed that increased soil 

moisture was associated with higher baseflow and runoff ratios for storms of a given 

size. In addition, frozen soil has been shown to augment runoff and increase the risk 

of flooding via reduced soil infiltration capacities (e.g., Niu and Yang, 2006; Shanley 

and Chalmers, 1999). During 14 of the 26 analyzed storms, at least one monitoring 

station in the Andrews showed a minimum daily soil temperature at or below 0°C 

(Daly and McKee, 2012). Nevertheless, despite the omission of soil moisture and soil 

temperature, total snowmelt explained 63% of the variation in peak discharge at WS8 

and 68% at Lookout Creek in the 26 storms in this study. 
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4.5. Implications 

Climate change is expected to reduce mountain snowpacks in the western US 

(e.g., Mote et al., 2005; Nolin and Daly, 2006; Sproles et al., 2013), but it is unclear 

how these changes will affect extreme floods in the transient and seasonal snow zones 

of the Oregon Cascades and other western mountain ranges. Some studies predict an 

increase in winter daily flows in western Oregon with a warming climate (Jung and 

Chang, 2011; Surfleet and Tullos, 2012), but the complex interactions between 

temperature, precipitation, and streamflow in the transient snow zone make broad-

scale predictions difficult (Hamlet and Lettenmaier, 2007). This study demonstrates 

that prediction of future extreme flood events in the transient snow zone will require 

accurate hourly scale modeling of precipitation rate and snowpack accumulation and 

melt dynamics in order to identify future conditions that produce synchrony of 

precipitation and net snowmelt at multiple, coinciding, hourly time scales. Such 

resolution is not possible with many current global climate models; therefore, the 

temporal distance between model time steps should be decreased to better correspond 

with physical flood-generation processes. 

Furthermore, identifying climate change scenarios that lead to an increase in 

highly synchronous persistent melt events could aid in the prediction of future peak 

flows in the transient snow zone. Modeling could also explore the sensitivity of net 

snowmelt and peak discharge to changes to boundary conditions (e.g., snowpack 

depth and thermal quality) and storm characteristics (e.g., wind speed and dewpoint 

temperature).  Hourly-scale precipitation-snowmelt modeling may also be relevant for 

reservoir operation and flood forecasting. An additional opportunity for further work 

is the identification of lysimeter output water sources during large events. Isotopic 

analysis could be used to determine whether output is primarily derived from new 

precipitation or older meltwater that originated in the snowpack. 



 

 

   

  

   

 

  

 

  

 

   

  

 

 

 

   

 

 

  

 

 

  

 

 

  

76 

5. SUMMARY AND CONCLUSIONS 

Hourly precipitation and snowmelt lysimeter data were used to define five 

precipitation-net snowmelt response categories for 26 large storms in the transient 

snow zone of Oregon’s western Cascades. Each category was defined by the hourly 

rate of precipitation and precipitation type (rain, mixed, snow), which was based on 

air temperature and relative humidity effects on dewpoint temperature; these two 

variables accurately predicted total net snowmelt, which explained 63% of peak 

discharge at WS8 and 68% at Lookout Creek for these 26 storms. In turn, peak flows 

at WS8 explained 89% of peak flow at Lookout Creek. Persistent melt events, 

characterized by concomitant rain and positive net snowmelt, generated on average 

the largest peak flows at WS8 and Lookout Creek, including the record-setting 1996-

02-02 event that caused widespread damage across western Oregon. 

Although persistent melt events led to the largest average peak flows, each of 

the five categories contained storms with peak flows over 3.3 mm h-1 at Lookout 

Creek. The use of wavelet coherence and the mid-storm, mid-period phase difference 

distribution helped elucidate how this could occur. Many storms contained periods 

when a pulse of precipitation at the 16-32-hour time scale coincided with conditions 

suitable for net snowmelt (dewpoint temperature > 0.5°C). Under these conditions, a 

snowmelt pulse occurred within 4 to 8 hours of the pulse of precipitation, producing a 

snowmelt-augmented peak discharge.  During the two largest peak flows at Lookout 

Creek, pulses of precipitation at all time scales from 2 to 64 hours coincided with 

pulses of net snowmelt within π/2 radians or 1/4 of the wavelength of the 

precipitation pulses. Essentially, precipitation and net snowmelt were strongly 

coupled across the dataset at multiple temporal scales with pulses of precipitation 

leading pulses of net snowmelt. This coupling explains the observation that peak 

pulses of precipitation at WS8 were reflected in pulses of peak discharge at Lookout 

Creek, almost 10 km away (Jones and Perkins 2010). The multi-scale precipitation-

snowmelt synchrony demonstrated in this present study appears to be the mechanism 

producing extreme floods, such as the February 1996 and January 2011 events. 

Furthermore, it is expected these conclusions regarding the classification of 

rain-on-snow events and the influence of precipitation-net snowmelt timing on peak 
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streamflow could be applied to regions with similar snowpack characteristics, such 

as: the remainder of the Cascade range of the Pacific Northwest, California’s Sierra 

Nevada mountains, the northern Appalachians of New England, and the high Rocky 

Mountains of the interior western United States in late spring and summer. 
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APPENDICES 

Appendix A. 

Table A-1. Lookout Creek and WS8 peak flow and CS2MET and H15MET 3-day precipitation values 
for the storms selected per the methodology of section 2.2. *Indicates storm was removed from event 
list due to missing data. 

Peak CS2MET Peak H15MET 
Lookout Creek 3-day 3-day 

Event 
Date of 

peak flow 
peak flow (mm 

h-1) 
WS8 peak flow 

(mm h-1) 
precipitation 

(mm) 
precipitation 

(mm) 
1 1/13/95 2.9 2.4 150.4 110.5 
2 11/27/95 1.6 1.5 151.9 118 
3 12/30/95 2.0 1.5 159.8 140.8 
4 1/20/96 0.7 0.6 155.2 110.9 
5 2/7/96 13.2 6.6 277.6 258.9 
6 11/19/96 4.9 4.4 229.9 232.4 
7 12/4/96 3.3 2.5 160 129.9 
8 12/26/96 3.9 3.3 229.9 173.8 
9 1/31/97 3.6 2.6 155.2 145.3 
10* 10/30/97 2.4 1.3 163.9 150.7 
11 11/21/98 3.0 2.1 225.3 223.5 
12 12/28/98 5.6 3.4 269.5 201 
13 11/26/99 5.2 2.9 270.3 238.1 
14* 1/10/00 0.8 0.3 182.4 114.7 
15 3/8/03 1.3 1.0 168.9 117.1 
16 12/13/03 3.4 2.6 187.2 149 
17 12/9/04 1.9 1.2 156 138.4 
18 3/28/05 1.2 1.0 153.1 126.2 
19 12/30/05 5.0 3.7 205.2 203.2 
20* 1/10/06 4.4 4.1 184.2 219.5 
21 11/7/06 1.9 1.2 169.4 178.4 
22 12/14/06 3.7 4.0 165.9 173.9 
23 10/20/07 0.6 1.1 171.7 168.7 
24 11/18/07 1.3 1.6 156 155.2 
25 12/28/08 3.2 2.9 204.5 192.6 
26 1/1/09 4.6 2.9 119.2 131.9 
27 1/16/11 7.5 3.9 157.8 142.9 
28* 12/30/11 1.1 2.2 220.4 219.6 
29 1/19/12 3.5 2.7 258.5 257.3 
30 3/30/12 3.8 3.1 157.8 160.3 
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Appendix C. 
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Appendix E. 

Wavelet coherence, precipitation, net snowmelt, and streamflow: 1995−01−08 to 1995−01−17 
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Figure E-1. From top to bottom: Wavelet coherence (with power bar on right), precipitation, net 
snowmelt, Lookout Creek streamflow, dewpoint temperature, and wind speed for the 1995-01-08 
event. 
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Wavelet coherence, precipitation, net snowmelt, and streamflow: 1995−11−22 to 1995−12−01 
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Figure E-2. From top to bottom: Wavelet coherence (with power bar on right), precipitation, net 
snowmelt, Lookout Creek streamflow, dewpoint temperature, and wind speed for the 1995-11-22 
event. 
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Wavelet coherence, precipitation, net snowmelt, and streamflow: 1995−12−25 to 1996−01−03 
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Figure E-3. From top to bottom: Wavelet coherence (with power bar on right), precipitation, net 
snowmelt, Lookout Creek streamflow, dewpoint temperature, and wind speed for the 1995-12-25 
event. 
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Wavelet coherence, precipitation, net snowmelt, and streamflow: 1996−01−15 to 1996−01−24 
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Figure E-4. From top to bottom: Wavelet coherence (with power bar on right), precipitation, net 
snowmelt, Lookout Creek streamflow, dewpoint temperature, and wind speed for the 1996-01-15 
event. 
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Wavelet coherence, precipitation, net snowmelt, and streamflow: 1996−02−02 to 1996−02−11 
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0.2 

0.4 

0.6 

0.8 

c(1:240) 

c(1:240) 

c(1:240) 

c(1:240) 

1996−02−02 1996−02−04 1996−02−06 1996−02−08 1996−02−10 1996−02−12  
 
Figure E-5. From top to bottom: Wavelet coherence (with power bar on right), precipitation, net 
snowmelt, Lookout Creek streamflow*, dewpoint temperature, and wind speed for the 1996-02-02 
event. *Lookout Creek peak streamflow was estimated at 13.2 mm h-1 . 
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Wavelet coherence, precipitation, net snowmelt, and streamflow: 1996−11−14 to 1996−11−23 
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Figure E-6. From top to bottom: Wavelet coherence (with power bar on right), precipitation, net 
snowmelt, Lookout Creek streamflow, dewpoint temperature, and wind speed for the 1996-11-14 
event. 
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Wavelet coherence, precipitation, net snowmelt, and streamflow: 1996−11−29 to 1996−12−08 
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Figure E-7. From top to bottom: Wavelet coherence (with power bar on right), precipitation, net 
snowmelt, Lookout Creek streamflow, dewpoint temperature, and wind speed for the 1996-11-29 
event. 
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Wavelet coherence, precipitation, net snowmelt, and streamflow: 1996−12−21 to 1996−12−30 

Time 
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Figure E-8. From top to bottom: Wavelet coherence (with power bar on right), precipitation, net 
snowmelt, Lookout Creek streamflow, dewpoint temperature, and wind speed for the 1996-12-21 
event. 
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Wavelet coherence, precipitation, net snowmelt, and streamflow: 1997−01−26 to 1997−02−04 

Time 
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Figure E-9. From top to bottom: Wavelet coherence (with power bar on right), precipitation, net 
snowmelt, Lookout Creek streamflow, dewpoint temperature, and wind speed for the 1997-01-26 
event. 
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Wavelet coherence, precipitation, net snowmelt, and streamflow: 1998−11−16 to 1998−11−25 

Time 
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1998−11−16 1998−11−18 1998−11−20 1998−11−22 1998−11−24 1998−11−26  
 
Figure E-10. From top to bottom: Wavelet coherence (with power bar on right), precipitation, net 
snowmelt, Lookout Creek streamflow, dewpoint temperature, and wind speed for the 1998-11-16 
event. 
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Wavelet coherence, precipitation, net snowmelt, and streamflow: 1998−12−23 to 1999−01−01 

Time 
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Figure E-11. From top to bottom: Wavelet coherence (with power bar on right), precipitation, net 
snowmelt, Lookout Creek streamflow, dewpoint temperature, and wind speed for the 1998-12-23 
event. 

 



99 

W
in

d 
sp

ee
d 

(m
 s
−1

 ) 
D

ew
po

in
t t

em
pe

ra
tu

re
 (°

C
) 

St
re

am
flo

w
 (m

m
 h
−1

 ) 
N

et
 s

no
w

m
el

t (
m

m
 h
−1

 ) 
Pr

ec
ip

ita
tio

n 
(m

m
 h
−1

 ) 
Pe

rio
d 

(h
) 

0.
0 

0.
2 

0.
4 

0.
6 

0.
8 

1.
0 

0 
2 

4 
6 

8 
0 

1 
2 

3 
4 

5 
−1

 
0 

1 
2 

0 
2 

4 
6 

8 
64

 
32

 
16

 8
 4

 

Wavelet coherence, precipitation, net snowmelt, and streamflow: 1999−11−21 to 1999−11−30 

Time 
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Figure E-12. From top to bottom: Wavelet coherence (with power bar on right), precipitation, net 
snowmelt, Lookout Creek streamflow, dewpoint temperature, and wind speed for the 1999-11-21 
event. 
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Wavelet coherence, precipitation, net snowmelt, and streamflow: 2003−03−03 to 2003−03−12 

Time 
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Figure E-13. From top to bottom: Wavelet coherence (with power bar on right), precipitation, net 
snowmelt, Lookout Creek streamflow, dewpoint temperature, and wind speed for the 2003-03-03 
event. 
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Wavelet coherence, precipitation, net snowmelt, and streamflow: 2003−12−08 to 2003−12−17 

Time 
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Figure E-14. From top to bottom: Wavelet coherence (with power bar on right), precipitation, net 
snowmelt, Lookout Creek streamflow, dewpoint temperature, and wind speed for the 2003-12-08 
event. 
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Wavelet coherence, precipitation, net snowmelt, and streamflow: 2004−12−04 to 2004−12−13 

Time 
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Figure E-15. From top to bottom: Wavelet coherence (with power bar on right), precipitation, net 
snowmelt, Lookout Creek streamflow, dewpoint temperature, and wind speed for the 2004-12-04 
event. 
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Wavelet coherence, precipitation, net snowmelt, and streamflow: 2005−03−23 to 2005−04−01 

Time 
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Figure E-16. From top to bottom: Wavelet coherence (with power bar on right), precipitation, net 
snowmelt, Lookout Creek streamflow, dewpoint temperature, and wind speed for the 2005-03-23 
event. 
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Wavelet coherence, precipitation, net snowmelt, and streamflow: 2005−12−25 to 2006−01−03 

Time 
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Figure E-17. From top to bottom: Wavelet coherence (with power bar on right), precipitation, net 
snowmelt, Lookout Creek streamflow, dewpoint temperature, and wind speed for the 2005-12-25 
event. 
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Wavelet coherence, precipitation, net snowmelt, and streamflow: 2006−11−02 to 2006−11−11 

Time 
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Figure E-18. From top to bottom: Wavelet coherence (with power bar on right), precipitation, net 
snowmelt, Lookout Creek streamflow, dewpoint temperature, and wind speed for the 2006-11-02 
event. 
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Wavelet coherence, precipitation, net snowmelt, and streamflow: 2006−12−09 to 2006−12−18 
1.0 
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Figure E-19. From top to bottom: Wavelet coherence (with power bar on right), precipitation, net 
snowmelt, Lookout Creek streamflow, dewpoint temperature, and wind speed for the 2006-12-09 
event. 
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Wavelet coherence, precipitation, net snowmelt, and streamflow: 2007−10−15 to 2007−10−24 

Time 

0.2 

0.4 

0.6 

0.8 

c(1:240) 

c(1:240) 

c(1:240) 

c(1:240) 

2007−10−15 2007−10−17 2007−10−19 2007−10−21 2007−10−23 2007−10−25  
 
Figure E-20. From top to bottom: Wavelet coherence (with power bar on right), precipitation, net 
snowmelt, Lookout Creek streamflow, dewpoint temperature, and wind speed for the 2007-10-15 
event. 
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Wavelet coherence, precipitation, net snowmelt, and streamflow: 2007−11−13 to 2007−11−22 

Time 
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Figure E-21. Wavelet coherence (with power bar on right), precipitation, net snowmelt, Lookout Creek 
streamflow, dewpoint temperature, and wind speed (from top to bottom) for the 2007-11-17 event. 
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Wavelet coherence, precipitation, net snowmelt, and streamflow: 2008−12−23 to 2009−01−01 

Time 
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Figure E-22. Wavelet coherence (with power bar on right), precipitation, net snowmelt, Lookout Creek 
streamflow, dewpoint temperature, and wind speed (from top to bottom) for the 2008-12-23 event. 
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Wavelet coherence, precipitation, net snowmelt, and streamflow: 2008−12−27 to 2009−01−05 
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Figure E-23. Wavelet coherence (with power bar on right), precipitation, net snowmelt, Lookout Creek 
streamflow, dewpoint temperature, and wind speed (from top to bottom) for the 2008-12-27 event. 
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Wavelet coherence, precipitation, net snowmelt, and streamflow: 2011−01−11 to 2011−01−20 
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Figure E-24. Wavelet coherence (with power bar on right), precipitation, net snowmelt, Lookout Creek 
streamflow, dewpoint temperature, and wind speed (from top to bottom) for the 2011-01-11 event.  
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Wavelet coherence, precipitation, net snowmelt, and streamflow: 2012−01−14 to 2012−01−23 
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Figure E-25. Wavelet coherence (with power bar on right), precipitation, net snowmelt, Lookout Creek 
streamflow, dewpoint temperature*, and wind speed (from top to bottom) for the 2012-01-18 event. 
*Early dewpoint measurements most likely erroneous for this event. 
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Wavelet coherence, precipitation, net snowmelt, and streamflow: 2012−03−25 to 2012−04−03 
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Figure E-26. Wavelet coherence (with power bar on right), precipitation, net snowmelt, Lookout Creek 
streamflow, dewpoint temperature*, and wind speed (from top to bottom) for the 2012-03-25 event. 
*Dewpoint measurements most likely erroneous for this event. 
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Appendix F. 

WTC phase difference distribution (12−32 h): 1995−01−10 to 1995−01−14 
Fr

eq
ue

nc
y 

0 
10

0 
20

0 
30

0 

−π −π 2 0 π 2 π 

Phase difference 

Figure F-1. Phase difference histogram for the 1995-01-08 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 

WTC phase difference distribution (12−32 h): 1995−11−24 to 1995−11−28 
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Figure F-2. Phase difference histogram for the 1995-11-22 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 
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WTC phase difference distribution (12−32 h): 1995−12−27 to 1995−12−31 

Figure F-3. Phase difference histogram for the 1995-12-25 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 
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WTC phase difference distribution (12−32 h): 1996−01−17 to 1996−01−21 
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Figure F-4. Phase difference histogram for the 1996-01-15 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 
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WTC phase difference distribution (12−32 h): 1996−02−04 to 1996−02−08 

Figure F-5. Phase difference histogram for the 1996-02-02 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 
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WTC phase difference distribution (12−32 h): 1996−11−16 to 1996−11−20 
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Figure F-6. Phase difference histogram for the 1996-11-14 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 
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WTC phase difference distribution (12−32 h): 1996−12−01 to 1996−12−05 
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Figure F-7. Phase difference histogram for the 1996-11-29 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 

WTC phase difference distribution (12−32 h): 1996−12−23 to 1996−12−27 
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Figure F-8. Phase difference histogram for the 1996-12-21 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 
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WTC phase difference distribution (12−32 h): 1997−01−28 to 1997−02−01 

Figure F-9. Phase difference histogram for the 1997-01-26 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 

WTC phase difference distribution (12−32 h): 1998−11−18 to 1998−11−22 
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Figure F-10. Phase difference histogram for the 1998-11-16 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 
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WTC phase difference distribution (12−32 h): 1998−12−25 to 1998−12−29 

Figure F-11. Phase difference histogram for the 1998-12-23 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 

WTC phase difference distribution (12−32 h): 1999−11−23 to 1999−11−27 
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Figure F-12. Phase difference histogram for the 1999-11-21 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 
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WTC phase difference distribution (12−32 h): 2003−03−05 to 2003−03−09 
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Figure F-13. Phase difference histogram for the 2003-03-03 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 

WTC phase difference distribution (12−32 h): 2003−12−10 to 2003−12−14 
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Figure F-14. Phase difference histogram for the 2003-12-08 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 
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WTC phase difference distribution (12−32 h): 2004−12−06 to 2004−12−10 
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Figure F-15. Phase difference histogram for the 2004-12-04 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 

WTC phase difference distribution (12−32 h): 2005−03−25 to 2005−03−29 
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Figure F-16. Phase difference histogram for the 2005-03-23 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 
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WTC phase difference distribution (12−32 h): 2005−12−27 to 2005−12−31 
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Figure F-17. Phase difference histogram for the 2005-12-25 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 

WTC phase difference distribution (12−32 h): 2006−11−04 to 2006−11−08 
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Figure F-18. Phase difference histogram for the 2006-11-02 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 
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WTC phase difference distribution (12−32 h): 2006−12−11 to 2006−12−15 

Figure F-19. Phase difference histogram for the 2006-12-09 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 

WTC phase difference distribution (12−32 h): 2007−10−17 to 2007−10−21 
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Figure F-20. Phase difference histogram for the 2007-10-15 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 
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WTC phase difference distribution (12−32 h): 2007−11−15 to 2007−11−19 
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Figure F-21. Phase difference histogram for the 2007-11-13 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 

WTC phase difference distribution (12−32 h): 2008−12−25 to 2008−12−29 
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Figure F-22. Phase difference histogram for the 2008-12-23 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 
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WTC phase difference distribution (12−32 h): 2008−12−29 to 2009−01−02 
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Figure F-23. Phase difference histogram for the 2008-12-27 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 

WTC phase difference distribution (12−32 h): 2011−01−13 to 2011−01−17 
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Figure F-24. Phase difference histogram for the 2011-01-11 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 
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WTC phase difference distribution (12−32 h): 2012−01−16 to 2012−01−20 
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Figure F-25. Phase difference histogram for the 2012-01-14 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 

WTC phase difference distribution (12−32 h): 2012−03−27 to 2012−03−31 
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Figure F-26. Phase difference histogram for the 2012-03-25 event. Bins display the number of phase 
difference observations in a given range between –π and π for each storm’s middle four days at time 
scales between 12 and 32 h. See Figure 3.30 for an explanation of phase differences. 




