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The study of the diversity of multivariate objects shares common characteristics

across disciplines, including ecology and organizational management. Nevertheless, ex-

perts in these two disciplines have adopted somewhat separate diversity concepts and

analysis techniques, limiting the ability of potentially sharing and cross comparing these

concerns. Moreover, while complex diversity data may benefit from exploratory data

analysis, most of the existing techniques emphasize confirmatory analysis based on sta-

tistical metrics and models. To bridge these gaps, interactive visualization is especially

appealing because of its potential to allow users to explore diversity data in a direct and

holistic way, prior to further statistical analysis.

This dissertation addresses the problem of designing multivariate visualizations that

support exploration and communication of diversity patterns and processes in multi-

variate data. To this aim, the dissertation presents design considerations as well as

implementation and evaluation of interactive visualizations targeting diversity analy-

sis. The contributing visualization techniques and tools include (1) Diversity Map—a

novel multivariate space-filling representation emphasizing diversity patterns in separate

attributes; (2) Ecological Distributions and Trends Explorer (EcoDATE)—a web-based

visual-analysis tool that is built upon the Diversity Map and facilitates the exploratory

analysis of long-term ecological data with an emphasis on distribution patterns and tem-

poral trends; and (3) HIST—a visual representation for communicating team diversity



faultlines across multiple attributes that is based on multiple linked, stacked histograms.

Further, drawing upon lessons from these designs, this dissertation cross compares anal-

yses of species diversity (ecology), microbial diversity (microbiology), and workgroup

diversity (organizational management) and introduces a unified taxonomy of analytical

tasks to guide the creation and evaluation of future diversity visualizations. The de-

sign considerations, visualization techniques, tools, and task taxonomy are evaluated

and refined in empirical user studies involving human participants and subject-matter

experts.
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Chapter 1: Introduction

Over the years, researchers in various domains1 have agreed that diversity is a key

determinant of many system functions. This agreement has led to a desire for ecosystems,

learning systems, and organizational systems, for example, that are diverse and thus more

sustainable, persistent, and resilient in the long run (e.g., [90, 51, 52, 55]).

Ecologists study diversity patterns of species (e.g., plants and animals) and their

processes—how the patterns drive ecosystem functions (e.g., productivity, sustainabil-

ity, resilience) or how the patterns respond to environmental or human factors (e.g.,

location, climate, land use) (e.g., [51, 101]). The problem is important because the con-

servation of species, especially rare ones, may depend on the conservation of associated

environmental resources. In a similar vein but at different scales, microbiologists and

microbial ecologists study diversity of microorganisms and their functionality in various

environments, including deep ocean, soils, and human bodies (e.g., [112, 4, 45]). Many

other fields share similar characteristics as well. For example, supervised machine learn-

ing researchers are often interested in knowing how well their training examples span

the space of features—that is, they wish to understand the diversity of their training

examples; chemists are interested in assessing the similarity/diversity of a collection of

molecular models in exploring the multitude of designs generated by simulations [77];

scholars study language diversity in order to understand societies [110]. In social sci-

ences such as psychology and organizational management, scholars are interested in how

the diversity of work team members across multiple characteristics (e.g., age, gender,

race, functional background) affects team performance and outcomes (e.g., productivity,

creativity, collaboration) (e.g., [90, 55, 14]). This area is interesting because the data

set sizes may range from small teams of people to complete organizations. These are

just a few examples of fields where an understanding of the diversity of a set of objects

characterized by multiple attributes is desired.

To understand phenomena concerning diversity—for instance, diversity patterns and

1In this dissertation, domain refers to a field of study or a discipline, as opposed to a taxonomic
subdivision in biological classification, unless otherwise stated.
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Figure 1.1: Common and traditional approach to diversity analysis. Each rectangle
represents a subprocess and each arrow represents a direction the analyst can take to
go through the process. The approach emphasizes hypothesis-driven or confirmatory
analysis that relies heavily on diversity metrics and statistical tests of hypotheses. Static
charts play a little role in the process.

processes [101]—subject-matter experts2 typically undertake scientific studies. While

different fields may adopt different perspectives on the conceptualization of diversity

and hypotheses surrounding it, a common and traditional analysis approach follows

three main steps [101, 48, 55, 14] (see Figure 1.1): (1) collect data on objects of interest

and other related factors—for example, species and environmental variables for studying

species diversity, demographics of team members and team performance for studying

workgroup diversity, then (2) plot and observe data variables in typical charts such as

histograms, scatter plots, and boxplots, and finally (3) use diversity metrics, such as the

Shannon Index [139], and statistical tests to measure diversity and quantify relationships

between diversity patterns and system processes. Ultimately, the goals are to characterize

diversity patterns and processes across multiple variables and data subsets; if time and

space are involved, how these characterizations vary over time and space. Depending

on how diversity is conceptualized in different domains, these characterizations may

manifest themselves as distributions, clusters, hierarchies, and correlations in the data.

This common approach to data analysis may work well when the number of variables

is small and interesting hypotheses can be preconceived. However, when the number

of variables is large (> 5), multiple subsets of data are involved, and/or hypotheses

are not well pre-established, moving between static charts and statistical tests—often in

different software packages—can become unwieldy, slow, and a limiting method of data

2We refer to scientists or researchers who study diversity as subject-matter experts, domain experts,
or simply, experts.
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exploration. Further, diversity metrics conceal tremendous amounts of information in the

process [72]. Usually these measures use summary statistics to characterize and compare

diversity patterns, where the summary statistics assume theoretical—not empirical—

multimodal distributions of data. In addition to the paucity of approaches, domain-

specific terminologies and measures preclude the understanding of how diversity functions

and how it could be characterized similarly across disciplines.

Interactive visualizations of the data, when combined with traditional analysis ap-

proaches, offer the potential to overcome the aforementioned issues, provided that the

representations of data coupled with interaction features properly support the analyt-

ical needs of experts and are well suited to characteristics of diversity data. Such an

interactive visualization would serve as an effective user interface for subject experts to

explore data directly, formulate and refine hypotheses iteratively, and discuss their find-

ings with others, prior to further statistical analysis (Figure 1.2). By data exploration,

we mean getting acquainted with data, detecting and describing patterns, trends, and

relationships in data while incorporating the user’s knowledge and intuition [154, 8].

Furthermore, not only is interactive visualization a potentially powerful analysis tool,

but it could prove to be a very useful means for communicating diversity information

(Figure 1.2). Such a tool, for example, could be used by experts to teach students about

diversity analysis or to present scientific findings to the general public. Nevertheless,

while typical static univariate or bivariate charts such as histograms, scatter plots, and

boxplots have been used by experts to explore and communicate patterns of diversity

and its related hypotheses, little work has focused on abstracting the concept of di-

versity from various fields to potentially unified design considerations and visualization

Figure 1.2: Proposed visual-analysis process of exploring diversity data. This dissertation
concentrates on the exploration stage (the orange rectangle), as distinguished from to
other stages such as data acquisition, data pre-processing, and hypothesis testing.
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techniques that illuminate all facets of diversity in multivariate data sets.

1.1 Thesis Statement and Research Questions

To be more specific about the needs in analyzing diversity data, consider the common

questions that experts seek to answer. First, there are descriptive questions of diver-

sity patterns. For example, how many species are there in this location? how are they

distributed? what is the structure of this work team with respect to member demo-

graphics? Second, following the first type of questions, there are questions of diversity

processes. For example, what factors promote such diversity patterns? How are diversity

patterns related to socio-ecological process and performance outcome? In other words,

do diversity patterns of species, of people, or of institutions promote the capacity of

ecosystems, social systems, and their inter-dependent interactions? While this disserta-

tion does not propose answers to these questions, it does suggest that tools are necessary

to help experts better approach them.

To answer these questions, experts need ways of exploring complex diversity data

directly and holistically. By leveraging the human visual system, visual analytics, “the

science of analytical reasoning facilitated by interactive visual interfaces” [151], provides

a solid foundation for diversity data analysis. However, from the visualization standpoint,

visualizing diversity is a difficult problem because diversity data sets are usually large

and multivariate with varying types (i.e., quantitative, nominal, and ordinal); temporal

and spatial aspects may also be involved. Furthermore, the dominant use of many

diversity measures precludes the understanding of how diversity functions similarly in

different domains such as ecology and organizational management. This work intends to

align the concept of diversity across these domains and to operationalize the concept in

visualizations for exploring and communicating diversity.

This dissertation addresses the following thesis statement:

Interactive visualizations of multivariate diversity data, when combined with

existing analysis approaches, serve as an effective user interface for subject-

matter experts in ecology and organizational management to explore and com-

municate diversity information directly, prior to further statistical analyses.

In doing so, the dissertation answers the following three key research questions:
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• RQ1: How is diversity conceptualized across the multiple fields that study it

and what are the fundamental scientific questions/hypotheses of interest regarding

diversity?

• RQ2: Which existing or novel multivariate representation and interaction tech-

niques are particularly useful in exploring and communicating diversity data?

• RQ3: What is the role of interactive visualization in the real-world analysis process

in which diversity is a key element?

1.2 Dissertation Contributions and Outline

This dissertation contributes design considerations and systems of interactive visual-

izations that enable exploratory data analysis of diversity unified across fields. The

contributions, which represent joint work with my collaborators, can be grouped into

three areas:

1. The design and evaluation of visual representations that communicate diversity

patterns in multivariate data (RQ1and RQ2).

(a) Design and evaluation of Diversity Map—a multivariate space-filling repre-

sentation emphasizing diversity in separate attributes (Chapter 3). We in-

troduce a precise definition of diversity adopted from the field of ecology, a

set of requirements for diversity visualizations based on this definition, and

a formal user study design intended to evaluate the capacity of a visual rep-

resentation for communicating diversity information. An evaluation of the

Diversity Map using our study design shows that users can judge elements

of diversity consistently and as or more accurately than when using the only

other representation specifically designed to visualize diversity. Furthermore,

we illustrate the value of the Diversity Map visualization by several example

scenarios of ecologists exploring diversity patterns in the moth data sets.

(b) Design and evaluation of HIST—a multivariate visual representation for com-

municating team faultlines, a conceptualization of diversity in organizational

management that shares many characteristics with clustering in computation

(Chapter 5). The proposed technique is based on multiple linked, stacked
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histograms in a parallel axis layout. We evaluate the effectiveness of the

technique in a controlled user study, comparing it to the two other common

cluster representations: parallel coordinates and a scatter plot matrix. While

we chose the faultline-related tasks based on the requirements by domain

experts, the study findings can be generalized to representations and tasks

involving distributions of clusters in mixed-type data. Furthermore, inspired

by geological faultlines, we propose several visual enhancements to stacked

histograms to further facilitate the task of identifying faultlines within work

teams.

2. Interaction techniques and interface components that support data exploration

where diversity is a key element of the real-world analysis process (RQ3).

(a) Design and evaluation of Ecological Distributions and Trends Explorer (Eco-

DATE), a web-based visual-analysis tool that facilitates exploratory analysis

of long-term ecological data with an emphasis on diversity/distribution pat-

terns and temporal trends (Chapter 4). The tool, which is publicly available

online, was created and refined through a user-centered design process, in

which our team of ecologists and visualization researchers collaborated closely.

Our collaboration resulted in (1) a set of visual representation and interaction

techniques well suited to communicating distribution patterns and temporal

trends in ecological data sets, and (2) an understanding of processes ecolo-

gists use to explore data, generate and test hypotheses. We present three case

studies to demonstrate the utility of EcoDATE and the exploratory analysis

processes using long-term data on cone production, stream chemistry, and

forest structure collected as part of the H.J. Andrews Experimental Forest

(HJA), Long Term Ecological Research (LTER), and US Forest Service Pa-

cific Northwest Research Station programs. We also present results from a

survey of 15 participants of a working group at the 2012 LTER All Scientists

Meeting that showed that users appreciated the tool for its ease of use, holistic

access to large data sets, and interactivity.

3. Design considerations and analytical tasks targeting diversity analysis unified across

fields of study (RQ1and RQ2).
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(a) Unified visualization design considerations and a taxonomy of common analyt-

ical tasks for exploratory analysis of diversity (Chapter 6). In developing the

taxonomy, we cross compare the literature of species diversity (ecology), mi-

crobial diversity (microbial ecology), and workgroup diversity (organizational

management) and we introduce a framework of diversity concerns aligned

across the three areas. The alignment framework is validated and refined by

feedback from subject-matter experts.

In addition to the chapters presenting the dissertation contributions, Chapter 2 covers

background on information visualization and an overview of diversity concepts. Finally,

Chapter 7 summarizes the contributions of this dissertation and suggests possible direc-

tions for future work.
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Chapter 2: Background

This chapter covers background on the field of information visualization and the concept

of diversity. The aim is to set up a shared understanding between subject-matter experts

and visualization researchers in terms of common technical vocabulary and abstractions.

These concepts and terminology will be used and extended in subsequent chapters.

2.1 Information Visualization

2.1.1 Basic Concepts and Terminology

Visualization systems provide visual representations of datasets intended to help people

carry out some task more effectively [23, 146]. In doing so, such systems help people form

a mental model of the data and gain insights into data for analysis, communication, and

decision making. Visualization systems typically allow manipulation of the data views

using a computer [23, 146].

Visualization can be loosely divided into two subfields of information visualization

(InfoVis) and scientific visualization (SciVis). While there is not always a clear bound-

ary between the two, they differ in the characteristics of the data analyzed and the

corresponding data representations. InfoVis tends to deal with interactive displays of

abstract data without a direct physical correspondence, such as counts of insects, cone

production, or vegetation cover collected over time [146]. SciVis concerns data that has a

natural mappings to 2D or 3D space and the visualizations usually involves the physical

properties of the data, such as rendering of multiple layers of trees in a forest from Li-

DAR data [23, 146]. Recently, intersecting InfoVis and SciVis, visual analytics emerges

as a branch of science focusing on “analytical reasoning facilitated by interactive visual

interfaces” [151]. This work adopt the techniques from information visualization and

visual analytics, instead of scientific visualization.

A data set consists of one or many related data tables. A data table is a structured

format typically organized as rows and columns. A spreadsheet is a typical example of
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a data table. A column may be referred to as a field, a dimension, an attribute, or a

variable, and a row is an object, a tuple, a data case, a data point, a data item, a data

observation, or a record [38]. These terms are used interchangeably in this dissertation.

Metadata are descriptive information about the data set, such as name, data type,

and description for attributes. An attribute can be in one of three types: ordinal,

nominal, or quantitative (or numerical). Categorical refers to both ordinal and nominal

types. In some case, for instance, when judging diversity from a data set, we are also

interested in the metadata of possible unique values in one attribute (e.g., all possible

insect species, all possible ethnicities of team members).

A multivariate data set is a data set with more than three dimensions. Common

numbers are 4 to 20 dimensions, even though higher-dimensional data sets are increas-

ingly common [38]. The boundary of three corresponds to three dimensions in real world

and therefore to human perceptual capability. However, 2D representations of data have

been more widely used than 3D because computer displays are thus far two-dimensional.

3D representations still exist but are empirically proven to be more difficult for most

users [136]. This dissertation studies 2D representations of data.

Figure 2.1: Information Visualization Reference Model [28, 23] illustrating the steps
involved in building an interactive visualization. Image redrawn from Card et al. [23].

A common approach to designing a visualization system follows the widely-accepted

information visualization reference model. The model—which was originally introduced

by Chi [28] and later refined by Card et al. [23]—models the visualization process as dis-

crete steps from inputting the source data and transforming them to appropriate formats

to mapping data to visual representations and ultimately supporting view transformation

via user interactions (Figure 2.1). The outcome of the process is an interactive visual-

ization that helps users complete their tasks and/or gain additional insights into their
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data. In this dissertation, we adopt this model when designing visualization techniques

and tools.

2.1.2 Taxonomies of Visualization Techniques

Visualization researchers have attempted to classify visualization techniques in general

and multivariate data visualization techniques in particular [38]. We believe that possi-

ble solutions to the diversity visualization problem may come from existing visualization

techniques. Therefore, here we briefly discuss different classifications of techniques. Sub-

sequent chapters assess the applicability of specific techniques to diversity analysis.

Card et al. [23] categorized visualization techniques based on the type of Visual

Structures they adopt. The Visual Structures concept indicates how space is used to

encode information or the dimensionality of the data representations. Common types of

Visual Structures are Physical, 1D, 2D, 3D, Multi-dimensional, and Tree and Network.

Although this taxonomy draws a big picture of techniques, its focus is not on techniques

for multivariate data.

On another taxonomy, Seo and Shneiderman [136] focused on 2D representation

techniques. They distinguished the three categories of 2D representations by how axes

are composed:

1. Non axis-parallel projection refers to methods that map a combination of two

or more attributes to one axis of the 2D projection plane. In other words, the

number of attributes may be processed and reduced before projection. For example,

principal component analysis (PCA) [6] and multidimensional scaling (MDS) [152]

are well-known techniques in this category.

2. Axis-parallel projection methods map attributes as axes of the projection plane.

One attribute is selected as the horizontal axis, and another as the vertical axis, to

make a familiar and comprehensible representation. Other dimensions can some-

times be mapped as color, size, length, shape, angle. Standard techniques such as

scatter plot, histograms are typical examples of this group.

3. Novel methods use axes that are not directly derived from any combination of

attributes, and axes are not necessarily orthogonal. For example, the parallel
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coordinates technique is a new concept in which each attribute is represented by

an attribute axis and attribute axes are aligned in parallel [75, 73, 74].

Although this classification is fairly complete for multivariate data, it is not fine-

grained enough to differentiate techniques, especially from novel group.

Thus far, one of the most widely-used taxonomies was proposed by Keim [82, 83],

who classified techniques according to three different criteria (Figure 2.2): (1) the data

type to be visualized, (2) the visualization technique used, and (3) the interaction and

distortion techniques. In this respect, each criterion forms a taxonomy of techniques.

Figure 2.2: Classification of information visualization techniques according to three cri-
teria: (1) the data type to be visualized, (2) the visualization technique used, and (3)
the interaction and distortion techniques. Image reused with permission from Keim [83].
Copyright c©2011 IEEE.

Following the axis of visualization techniques used, Keim [82, 83] classified techniques

into six groups:

• Standard 2D/3D displays. This group refers to visualizations that encode in-

formation by positioning marks in a plane with two or three orthogonal coordinate
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axes. A typical example is the scatter plot, in which two data attributes are pro-

jected along the x and y axes of a Cartesian coordinate system. Other examples

include 1D scatter plot, box plot, bar chart, and histogram. These techniques effec-

tively support such tasks as finding outliers, gaps, clusters, or correlation between

two or three attributes [136].

• Geometrically transformed displays. This group refers to both coordinate-

based visualizations and graph visualizations [82, 83]. Coordinate-based visualiza-

tions are an extension from standard 2D/3D displays, which performs geometric

transformations and projections of data on coordinate axes. Usually, all data at-

tributes are preserved and treated equally. However, the order of attribute axes

may affect what can be perceived. Techniques in this subgroup can handle mod-

erately high-dimensional data sets. Typical examples include scatter plot matrices

[7, 10], parallel coordinates [75, 74] and its variants (e.g., [59, 86]), and star co-

ordinates [81]. Beside coordinate-based visualizations, geometrically transformed

displays also include graph visualizations. This subgroup refers to node-link repre-

sentations for hierarchy data sets.

• Data Preprocessing Techniques. This group refers to statistics techniques

typically used for data processing. Keim [83] originally listed these techniques

under geometrically transformed displays. For the sake of clarity, we break data

preprocessing techniques into a separate group. Generally, these techniques pre-

process data to reduce the number of dimensions and/or the number of objects.

For example, principal component analysis (PCA) [6] and multidimensional scaling

(MDS) [152] are well-known in the group of dimensionality reduction techniques.

On the other hand, to reduce data, subsetting techniques may use sampling to

find a representative subset of the original data set; aggregate techniques aggre-

gate data objects based on attribute values. These pre-processing techniques are

usually required as a starting point of a data-mining project. They can handle very

large and/or very high-dimensional data sets. However, users may have difficulty

in interpreting data from only subsets or 2D/3D projections whose axes are com-

binations of several dimensions [136]. With regard to the diversity visualization

problem, we assume diversity data are already pre-processed before being mapped

to appropriate visual representations (Figure 2.1). Therefore, although data pre-
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processing techniques play an important role in the data analysis process, they are

outside the scope of this dissertation.

• Icon-based displays. This group maps each data item to an icon (or glyph)

whose visual features vary depending on the data values. Visual features include

location, color, shape, size, and opacity. Common representative techniques include

scatter plot with additional color encoding, Chernoff face [27] and star plot (or star

glyphs) [30]. Within this group, dimensions may be treated differently, as some

visual features of the icons (e.g. color) may draw more attention than others (e.g.

opacity). Therefore, interpretation is not straightforward and may require legend

and training. These techniques can handle a few thousand data items because

icons tend to occupy several pixels on a screen. Data overlap possibly occurs if

data attributes are mapped to the icon’s display location.

• Dense pixel displays. In dense pixel displays, a colored pixel is used to represent

an attribute value. Pixels belonging to each dimension are grouped into adjacent

areas. How pixels are arranged may produce different visualizations, which may

be categorized into recursive pattern, axes technique, spiral technique, and circle

segments [82]. The techniques in this group are suitable for very large data sets

on high-resolution displays (millions of records). Their visualizations may provide

insight into information on local correlations, dependencies, and hot spots.

• Stacked displays. The group of stacked displays refers to techniques that rep-

resent data in a hierarchical fashion. They are usually space-filling techniques in

which hierarchy is nested (or stacked). Typical examples include Dimension Stack-

ing [93], mosaic plots [58], and treemaps [78, 140]. These techniques can effectively

handle small to medium-sized data sets. They are suitable for handling data sets

of low to medium dimensionality. Attributes are treated differently based on the

order of being nested and may produce different views of the data. Therefore,

interpretation of resulting visualizations may require training.

• Hybrid techniques. The last group in the taxonomy, hybrid techniques, simply

integrates multiple visualization techniques, either in one or multiple windows, to

enhance the expressiveness of the visualizations. Within the scope of this work, we

focus on visualization techniques that integrated into one window. The main idea
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behind integration of techniques is to take advantage of strengths from techniques

and to overcome weaknesses.

In summary, this classification by Keim [82, 83] focuses on representation techniques,

which is in line with our primary purpose of designing visual representations that convey

diversity information in multivariate data (RQ2). Therefore, in this dissertation, we

assess multivariate data visualization techniques based on this taxonomy (Chapters 3

and 5).

2.2 Overview of Diversity Concepts

Here we briefly describe fundamental concepts of diversity studies in terms of data char-

acteristics, diversity patterns, and diversity processes. To demonstrate the alignability

of these concepts across domains, our description cross compares species diversity in

ecology and workgroup diversity in organizational management.

2.2.1 Data Characteristics

Diversity data are samples of independent observations collected from the population

of interest within one or multiple units of study. For example, in workgroup diversity,

a work team represents a typical unit of study while an individual person is a unit of

observation (or measurement) [55, 24]. Comparatively, in species diversity, a typical unit

of observation is an individual of known species collected in a community or assemblage,

which are typical units of study [101]. A community in ecology refers to group of species

found at a given place and time. An assemblage refers to a community in which species

are taxonomically related. Each unit of observation may be characterized by multiple

mix-typed and hierarchical characteristics (attributes) necessary for gauging diversity

of the corresponding unit of study—for example, demographics of team members or

biological classification of species. In addition, observations can be collected in space

and time and associated with additional process factors (e.g. team performance or

ecosystem processes). In essence, diversity data sets are mix-typed, multivariate, and in

many cases, spatiotemporal and large (thousands of records/observations).
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2.2.2 Diversity Patterns and Processes

As mentioned in the first chapter, experts analyzing diversity data typically consider

two types of scientific question: (1) questions on description of diversity (patterns) (e.g.,

which species are present in this ecological community? Between two work teams, which

one is more diverse?) and (2) questions on causes and consequences of diversity (pro-

cesses) (e.g., how do temperature gradients affect species richness? how are ethnic

differences of team members related to conflict within team?).

Diversity pattern is an overarching term. From an analysis point of view, experts may

investigate diversity patterns either in separate attributes (i.e., one by one) or over mul-

tiple attributes simultaneously ; if time and space are involved, experts may be interested

in how the patterns vary over time and space [101, 55].

Figure 2.3: Illustration of species richness and evenness. Each icon represents an in-
dividual of a known species (e.g., insects). Species richness refers to the number of
different species represented in a unit of study and species evenness concerns how close
in abundances each species in a unit of study is.

When diversity patterns are considered in separate attributes, different fields adopt

slightly different definitions of diversity. Nevertheless, these definitions are centered on

the distribution of data observations. In ecology, species diversity is defined as “the vari-

ety and abundance of species in a defined unit of study” [101]. The definition emphasizes

the two main diversity components and corresponding measures of richness of variety

and evenness of abundance of species (Figure 2.3). Likewise, experts studying human or-

ganizations describe diversity as “the distribution of differences among the members of a
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unit with respect to a common attribute, X, such as tenure, ethnicity, conscientiousness,

task attitude, or pay” [55]. Further, depending on the attributes under investigation,

management experts categorize diversity not only as variety (e.g., skill sets) but also as

separation and disparity (e.g., difference in pay among members may create disparity

in a team; different cultural values of members represent team separation) [55]. These

types of diversity differ in the shape of distribution for maximum diversity and mini-

mum diversity as well as desired diversity, the level of diversity empirically associated

with optimal outcomes for the examined unit of study. We present a study of diversity

patterns in separate attributes and the design of corresponding multivariate visualization

techniques in Chapters 3 and 4.

When diversity patterns are investigated as interactions among multiple attributes

simultaneously, the concept is further overloaded. Ecologists recognize functional diver-

sity as variety of roles played by different species based on their multiple functional traits

(e.g., rooting depth and maximum growth rate of plants) [116]. In other words, com-

position of these traits cluster different species present in a unit of study into different

functional groups. Moreover, since species is inherently hierarchical, traits under investi-

gation could be extended to taxonomic organization such as genus and family, resulting

in taxonomic diversity (diversity across taxa). There exist parallel components in orga-

nizational management. The faultlines concept, which is also adopted from multivariate

clustering, concerns subgroups or clusters formed in a work team based on composition

of multiple demographic characteristics of members [90]. Figure 2.4 depicts an example

of how the faultlines concept is applied to a work team. Chapter 5 concentrates on diver-

sity patterns across multiple attributes and presents a case study of visualizing diversity

faultlines in work teams.

Diversity patterns are strongly associated with the functioning of the systems under

investigation (diversity processes) [101]. Across ecology and organizational management,

we can find parallels in the roles of diversity that are of interest to domain experts. For ex-

ample, ecologists refer to positive effects of diversity such as sustainability and resilience

in an ecological system while organizational management experts seek productivity, in-

novation, and flexibility, just to name a few [51, 55]. By exploring diversity processes,

experts look for the causal relationships between the diversity patterns and system pro-

cesses, which are typically characterized by correlations among values of corresponding

data variables.
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Figure 2.4: An example of how a faultline metric [14] is used to cluster a group of
starting pitchers of the Major League Baseball (MLB) team Brewers in 2008 into two
subgroups (subgroup 1 and subgroup 2) based on the similarity of group members across
the attributes of interest: AGE, COUNTRY (of origin), RACE, and MLB TENURE (in
years). Data courtesy Katerina Bezrukova and Chester Spell.

In summary, a variety of diversity components exist and based on research questions

of interest, it becomes very important that experts choose the correct conceptualization

(e.g. diversity components) and apply the appropriate operationalization (e.g. statistical

measures). While the operationalization in terms of statistics is outside the scope of

this work, the choice of analytical tasks and visualizations that fulfill those tasks are

certainly operationalizations and must be chosen carefully. Chapter 6 aims to align the

diversity concept across disciplines into a framework and to identify a unified taxonomy

of analytical tasks for exploratory analysis of diversity.
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Chapter 3: Visualization of Diversity in Separate Attributes 1

3.1 Introduction

When exploration of diversity data involves multiple attributes, a general starting point

is to examine the overall distribution of observations over the attributes of interest. For

example, in selecting an incoming freshman class, college admissions officials may wish

to consider how diverse a particular population of applicants is with respect to attributes

such as GPA, gender, home state, and ethnicity. Similarly, in analyzing species diversity

data, ecologists may wish to understand the diversity patterns of species present there in

relation to other environmental or human factors (e.g., temperature, elevation, rainfall,

land use) [101].

In most cases, determining the overall diversity of a set of objects can be decomposed

into an examination of diversity in each of a number of separate attributes. Unfortunately,

as the number of attributes and objects to be examined both increase (for example,

beyond five and 1000 respectively), the number of values that must be considered in

gauging diversity increases. This can make a text- or table-based assessment of the

diversity of a large data set with many attributes extremely difficult and tedious. While

metrics, such as the Shannon Index [139, 158], are intended to provide a measure of

diversity, these generally reduce diversity to a single number, throwing away a large

amount of information in the process. Moreover, these metrics can typically be applied

to measure the diversity of only a single attribute. Experts in ecology have argued that

metrics like the Shannon Index are not always useful and that scientists should rely on

a more direct observation of the data to gauge its diversity [158, 133, 72].

In this chapter, we attempt to formalize the problem of visualizing diversity patterns

as distributions of separate attributes in large, multivariate data sets. Our primary con-

tribution is a visual representation called the Diversity Map (DM), which is specifically

intended to help users understand the diversity patterns of a large set of multivariate

1The material in this chapter was previously published with co-authors Rob Hess, Crystal Ju, Eugene
Zhang, and Ronald Metoyer in [119] and co-authors Steven Highland, Ronald Metoyer, Donald Henshaw,
Jeff Miller, and Julia Jones in [120].
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objects (Figure 3.1a). DM is designed to be efficiently perceived to give an accurate

initial impression of a data set’s overall diversity, while also allowing the user to explore

relationships and interrogate the raw data using an overview as the interface.

We also contribute a precise definition of diversity based on the one used by ecologists

in discussing species diversity, a set of requirements for diversity visualizations based on

this definition, and a design for a formal user study intended to understand the effec-

tiveness of a visual representation in communicating diversity information. We evaluate

DM by using this study design to compare it to Pearlman et al.’s Glyph Hybrid visu-

alization [114], the only other representation specifically designed to visualize diversity

(Figure 3.1b). In comparing user performance between Pearlman et al.’s representation

and DM, we show that users can as or more accurately judge elements of diversity using

DM. The results across task questions are also more consistent for DM.

Finally, we deployed an interactive version of DM for use by ecologists. In the Oregon

State University H.J. Andrews Experimental Forest, researchers have collected data on

diversity and abundance of moth species [107, 106]. The data are of particular interest

to ecologists because moths are indicators of broader biological diversity in plant types

and physical environments. We illustrate the value of the DM visualization by several

example scenarios of ecologists exploring the moth data sets and we discuss what we

have learned from our interdisciplinary collaboration.

3.2 A Definition of Diversity and Design Requirements

3.2.1 Defining Diversity

Before discussing its visualization further, we must first establish a more thorough defi-

nition of diversity. With this in place, the requirements for a successful diversity visual-

ization will become more clear.

The data sets in which we are interested represent observations of populations of

objects (e.g. students, moths, stocks, etc.) that are described by multiple variables, or

attributes (e.g. GPA, ethnicity, gender, etc.). To define the diversity of such a set, we

borrow from the established field of Ecology, where biological diversity is defined as “the

variety and abundance of species in a defined unit of study” [101].

Two measures of diversity are used in Ecology: richness, which is simply the number
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(a)

(b)

Figure 3.1: A synthetic data set of medium-diversity visualized using the Diversity Map
(a) and the Glyph Hybrid [114] (b). The data set contains 1000 objects and 6 attributes
(SAT verbal, SAT math, SAT writing, ethnicity, gender, and income level). Visual
mappings of the attributes in the Glyph Hybrid are described in Figure 3.9.
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of species in the unit of study represented out of all possible species; and evenness, which

describes the variability in species abundances [101]. Generalizing from Ecology, we say

that a population sample is diverse with respect to a specific attribute if it exhibits a

rich variety of values of that attribute and if each of those values is evenly abundant.

In other words, high diversity corresponds to a uniform distribution of objects across all

possible values of an attribute. We extend the definition of diversity to sets of arbitrary

objects described by many different attributes by simply defining overall diversity as the

aggregated diversity over all attributes being considered.

As an example of how this definition is applied, consider analyzing the diversity of

a university’s potential incoming freshman class. In particular, if we are considering

the diversity of different populations of applicants with respect to their income levels,

then a very diverse population will contain a similar number of applicants (i.e. even

abundances) in each of many possible income brackets (i.e. a rich variety). In contrast,

a very non-diverse population might contain applicants in only a single income bracket

(i.e. no variety) or mostly applicants in a single income bracket with very few applicants

in each of the others (i.e. very uneven abundances). The diversity of other attributes,

such as GPA, ethnicity, gender, etc., would also contribute to the overall diversity of a

particular population of applicants.

3.2.2 Design Requirements

Beyond our definition of diversity, we also borrow several conventions from the study of

species diversity. Specifically, we adopt individual objects as our unit of measure, and,

as in the study of species diversity, we treat all possible values of an attribute and all

individuals in a population sample as equal. Additionally, since we have extended the

definition to account for diversity over many attributes, we adopt the added convention

that all attributes are treated as equal (i.e., equally perceived by the user).

In order to adequately convey diversity as defined above, a visualization should pos-

sess the following properties:

• Communicates the attributes of interest, the richness in variety of the values of each

attribute, and the evenness of abundance of the population sample of interest over

the values of each attribute while considering all attributes and objects equally.
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• Scales well to large multivariate data sets, i.e. ones containing many objects (>

1000) and many attributes (> 5).

• Enables users to make judgments about diversity with little effort through an

efficient perceptual encoding (while ideally, the visualization should be designed

so that the user perceives diversity preattentively, i.e. without focused attention

[153], we understand that this is difficult for large attribute spaces).

3.3 Related Work

In this section, we review a subset of existing multivariate visualization techniques,

emphasizing those that apply to the problem of exploring the diversity of a set of objects

in separate attributes, as defined earlier. We focus only on representation methods and

organize our review based on the taxonomy proposed by Keim [83].

3.3.1 Standard 2D/3D Displays

Techniques such as scatter plots, box plots, bar charts, and histograms effectively sup-

port tasks such as finding outliers, gaps, clusters, and correlations over a small number

of attributes [136]. However, while the box plot is well suited to displaying evenness of

abundance, it fails in communicating richness of variety and is not applicable to categor-

ical data. Likewise, without additional encoding, the scatter plot may lead to ambiguous

communication of evenness of abundance due to occlusions caused by data overlap. A

rectangular heatmap can be viewed as a special case of the scatter plot where a value is

plotted for every combination of the two mapped attribute values and a point is replaced

by a colored square. Like the scatter plot, heatmaps are limited to displaying diversity

over only the two attributes being mapped. However, occlusion is no longer a problem.

The histogram, in particular, is well suited to showing richness in variety and the even-

ness of distribution of objects over a single attribute. As noted, all of these approaches

typically display only one or two attributes of interest.

The use of multiples may solve some of these problems. For example, scatter plot

matrices may provide useful representations of diversity (Figure 3.2), especially for high

and low diversity cases, but intermediate values may be difficult to disambiguate due

to data overlap. While jittering techniques [29] may help alleviate this problem, they
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may give the misleading appearance of evenness when it is not actually present. A

matrix of heatmaps would avoid the data overlap issue and could be an interesting

approach to viewing diversity (both richness and evenness). Multiples in matrix form,

however, require screen space that grows with the square of the number of attributes.

Multiples of histograms could be a powerful method for diversity visualization, since

these appear capable of conveying both richness of variety and evenness of abundance.

However, it is not clear how well overall diversity is communicated by multiple spatially

separated histograms. The Diversity Map representation, described in Section 3.4, is

in fact a multiple histogram representation with an alternative encoding that facilitates

communication of overall diversity.

Figure 3.2: Scatterplot matrix representing Edgar Anderson’s Iris data set [39]. The
example is created with the D3 toolkit [16].

Alternatively, rank/abundance—or Whittaker—plots [158] are commonly used by

ecologists to visualize species abundance distribution. The representation is a variation of

the scatter plot in which species are ranked from most to least abundant and then plotted

along the x axis, while the y axis shows the relative abundance of species. The shape of
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the resulting curve provides insight into species evenness (or dominance). Although this

approach is specific to species abundance, it and the other standard approaches serve as

a starting point for exploring techniques for visualizing distributions of data over many

dimensions.

3.3.2 Geometrically Transformed Displays

Geometrically transformed displays map one object to a set of points and lines in 2D

or 3D space [83]. This category includes graph visualizations and coordinate-based

visualizations. While graph-based visualizations are important in many fields, we do not

discuss them because we assume that limited (or no) explicit relationship information is

present in the data sets we consider.

Coordinate-based visualizations extend standard 2D/3D displays by performing ge-

ometric transformations and projections of data onto coordinate axes. Data attributes

are typically preserved and treated equally during this process. These techniques are

generally applicable to multivariate data sets and offer potential solutions to the diver-

sity visualization problem. Examples include parallel coordinates [75, 73] and related

variants [59, 86], and star coordinates [81].

Parallel coordinates [75, 73] are well-suited to visualizing various types of multivariate

data (quantitative, ordinal, or nominal) and revealing data correlation between attributes

(Figure 3.3). However, visual clutter becomes a limitation as the number of objects

increases. Refinements to parallel coordinates have attempted to address visual clutter

with brushing [59], clustering [44, 9], and dimension reordering [115].

Despite these improvements, accurately judging richness of variety and evenness of

abundance may still be difficult using parallel coordinates, especially for larger data sets.

However, several variants of parallel coordinates overcome this limitation by providing

information on the distribution of values for each attribute [59, 86].

In one variant, a histogram is overlaid lengthwise on each parallel axis [59], and bin

intervals are created for quantitative attributes by partitioning them into ranges. Each

histogram communicates both the richness of variety and the evenness of abundance of

the values of the corresponding attribute. However, the (necessary) spatial separation

of the histograms in this approach may likely affect the user’s ability to interpret overall

diversity without significant effort.
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Figure 3.3: Parallel coordinates representing Edgar Anderson’s Iris data set [39]. The
example is created with the D3 toolkit [16].

The Parallel Sets [86] technique is another variant of parallel coordinates that tar-

gets categorical data in particular. This representation adopts the layout of parallel

coordinates and uses a box to represent each possible value of a categorical attribute.

Box size is scaled lengthwise along the axis in proportion to the frequency of the value

in the data set. Connections between values of two different attributes are also scaled

according to their frequency values. Parallel Sets convey the distribution of objects over

the values of an attribute (i.e. the evenness of abundance for an attribute), as well as

relationships between the distributions of values across multiple attributes. However,

while this approach scales to large data sets, the number of possible attribute values it

can display is limited due to space restrictions. In addition, the boxes corresponding to

outliers, i.e. attribute values exhibited by very few objects, can become imperceptibly

small. Moreover, this method does not display attribute values not represented in a par-

ticular data set. When combined, these limitations make it very difficult to accurately

perceive richness of variety using Parallel Sets.

Star coordinates [81] is well-suited to visualizing the overall distribution of a set

of objects. Unfortunately, the mapping between a data point and its location in star

coordinates is many-to-one. That is, several different data points with equal vector sums

will end up in the same location. This ambiguity makes it difficult to discern richness of

variety and evenness of abundance over the attribute space.
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Figure 3.4: A Parallel Sets visualization showing the Titanic data set with three at-
tributes: Class, Sex, and Survived. Image reused with permission from Kosara et al.
[86]. Copyright c©2006 IEEE.

3.3.3 Icons, Dense Pixels and Stacked Displays

Several other classes of multivariate visualization techniques have been developed that

are not well suited to diversity visualization. Icon-based displays, such as Chernoff faces

[27], typically treat attributes differently and as a result, some visual features of the icons

(e.g. color) may draw more attention than others, thus violating our requirement of equal

consideration for all attributes. Star glyphs, on the other hand, give equal treatment

to attributes, however this approach will not scale well with a large number of objects

due to occlusion. While dense pixel displays scale well with the number of objects [82],

they do not necessarily display all possible values (only the ones represented in the data

set), making it difficult to gauge richness of variety. Stacked display techniques represent

data in a hierarchical fashion and are often space-filling approaches where a hierarchy is

nested (or stacked) [93, 78, 140]. Since we are not specifically concerned with hierarchical

data, these techniques are not considered further.

Finally, there is a large group of approaches that fall into the category of data prepro-

cessing techniques that generally manipulate the data to reduce the number of dimensions

and/or the number of objects [152, 6, 162]. While these approaches are popular in many
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fields as a starting point for exploring data, they typically result in a loss of information

and sometimes yield results that are reduced to a non-intuitive space and are thus dif-

ficult for users to interpret, especially with respect to the richness of variety. Thus, we

do not consider these techniques further in this chapter.

3.3.4 Hybrid Techniques

Hybrid techniques integrate multiple visual representations in one or more windows. The

most relevant technique in this class is Pearlman et al.’s glyph-based approach [114], the

only proposed technique to explicitly address the problem of visualizing the diversity of a

set of objects. Pearlman et al. focus on communicating both diversity, loosely defined as

the distribution of attribute values across a set, as well as depth, defined as the attribute

values of individual members of the set. This technique represents objects as glyphs in

a coordinate frame, where three attributes (of possibly many) are used to map objects

to the 2D space of the frame in much the same way as multi-dimensional objects are

mapped to 2D space using star coordinates (See Figure 3.9). Other glyph properties,

such as shape, size, opacity and color are used to represent additional attributes and are

typically described in an accompanying legend. Unfortunately, the number of attributes

that can be successfully encoded using this technique is limited by the perceptual and

cognitive loads placed on the user by icon-based approaches. Moreover, the number of

objects that can be successfully visualized using this technique is limited by occlusion.

Nonetheless, this representation is important, since it is the first to explicitly address

the problem of visualizing diversity in multivariate data, and we revisit it in Section 3.6

where we formally compare its ability to communicate diversity information to that of

our Diversity Map representation.

3.4 The Diversity Map Representation

To address the shortcomings of previous approaches, we developed a novel representation

called the Diversity Map (DM) for visualizing the diversity of a set of objects. In this

representation, depicted in Figure 3.5, each attribute is represented as one of a set

of parallel axes, similar to the parallel coordinate layout. Unlike traditional parallel

coordinates, however, each object is represented in DM by placing a semi-transparent
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(a) Very low diversity (b) Medium diversity

(c) Very high diversity

Figure 3.5: Synthetic data sets of (a) very low-, (b) medium-, and (c) very high-diversity
visualized using the Diversity Map representation. Each visualized data set contains
1000 objects and 6 attributes (columns from left to right: SAT verbal, SAT math, SAT
writing, ethnicity, gender, and income level). The very high-diversity data set is 6 times
more diverse than the very low-diversity one.

rectangle on each attribute axis at the locations corresponding to the object’s attribute

values. In other words, for a data set containing N attributes, each object is represented

by placing one semi-transparent rectangle on each of N parallel axes. Note that in

our approach, we discretize continuous numerical attributes. We refer to the distinct

locations along the attribute axes corresponding to discrete attribute values as bins.

To satisfy the requirement from Section 3.2 that all objects are treated equally, each

semi-transparent rectangle contributes an equal, fractional amount of opacity to the bin

in which it is placed. To satisfy the requirement that all attributes are treated equally,

we normalize the opacity values on a per-attribute basis so that bins corresponding to



29

A(0)

B(0)

C(1)

D(0)

E(0)

A(0)

B(0)

C(1)

D(0)

E(1)

A(0)

B(0)

C(5)

D(0)

E(1)

A(0)

B(2)

C(5)

D(0)

E(1)

A(5)

B(2)

C(16)

D(25)

E(7)

Start: 1 “C”
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Add 5 “A”, 11 “C”, 25 “D”, 6 “E”

Figure 3.6: The process of visualizing a single attribute using DM. The depicted attribute
has five possible values (A, B, C, D, and E). The visualization begins with a single object
with attribute value “C,” and objects with other attribute values are added in subsequent
steps. At each step, the number of objects in each bin is shown in parentheses next to
the bin’s label and the opacity (α-value) of each bin is calculated as described in the
text. Note that, while it is instructive to illustrate the process step-wise, as above, our
implementation simply aggregates object counts and computes opacity values in a single
step. Also, note that for a multivariate data set, every object would contribute to each of
the parallel attribute axes in the same way as depicted above, resulting in a visualization
as depicted in Figure 3.5(b).

attribute values not represented in the visualized data set are fully transparent (i.e. α = 0

in RGBA color space), and the bin(s) corresponding to the most abundant attribute

value(s) in the data set are fully opaque (i.e. α = 1). The opacity of every remaining bin is

calculated based on the ratio of the number of objects in that bin to the number of objects

in the bin corresponding to the most abundant attribute value. We have empirically

found that using the square-root of the number of objects per bin in this calculation helps

to make bins corresponding to attribute values with low abundance more recognizable.

Specifically, the opacity of each bin x is calculated as α(x) =
√
|x|/|xMAX |, where |x|

denotes the number of objects in bin x, and xMAX is the bin with the most objects

for the attribute in question. Figure 3.6 illustrates the process of visualizing a single

attribute using DM.

An alternative way to view our design is to imagine each attribute axis as a histogram
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over the values of that attribute constructed in 3D space by stacking semi-transparent

tiles on top of each other, as illustrated in Figure 3.7. When viewed from above, the

taller stacks of tiles appear darker, while the shorter stacks appear lighter, according to

the total combined contribution of the tiles in each stack to that stack’s opacity.
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Figure 3.7: Each attribute axis of DM can be viewed as a histogram over the values of
that attribute constructed in 3D space by stacking semi-transparent tiles on top of each
other.

3.4.1 Design Considerations

As indicated earlier, our primary goal in designing DM was to make easily apparent the

richness of variety and the evenness of abundance of the attribute values exhibited in

the data set being visualized. While we do not explicitly calculate or assign values for

richness and evenness, we consider them to be quantitative features of the data, in that

we can think of one data set as being more or less rich or even than another. For this
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reason, we have chosen visual encodings that are known to be effective for conveying

quantitative information.

Specifically, we encode variety using spatial position by assigning a distinct 2D lo-

cation, or bin, to each of the possible discrete attribute values that can be taken by

objects in the visualized data set, and we encode abundance using opacity, with each

semi-transparent rectangle representation of an object’s attribute value contributing a

constant, fractional amount of opacity to the bin in which it is placed. Under this encod-

ing, more abundant regions of attribute space are indicated by visual regions of higher

opacity.

Because spatial position ranks in the visualization literature as the most effective

encoding for quantitative information [29, 99], it is easy to justify its use in our design.

However, several other quantitative encodings, such as angle, slope, and area, rank higher

than opacity [29, 99]. Unfortunately, these encodings appear to conflict with our chosen

spatial encoding. In contrast, we found that opacity serves as a natural complement to

the spatial encoding and allows us to elegantly convey both the richness of variety and

the evenness of abundance of the visualized data. In particular, under this combination

of encodings, “occlusions” in the 2D visual plane that result from one or more objects

sharing a certain attribute value serve simply to increase the opacity of that visual region,

thereby indicating increased abundance.

In DM, richness of variety is expressed by the number of bins with non-zero opacity,

and evenness of abundance is expressed by the uniformity of the color distribution across

the bins of a single attribute, as well as over the entire visualization. In other words, the

more rich is the variety of a given data set, the more non-transparent bins it will yield,

and the more even is the abundance across the data set, the more uniform will be the

colors of the bins.

The overall diversity of a given data set—that is, the combined diversity of all its

attributes—is communicated by DM as the overall color density of the entire visual re-

gion: as the visualized data set becomes more richly various and more evenly abundant,

more bins will exhibit a similar non-transparent color. In the limit of “perfect” diversity,

where all possible values of each attribute are represented equally, the entire visual re-

gion will be a solid, completely opaque color. Conversely, a set with little diversity will

produce a visualization with regions of very high contrast. As examples of these phe-

nomena, consider the synthetic data sets with zero and near-perfect diversity visualized
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using a Diversity Map in Figures 3.5 (a) and (c).

Finally, we note that DM is specifically designed to provide a holistic overview of the

population sample of interest. As Shneiderman notes, [141], providing an overview of

the data is an important part of a visualization system, as overviews help the user build

a mental model of how the data covers the attribute space. This model in turn helps

the user formulate actions such as queries [126]. Indeed, a good overview representation

should serve as a gateway by allowing the user to interact with the visualization in order

to investigate the data based on the mental model he or she has formed. While we

reserve deeper investigation of this matter for future work, we simply note that DM is

designed to serve as just such a gateway.

3.4.2 Application to Real-world Applicants Data

We also explore the application of Diversity Map to real-world data. As an example, we

applied Diversity Maps to a real data set containing 2550 applicants (one year worth) to

a particular university. Each applicant is characterized by ten attributes. Interestingly,

this real data set was preprocessed using an existing proprietary software package de-

signed to recommend a set of applicants using a holistic evaluation process intended to

produce a diverse incoming class2. The DM visualizations of this data set are shown in

Figure 3.8. These results are promising in that they agree with the output of the holistic

evaluation software.

3.5 User Study Design

In this section, we describe a formal user study designed to measure a given visualization’s

ability to communicate diversity information. In particular, the study is a controlled user

study intended to be conducted in a laboratory setting, and it is designed to compare the

visualization of interest against a given baseline visualization. There are two important

components to this design: (1) a method for generating synthetic data sets with con-

trollable, varying levels of diversity and (2) a set of questions, each of which is meant to

assess a study participant’s ability to comprehend a particular aspect of diversity using

each of the visualizations under comparison. We describe these components next.

2http://www.applicationsquest.com/
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Figure 3.8: A real data set of 2550 college applicants with 10 attributes visualized using
DM. Left: the subset of students recommended for acceptance based on a holistic admis-
sions process implemented by a proprietary software package and designed to produce
a diverse incoming class. Right: the subset of rejected students. The recommended
students yield a visualization with a more even distribution of opacity, especially in at-
tributes like GPA, ethnicity, residency, and major (columns 1, 4, 6, and 8 respectively).
This suggests that the recommended applicants are more diverse than the rejected ones.

3.5.1 Synthetic Data Generation

While, ideally, we would use a real data set to evaluate a visualization, we require data

with specific distributions of values over attributes. Since it is difficult to find data

sets that can accommodate this requirement, we developed a technique for creating

synthetic data sets of controllable, varying diversity over a set of independent attributes.

In particular, our procedure generates synthetic sets of objects over a manually defined

set of attributes and attribute values, where the richness of variety and evenness of

abundance over each attribute is controlled and measured.

Our data generation procedure is based on the Shannon index, or Shannon entropy,

a measure of diversity that is widely used in ecology [139, 158, 87]. Shannon entropy

is also used in other fields, such as information theory, where it is used to measure the

amount of information contained in a coded message. In its general form, the entropy of

a single random variable, X (in species diversity, X corresponds to species; in the more

general case, it could correspond to any single attribute) is

H(X) = −
S∑

i=1

p(xi) log p(xi), (3.1)
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where {x1, . . . , xS} is the set of possible values of X and p(xi) is the probability that X

takes value xi. In species diversity, for example, x1, . . . , xS represent the possible species

and p(xi) represents the probability of observing one particular species xi. In practice,

we compute p(xi) as the ratio of the number ni of instances of value xi to the total

number N of individuals in the set, i.e. p(xi) = ni
N . In other words, p(xi) represents the

relative abundance of value xi in the total set.

H(X) is directly proportional to the level of diversity within a single attribute, in

that higher values of H(X) correspond to richer variety and more even abundances.

Unfortunately, it is difficult to compare values of H(X) across attributes, since it is

scaled to the number of possible values of the attribute being measured. This implies

that an attribute with many possible attribute values (e.g. the home state of a student)

may be considered more diverse under entropy than an attribute with few possible values

(e.g. the gender of a student), even if it is not.

In order to meet our requirement from Section 3.2 that all attributes are considered

as equal, we have adapted a variant of the Shannon index known as the evenness measure

[124], which normalizes the value of H(X) by its maximum possible value:

Hmax(X) = −
S∑

i=1

1

S
log

1

S
= logS. (3.2)

Thus, the evenness of attribute X is

HE(X) =
H(X)

Hmax(X)
= − 1

logS

S∑
i=1

p(xi) log p(xi). (3.3)

Note that, despite its name, this measure captures both the richness and evenness of

attribute X. In particular, richness, which measures the number of values of represented

out of all possible values of X, is indicated by the number of values xi with non-zero

probability. The more of these that are present for attribute X, the higher the value

of HE(X). Likewise, evenness is indicated by the uniformity of the probabilities p(xi),

and HE(X) is maximized when each attribute value xi occurs with the same probability.

An important property of this measure is that it always takes a value between 0 (zero

diversity) and 1 (full diversity).

In our setting, we have one variable Xk corresponding to each attribute, and we hand-
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specify the possible values {xki }S
k

i=1 for each attribute Xk. We model the distribution

p(xki ) over the possible values of each attribute as multinomial. In other words, associated

with each possible attribute value xki is a weight wk
i , where wk

i ≥ 0 for i = 1, . . . , Sk and∑
iw

k
i = 1, and the attribute values in a given set are distributed in proportion to those

weights.

To rigorously test visualization methods, we wish to be able to generate data that

achieves a pre-specified target value H∗E(Xk) of the evenness measure for each attribute

Xk. We model this as a set of separate non-linear optimization problems, one for each

attribute. The objective for each problem is to find the set of weights {wk
i }S

k

i=1 that

minimizes the squared error between the resulting evenness HE(Xk) and the target

evenness H∗E(Xk). We solve for these weights using a gradient-based quasi-Newton

method.

Once the distribution p(xki ) is specified with weights {wk
i }S

k

i=1 for each attribute Xk,

we generate synthetic data by simply drawing samples from each of these distributions

and using the jth sample for each attribute as the corresponding attribute value of the

jth object in the data set. Then we use H =
∑

kHE(Xk) as a measure of the overall

diversity of a particular data set.

3.5.2 User Study Questions

Our user study contains four types of questions. Each type is designed to assess a

different aspect of the user’s ability to perceive diversity using a particular visualization.

We outline each question type here.

Q1: Between two visualizations generated with the same method, which picture rep-

resents a more diverse set of objects? (possible answers: picture A or picture B) The

primary goal of this question type is to determine if a visualization technique is discrim-

inative enough to allow a user to distinguish and compare the levels of overall diversity

depicted in two visualizations generated with the same technique. The difficulty of each

question of this type can be determined by the difference in the overall diversity values

H between two visualized data sets. The bigger this difference, the easier the question

is.

Q2: How diverse is the data set represented in this picture? (possible answers: very

low diversity, low diversity, medium diversity, high diversity, very high diversity) This
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question type is intended to identify how well a user can interpret and assign a diversity

value to a visualization given baseline examples of zero and full diversity (which we

provide to users in tutorials; see Section 3.6). The level of diversity of a data set is

determined based on its overall diversity value H.

Q3: What is the most/least diverse attribute in the data set represented in this pic-

ture? (possible answers: the possible attributes) This question type is designed to under-

stand the participant’s ability to identify relative differences in diversity among attributes

that may have different levels of richness of variety or evenness of abundance. The dif-

ficulty of each question of this type can be determined by the difference between the

values of the evenness measurements HE(Xk) of the most/least and second-most/least

diverse attributes. The bigger this difference, the easier the question is.

Q4: Which value of attribute X contains the most/least objects? (possible answers:

possible values of attribute X) The last question type is designed to determine the

participant’s ability to isolate attribute values with high and low relative abundance

of objects, given a particular attribute to inspect (e.g. ethnicity). The difficulty of

each question of this type can be determined by the difference between the number of

objects exhibiting the most/least abundant attribute value and the number exhibiting

the second-most/least abundant attribute value. The bigger this difference, the easier

the question is.

In a study, questions of each question type are the same in terms of wording. However,

they can be asked multiple times on different data sets to vary the difficulty (Q1, Q3,

Q4) or the level of diversity (Q2). For each of these question types, ground-truth answers

are based on the distribution of objects and the evenness measure values obtained using

our synthetic data generation method.

3.6 User Study Implementation and Results

In this section, we use the formal user study described in the previous section to evalu-

ate the effectiveness of the Diversity Map representation (DM; Figure 3.5) at conveying

diversity information by comparing it to the Glyph Hybrid representation [114] (GH;

Figure 3.9) discussed in Section 3.3. We chose GH as the baseline for this comparison

because it is the only previous method developed specifically to visualize diversity. Nev-

ertheless, in the future work, it will be informative to compare DM with other traditional



37

multiples, such as multiple histograms.

Here we describe the specific implementation of the user study outlined in Section 3.5

that we used to compare the DM and GH representations, and we analyze and discuss

the results of this study.

3.6.1 User Study Implementation

Data. The synthetic data sets we used in our user study simulated college applicant

pools where the objects are applicants characterized by the following six attributes:

• SAT Verbal Score: 200-800, discretized by steps of 30

• SAT Math Score: 200-800, discretized by steps of 30

• SAT Writing Score: 200-800, discretized by steps of 30

• Ethnicity: B, H, I, O, W, or X

• Gender: F or M

• Income: Bracket 0, Bracket 1, Bracket 2, Bracket 3, or Bracket 4

We chose the college applicant application because it is one of the three applications

examined as a case study by Pearlman et al. [114] and because we believed it would

be an application with which our participants, who were all university students, would

be familiar. We used single-letter labels as values of categorical attributes (e.g., B,

H, I, . . . for Ethnicity) to prevent participants from associating their own knowledge of

demographics (e.g. ethnic differences) into their answers.

Participants and Protocol. The participants in our study were 40 students at our

university, all with normal color vision. All of the participants volunteered to participate

in our study in response to fliers posted around the campus. They represented a diverse

range of majors, degrees, and ages (Figure 3.10), and, although their participation in

our study might indicate interest in diversity visualization, most of the participants were

unfamiliar with the field of information visualization.

After the signing of an informed consent document required by our university’s Insti-

tutional Review Board, each participant was randomly assigned to different experimental

conditions as described below. Participants were encouraged to ask any questions they

might have at any time during the course of the study.
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(a) (b)

(c)

Figure 3.9: Synthetic data sets of (a) very low-, (b) medium-, and (c) very high-diversity
visualized using the Glyph Hybrid (GH) representation (the accompanying legend is
not shown). Each visualized data set contains 1000 objects and 6 attributes (SAT ver-
bal, SAT math, SAT writing, ethnicity, gender, income level). The SAT attributes are
mapped to the 3 coordinate axes. Ethnicity, gender, and income are mapped to color,
shape, and size of the glyphs respectively. Additionally, opacity encodes composite SAT
scores (as in Pearlman’s implementation) to remedy ambiguity caused by the many-to-
one mapping. The very high diversity data set is 6 times more diverse than the very low
data set. The data sets are identical to the ones in Figure 3.5.



39

Figure 3.10: Participants of the user study visualized using the Diversity Map. The
visualized attributes, from left to right, are major, degree, year in school, gender, and
age-range. The participants represented a diverse range of majors, degrees, and ages.

Experiment Design. We followed a two-phase crossover experiment design and used

two collections of synthetic data sets, collection A and collection B, for the two phases

to avoid learning effect when participants moved from one visualization method to the

other. Note that both data set collections are considered equivalent in all respects. They

were simply generated with separate runs of the data generation algorithm described in

Section 3.5.1.

Each participant’s session was divided into two phases. In the first phase, the par-

ticipant answered questions about visualizations of one collection of data sets created

with one visualization method. In the second phase, the participant answered the same

questions about visualizations of the other collection of data sets using the other vi-

sualization method. The order of visualization methods and data set collections was

counter-balanced across participants (see Table 3.1).

In each phase, the participant first completed a short tutorial that explained the vi-

sualization method involved in the phase and included several example images generated
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Table 3.1: Allocation of 40 participants across four treatments. E.g., 10 (DM, A)–(GH,
B) indicates 10 participants answered questions on collection A with DM in phase 1 then
on collection B with GH in phase 2.

10 (DM, A)–(GH, B) 10 (DM, B)–(GH, A)
10 (GH, B)–(DM, A) 10 (GH, A)–(DM, B)

using that method. After completing the tutorial, the participant answered several ques-

tions of each of the types described in Section 3.5. Note that participants were supplied

with a hard copy of each tutorial to consult while answering these questions. Note also

that the questions of one type are the same, but each one is asked about visualizations

of different data sets. The ordering of question types was randomized across two phases

and across participants, but all questions of the same type were asked as a block.

Each participant answered six questions of type Q1. A secondary goal for this ques-

tion type was to determine whether data set size affected participants’ ability to judge

and compare overall diversity levels. Thus, each participant was asked Q1 questions of

three levels of difficulty (easy, medium, hard) for each of two different data set sizes (100

and 1000 objects). Half of the participants answered questions using the smaller data

sets first and the larger ones second, and the other half answered questions using the

larger data sets first and the smaller ones second. The order of the three difficulty levels

was randomized within each data set size for each participant. This ordering convention

was chosen to avoid ordering effects among participants.

Each participant answered three questions of type Q2, and six questions each of

types Q3 and Q4. To avoid ordering effects for these questions, we used a counterbal-

ancing/randomization approach similar to the one used with Q1 questions. For all of

these questions, we used data sets with only 100 objects. Though our goal is to de-

velop visualizations that can handle data sets with more that 1000 objects, we believed

that GH would suffer with larger data sets because of occlusion/clutter. To compare

the capabilities of the respective methods to effectively communicate information about

diversity, we used data sets with only 100 objects so as not to disadvantage GH.

We collected answers to these questions not only to measure absolute correctness but

also to identify how far each participant’s response was from the correct answer. We

accomplished this by assigning an error distance to each response. For questions of type
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Q1, correct responses were assigned an error distance of 0, while incorrect responses were

assigned an error distance of 1. For questions of type Q2, Q3, and Q4, the error distance

of each response was computed as the rank order of the participant’s selected response

in relation to the correct answer. In particular, the best (correct) answer was assigned

an error distance of 0, the second-best answer was assigned an error distance of 1, the

third-best answer was assigned an error distance of 2, and so on. As an example, consider

a question of type Q2 whose correct answer was “low diversity.” For this question, a

response of “very low diversity” would be assigned an error distance of 1, as would a

response of “medium diversity,” while a response of “high diversity” would be assigned

an error distance of 2, and a response of “very high diversity” would be assigned an error

distance of 3. We used a similar system to assign error distances for questions of type

Q3 and Q4 based on the diversity ordering of the attributes and the cardinality ordering

of the attribute values, respectively.

We also collected response times in addition to error distances. Participants were

given a time limit of two minutes to answer each question. If the participant did not

answer the question in the allotted time, the system timed out and sent the participant

to the next question. The participant was assigned the maximum possible error distance

for the question type for any question on which he or she timed out.

In addition to the questions of type Q1-Q4, at the end of each phase, the partici-

pants answered a short questionnaire about their experience with each method. This

questionnaire contained both Likert-style questions as well as open-ended questions. We

discuss these questions in more detail in our analysis of the study results below.

The entire study was administered through a web-based interface that collected de-

mographic information, presented tutorials and questions, collected user answers, com-

puted error distances and response times, and stored these in a database for analysis.

The resolution of the monitor used was the standard 1920× 1200 pixels. The resolution

of each image produced by the DM visualization was 900×537 pixels, and the resolution

of each image produced by the GH visualization was 640× 640 pixels. Each question for

the GH method required a legend image of 200× 524 pixels. When the legend is taken

into account, visualizations of both methods are roughly the same size.
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3.6.2 Results and Analysis

Here, we analyze the results obtained from the user study. Our initial hypothesis about

these results was that, for each question type, DM would outperform GH, both in terms

of accuracy and response time. In particular, we believed that GH would suffer for some

questions due to the fact that it does not treat all attributes as equal. Specifically, we

expected users to have difficulty accurately judging diversity for the attributes mapped to

GH’s three spatial axes, due to the ambiguous many-to-one mapping these axes produce.

We also expected GH to suffer in terms of time and/or accuracy due to the need for users

to consult the legend to remember the mappings.

For each question type, we did not analyze individual answers but computed the sum

of error distances and the sum of response times across the questions of that type for each

participant and compared the distributions of these aggregated values using statistical

hypothesis testing. While we initially planned to use ANOVA (Analysis of variance)

and repeated-measures ANOVA directly for this comparison, we found that the response

data did not meet these methods’ normality requirements. We therefore first applied a

rank transformation [33] to the response data before using these techniques.

Our primary focus in analyzing the results of the study is on error distance, since

we believe this is the most important performance measure for a given representation.

However, we still pay close attention to response time, as well. In all cases, our null

hypothesis is that no difference exists between the distributions of corresponding perfor-

mance measures across the methods DM and GH.

We chose a two-phase crossover experiment design in order to reduce the number

of participants and to keep individual subject variability low. However, the design also

required us to account for additional within-subjects factors, namely, phase of method

(first or second) and collection of data sets (A or B). While we did not expect either

of these factors to have a statistically significant effect on our results, this was not the

case. Our preliminary analysis showed that the collection of data sets had a statistically

significant effect on the error distance for method GH. This effect was not statistically

significant for DM. As a result of this effect we analyze error distance separately for each

collection. In addition, our preliminary analysis showed statistically significant evidence

of an effect of phase of method on response time for DM. Specifically, participants per-

formed slightly faster with DM in the second phase of the study than in the first phase.
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Interestingly, there was no significant evidence for this effect for GH. Regardless, due to

this effect, we analyze response time using only data collected during the first phase of

participants’ sessions. Tables 3.2 and 3.3 respectively summarize the error distance and

response time results.

Analysis of Results for Q1. Between two visualizations generated with the same

method, which picture represents a more diverse set of objects? As Table 3.2 indicates,

participants answered Q1 questions more accurately with DM than with GH, particularly

for collection B. In fact, there is convincing statistical evidence for an effect of visualiza-

tion method on error distance with collection B, F (1, 38) = 7.53, p = 0.009. However,

with collection A, there is no evidence of such an effect, F (1, 38) = 0.21, p = 0.65. These

results hold consistent when analyzing data separately over 100 and 1000 object data

sets, suggesting no effect of data set size on accuracy for questions of this type. With

regard to response time, though Table 3.2 suggests that participants performed slightly

faster using GH in phase 1, the evidence for this effect is not statistically significant,

F (1, 38) = 1.20, p = 0.28.

While these results do not support our initial hypothesis that users would perform

more quickly when using DM than when using GH, they do substantiate our hypothesis

that users would be able to more accurately compare the diversity of two data sets

when using DM than when using GH. Examining these results more closely, we found

that much of the difference in performance between collections A and B for participants

using GH was accounted for by the fact that many participants (13 out of 20) incorrectly

answered one particular question of medium difficulty from collection B using GH. In

this question, the data set with lower overall diversity contained a very diverse Ethnicity

attribute, while the data set with higher overall diversity contained a very diverse Gender

attribute but a much less diverse Ethnicity attribute. In GH, the Ethnicity attribute is

mapped to glyph color and the Gender attribute is mapped to glyph shape. We believe

that in answering this question, participants placed more weight on the distribution of

color in the visualization than on the distribution of shape, misleading them into an

incorrect judgment of overall diversity. If this explanation is correct, it points to an

interesting consequence of GH’s unequal treatment of attributes. DM, on the other

hand, does not seem to suffer from this consequence because it treats all attributes as

equal.
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Table 3.2: Mean sum of error distances for each question type as a function of visualization method (DM or GH),
collection of data sets (A or B), and phase (P1 or P2). Standard deviations are shown in parentheses. The table
structure is split by collections of data sets because our preliminary analysis showed that the collection of data
sets had a statistically significant effect on the error distance for method GH.

Question Method
Collection A Collection B

P1 P2 P1&2 P1 P2 P1&2

Q1
GH 0.50 (0.71) 0.40 (0.52) 0.45 (0.60) 0.90 (0.74) 1.40 (0.70) 1.15 (0.75)
DM 0.60 (1.07) 0.30 (0.48) 0.45 (0.83) 0.50 (0.53) 0.60 (0.70) 0.55 (0.60)

Q2
GH 2.70 (1.25) 3.70 (1.06) 3.20 (1.24) 2.00 (0.94) 2.40 (0.97) 2.20 (0.95)
DM 2.10 (1.66) 1.70 (0.67) 1.90 (1.25) 1.70 (0.67) 2.10 (0.74) 1.90 (0.72)

Q3
GH 16.10 (2.02) 15.70 (3.09) 15.90 (2.55) 9.10 (3.31) 9.30 (2.98) 9.20 (3.07)
DM 3.60 (4.53) 3.50 (4.88) 3.55 (4.58) 5.50 (3.27) 4.70 (4.03) 5.10 (3.60)

Q4
GH 2.20 (1.40) 1.20 (1.40) 1.70 (1.45) 2.90 (1.60) 3.10 (2.02) 3.00 (1.78)
DM 0.50 (1.27) 1.90 (3.38) 1.20 (2.59) 0.70 (1.89) 3.30 (8.27) 2.00 (5.99)

Table 3.3: Mean sum of response times (in seconds) for each question type as a function of visualization method
(DM or GH), phase (Phase 1 or Phase 2), and collection of data sets (A or B). Standard deviations are shown in
parentheses. The table structure is split by phases because our preliminary analysis showed statistically significant
evidence of an effect of phase of method on response time for DM.

Question Method
Phase 1 Phase 2

A B A&B A B A&B

Q1
GH 114.40 (53.74) 120.50 (66.44) 117.50 (58.90) 105.70 (53.22) 93.40 (37.66) 99.55 (45.31)
DM 151.60 (88.32) 121.90 (44.42) 136.80 (69.73) 79.40 (37.89) 91.20 (24.05) 85.30 (31.48)

Q2
GH 53.90 (37.73) 56.00 (21.29) 54.95 (29.84) 41.20 (23.19) 50.00 (23.75) 45.60 (23.29)
DM 66.90 (26.54) 53.60 (15.21) 60.25 (22.13) 38.70 (31.73) 43.20 (17.85) 40.95 (25.16)

Q3
GH 179.70 (61.18) 208.40 (85.49) 194.10 (73.84) 216.50 (61.67) 180.80 (46.88) 198.70 (56.37)
DM 143.60 (43.96) 153.30 (43.21) 148.40 (42.72) 98.50 (34.95) 105.30 (29.61) 101.90 (31.72)

Q4
GH 130.50 (44.94) 118.00 (34.91) 124.20 (39.69) 97.10 (18.88) 108.10 (55.89) 102.60 (40.99)
DM 93.40 (42.86) 120.90 (76.02) 107.20 (61.70) 86.10 (43.18) 53.40 (23.33) 69.75 (37.71)
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Analysis of Results for Q2. How diverse is the data set represented in this picture?

The results for Q2 were similar to Q1’s, with participants tending to judge absolute

levels of overall diversity more accurately with DM. Again, with GH, users’ performance

depended heavily on data set collection: participants using GH performed worse on

collection A than on collection B. In fact, for collection A, there was convincing evidence

for an effect of visualization method on error distance, F (1, 38) = 15.02, p = 0.0004. For

collection B, there was not statistically significant evidence for this effect, F (1, 38) = 1.56,

p = 0.22. Again for Q2, there was no evidence for an effect of method on response time

in phase 1, F (1, 38) = 1.91, p = 0.18.

These results, too, do not support our initial hypothesis that users would perform

more quickly when using DM than when using GH, but they do sustain our hypothesis

that users would be able to more accurately assign an absolute diversity value to a given

data set when using DM than when using GH. Again, more closely examining these

results, we found that the three data sets used for Q2 questions from collection A (low,

medium, and very high diversity) tended to be more diverse than the corresponding

data sets from collection B (very low, medium, and high diversity). With this in mind,

we suspect that participants may have been more hesitant to choose a higher diversity

response when using GH than when using DM, perhaps because, while it is clear what

very low overall diversity looks like under GH (very few spatial locations, colors, shapes,

etc.; see Figure 3.9(a)), what very high overall diversity looks like under GH is much more

ambiguous (evenly “spread out” glyphs with evenly distributed colors, shapes, etc.; see

Figure 3.9(c)). On the other hand, using DM, it was likely much easier for participants

to understand exactly how very low and very high diversity appear visually (very low

and very high total color density of the entire visual region, respectively; see Figs. 3.5

(a) and (c)), and we believe this led them to be more confident in choosing responses at

both ends of the diversity spectrum when using DM for Q2 questions.

Analysis of Results for Q3. What is the most/least diverse attribute in the data

set represented in this picture? The results for Q3 very much favored DM. There was

convincing evidence for an effect of visualization method on error distance for both col-

lections of data sets, A and B, F (1, 38) = 75.54, p = 1.45×10−10 and F (1, 38) = 13.565,

p = 0.0007, respectively. In addition, there was suggestive but inconclusive evidence for

an effect of visualization method on response time in phase 1, F (1, 38) = 3.50, p = 0.07.

These results appear to confirm our initial hypothesis that users would perform better—
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both in terms of error distance and response time—when making judgments about the

diversity of a single attribute when using DM than when using GH.

Interestingly, participants using GH appeared to perform worse on Q3 questions

where the correct answer was an attribute assigned to a spatial axis, likely due to GH’s

ambiguous many-to-one spatial mapping. In contrast, participants using DM did not

appear to favor any single attribute for questions of this type. Again, this suggests that

DM’s treatment of all attributes as equal is one of its strengths.

Analysis of Results for Q4. Which value of attribute X contains the most/least

objects? As with Q3, the results for Q4 very much favored DM. For questions of this

type, there was convincing evidence for an effect of visualization method on error distance

for both collections of data sets A and B, F (1, 38) = 7.58, p = 0.009 and F (1, 38) = 25.18,

p = 1.26× 10−5, respectively, and there was suggestive but inconclusive evidence for an

effect of visualization method on response time in phase 1, F (1, 38) = 2.61, p = 0.11.

Again, these results support our initial hypothesis that users would be able to more

quickly and more accurately make judgments about relative abundances within a single

attribute when using DM than when using GH.

Summary. The results across Q1–Q4 consistently supported our hypothesis that users

would be able to make more accurate judgments about various aspects of the diversity of

data when using DM than when using GH. While we found some evidence suggesting that

users performed more quickly with DM than with GH, these results were not conclusive.

Similarly, we found no conclusive evidence that size of data set had an effect on user

performance for questions of type Q1.

3.6.3 Subjective Evaluation

After each participant answered all of the questions of types Q1–Q4 for a particular

method, he or she also completed a short questionnaire on that method. The ques-

tionnaire, whose form we adopted from [147], consisted of nine Likert-style statements,

where participants were asked to indicate their level of agreement on a scale of 1 (strongly

disagree) to 5 (strongly agree), and three open-ended questions.

Table 3.4 lists each of the Likert-style questions along with the participants’ mean

responses for both GH and DM. Participants slightly favored DM over GH in making

judgments of diversity components and this is consistent with their performance in the



47

objective portion of the study. Participants also slightly favored DM over GH in terms

of applicability, ease of understanding, and affinity.

Table 3.4: Mean responses to each of nine Likert-style statements presented to partici-
pants immediately after using each visualization method. These responses are based on
a scale of 1 (strongly disagree) to 5 (strongly agree). Standard deviations are shown in
parentheses.

Statement GH DM
L1) I was able to compare the diversity of two data

sets using this method.
3.75 (0.81) 3.93 (0.92)

L2) I was able to judge the diversity of a single
data set using this method.

3.63 (0.90) 4.25 (0.84)

L3) I was able to determine the most/least diverse
attributes in a data set using this method.

3.58 (0.96) 4.15 (0.86)

L4) I was able to determine the ethnicity with the
most/least objects using this method.

4.05 (0.88) 4.28 (0.82)

L5) After the initial training session, I knew how
to use this method well.

3.33 (0.83) 3.55 (0.99)

L6) After answering all of the questions, I knew
how to use this method well.

3.74 (0.88) 3.88 (0.91)

L7) There are definitely times that I would like to
use this method.

3.20 (1.04) 3.75 (0.93)

L8) I found this method to be confusing. 3.38 (1.21) 2.77 (1.13)
L9) I liked using this method. 2.95 (0.96) 3.50 (1.01)

In addition to the Likert-style statements, the questionnaires included the following

three open-ended questions:

O1) What aspect(s) of this method did you like most?

O2) What aspect(s) of this method did you dislike most?

O3) If possible, how would you change this method to improve it?

Many participants indicated an affinity for GH because it was intuitive, in that, as

the diversity of the underlying data increased, so too did the diversity of the visual

properties (color, shape, size, etc.) of the generated visualization. On the other hand,

many participants expressed concern about GH’s ambiguous spatial layout, which they

found confusing.
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Participants indicated that they liked the “clean layout” of DM; the simplicity of

comparing color opacity under DM; and its ability to easily handle different data set sizes.

On the other hand, some participants disliked comparing the diversity of an attribute

with several bins (e.g. ethnicity) to that of an attribute with only a few bins (e.g. gender).

Interestingly, though this appears to be an issue with GH as well, participants did not

seem to notice it when using GH.

Finally, most participants (29 out of 40) preferred DM to GH. In general, participants

tended to feel GH would be best suited for judging the overall diversity of a data set, es-

pecially to determine if the set is not diverse. Interestingly, this is in direct contradiction

to their performance in questions Q1 and Q2 which favored DM. In contrast, partici-

pants generally believed DM would be useful for investigating the data more deeply and

examining the diversity of separate attributes.

3.7 Formative Evaluation with Ecologists

We also deployed an interactive version of DM for use by ecologists at Oregon State

University. Initial findings indicate that the visualization is valuable for ecologists in the

early stages of data exploration, prior to further statistical analysis. Here we demonstrate

how the tool can help scientists gain insights into spatial and temporal patterns of

diversity and abundance in ecological data. The use of this tool is illustrated with data

on moth diversity and abundance from the H.J. Andrews Experimental Forest. The

data set has been difficult to analyze because the data set is large (> 69, 000 individual

moths), many species (> 500) are present, common species are widespread, and most

species are rare (see Figure 6.4).

3.7.1 Moth Diversity and Abundance Data

Ecologists have sampled moths in the 64−km2 H.J. Andrews Experimental Forest (HJA)

and Long Term Ecological Research (LTER) site within the Willamette National Forest,

Lane County, Oregon (Figure 3.12) for five years. Moths were sampled at 20 sites every

two weeks from May-October from 2004 to 2008, using UV light traps. Moth abundance

refers to the number of individuals caught in a single trap in a single night, or the total

number of individuals in any aggregated assemblage of trapping events. Host plants for
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Figure 3.11: Rank abundance curve (with logarithmic scale) showing the evenness of
moth species in the moth dataset [106]. A shows the common moths, B shows the rare
moths, and C shows the common through rare moths.

moths, if known, were based on Miller and Hammond [107]. Additionally, the follow-

ing environmental variables were used to explain the distributional patterns of moths:

calendar day (sampling period), temperature (accumulated heat-units), vegetation type,

watershed, and elevation. Values of vegetation type, watershed, and elevation are de-

termined based on trap sites and values of temperature are based on sampling periods.

The structure of the data set is described in Table 3.5.

In summary, a total of 69,168 individual moths from 514 species were captured (Fig-

ure 6.4). Species richness was high, but most species were rare, producing highly varied

patterns of diversity (Figure 6.4). Fifty-four (10%) of the 514 moth species were repre-

sented by only 1 individual, and 46 (9%) were represented by 2 individuals.

We used two subsets of the entire moth dataset in the analyses: 26 common moth

species and 66 rare moth species. We define common moth species (n = 26) as those for

which 500 or more individuals were captured over the entire five-year sampling period.

We define rare moth species (n = 66) as those for which a total of 5-10 individuals were

captured over the five year sampling period. Note that we do not include moths with 1-4

individuals as part of the rare moths because we assume that an average abundance of

at least one per year will provide enough information to identify the moth’s spatial and

temporal associations. Moth species with 1-4 individuals will not provide the level of

detail needed to sufficiently identify the environmental associations of the moth species.
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Figure 3.12: Map showing the location of the Andrews Forest in the central western
Cascades, Oregon with 20 moth trap sites (red dots). The red line is the boundary of
the forest.

For example, singletons and doubletons are very difficult to understand because they do

not occur often enough to analyze statistically.

The 26 most common moth species (A in Figure 6.4) accounted for 41,889 individuals

(60.6% of the total abundance). The 66 moth species considered as rare (B in Figure

6.4) accounted for 467 individuals (0.7% of the total abundance).

3.7.2 Visualization of the Moth Data

Figures 3.13 and 3.14 depict the two subsets of common moth species and rare moth

species visualized with DM. In this DM implementation, we scale the number of moth

individuals in each bin according to the total abundance of all individuals in the visu-

alization. Thus, the opacity of each bin x is calculated as f(x) = |x|/|total|, where |x|
denotes the number of individuals in bin x and |total| is the total number of individuals

from the visualized data set. Although we use linear scaling in our implementation,

the method can accommodate other forms of scaling, such as logarithmic, for species

whose abundances span multiple orders of magnitude [101]. We choose white as the
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Table 3.5: Structure of the moth data set. Each row represents a moth species with
non-zero individual abundance (NO INDIV) collected at a trap site on a sampling date.
Numerical attributes are discretized based on convenient divisions of the data.

Attribute Name Type Description
LEP NAME categorical Lepidoptera (moth) scientific name; includes

genus and species
LEP FAMILY categorical Lepidoptera taxonomic family
LEP GENUS categorical Lepidoptera taxonomic genus
FOOD PLANT categorical Host functional feeding group
TRAP ID categorical Identifier for a trap site
ELEVATION numerical Elevation. Discretized by 100m band.
HABITAT categorical Habitat
WATERSHED categorical Watershed
COLLECT PERIOD categorical 2-week collect period. E.g., 7.2 represents the

second half of July
COLLECT YEAR categorical Collect year
TEMPERATURE numerical Temperature (Heat unit). Discretized by 100

unit band.
NO INDIV numerical Number of individuals

background color and blue as the foreground color, because the human eye is known to

be more sensitive to changes in blue than in other colors [98]. We map opacity values to

values in the CIELAB color space [156], which is perceptually uniform, meaning that a

visual difference in color opacity is equally perceptible across the range of that color. We

then convert CIELAB values to RGB values for representation on a computer screen. In

addition to the DM representation (opacity encoding), the visualization tool also allows

users to switch to a multiple histogram representation (bar length encoding) (Figure

3.15).

In addition to the representation, we also equipped the DM visualization with inter-

active features. These features allow the transformation of the view to alternative views

so that users can interact with and explore their data. In particular, these features can

be used to query the data (e.g., filtering) and to change the representation of the data

(e.g., switch between DM and multiple histogram representations or sort the bins within

an attribute).

Notably, data filtering extends the static DM to facilitate subsetting of data. For
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Figure 3.13: The DM representation of common moths. The data set contains 41,889
individual moths and 11 attributes whose labels are enlarged (columns from left to
right: LEP FAMILY, TRAP ID, LEP GENUS, LEP NAME, FOOD PLANT, ELE-
VATION, HABITAT, WATERSHED, COLLECT PERIOD, COLLECT YEAR, TEM-
PERATURE). The view shows that common moths are associated with common habi-
tats (conifer forests in the HJA) and therefore, mostly conifer-feeders (Hardwood and
Gymno): ‘Gymno’ and ‘Hardwood’ are the most opaque bins within the FOOD PLANT
axis while ‘Herb’ is the most transparent bin.

example, a user can constrain, or “filter,” a single attribute or multiple attributes to one

or more particular values (bins) (e.g. show all moths that were sampled at TRAP ID

X and in COLLECT YEAR Y). The remaining attributes then display the distribution

of only those individuals that fall within the specified range of the filtered attribute

values. Filtering facilitates direct comparison of the attributes of a subset of specific

samples as well as comparisons of subsets of data. To construct a complex filtering

query consisting of multiple bins (or attribute values), we follow a simple and commonly

used rule articulated by ecologists: bins within an attribute are connected by the “OR”
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Figure 3.14: The DM representation of rare moths. The data set contains 467 individual
moths and 11 attributes (whose labels are enlarged) ordered as in Figure 3.13. The
view shows that rare moths are associated with rare habitats (meadows in the HJA) and
therefore, herb and grass-feeders.

condition, whereas groups of filtered bins across attributes are connected by the “AND”

condition.

3.7.3 Exploration of the Moth Data - Example Scenarios

Here we illustrate the value of the DM visualization by several example scenarios of

ecologists exploring the moth data sets. The ecological findings presented in this section

are primarily for demonstrating the utility of the visualization. Ecology readers are

encouraged to refer to Highland [68] for a more detailed analysis of these findings.

First, without requiring any interactions from users, the overview of moths (Fig-

ures 3.13 and 3.14) quickly suggests that common moths are associated with common

habitats (conifer forests in the HJA) and rare moths are associated with rare habitats
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Figure 3.15: The multiple histogram representation of common moths. The visualized
attributes are ordered as in Figure 3.13. Users can select their preferred representation
in the drop-down list located on the control bar at the top. In each of the histograms,
the bars are pointing to the right (in contrast to the familiar upward-pointing display).
The length of each bar is scaled according to l(x) = |x|/|xMAX where |x| denotes the
number of observations in bin x, and xMAX is the bin with the most observations for the
variable in question.

(meadows in the HJA). In addition, the visualization shows that common moths are

mostly conifer-feeders and rare moths are mostly hardwood, herb, and grass-feeders.

That is, the view of common moths (Figure 3.13) shows ‘gymno’ is the most opaque bin

within FOOD PLANT axis and the view of rare moths (Figure 3.14) shows ‘herb’ and

‘hardwood’ are the most opaque bins within the same axis.

Second, consider this example, which demonstrates how interactions facilitate the

investigation of temporal relationships in the moth data sets. Because moth development

is temperature dependent, ecologists hypothesize that adult moths emerge earlier in

warm years and later in colder years. According to the temperature records, while 2004

was a warm year, 2008 was a much colder year. Ecologists can filter the moth records by

COLLECT YEAR and/or COLLECT PERIOD to observe temporal trends. The views

help verify that the peak in common moth abundance occurred earlier in 2004 (and
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2006) than in 2008 (Figure 3.16 top and bottom). Note that they show moth capture by

2-week sampling period (8th column) and by degree days (last column). In 2004, most

Figure 3.16: The DM representations of common moths sampled in COLLECT YEAR
of ‘2004’ (top) and of ‘2008’ (bottom). The views help verify that the peak in common
moth abundance occurred earlier in 2004 (warm year) than in 2008 (cold year).
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moths were captured in sampling periods 7.2 and 8.1 with very few/no moths captured

after 8.1, whereas in 2008, moths were captured in sampling periods 7.1 to 8.1 and

continued to be captured until 9.1. Common moths were initially captured in a much

more concentrated time span in 2004 than 2008, with many more moths initially captured

later in the year in 2008 than in 2004. In this example, while ecologists need to observe

only three attributes (COLLECT YEAR, COLLECT PERIOD, and TEMPERATURE)

to answer their question, they can potentially look at other attributes for additional

insights. For example, they may initially pre-define the ordering of moth species in

LEP NAME attribute (e.g., by abundance) and then quickly verify whether the ordering

pattern remains consistent over these two years.

3.7.4 User-Centered Design with Ecologists

A close collaborative effort between ecologists and visualization researchers was required

to understand the analysis process for integration of the DM into active research. We

employed a user-centered, participatory design approach (Figure 3.17) [134, 132] where

the ecologists were included as part of the design team from the beginning of the col-

laborative effort. The initial prototype of the DM served as the starting point for this

particular collaboration.

Figure 3.17: The collaboration between ecologists and visualization researchers taking
an iterative user-centered, participatory design approach
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The initial prototype was initially developed for a small subset of the data, and it

proved invaluable as a means for stimulating discussion and identifying design alterna-

tives. In early meetings, the prototype served as a way to introduce the ecologists to the

visual representation in the particular context of their data set. Subsequent meetings

followed a very informative and dynamic process. In particular, each session generally

started with the visualization team running the visualization, projecting the view onto a

large screen for the entire team to view. The ecologists would then begin to explore the

data set in an iterative fashion, asking questions and modifying views to answer those

questions, and repeating. The process was typically very fast-paced and very collabo-

rative with team members posing questions to each other and devising views together

to answer those questions. When a question could not be answered using the provided

representation and interactions, the entire team would break from the exploration cycle

to discuss how the system could be modified to further enhance the application. In the

weeks following each meeting, the visualization team would integrate the design mod-

ifications into the system in preparation for the next design meeting. As the design

matured, the work centered more on dedicated exploration and analysis of the data set.

3.8 Discussion and Future Work

We have presented (1) an infrastructure for studying the problem of diversity visualiza-

tion, (2) a novel representation for visualizing diversity patterns in separate attributes

of a large set of multivariate objects, and (3) a rigorous evaluation of the effectiveness of

the proposed technique. The infrastructure includes a precise definition of diversity that

takes both richness and evenness into account, a method for generating synthetic data

of controllable levels of diversity, and a formal user study design for evaluating diversity

visualization representations. Based on this definition and study design, we developed

and evaluated our approach to diversity visualization, the Diversity Map, which is based

loosely on ideas from both parallel coordinates and multiple histograms. In a formal

user study, we show that DM allows users to as or more accurately judge elements of

diversity than the only other existing method designed to visualize diversity. The re-

sults across task questions are also more consistent for DM. The DM representation was

further refined into an interactive tool for ecologists to explore diversity patterns and

processes in ecological diversity data. While we believe we have taken a positive step in
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understanding diversity visualization, there are several issues left to address as well as

lessons learned.

3.8.1 Study Design Issues

First, while our study design focuses on static visualizations only, both DM and GH

are interactive visualizations. We avoided interactive features to limit the scope of our

study to first understand the merits and shortcomings of DM and GH as representations.

As is well known, evaluating the ability of a fully interactive visualization to facilitate

insight is a difficult and open problem that remains for the information visualization

community. This is evidenced by the recent conference focused solely on methods to

perform this kind of evaluation [13]. Future work will address the interactive capabilities

of DM (see Chapter 4).

Additionally, implementing GH required us to choose a mapping of attributes to the

various visual properties of the representation (the three spatial axes, color, size, shape,

etc.). While we based our mapping on the one used by Pearlman et al. [114], our choices

here nonetheless represent a possible threat to construct validity.

Finally, our study does not include a specific question to determine the richness of

variety of an attribute. At first glance, it would appear that richness of variety was

obvious in both methods. However, while richness is clearly communicated in DM and

in the non-spatial attributes of GH (e.g. color, shape, size), it is not clear how well

richness is communicated in the spatial axes of GH (e.g. the richness of SAT scores in

Figure 3.9 is ambiguous). The evaluation study would benefit from explicit attention to

the ability to communicate richness.

3.8.2 Limitations of Diversity Map

The DM representation itself is also not without limitations. First, DM is currently

designed to visualize only categorical data, requiring a discretization of quantitative at-

tributes. Second, the static visualization provides limited insight into the relationships

between attributes. However, variations on the interactive version of DM can address

these problems. For example, traditional parallel coordinates poly-lines can be selec-

tively displayed over DM to allow the user to view the actual quantitative attribute
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values. These poly-lines also allow the user to see and select individual objects, which

are currently not visible in the static DM visualization as presented. Filtering techniques

are also implemented in the interactive version of DM to allow users to perform queries.

For example, as demonstrated in the formative evaluation of ecologists, the user can

constrain a single attribute to one or more particular values (bins) using the mouse.

The remaining attributes then display the diversity of only those objects that fall within

the specified range of the filtered attribute. With filtering, users can answer questions

regarding the relationship between two attributes such as “In what bin in attribute X

are objects most/least diverse in attribute Y?”.

While the DM representation scales well with the number of objects to be visualized,

like many multivariate visualization methods, scaling with an increase in attributes is

limited by screen space. Likewise, the number of bins for any one attribute is also simi-

larly limited, and it is not clear how “small” a bin can be made before the representation

becomes ineffective. Studies to understand these limitations are left for future work.

The DM representation, like many others, requires initial training for users to be

effective in reading the visualization. Indeed, many pilot users of the visualization found

the representation counter-intuitive. They assumed that if a representation is to convey

diversity, high diversity should be shown with an image in which all of the objects look

different, however, in our implementation, high diversity results in a uniform image

(see Figure 3.5(c)). This confusion stems from the users associating each box with

an individual object to be visualized. Once users understood that DM did not display

individual objects, but rather their distribution over the attribute space, they were much

more receptive and able to interpret the visualizations consistently as shown in the study.

We believe that this representation, where the space filling effect denotes diversity, helps

the user establish a baseline for high diversity. In fact, this is supported by the results

of our formal study. While participants tended to underestimate diversity when using

the GH method, where more diversity implies more dissimilar symbols, they were able

to more accurately assign absolute diversity values as well as compare diversity between

two data sets using DM.

Note that initially we empirically chose white as the background color and red as

the foreground color in DM. However, we have since found studies indicating that blue

may be a more appropriate foreground color, since our eyes are known to be more

sensitive to changes of saturation (or opacity) in blue than in red, given a fixed hue and
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Figure 3.18: The subset of college applicants recommended for acceptance visualized
using DM in different foreground colors. Opacity (or saturation) values are mapped to
values in the CIELAB color space before converted to RGB values for representation on a
computer screen. That is, given a fixed hue and a fixed brightness, increasing saturation
adds intensity to colors, changing color from white to saturated colors. According to the
CIELAB color space, the distance from no saturation to full saturation is the longest for
blue [98]. Therefore, changes of saturation levels in blue (top-left view) appear the most
noticeable to our eyes—followed by red, green, and yellow.

a fixed brightness [98]. Figure 3.18 demonstrates this phenomenom. Additionally, we

empirically used the square root-based normalization in determining the color opacity

(α-value) of bins to help make bins corresponding to attribute values with low abundance

more recognizable. Nevertheless, this ad-hoc scaling factor is not necessarily a preferred

choice by all users. In fact, ecologists may prefer a log transformation to accommodate

species whose abundances span multiple orders of magnitude [101]. Moreover, we could
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employ an alternative to the RGBA color space, such as CIELAB or CIELUV, which

are perceptually uniform color spaces and may be more appropriate for representing

quantitative abundances [156]. All of these issues have been addressed in the interactive

version of DM as described in the formative evaluation with ecologists.

3.8.3 Limitations of Our Definition of Diversity

Our definition of diversity generalizes the one used in the field of Ecology to the case

of arbitrary multivariate data. As a consequence our definition looks at the diversity

of each attribute independently and does not take into account the interaction between

attributes. Consider an example of two teams of employees that have four members each

(see Table 3.6). While it is obvious that Team 2 is divided into more subgroups, the

current definition concludes that both teams are at the same level of overall diversity

with respect to gender and age–that is, in each of the two teams, members are uniformly

distributed in both gender and age. In Chapter 5, we will investigate a definition to

account for this interaction. The area of business management provides useful insights

as researchers in that field discuss diversity across multiple attributes [90, 55].

Table 3.6: Employee Diversity Example. Each of the two teams has four members.

Team 1
Female, over 50 Male, under 50
Female, over 50 Male, under 50

Team 2
Female, over 50 Male, over 50
Female, under 50 Male, under 50

3.8.4 Lessons Learned from the Evaluation with Ecologists

The user-centered design process was important in reaching a design that truly met

the needs of the target users (ecologists). An initial prototype was a key component

in starting the ‘discussion’ between ecologists and visualization researchers and helping

the design team to understand the exploration process (Figure 3.17). Although the

prototype may not be the final design, some means for rapidly exploring the data allows

the team members to begin to understand the typical process and types of questions

they can and would like to ask of the data.
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Characteristics/Process. Given interactive tools, ecologists were able to quickly and

iteratively explore data that was originally in a very inaccessible format. The visual-

ization provided an environment in which ecologists could rapidly answer questions and

visually verify expected relationships. The process was typically iterative with several

cycles of starting with a question, taking an exploration path, getting insight, and then

starting over with a different path through the data. In some cases, ecologists felt the

need to explore two paths simultaneously to observe the differences in the outcome.

This multiple path exploration capability is a fundamental requirement of creativity

tools [142]. Data analysis through visualization must support the creative process of

hypothesis generation.

Data Queries. In this particular collaborative effort, the visualization served as a

means for rapid high-level exploration of complex data that was then followed with

detailed statistical analyses. Data exploration tools, such as the DM, which overview

the data, should provide mechanisms for exporting subsets of data associated with the

current view so that scientists can conduct appropriate statistical analyses.

Communication. On several occasions an ecologist sought to explain a particular

insight or finding by walking the team through the necessary interactions to produce

a specific view. Exploration tools must provide mechanisms for storing and retrieving

history in order to help users tell their stories. In addition, the tools need to permit

users to mark and recreate paths of exploration in order to explain ideas to one another.

Context of Collaboration. Our meetings were typically held in a conference room in

the computer science building. On several occasions, the team would have benefited from

being located in the context of the ecologist so that the team could refer to or use artifacts

that are typically at their disposal—such as topographic maps. A more contextual design

process that included, for example, sessions in the office of an ecologist or visits to field

sites, might have revealed additional useful views/tools that would provide powerful

insight capabilities when combined with the visual representation.

Educational Outreach. Education and outreach are key components of the H.J. An-

drews Experimental Forest and LTER. We believe that visualization tools are promising

in this setting, because they provide a mechanism for clearly communicating complex

ideas and data through images, which are often more easily explained than data sets and

scientific findings. We plan to make the tool publicly available to a broader audience,

including scientists, students, and educators (see Chapter 4). The tool will allow users
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to explore existing HJA data sets or upload and explore their own data sets.

Role of Diversity in Real-world Analysis. While diversity is a key element, it may

not necessarily be the only element in the real-world analysis process. Built upon the

DM representation, we have deployed a visual analysis tool to ecologists that targets

ecological long-term data sets with an emphasis on diversity/distribution patterns and

temporal trends. We describe the tool and the processes whereby an ecologist explores

data, generates and test hypotheses in Chapter 4.

3.9 Conclusions

The Diversity Map represents a first attempt to design a representation with the specific

goal of visualizing diversity in separate attributes as we defined in this chapter. Sub-

sequent chapters extend the representation in two directions. First, the representation

is developed into a fully functional interactive tool for ecologists exploring long-term

ecological data. The goal is to understand the role of interactive visualization in the

real-world analysis process in which diversity is a key element (Chapter 4). Second,

in Chapter 5, we will investigate a definition of diversity to account for the interaction

among attributes. In doing so, we will present a study exploring the design space for

graphical representation of team diversity faultlines, a fundamental construct in organi-

zational management.
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Chapter 4: EcoDATE–Exploratory Analysis of Distribution

Patterns and Temporal Trends in Long-Term Ecological Data 1

4.1 Introduction

In recent decades, scientists have witnessed the proliferation of complex and large data

sets within many fields of study. In ecology, observations of long-term change are the

key to understanding ecosystem function and environmental change (e.g., [85, 17, 50,

138, 100, 25, 60, 91, 129, 19]). In ecosystem and community ecology, long-term trends

in stream water nutrient concentrations and fluxes from watersheds are used to examine

ecosystem dynamics, such as retention and flux of nutrients and atmospheric pollutants

[96]. Similarly, long-term data on plant succession are used to analyze temporal changes

in community composition, structure, biomass and nutrients (e.g., [40]).

Long-term ecological studies commonly involve a variety of data sets and hypotheses,

but the analysis usually follows three main steps: (1) collect ecological and—hopefully—

relevant environmental data; (2) plot and observe overall distributions, temporal trends,

and correlation of variables in typical charts such as static histograms, line charts, and

scatter plots; and (3) use statistical tests to confirm or refute the initial hypotheses. This

approach may work well when the number of variables is small and interesting hypotheses

can be preconceived. When data sets span many decades, it is likely that the hypotheses

and objectives, under which a study began, evolve as a result of unforeseen trends as well

as changes in the knowledge and perceptions of the scientists who work with or inherit

the data and experiments. Thus, exploration of new or alternative hypotheses is an

inherent part of long-term studies. The exploration process usually involves hypothesis

generation as opposed to hypothesis testing, decision-making, scientific modeling, or

theory development [154, 8].

Interactive visualizations of data, when combined with traditional analysis approaches,

offer the potential to facilitate exploratory data analysis (Figure 4.1), provided that the

1The material in this chapter was previously published with co-authors Julia Jones, Ronald Metoyer,
Frederick Swanson, and Robert Pabst in [121].



65

charts and interactivity fulfill the analytical needs of ecologists and are well suited to

characteristics of long-term data. Nevertheless, while typical static charts such as his-

tograms, scatter plots, and line charts have been used by scientists to explore distribution

patterns and temporal trends in individual variables, little work has been done to develop

interactive visual-analysis tools that support rapid exploration of large, multivariate, and

long-term data. The paucity of tools also hinders understanding of potentially different

strategies and processes whereby scientists gain knowledge and generate hypotheses from

long-term data.

Figure 4.1: The visualization driven exploratory analysis process the EcoDATE tool
aims to support. Each rectangle represents a subprocess and each arrow represents a
direction the user can take to go through the process.

We have developed the Ecological Distributions and Trends Explorer (EcoDATE), a

web-based visual-analysis tool that facilitates the collaborative visual inspection of the

distribution patterns and temporal trends of ecological long-term data (Figure 4.2). It

was refined and evaluated using the user-centered design approach [143, 132] in which

ecologists worked closely with visualization researchers during all stages of the devel-

opment process from assessing analytical needs to testing. The tool, which is readily

available at http://purl.oclc.org/ecodate, supports multiple chart views and a wide

range of interaction features involving collaboration of multiple users.

This chapter describes the development and initial application of the tool to three

large, long-term data sets: cone production [80], stream chemistry [79], and forest struc-

ture [54] collected as part of the H.J. Andrews Experimental Forest (HJA), Long Term

Ecological Research (LTER), and US Forest Service Pacific Northwest Research Station

programs (http://andrewsforest.oregonstate.edu/). We describe how ecologists

have used this tool to overview these datasets, examine and compare distributions and

temporal trends, and generate and share hypotheses with others (Figure 4.1). We also
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Figure 4.2: The EcoDATE interface for the cone production data set opened in a browser
window. On the left is the multiple histogram view of a data subset. On the right is
the time-series line chart showing the temporal trends of cone production among 14
individual trees.

describe an evaluation of the tool in a working group at the 2012 LTER All Scientists

Meeting (http://asm2012.lternet.edu/).

4.2 Problem Characterization

Here we characterize the analytical needs of ecologists approaching long-term ecological

data. These needs are prerequisites for understanding if and how visual analysis can

enable insight and discovery.

4.2.1 Long-term Ecological Research and Data

Our study was structured around the central research questions of the HJA LTER pro-

gram (http://andrewsforest.oregonstate.edu/): (1) how do land use, natural dis-

turbances, and climate affect three key ecosystem properties: carbon and nutrient dy-

namics, biodiversity, and hydrology? and (2) how do these relationships change over

time and space? The focus of this work is not to answer these questions but rather

to develop a visual-analysis tool to help ecologists better approach these questions. To
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demonstrate the utility of the tool and the data exploration process, we selected three

long-term data sets that represent the three major ecological components of biodiversity,

carbon, and hydrology.

Cone Production Data. Conifer trees commonly dominate the forests in which they

occur. Seed production by conifers is not only critical to tree reproduction, but also a

vital food resource for many organisms. Since readily-observed cone production is an

index of seed production, the history of cone crops gives clues to roles of endogenous

(physiological) versus exogenous (climate) factors regulating cone and seed production.

For instance, cone production is known to be cyclical as well as responsive to climate

and local environmental conditions [41].

In the Cascade Range of Oregon and Washington (USA), ecologists have collected

data on cone production of upper-slope conifers at 37 locations across 10 national forests

every year over a period of 53 years (from 1959 to 2011) [41, 80]. The data set has been

difficult to analyze because it is large (45,704 observations) and contains many sampled

trees (934 distinct trees of 9 species), some of which died or could not be found again,

and others were added to replace those lost (Table 4.1).

Table 4.1: Structure of the cone production data set [80]. Each record described by the
following variables represents a cone count observation of a particular tree sampled at a
particular plot in a particular year. Each plot falls within a location which is situated
in a national forest.

Variable Name Type Description
SPECIES nominal Species code
TREE NR nominal Tree number, unique for plot
FOREST nominal/spatial National forest code
LOCATION nominal/spatial Location code (within forest)
PLOT nominal Unique plot number (within location)
YEAR ordinal/time-based Sampling year
CONE COUNT quantitative Number of cones
DBH quantitative Diameter at breast height
STATUS nominal Status of tree (live, dead, missing)

Stream Chemistry Data. For the past 50 years, small watersheds have been a ma-

jor setting for ecosystem studies based on long-term records of inputs and outputs

[102, 103, 96]. Ecologists have assessed aspects of ecosystem dynamics, such as re-
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tention of nutrients and atmospheric pollutants in response to natural and management

disturbances of vegetation, growth of vegetation, and chemical inputs to the ecosystem.

Stream chemistry sampling and analysis was initiated in two small watersheds within

HJA in 1968. Over time, sampling expanded to eight gauged watersheds. Water sam-

ples are collected automatically as a function of stage height and flow and composited at

stream gauging sites. Analytes include dissolved and particulate nitrogen, phosphorus,

carbon, as well as pH, conductivity, suspended sediment, and a full suite of cations and

anions (Table 4.2).

Table 4.2: Structure of the stream chemistry data set [79]. Each record represents a
monthly stream chemistry property collected and aggregated at a particular location in
a particular month of a year.

Variable Name Type Description
SITE CODE nominal Gaging station site code
WATERYEAR ordinal/time-based Water year (October-September)
YEAR ordinal/time-based Calendar year
MONTH ordinal/time-based Month
Q AREA MO quantitative Total monthly (TM) streamflow
ALK OUT MO quantitative TM alkalinity outflow as HCO3-C
SSED OUT MO quantitative TM suspended sediment outflow
SI OUT MO quantitative TM silica outflow
TDP OUT MO quantitative TM total dissolved phosphorus outflow
PO4P OUT MO quantitative TM ortho phosphorus (PO4-P) outflow
TDN OUT MO quantitative TM total dissolved nitrogen outflow
DON OUT MO quantitative TM dissolved organic N outflow
NO3N OUT MO quantitative TM nitrate-nitrogen (NO3-N) outflow
NA OUT MO quantitative TM sodium outflow
K OUT MO quantitative TM potassium outflow
CA OUT MO quantitative TM calcium outflow
MG OUT MO quantitative TM magnesium outflow
SO4S OUT MO quantitative TM sulfate-sulfur (SO4-S) outflow
CL OUT MO quantitative TM chloride outflow
DOC OUT MO quantitative TM dissolved organic carbon outflow

Forest Structure Data. In a study of long-term forest development, ecologists are

studying temporal changes in the structure and composition of unmanaged Douglas-

fir (Pseudotsuga menziesii) forests [54] that established after a stand-replacing wildfire
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disturbance. The analysis is based on records collected from 21 permanent plots at

eight locations along the Pacific Coast and the Cascade Mountains in western Oregon

and Washington. The plots were established between 1910 and 1940, when the forests

ranged from 42 to 72 years of age, for the purpose of tracking growth and timber yield of

young Douglas-fir forests; in the 1970s forest ecologists began to study forest succession

in these plots. Of the 21 plots, 17 are still being measured at regular intervals, providing

a data record of up to 100 years on rates of tree growth, trajectories of stand productivity,

and the processes and patterns associated with tree mortality, growth, and regeneration.

The plots are part of a larger network of long-term plots maintained through the Pacific

Northwest Permanent Sample Plot program (PNW-PSP) [1] (Table 4.3).

Table 4.3: Structure of the forest structure data set [54]. Each record represents an
observation of trees in terms of basal area, density, and biomass sampled at a particular
location in a particular year.

Variable Name Type Description
STANDLOC nominal Stand location
STANDID nominal Stand identifier
AGE ordinal Stand age
SPP nominal Species code
ELEV M quantitative Elevation (meters)
L BAPH quantitative Basal area of live trees (m2/ha)
L TPH quantitative Density of live trees (trees/ha)

In summary, long-term ecological data sets are characterized by their large size (thou-

sands of records) and their complexity in terms of the multiple biotic and abiotic vari-

ables (e.g., location, elevation, temperature, and rainfall) of varying types (e.g., quan-

titative, nominal, and ordinal) that are sampled through time. These characteristics—

multivariate, geospatial, and connected through time—make them good candidates for

visualization. In this chapter, we focus on observational and experimental data and ex-

clude modeled or real-time ecological data (e.g., continuous stream data from sensors).
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4.2.2 Visual Analytical Needs of Ecologists

From the information visualization perspective, each of the three long-term ecological

data sets presents a challenging multivariate visualization problem. Employing the user-

centered design approach—which we describe in Section 4.5—we have identified the

general requirements for a visual-analysis tool targeting ecological long-term data with

an emphasis on distributions and temporal trends. Specifically, the tool should enable

users to do the following:

Requirement 1 (R1) - Distribution/Diversity Patterns. See and relate distri-

butions of variables simultaneously and iteratively without making assumptions about

their shapes. In doing so, the tool should also allow users to repetitively filter data to

specific subsets and compare them. In addition, the tool should be able to handle large

data sets (thousands of records).

Requirement 2 (R2) - Temporal Trends. See temporal trends of variables and

compare these trends iteratively across space and species. For example, for the cone

production data set, ecologists are interested in the patterns and relative strengths of

synchronicity of cone production across time, space, and species. Therefore, in this

example, the tool should enable ecologists to isolate time-series for different sets of trees

of interest and to use an appropriate chart that supports time-oriented data to compare

these series.

Requirement 3 (R3) - Collaboration. Keep track of findings at any stage of visu-

alization, share findings with other users, and invite others to build on or modify the

visualizations. Scientists and educators may also use the tool to teach students about

data exploration in general, and their exploratory process in particular.

Requirement 4 (R4) - Usability. Learn to use the tool quickly and easily. From

our experience, users of the tool may have varying levels of comfort with computer

applications. Therefore, the tool should be simple and easy to use.

4.3 Existing Visualization Solutions

Design of the EcoDATE tool was informed by related work on visual representation

techniques and visual-analysis tools, including those currently employed by ecologists.

In this section, we assess their applicability to exploring long-term ecological data, with
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regards to the four design requirements (R1 - R4).

4.3.1 Visual Representations for Ecologists

A visual representation or chart type determines how data are represented or visualized.

Along with interaction features, visual representation techniques serve as the primary

components in visual analysis tools that we assess here. Ecologists typically employ stan-

dard 2D/3D displays as classified by Keim [83]. Examples include histograms, boxplots,

and scatter plots. They effectively support tasks such as inspecting distributions, out-

liers, clusters, and correlations over one or two variables [136] (support of R1). Ecologists

also use rank/abundance curves or Whittaker plots [158] to visualize species abundance

and diversity (support of R1). Ecologists commonly represent time series data as a line

chart in which time is presented as a linear, ordered x-axis and data cases are plotted by

their time values [3] (support of R2). The EcoDATE tool incorporates existing standard

displays commonly used by ecologists, such as multiple histograms and time-series line

charts, into a simple interface and augments them with appropriate interaction features.

4.3.2 Visual Analysis Tools for Ecologists

A visual analysis tool facilitates data analysis with visual representations and interactive

features. To the best of our knowledge, little work has been done to develop visual

analysis tools specifically for analysis of distributions and temporal trends in long-term

ecological data. Here we discuss the merits of four types of tools used by ecologists

that contain visual analysis components: (1) widely used software packages such as

spreadsheet programs and statistical software packages; (2) specific tools for particular

calculations (e.g., estimates of species diversity, calculation of primary productivity);

(3) data repositories or portals; and (4) workflow management systems (e.g., Kepler).

O’Donoghue et al. [111] provides an overview on visualization of biological data.

Ecologists often use charting components in spreadsheets and statistical software

packages for visual analysis prior to statistical analyses; these tools permit quick and

simple visual inspection and they are easy to learn (support of R4). However, these tools

lack interactive capacities. For instance, they do not readily permit iterative subsetting

and replotting of data, which are essential steps in hypothesis formulation [8] (lack of
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interactivity for R1 and R2).

A second group of tools includes software designed for specific types of ecological

data analysis, such as estimation of species diversity and abundance [32] or simulation

of hydrologic models with input data [130]. These tools provide rigorous statistical tests

and modeling techniques to answer specific scientific questions—for example, what is

the species richness of dataset A?, or what data should be used to define parameters

for hydrologic model B? However, these tools do not support exploration of distribution

patterns and temporal trends with interactive charts (lack of R1 and R2). Therefore, we

do not consider these tools further.

A third type of analysis tool is ecological data repositories or portals that support

collection, archival, and synthesis of long-term data from multiple sites, for example,

EcoTrends [137, 118] and Clim-DB/Hydro-DB [66]. These web-based portals are usually

equipped with static visual representations such as line charts for simple and quick visual

exploration of temporal trends in existing long-term data sets (partial support of R2).

Although these tools may have limited capacity for subsetting, they are not designed

to support distribution patterns in multiple attributes (lack of R1), interaction features

(lack of interactivity for R1 and R2), or collaboration features (lack of R3).

A fourth class of software tools for visual analysis is designed to support “workflows,”

i.e., the analysis process of scientists (support of R3). Representative tools include Ke-

pler [97] and VisTrails [20]. Although these tools are powerful and potentially useful

to ecologists, they require customization and programming to fit the specific analytical

needs of ecologists, especially with respect to visual representations and interaction fea-

tures (lack of R4). Therefore, these tools may be more suitable for information managers

who have expertise in managing data in repositories and who help ecologists with data

pre-processing tasks such as data gathering and cleansing.

4.3.3 General Visualization Tools

In addition to tools developed by and for ecologists, a wide range of information vi-

sualization tools is available that, to some extent, meet the design requirements for

ecologists [131, 61, 65]. For instance, software systems such as Tableau (http://www.

tableausoftware.com/) and Spotfire (http://spotfire.tibco.com/) are dedicated

visual analysis tools, as distinguished from charting components in spreadsheet or statis-
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tical tools. They provide pre-defined chart types and a variety of controls for interacting

with data, for example, to subset data (support of R4). They also support multiple,

coordinated views; and users can publish and share visualization dashboards as interac-

tive Web pages (support of R3). However, these applications are not necessarily tailored

to specific analytical needs of ecologists (lack of R1 and R2). For example, ecologists

may want to discretize quantitative variables interactively to reveal different distribution

features of the data (R1). Also, ecologists may want to repeatedly generate subsets of

time-series data and plot them in a line chart in order to examine temporal trends (R2).

4.4 The EcoDATE Tool

A visual analysis tool consists of (1) representations (i.e., charts, graphs) and (2) inter-

action features (i.e., subsetting, bookmarking, etc.). The various types of interaction

features can be described using a classification system for visual analysis tasks proposed

by Heer and Shneiderman [65]. The classification consists of three high-level categories

of task types: a user makes a set of decisions about types of charts and organization

of data (data view and specification), how to manipulate the visualization views (view

manipulation), and how to reproduce and share the visualizations (process and prove-

nance). The representations and interaction features of EcoDATE are outlined following

this classification system (Table 4.4) and discussed based on the four design requirements

presented earlier (R1 - R4).

The EcoDATE interface (Figure 4.2) supports multiple views (or windows) each of

which can be manipulated (select, drag and drop, resize, and close). While the interface

is web-based, its look and feel is similar to a desktop interface that is familiar to users

(support of R4).

4.4.1 Chart Types

The current version of EcoDATE (ver. 1.0) supports two widely used chart types: multi-

ple histograms and a line chart. Coordination between views of these chart types loosely

follows the master/slave relationship [131], in which the master views of multiple his-

tograms are used to query/retrieve data and to generate line series for line charts. Other

than that, views are independent from each other.



Table 4.4: Interaction techniques supported by the EcoDATE tool. Each of the techniques is designed to facilitate
specific analytical needs of ecologists. Most of the techniques (if not explicitly noted) are applied to the multiple
histogram views. The classification is adapted from Heer and Shneiderman [65].

High-level
Category

Task
Type

EcoDATE’s features Specific analytical needs of target users

Data and
View
Specification

Visualize Choose among multiple histograms and
line charts

Inspect distributions of variables with multiple histograms
and temporal trends with time-series line charts

Filter Filter data based on selection of bins Examine different data subsets or samples of observations
Sort and
Reorder

Sort bins within a variable by names or by
abundances

Organize the data according to a familiar unit of analysis
(e.g., rank species from rare to common)

Reorder variable axes Group axes by their common or user-defined characteristics
(e.g., group of covariate/response variables)

Derive
Discretize quantitative variables Experiment with different discretization settings (e.g., iso-

late specific range of interest) to reveal different features of
the data

Group/ungroup bins within an variable Group outliers or similar variable values to fit users’ hy-
potheses (e.g., group species of the same genus or family)

Scale (normalize) bins’ abundances Accommodate data sets with different distributions

View
Manipulation

Select/
Highlight

Select or highlight a view, axes, bins, or
line series

Select or highlight elements of interest for other operations,
such as filter, sort, derive

Navigate Navigate and control views using the top
menu bar and the bottom status bar

Know where and how to navigate views

Coordinate
Duplicate multiple histogram views Compare data subsets side-by-side
Use multiple histograms as a query builder
to construct series data for line charts

Construct multiple line series and compare them

Organize
Open, close, resize, and layout views Manage views for comparison or effective presentation
Show/hide error bars in line charts Access additional information on demand

Process and
Provenance

Record Log user interactions Undo/redo actions, reproduce states step-by-step. These
features are reserved for future work

Annotate Color axes and Label line series Distinguish among axes or line series based on their com-
mon or user-defined characteristics

Share
Bookmark visualization states Revisit/share visualization states with others for collabora-

tive and iterative exploration of data
Export view data Pursue further analysis with existing statistical tools.

Guide Display data tips for menu bars, axes, bins,
and line series

Guide users through menu items and provide additional
information on highlighted items
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Multiple Histograms. The purpose of this representation is to show distributions of

multiple variables, which permit the user to identify and interactively specify subsets

of data (support of R1). Like previous work, this multiple histogram representation

presents variables in a parallel axis layout [59, 120]. Histograms are placed vertically

side-by-side, one histogram for each variable, as opposed to horizontally. In these views,

the bars extend to the right (in contrast to the familiar upward-extending display). A

vertical arrangement of histograms allows more variables to fit in wide-screen displays

and facilitates the placement and reading of labels from left to right, as shown by an

example of a subset of the cone production data set (Figure 4.2, left view). The ecolo-

gist user can duplicate multiple histogram views to compare data subsets side-by-side.

Continuous numerical variables are discretized into bins to plot relative frequency. The

length of each bar is scaled according to l(x) = |x|/|xMAX | where |x| denotes the number

of observations in bin x, and xMAX is the bin with the most observations for the variable

in question.

Line Chart. The purpose of this representation is (1) to show overall trends in a con-

tinuous, real-valued variable, such as cone production or tree density, over the sampling

period of interest; and (2) to support comparison of values of the variable at different

time points or intervals (support of R2) and across multiple samples. In line charts,

ordinal variables such as time are presented as a linear ordered axis, X-axis, and values

at each point in time are plotted along the Y -axis. For example, Figure 4.2, right view

depicts multiple line series of average cone count over time for multiple sets of trees in

the cone production data set. Optionally, users can display error bars as standard errors

or standard deviations on the line series (Figure 4.3).

4.4.2 Interaction Features

The EcoDATE tool supports a wide range of interaction features (Table 4.4). We extend

our description of a subset of prominent features here, emphasizing its utility in the

context of the distributions and trends analysis.

Subset/Filter. Given an overview of data distribution in multiple histogram views,

ecologists often want to shift their focus repetitively among different subsets or samples

of observations, for example, to examine distributions of species at different locations.

Ecologists also want to generate subsets of data for other representations, such as a
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Figure 4.3: Line series of average cone production from Pinus species (pine trees) from
1962-2011 showing a declining trend. Users can select to display error bars as standard
errors or standard deviations on the line series. Users can place the mouse pointer over
the data points on the line series for additional information

line chart. Subsetting or filtering operates on selected bins. A filter ‘status’ bar at the

bottom will show the filter query for the currently selected view (see Figure 4.2). To

construct a complex filtering query consisting of multiple bins, we follow a simple and

commonly used rule articulated by ecologists: bins within a variable are connected by

the “OR” condition, whereas groups of filtered bins across variables are connected by

the “AND” condition. For example, the left view of Figure 4.2 visualizes a subset of

observations filtered by Abies grandis trees (grand fir) AND sampled at Peterson Prairie

in the Gifford Pinchot National Forest, Washington, USA (see the bottom bar for the

query). Users can also inverse (or exclude) the query to obtain the complement of a

subset. To some extent, multiple histogram views can be used to quickly and visually

construct a query (as opposed to typing a query command) (support of R1).

Sort/Reorder. Users can sort bins within a variable by names or by abundances

(support of R1). The goal is to organize the data according to a familiar unit of analysis,

for example, species ranked from rare to common. They can also reorder variable axes

according to common or user-defined characteristics of variables. For example, they

might group a set of covariate/response variables or create groups of nominal (e.g.,

species, habitat), ordinal (e.g., sampling month, year), or quantitative (e.g., cone count,

basal area) variables.

Derive. In many cases, to examine different data distribution settings, ecologists wish
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to generate derived data such as discretized quantitative variables or groups of bins.

While they can do so prior to importing data for visual analysis, moving between tools

disrupts the flow of the iterative exploration process [36]. Using EcoDATE, ecologists can

discretize quantitative variables, based on their knowledge of ecology, without leaving

the application (support of R1). EcoDATE allows ecologists to flexibly experiment with

discretization settings by specifying the range of interest and bin size (see Figure 4.4).

In addition, for categorical variables, similar to discretization, ecologists can group or

ungroup bins within a variable based on their hypotheses (support of R1). For example,

they can group species based on their rarity or their functional groups. For example,

ecologists exploring the forest structure data set may wish to select and group species

such as western hemlock, western redcedar, Pacific yew, and bigleaf maple into a group

of shade-tolerant species before comparing it to Douglas-fir.

Figure 4.4: Discretization settings for variable CONE COUNT. Ecologists can narrow
the range of interest for this variable to [1, 301] and specify a bin size of 10. The result
will automatically include two separate out-of-range bins for [0, 1) and [301, 5001) as
shown in Figure 4.2 (left view, the CONE COUNT histogram).

Share. Collaborators are often geographically dispersed with the physical distance and

time differences making collaborative exploration difficult. Using the EcoDATE tool,

ecologists can discuss and share findings with collaborators by bookmarking visualization

states (e.g., Figure 4.2) as unique web URLs (support of R3). These bookmarks can be

easily shared via email or embedded to the user’s notes, serving as a common ground for

discussions among collaborators.
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The implementation of bookmarking in EcoDATE stores “snapshots” of visualization

states (e.g., Figure 4.2) including aggregated static data (for bins and line series) as

opposed to providing dynamic access to the most current data [64]. This implementation

decision is based on the understanding of characteristics of large ecological data sets.

The data are usually static and the analysis process involves inspecting distributions

or trends of observations as aggregation of data as opposed to individual data points.

Because EcoDATE stores only aggregated data, the storage cost is efficient and the state

loading time is fast.

4.5 Design and Implementation

4.5.1 User-centered Design with Ecologists

A close collaboration between ecologists and visualization researchers was critical for

design and integration of the EcoDATE tool into the ecologists’ analysis process. We

employed the user-centered and participatory design approach [143, 132] in which the

ecologists were included as part of the design team. User-centered design is both a philos-

ophy and a process in which the needs, desires, and limitations of the target users (e.g.,

scientists) are considered very closely at every stage of the design process (establishing

requirements, design, implementation, evaluation). The process has involved three ecol-

ogists and two visualization researchers, who are co-authors of the work presented in this

chapter.

Our participatory design process was iterative, required group design sessions over

many weeks, and involved a variety of tools for assessment of user performance and tool

usability such as observations, interviews, log books, and automated logging of user in-

teractions [143]. In addition, the visualization researchers engaged with the ecologists

to the point of becoming assistants in the process of data exploration. We used email

communications to share and discuss visualization state bookmarks. We set up weekly

one-hour meetings between a researcher and an ecologist in the ecologist’s workplace for

several months. Activities during these meetings varied. In early meetings, the visual-

ization researcher learned about the data set and initial hypotheses of the ecologist and

observed her using an Excel spreadsheet to create time-series line charts for data sub-

sets. We followed up with a discussion of the ecologists’ difficulties with Excel’s charting
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component. In subsequent meetings, after implementing line charts in EcoDATE, we

gave tutorials on how to use the chart, observed the ecologist exploring her data using

the new representations, and discussed hypotheses and insights. In other meetings, the

researcher observed the ecologist as she performed hypothesis testing using a statistical

tool and discussed how she preferred to export data sets. In addition, we also discussed

entries in the log book [143]. The ecologists were given a log book so they could record

notes from using both the EcoDATE and their existing tools. They were encouraged to

record not only successes but also any difficulties or frustrations. Because the log book

was for both the EcoDATE and their existing tools, we refrained from implementing an

online log book feature within the EcoDATE tool.

Finally, during the development process, we also collaborated with information man-

agers, who manage the ecological data repository of the HJA LTER site. They helped

clean data, explained the structure of data sets, and gave feedback on EcoDATE.

4.5.2 Implementation

The EcoDATE tool is a web-based database application implemented following the client-

server architecture. In this section, we describe the client and server components of the

tool and justify our choice of the architecture.

Client. The client side of EcoDATE is responsible for representing processed data from

the server—that is, representing multiple histogram views and line charts, laying out

views and menus, and communicating user interactions with the server. We developed

the EcoDATE client interface with Flex 3 and the Degrafa graphics framework. Flex

3 is an open-source framework by Adobe for creating Flash rich internet applications.

Degrafa is an open-source graphics framework that facilitates the process of creating pre-

composed graphics in Flex 3. In particular, Degrafa helps create lightweight geometry

building blocks such as rectangular bins and variable axes in the EcoDATE tool. We

used Action Message Format (AMF), a binary format by Adobe, to serialize data and

send messages between the client and server (remote service). Because Flash is web-

based, no installation of the tool is required and it can be potentially available on any

browser or device that supports Flash.

Server. Data sets are stored and managed with the MySQL database management

system (DBMS). In addition, we rely on the programming languages of PHP (Hypertext
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Preprocessor) and SQL (Structured Query Language) to handle requests from the client.

Specifically, the server is responsible for all data-related logic and computation, such as

retrieving and manipulating ecological data, building and maintaining data structures

of visualization states, and logging interactions. Note that by design of the tool, the

multiple histogram views and line charts require only aggregated data. By pushing logic

such as data aggregation to the server side, we leverage computation and the database

management capabilities of the server while keeping the workload on the client low. For

example, we set up data indexes for all fields of interest in the data sets and we take

advantage of caching in MySQL. This client server model was a natural choice considering

that most of the ecological data repositories are structured and stored in a DBMS [67].

Metadata are another distinctive property of scientific data in general, and ecological

data sets in particular. While generated to aid analysis, metadata present another

challenge to data visualization. Specifically, the key variables described in Tables 4.1,

4.2, and 4.3 were supplemented with additional information about the variable such as

descriptions of SPECIES or LOCATION. Technically, the metadata tables needs to be

joined with the primary data table to form the data set for use in EcoDATE.

Our implementation approach scales well to large data sets. Feedback on performance

from ecologists indicates that it is highly responsive for all three data sets of interest on a

typical desktop PC. From our tests, heavy interactions such as filtering usually respond

in a few seconds provided a high-speed internet connection.

4.6 Evaluation

One of the most effective ways of evaluating an information visualization tool is through

long-term case studies of target users exploring real world data sets using the tool [143].

In this section, we evaluate EcoDATE by three case studies, one for each of the three

data sets: cone production, stream chemistry, and forest structure. Further, we discuss

the results from the evaluation of the tool during a working group meeting at the LTER

All Scientists Meeting in 2012.

The objectives of the case studies are (1) to demonstrate the utility of EcoDATE

for ecologists and (2) to describe how use of the tool reveals how scientists analyze

data, both individually and collaboratively, and provides scientists with hypotheses that

can be tested outside the tool (Figure 4.1). Each of the case studies involved multiple
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observations of ecologists in multiple work sessions in normal working environments (i.e.,

offices) during which they used the EcoDATE tool to explore the three data sets.

4.6.1 Cone Production Data Case Study

The primary objective of this case study is to demonstrate the utility of EcoDATE in

terms of its supported visual representation and interaction techniques. The design of

EcoDATE followed closely the Visual Information Seeking Mantra, the widely accepted

visual design guideline introduced by Shneiderman [141]: “overview first, zoom and filter,

then details on demand”. This mantra suggests that when the user seeks information

from a data set, a tool should allow the user to start first with an overview of the entire

data set, then to subset the data (filtering and zooming), and ultimately to get additional

fine details as needed.

Summary of information needs. According to the design requirements, the ecologist

user was interested in two key aspects of the cone production data set. First, she wanted

to see the overall distribution of samples in time and space (geographic and environ-

mental) and to be able to relate multiple distributions simultaneously and iteratively.

Second, she was interested in the patterns and relative strengths of synchronicity of cone

production variation across time, space, and species.

Overview. The initial multiple histogram view helped the ecologist quickly assess the

numbers of sampled trees by species and their distributions across locations and years.

She also detected that the range for CONE COUNT (number of cones per tree) was large

(0-5000) and its distribution was positively skewed with very few high values. To examine

the number of trees that produced no cones (observations with zero cone count), she was

able to use the discretization settings (Figure 4.4) to derive (Table 4.4) new bins that

displayed the numbers of trees with zero cones (Figure 4.5, left view, the CONE COUNT

axis).

Filtering/Subsetting. After inspecting the overview, the ecologist focused on a specific

location, in this case, the Gifford Pinchot National Forest (GP), Washington, USA. This

forest was of interest because of its complex topography and proximity to Mount St.

Helens, whose 1980 eruption may have affected cone production history. First, she

filtered the data by bin ‘GP’ in the ‘FOREST’ variable. While she could select and filter

multiple bins at once, she preferred first to inspect the distribution of all cone production
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Figure 4.5: The EcoDATE interface for the cone production data set opened in a browser
window. On the left is the multiple histogram view of observations of Abies grandis
trees (grand fir) sampled at Peterson Prairie in the Gifford Pinchot National Forest,
Washington, USA. Ecologists used this view (1) to inspect distribution of this sample
with respect to the variables of interest and (2) to generate multiple line series of average
cone count over time for multiple sets of trees. The time-series line chart (right view)
shows the high degree of synchrony of cone production among 14 individuals of Abies
grandis (grand fir). It suggests that cone production of Abies grandis occurs on a biennial
cycle but skipped several years, for example, 1969-1970 and 1972-1973, perhaps due to
climate control. Tree 41 (red line) shows very little cone production from 1973-1992, and
then a stress crop in 1993, just before the tree died.

observations (i.e., all species) in the GP. Then she filtered the data to examine cone

production for Abies grandis (grand fir) (ABGR) only. Abies grandis was of interest

because it is a common species in mixed conifer forest communities. The view of the

new subset helped the ecologist discover that the sampling process was not consistent

over time: trees were sampled starting in 1963, but because of gradual, cumulative

mortality, the sample size declined over time, so new trees were added in 1995 (Figure

4.5, left view, the YEAR axis). She was then able to further filter the data to examine

cone production in individual trees with long-term cone production records, as well as

to examine mortality at tree, plot, species, and regional scales.

Details on demand. While inspecting the distribution of the subset of interest (cone

production in Abies grandis at the GP), the ecologist wanted to compare trends of cone
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production between trees that died and those that were added to replace them. Tree

status (health) during the study period was important because tree health, morbidity,

and mortality affect cone production. For example, stand-level cone production may

depend on tree-level processes, including stress crops from dying individuals, insect at-

tacks, and partial wind damage. Using EcoDATE, she was able to identify and plot the

trees that were sampled for subsets of the record, which produced a visualization of cone

production in trees that died and trees that were added to replace them. Specifically, to

identify trees that were not sampled throughout the entire study period, the ecologist

sorted trees (i.e., variable TREE NR) by the numbers of years of observation. After

sorting, she selected trees that had less than a certain number of observations (Figure

4.5, left view, the TREE NR axis) and added data for each of the selected trees as a line

series into the YEAR-CONE COUNT line chart (Figure 4.5, right view).

The time-series line chart (Figure 4.5, right view) helped ecologists quickly formulate

hypotheses that the trees of interest produced cones in synchrony (timing and magnitude)

on a biennial cycle, but skipped several years, for example, 1969-1970 and 1972-1973,

suggesting the hypothesis that some external factor or event may have disrupted the

biennial cycle. The view also shows multiple trees that were added to the plot in 1995.

In addition, the visualization allowed a discovery that trees that died sometimes produced

“stress crops” just before dying: tree 41 (red line) shows very little cone production from

1973-1992, and then a stress crop in 1993, just before the tree died. In all, while the

ecologist found no evidence of an effect of the 1980 eruption of Mount St. Helens on cone

production history, her exploration led to other interesting scientific discoveries that she

did not anticipate before using the visualization.

Note that while this sequence of actions demonstrates a single exploration path, the

tool supports pursuit of multiple paths simultaneously and iteratively. For example,

the ecologist repeated the process and retrieved the data subset for all ‘PINUS’ or pine

trees (Figure 4.3). The time-series line chart for this subset revealed a declining trend of

average cone production of Pinus spp. from 1962-2011, suggesting the hypothesis that

tree aging, mortality, or expansion of influence of a pest/pathogen may be contributing

to declining cone production.

Sharing and further analyses. Satisfied with her findings, the ecologist bookmarked

the current state of the visualization (as shown in Figure 4.5) as a URL and emailed

the link to her collaborators with a description of her findings. She also exported the
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data subsets and pursued further analysis using existing statistical tools (e.g., Pearson’s

correlation test to quantify the correlation between multiple line series with respect to

sampling years).

Case Study Summary. Using EcoDATE, the ecologist became acquainted with the

cone production data and the tool and developed a concrete analysis plan, which, to

her, had been vague or possibly subconscious before. Specifically, EcoDATE provided

a holistic overview of the observations interest and helped the ecologist build a mental

model of how multiple variables were distributed in the entire data set. This model

helped the ecologist to formulate actions such as filter/subset queries, and explore the

data broadly and deeply.

4.6.2 Stream Chemistry Data Case Study

The objective of the next case study is to illustrate the process of using EcoDATE

to gain insights into data and to generate hypotheses. Following her experience with

EcoDATE and the analysis of the cone production data, the ecologist was more aware of

the exploration paths that she would take. From our observations, the ecologist followed a

hypothesis generation process that can be summarized as three main tasks (Figure 4.6):

(1) specify visualization views (e.g., filter, sort, reorder, derive data), (2) characterize

views (e.g., distribution patterns and temporal trends), and (3) gain insights and generate

hypotheses. The process is highly iterative with multiple rounds of exploration, guided

by discoveries in each round and the ecological knowledge of the user.

Figure 4.6: The iterative process of hypothesis generation supported by EcoDATE. Each
rectangle represents a task and each arrow represents a transition from one task to
another. The task of involving knowledge in the center supplements all other tasks.
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Summary of information needs. Exploring the stream chemistry data set, the ecolo-

gist wanted to investigate distribution and temporal patterns of multiple chemical prop-

erties within and across locations (e.g., watersheds) over time, and ultimately to make

inferences about ecological processes and events driving these patterns. Before the work

sessions, she had examined temporal patterns of stream chemistry using statistical tools.

Despite this prior knowledge, the multiple histogram views of the data facilitated by

EcoDATE helped her generate additional hypotheses based on the shapes of distribu-

tions of different chemical constituents. The visualization of the stream chemistry data

is available at http://purl.oclc.org/ecodate/chemistry.

Round 1 of hypothesis generation. Starting with the default specification of the

multiple histogram view (specify), the ecologist quickly noticed (characterize) (1) dif-

ferences in numbers of samples by year and location, (2) differences in the shapes of

distributions of the chemical properties over the years and from one property to another,

and (3) a relatively large number of extreme values. Using her knowledge, the ecolo-

gist related the difference in record lengths (characterization 1) to the hypothesis that

sampling must have been turned off and on intentionally at some watersheds (generate

hypotheses). To confirm this hypothesis, she planned to access the sampling logs for

more information. Further, the characterizations (2) and (3) prompted the ecologist to

pursue these paths further, as described next.

Round 2 of hypothesis generation. To compare the shapes of distributions of the

chemical properties, the ecologist first used the discretization feature (Figure 4.4) to

specify equal numbers of bins as well as equal numbers of observations in the extreme

value bin (upper range bin) for each of the histograms of the corresponding chemical

properties. She then found that distributions varied among properties in the degree

of skew (characterize) (Figure 4.7). Specifically, the distributions for silica (SI) and

discharge (Q AREA MO) were similar to one another and differed from the distributions

for nitrate-nitrogen (NO3-N) and suspended sediment (SSED).

From this characterization of the data, the ecologist referred to her knowledge and

formulated several hypotheses, e.g., (1) extreme suspended sediment output and nitrate-

nitrogen output may occur under extreme storm events, when sediment and decomposed

litter are entrained; (2) silica output is more dominated by chronic export, which is

consistent with its origin from chemical weathering.

Additional rounds of hypothesis generation. Following up on the hypotheses gen-
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Figure 4.7: Multiple histogram view of observations in the stream chemistry data
set. In this case, the ecologist was interested in the distribution patterns of total
monthly streamflow (Q AREA MO, blue axis), total monthly suspended sediment out-
flow (SSED OUT MO, red axis), total monthly silica outflow (SI OUT MO, orange axis),
and total monthly nitrate-nitrogen outflow (NO3N OUT MO, green axis).

erated in Round 2, the ecologist rapidly completed additional rounds of exploration.

She specified the time-series line charts for the chemical properties of interest to inves-

tigate how the extreme values of the properties coincided over time. She subsetted the

data to two specific locations (watersheds) and cross-compared their temporal trends

of specific chemical properties. After each of the exploration rounds, the ecologist was

able to bookmark the visualization state, take snapshots of the visualization views, and

save them along with her notes. In summary, within four one-hour work sessions, the

ecologist completed ten rounds of data exploration, generating hypotheses that could

be statistically confirmed quickly as well as questions that prompted further analyses

(inside or outside of the EcoDATE tool).
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Case Study Summary. Even though the ecologist had prior knowledge of the stream

chemistry data, EcoDATE nevertheless permitted in-depth analysis of the data that led

to new insights, especially with respect to specification and characterization of multivari-

ate distribution shapes using the interaction feature of discretization of bins. Although

existing analysis tools such as spreadsheet programs also permit this kind of specifi-

cation, the process would be cumbersome and time-consuming. We summarized the

analysis strategy in this case study as an iterative three-step process of specifying visu-

alization views, characterizing views, and gaining insights while incorporating ecological

knowledge and intuition (Figure 4.6).

4.6.3 Forest Structure Data Case Study

While the stream chemistry case study aims to emphasize the hypothesis generation

process supported by EcoDATE, this case study highlights how EcoDATE helped another

ecologist prepare data to upload into EcoDATE, construct the line charts, and gain

insights into the forest structure data set.

Summary of information needs. The ecologist user exploring the forest structure

data was interested in temporal changes in species composition as Douglas-fir forests of

the Pacific Northwest transitioned from early to mid-succession stages of development.

Of particular interest were trends in density and basal area of shade-tolerant species such

as western hemlock (Tsuga heterophylla), western redcedar (Thuja plicata), Pacific yew

(Taxus brevifolia), and bigleaf maple (Acer macrophyllum) in relation to the dominant

Douglas-fir trees across the eight study locations. Therefore, the time-series line chart

played an important role for this data set. Nevertheless, the ecologist also benefited from

the multiple histogram views of the data when preparing line charts.

Preparing the data. EcoDATE facilitated the preparation of the forest structure

data in two ways. First, the tool allowed the ecologist to load and visualize the data

quickly in three straightforward steps: (1) upload data (e.g., comma-separated values

file format), (2) configure data structure (e.g., specify types for each of the variables of

interest), (3) optionally, add additional metadata for each of the categorical variables

(e.g., species common names to supplement species codes) (see the EcoDATE tutorials

at http://purl.oclc.org/ecodate/tutorials/). In this case it was important for

the user to be able to upload multiple successive versions of data to EcoDATE because
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data have been collected from many sites over many years and discoveries from the

visualization may prompt the ecologist to re-consider, synthesize, and re-upload data.

For example, the initial exploration only considered Douglas-fir and western hemlock.

Subsequently, the ecologist expanded the data to include other shade-tolerant species

and re-uploaded the data.

Second, in addition to discretization of quantitative variables, EcoDATE supports

grouping of categories in nominal and ordinal data variables using the multiple histogram

views of the data (Table 4.4). The ecologist grouped shade-tolerant species into a single

functional group for comparison to Douglas-fir. The grouping process was exploratory in

the sense that the ecologist was able to experiment iteratively with different combinations

of species based on his ecological knowledge.

Constructing the line charts. EcoDATE supports creation of line charts for any

ordinal variable (e.g., age, year) on the x-axis and any quantitative variable (e.g., tree

density, basal area) on the y-axis. Note that based on the configuration of the data

structure, EcoDATE can detect the temporal variables at different resolutions and derive

new temporal variables based on their combinations (e.g., YEAR and MONTH variables

combined creates YEAR-MONTH). For the forest structure data, the ecologist favored

AGE over YEAR as the x-axis, which facilitated comparisons of successional trends

across the eight study locations, where each location was an average of 2-5 plots (Figures

4.8 and 4.9). The ecologist followed the same process of constructing line series for each

of the data subsets of interest as described in the cone production data case study.

Gaining insights. Findings from the visualization underscore the importance of long-

term data in tracking the response of forests and other ecosystems to disturbance agents

and changes in the environment. The view in Figure 4.8a helped the ecologist quickly

assess the declining and converging trends in mean density of Douglas-fir across locations.

Although this trend was not unexpected given knowledge of stand development [113, 42],

the finding was interesting given the three-fold range in density (about 250 to over 800

trees/ha) when the stands were about 55 years of age. Equally interesting was the

variability in the timing of increases in the mean density of shade-tolerant species (Figure

4.8b). Figure 4.9a displays recent declines in Douglas-fir basal area at several locations

(GP, MH, OL, WI, WR). This prompted the ecologist to revisit the raw data on mortality

assessments of individual trees at these locations. At two of the locations, GP and WR,

the mortality data indicated that Douglas-fir bark beetles (Dendroctonus pseudotsugae)
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(a)

(b)

Figure 4.8: Long-term trends in density (trees/ha) of (a) Douglas-fir, and (b) shade-
tolerant species in Douglas-fir-dominated permanent plots in Oregon and Washington
(n = 8 locations, 2-5 plots per location). Note different scales of y-axes.

may have caused tree death. The beetle mortality occurred first at GP when the stand

was 120 years old, and led to a pronounced but temporary decline in Douglas-fir basal

area. The drop in Douglas-fir basal area there was accompanied by increases in both

mean density and basal area of the shade-tolerant species, likely as a result of increased

resources (e.g., light, nutrients, water) available to the understory trees. The ecologist

also planned to share the visualization with an entomologist to gain insights on localized

and regional outbreaks of Douglas-fir bark beetle.

Case Study Summary. This case study emphasizes the reusability of EcoDATE (i.e.,
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(a)

(b)

Figure 4.9: Long-term trends in basal area (m2/ha) of (a) Douglas-fir, and (b) shade-
tolerant species, in Douglas-fir-dominated permanent plots in Oregon and Washington
(n = 8 locations, 2-5 plots per location). Note different scales of y-axes.

data upload and configuration) and how it aids the scientist in adapting to the pre-

defined structure of the data. In this example, EcoDATE supported the process of

constructing and deriving visualization views—for example, automatic combinations of

ordinal variables (e.g., month and year) derived new ordinal variables (e.g., month-year)

for line charts. These features prove important to analysis of long-term ecological data

since the data may get updated periodically over time and there exist multiple levels of
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data aggregation by various factors such as time (e.g., day, month, year), space (e.g.,

plot and stand), and species groups.

To summarize, the three case studies serve a primary purpose of assessing the utility

the EcoDATE tool in the context of its target users, three ecologists in this case, exploring

real world data sets in their normal working environment. The qualitative results show

how use led to refinement of the tool and helped ecologists gain insights into their data

and formulate new research questions. Our next step was to deploy the tool to a broader

pool of ecologist users, starting with a working group at the 2012 LTER All Scientists

Meeting as we describe next.

4.6.4 Working Group at the LTER ASM 2012

We further evaluated an early version of the EcoDATE tool in a working group at the 2012

LTER All Scientists Meeting, a network-wide meeting of over 750 scientists and students

for scientific discussions, plenary talks, working groups, and scientific posters (http:

//asm2012.lternet.edu/). The EcoDATE working group was an information exchange

session focused on (1) how ecologists approach analysis of long-term ecological data, (2)

how interactive visualization may help with the data exploration process, and (3) the

pros and cons of the proposed EcoDATE tool. During the session, we demonstrated

the application of EcoDATE using several long-term data sets, invited participants to

experiment with the visualizations in focus-group settings, and obtained feedback via

a survey. Fifteen participants experimented with the tool and completed the survey:

one professor, four LTER site managers/information managers, five post-docs, and five

graduate students.

The evaluation survey consisted of five Likert-style statements, in which participants

were asked to indicate their level of agreement on a scale of one (Strongly Disagree) to

five (Strongly Agree), and three open-ended questions. In spite of relatively short usage

time (around 30 minutes), most of the participants agreed that the tool is easy to use

(L1 and L2) and they strongly liked using it (L4 and L5) (Figure 4.10).

In addition to the Likert-style statements, the survey included the following three

open-ended questions: (1) what aspect(s) of the tool did you like most? (2) what as-

pect(s) of the tool did you dislike most? and (3) if possible, how would you change

the tool to improve it? Overall, many participants praised the tool for its interactivity,
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Figure 4.10: Boxplot of responses to each of the five Likert-style statements. The partic-
ipants were asked to indicate their level of agreement on a scale of 1 (Strongly Disagree)
to 5 (Strongly Agree).

holistic view of multivariate data/histograms, and ability to share visualizations with

others. Among interactive features, participants highly favored data subsetting/filtering

(nine out of 15 participants). However, some found it difficult to compare the temporal

trends across variables (i.e., align the time axes across different line chart views), and

they suggested superimposed line chart with two y-axes [76], which is a feature we want

to study for future work. Participants also expressed the wish to use the tool with their

data. We responded to that request and equipped the current version of the tool with

the data upload feature.

4.7 Discussion

Although long-term ecological studies are essential for detecting changes in the environ-

ment, understanding of these changes is limited by capacity for data analysis (Figure

4.1). Data often accumulate faster than ecologists can analyze them, creating a bottle-

neck. Over time, hypotheses that guided establishment of a study may become irrelevant,

and new hypotheses and new factors may emerge. Therefore, long-term studies require

exploratory analysis to deal with growing data and changing scientific questions. Tools

such as machine learning and statistics, which aim to simplify and automate data anal-

ysis, are of limited value for analysis of long-term ecological data because they assume

well-defined and confirmatory tasks and hypotheses, such as computing the correlation
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between two variables or predicting the occurrence of some specific ecological event. In

this chapter, we argue that interactive visualization provides a visual gateway to long-

term ecological data, allowing users to explore data directly and complementing further

analyses using statistics or machine learning.

Development and evaluation of the EcoDATE tool reveals several different strategies

used by ecologists to explore long-term ecological data. Target users of interactive visu-

alization for long-term ecological data occupy a spectrum ranging from scientists who are

interested in general ecological phenomena and may have little specific knowledge of the

data to scientists who have collected the data and studied them intensively. Therefore,

an interactive visualization tool must permit overview of data as well as exploration of a

priori hypotheses and generation of new ones. The EcoDATE tool supports a “breadth-

first” exploration approach as demonstrated in the cone production data case study, in

which the ecologist analyzed the data for the first time. In that case, the main analysis

strategy followed the visual information-seeking mantra “overview first, zoom and filter,

then details on demand” [141]. On the other hand, the tool also facilitates “depth-first”

analysis, as demonstrated in the stream chemistry data and forest structure case stud-

ies, in which the ecologists had prior knowledge of the data. In these cases, the analysis

followed a three-step process of specifying visualization views, characterizing views, and

gaining insights (Figure 4.6). A visualization tool that facilitates open-ended exploration

is essential to accommodate the varied analysis strategies used with long-term ecological

data. A visualization tool is only part of a larger analysis process (Figure 4.1).

Development and evaluation also suggests the potential for integration of the Eco-

DATE tool with other tools and archived data sets. We envision that visual-analysis tools

such as EcoDATE could become an add-on module in a workflow system or could take

advantage of that framework for managing provenance or history of interactions (e.g.,

visualization states). Current workflow systems such as Kepler [97] lack support for

interactive visualizations and usability. Also, web-based interactive visualization tools

could support more complex on-site data exploration within existing data repositories

or portals such as EcoTrends [137, 118] and Clim-DB/Hydro-DB [66] where large collec-

tions of long-term ecological datasets are archived. EcoDATE, a web-based application,

could be easily integrated into these portals. In addition, sample visualizations could be

presented to visitors to promote data analysis.

Design and use of EcoDATE also provides an insight into the evolution of long-term
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ecological data collection and analysis. The three data sets of interest were initiated

several decades ago, and involve capital- or labor-intensive data collection at a limited

number of pre-defined locations and times. Nowadays, long-term ecological data are in-

creasingly being collected at fine temporal and spatial scales, at many sites, and possibly

even at moving sites (e.g., tagged organisms) (e.g., [127]). For these data, visual analysis

tools will need to accommodate combinations of time, space, and multiple variables. As

an example, while filtering supported by EcoDATE is limited to values of bins, we intend

to investigate more expressive filtering based on natural language used by ecologists or

on a structured query language [62]. Further, the visualization community has shown

interest in techniques for spatio-temporal visualization or geovisualization [8].

EcoDATE is now available to the public at http://purl.oclc.org/ecodate. We

hope it will be utilized by ecologists, who will bring a variety of data sets and provide

feedback and suggestions for improvements to the tool. In addition, we will analyze log

data to identify dominant usage patterns and features and to understand how EcoDATE

may play a role in shaping the scientists hypothesis generation strategies in the context

of long-term ecological data.

4.8 Conclusions

In this chapter, we describe the design, implementation, deployment, and evaluation

of EcoDATE, an interactive web-based visual-analysis tool designed for the analysis of

long-term ecological data with a focus on distribution patterns and temporal trends. The

tool combines information visualization techniques with chart types commonly used in

ecology. EcoDATE was developed through a process of user-centered design in collabora-

tion with long-term ecological research. Application of the EcoDATE tool to long-term

ecological data sets on cone crop production, stream chemistry, and forest structure re-

veals that it facilitates overview, initial hypothesis testing, and hypothesis formulation

in an open-ended framework. Ecologists’ initial formative evaluation of EcoDATE in-

dicates that interactive visualizations promote discovery in ecology and reveal several

alternative pathways ecologists pursue for analysis of long-term ecological data. This

study demonstrates that collaboration between ecologists and visualization researchers

can potentially provide powerful tools for identifying important ecological patterns and

trends while supporting scientific collaboration. Visual analysis collaboration between
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visualization researchers and ecologists underscores a promising direction likely to benefit

ecology as a discipline.
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Chapter 5: Visualization of Diversity across Multiple Attributes:

A Case Study of Diversity Faultlines in Work Teams 1

5.1 Introduction

Effective management of work teams is widely regarded as critical to the success of

organizations. Therefore, leveraging the benefits of teamwork while reducing negative

outcomes associated with groups has been a central focus of organizational research

[90, 14, 150, 24]. For example, researchers study how the demographic diversity of team

members (e.g., age, gender, ethnicity, functional background) affects performance and

outcome processes (e.g., productivity, collaboration, conflict). They investigate diversity

not only as a distribution along one employee attribute (e.g., group ethnic diversity) but

also as a complex composition of multiple attributes that results in diversity faultlines

[90]. For instance, faultlines may split a diverse project team into the two subgroups of

two senior male software engineers and two junior female QA testers.

A common approach to understanding faultlines within a team relies on faultline

metrics [149, 14, 150], which measure the extent to which the given team is divided into

relatively homogeneous subgroups across the attributes of interest, and tabular data of

subgroup structure (see Table 5.1 for an example). Unfortunately, as the number of

attributes and team members to be examined both increase, table-based assessment of

faultlines and subgroup structure becomes difficult, time-consuming, and tedious. To our

knowledge, very little work has been done to develop visual representations that reveal

faultlines across multiple attributes. In fact, this lack of tools is considered a challenge

in management research that hinders the development of the faultline theory to a more

applicable and useful level [150, 24].

We envision that a visualization that leverages faultline metrics with appropriate rep-

resentation and interaction techniques would complement the faultline approach. Specif-

ically, such a visualization would allow researchers to explore faultlines within teams

1The material in this chapter represents joint work with Ronald Metoyer, Katerina Bezrukova, and
Chester Spell [122, 123].
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quickly and iteratively. Managers or human resources departments could use the visual-

ization to inspect team dynamics based on faultlines and potentially reassign members

in hopes of improving performance. Such visualizations could also prove useful in under-

standing the dynamics of online volunteer teams (e.g., open source software development

teams) [108, 26].

In this chapter, we formalize the faultlines visualization problem and provide three

contributions. First, we propose a representation that aims to reveal faultlines and sub-

group structure of diverse teams across multiple attributes. The proposed representation,

HIST, is based on multiple linked, stacked histograms in a parallel axis layout [75, 74].

To our knowledge, while these techniques separately are well-known, as a whole, their

application to representing clusters in general and team diversity faultlines in particular

is novel and it is a first attempt to explore the design space for the problem. Moreover,

the novelty of HIST is in the approach of attribute visibility (or object distribution) [146]

to representing clusters as opposed to object visibility studied in previous work [70, 135].

Second, we contribute results of a controlled user study to compare HIST to the

parallel coordinate plot (PCP) [75, 74] and the scatter plot matrix (SPLOM) [29], the

two other common techniques for representing clusters of multivariate objects [70]. With

respect to user performance, the results show that users can judge faultlines using HIST

as or more consistent and accurate as the other methods. Furthermore, the findings can

be generalized to representations and tasks involving distributions of clusters/subgroups

in mixed-type data, extending the previous work [70].

Finally, we incorporate computational analysis into HIST to assist users in detecting

faultlines or subgroup separation. Specifically, inspired by the physical form of geological

faults, we propose visual enhancements as connecting dashed lines across attribute axes

to represent “cracks” within a team, as depicted in Figure 5.2. In our algorithm, we

cluster attribute values by subgroups using Bertin Classification Criterion [125] and we

introduce a metric, Total Separation Criterion, to automatically detect attributes with

separable subgroups.
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5.2 Diversity Faultines Background and Design Requirements

5.2.1 Diversity Faultlines Concept

Faultlines are described as hypothetical dividing lines that may split a team or workgroup

into relatively homogeneous subgroups based on one or more attributes [90]. Measur-

ing faultlines of a team is adopted from multivariate clustering—that is, the measure

assigns team members into subgroups (or clusters) according to their similarity across

the attributes of interest (e.g. demographics). Clusters (or subgroups) have maximum

internal homogeneity or between-cluster heterogeneity.

Team data represent team members characterized by multiple demographic attributes

of varying types (e.g., numeric, ordinal, and nominal). As an example, consider two teams

as shown in Table 5.1: Teams 1 and 2 consist of five and seven members, respectively.

We computed team faultlines along three characteristics of AGE, ETHNICITY, and ED-

UCATION (degree) using a widely accepted measure proposed by Thatcher et al. [149].

For each team, the measure identifies the subgroups (Subgroup column) corresponding

Team AGE ETHNICITY EDU Subgroup Fau
1 21 T E 1

1.00
1 23 T E 1
1 20 T E 1
1 50 Y A 2
1 52 Y A 2

2 21 W E 1

0.56

2 23 W A 1
2 22 U B 2
2 26 X B 2
2 21 Z D 3
2 23 Z C 3
2 22 Z B 3

Table 5.1: Synthetic data of the two work teams. Faultline measure [149] clusters each
of the two teams into subgroups (Subgroup) and identifies the team faultline strength
(Fau).
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to the strongest group partitioning following the formula:

Faug =

 ∑p
j=1

∑ng

k=1 n
g
k(x̄.jk − x̄.j .)2∑p

j=1

∑ng

k=1

∑ng
k

i=1(xijk − x̄.j .)2

 g = 1, 2, ..S, (5.1)

where p is the number of attributes of interest, ng is the number of subgroups in the

partition g, ngk is the number of members in subgroup k of partition g, x̄.jk is the mean

value of attribute j in subgroup k, x̄.j . is the overall mean value of attribute j, and xijk

is the value of attribute j of member i in subgroup k. Since Faug takes numeric values,

each categorical attribute must be recoded into a series of dummy variables and rescaled

across the attributes [149]. For example, a five year difference in AGE is equivalent to

a difference in ETHNICITY and a difference in EDUCATION based on a given data

sample.

The variable faultline strength Fau, which always takes a value between zero and

one, is the maximum over all {Faug}Sg=1. The larger the faultline strength value, the

stronger the separation between subgroups or equivalently, the more attributes in which

the subgroups are separable. The concept is inspired by geological faults whose strength

increases with the number of layers it cuts through [90]. Since Fau is based on brute-

force search, it is suited only for small teams. Thatcher et al. [150] and Meyer and Glenz

[104] present thorough surveys of existing faultline measures.

5.2.2 Design Requirements

Table 5.1 does not clearly show where the separation (or “cracks”) occur in a team

and this is precisely the problem that we address with our visual representation. Here

we discuss design requirements as validated by our collaborators, who are experts in

management research and also co-authors on this chapter. Moreover, these requirements

are empirically associated with team outcomes in faultlines literature. Specifically, a

faultline representation of a given team should allow users to explore efficiently:

• R1. Faultline value (e.g., faultline strength Fau). Such numeric quantification of

a faultline can be used to compare different teams quickly or to predict the effects

of faultlines on outcome processes [14, 150].

• R2. Faultlines themselves, or where do the “cracks” occur in the team? A “crack”
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or total separation occurs within an attribute when members of different subgroups

fall into different subset of values in the attribute space.

• R3. The inner structure of subgroups in the team including the number of sub-

groups, evenness of subgroups, and subgroup diversity or distribution [55]. These

important constructs are associated with distribution of power, resources, and abil-

ities in the team [90, 24].

In addition, the representation should scale well to the number of members in a team

and number of attributes of interest. Management researchers have typically studied

small teams of up to 16 members that may potentially split into up to seven subgroups,

depending on team size and the number of attributes [89, 24], yet they are also interested

in teams of larger sizes (e.g., online volunteer groups [108, 26]).

Finally, while conventional cluster analysis usually concerns object visibility and

separation in attribute space of quantitative attributes [135], we note that faultlines

analysis emphasizes distribution or alignment of objects across multiple attributes of

varying types. Furthermore, a faultlines visualization requires a faultline measure or a

clustering algorithm as an external data pre-processing step to pre-assign team members

to subgroups, as opposed to letting users identify potential subgroups or implicit clusters

from representations of raw data [70].

5.3 Related Work

Design and evaluation of our proposed technique was informed by related work on visual

representations and user studies of cluster representations, which we discuss here.

5.3.1 Representing Clusters

Here we review a subset of existing representation techniques that are potentially appli-

cable to clustering and team faultlines. More general surveys of visual representations

can be found in [83, 38].

Scatter plots are probably the most common technique to represent clusters of objects

[70]. However, without additional encoding, possible data overlap/occlusion may lead

to ambiguous interpretation of the abundance of objects, especially among categorical

attributes. The histogram, on the other hand, takes advantage of data overlap to show
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the distribution of objects over a single attribute. Our proposed technique, which is

based on histograms, aims to convey object distribution instead of object visibility. As

noted, these techniques display only one or two attributes of interest.

The dimensionality problem may be solved by using multiples. For example, the scat-

ter plot matrix (SPLOM) [29] extends scatter plots to represent clusters of multivariate

objects, although multiple pairwise projections of the data attributes require more screen

space and potentially cognitive load placed on the user. On the other hand, multiple his-

tograms could be useful for representing distribution of multiple attributes in a parallel

axis layout [59]. Furthermore, histograms have been proved effective in communicating

diversity information in separate attributes in previous work [120, 119] (see Chapters 3

and 4). Our proposed representation of diversity faultlines is in fact multiple histograms

augmented with histogram stacking and color encoding.

The parallel coordinates plot (PCP) [75, 74] is another common approach to repre-

senting clusters of high-dimensional objects [70]. Similar to SPLOM, PCP may suffer

from occlusions caused by data overlap as the number of objects increases and many

categorical attributes exist, as in the case of demographic data. Several variants of PCP

such as Parallel Sets [86] and Diversity Map [119] overcome this limitation by providing

information on the distribution of values for each attribute. However, it is not clear how

multiple clusters are embedded into these techniques.

Star coordinates [81] may be suited to representing the overall structure of a set of

objects over multiple attributes. Additional encoding such as colors may be used to

reveal explicit clusters in the data. Unfortunately, the mapping between a data point

and its location in star coordinates is not one-to-one. Consequently, several different

data points may end up in the same location if they have equal vector sums.

Among stacked displays [83, 161], the mosaic plot [58] could be used for showing

subgroup structure since subgroups are stacked within a team. While in theory, the

stacking process may be repeated multiple times, in practice space constraint limits the

number of attributes as well as number of possible values in an attribute. Therefore,

mosaic plots can be useful only when the number of attributes is relatively small. In our

proposed histogram-based technique, we apply the stacking process to histogram bars

only once.

Finally, there are hybrid approaches that integrate multiple representations in one

view. The most relevant technique is DICON [21], a treemap- and icon-based technique
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designed to visualize structure of clusters. Unfortunately, the technique supports only

quantitative attributes.

5.3.2 Evaluating Cluster Representations

The closest exemplar to our user study is that of Holten and van Wijk [70]. They

evaluated cluster identification performance of nine PCP variants, two of which are

the standard PCP and a variant with embedded scatterplots (SP). Nevertheless, unlike

our scenario involving explicit clusters in demographic data, their study used simulated

quantitative data with no pre-computation of clusters. The most interesting finding from

their study is that despite the apparently valid improvements of the PCP variants, scat-

terplots are more effective than PCPs with respect to PCP-based cluster identification

tasks. Furthermore, participants favored SP as the least difficult variation. Following

the result, the authors called for further evaluation of techniques that explicitly highlight

pre-computed clusters, for example, with unique colors. We respond to that call in our

user study by augmenting standard PCP and SPLOM—the two controlled methods—

with color encoding of explicit clusters. We also extend the study to include other tasks

appropriate for faultlines/cluster analysis.

In another related study, Li et al. found that scatter plots are more effective than

PCP’s in supporting visual correlation analysis [95]. We suspect that scatter plots are

also more effective than histograms in conveying correlation information because his-

tograms represent each of the attributes independently. Therefore, while management

researchers may be interested in correlations among demographic attributes (e.g., age

and experience), we do not consider correlation-related tasks in our user study.

5.4 Visualization Design

5.4.1 Design Considerations and Prototype

A histogram is well suited to showing the diversity or distribution of objects within an

attribute (requirement R3). According to Mackinlay [99], position and length are ranked

highly for encoding nominal and numeric values such as variety of attribute values and

abundance of objects, respectively. In addition, previous work suggests that the parallel
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(a) (b)

Figure 5.1: Synthetic data (Table 5.1) of (a) Team 1 and (b) Team 2 visualized using
HIST. Distinct colors are used to differentiate the subgroups: subgroup 1, subgroup 2,
and subgroup 3. While the two subgroups of Team 1 are totally separated in all three
attributes of AGE, ETHNICITY, and EDUCATION, the three subgroups of Team 2 are
totally separated in ETHNICITY only (column 2).

axis layout [75, 74] of multiple distributions is capable of conveying a holistic object

distribution over multiple attributes [59, 119]. However, the previous work does not

consider how distributions of multiple subgroups align over multiple attributes. Since

subgroups are nested within a team, to maintain bar length encoding, a natural solution

to encoding subgroups is to stack bars within each bin (Figures 5.1 and 5.2). We then use

distinct color hues on a white background to differentiate stacked subgroups. Our choice

of qualitative colors provided by ColorBrewer [56] meets the requirement of encoding

up to seven subgroups. On another note, the length of each bar is scaled according to

l(x) = |x|/|xMAX |, where |x| denotes the number of objects in bin x, and xMAX is the

bin with the most objects for the attribute in question. We also discretized numeric

attributes into bins based on their rescaled factors (equation 5.1).

Following this design, a total separation or “crack” occurs at a nominal attribute

when distinct subgroups (or distinct colors) occupy distinct positions along the vertical

axis (requirement R2). Total separation at a numeric or ordinal attribute further re-

quires that these distinct positions—including ones without objects (zero-length bars)—

are contiguous (e.g., AGE and MLB TENURE histograms in Figure 5.2).
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Figure 5.2: Group of starting pitchers of the MLB team Brewers in 2008 visualized using
HIST. The two subgroups are totally divided in all four attributes of COUNTRY, RACE,
AGE, and MLB TENURE. The connecting dashed lines, which are described in detail
in Section 5.7, are overlaid to represent the holistic “cracks” between the two subgroups.

The HIST representation communicates the overall degree of separation of subgroups

in a given team (i.e., faultline strength) as the combined separation of all demographic

attributes under investigation (requirement R1). In the limit of perfectly strong fault-

lines, where different subgroups occupy different subset of attribute values across all the

attributes, all the bars of the histograms will have solid colors, as depicted in Figure

5.1(a). On the contrary, a team with very weak faultlines will produce a visualization

with most of the bars stacked with at least two colors like the AGE histogram in Figure

5.1(b). Moreover, while the chosen Fau measure (equation 5.1) [149] does not consider

how far apart the subgroups are, especially on quantitative attributes (i.e., faultline dis-

tance [14]), we note that stacked histograms of quantitative axes are able to reveal the

potential gaps or distances between subgroups. For instance, the AGE histogram in

Figure 5.1a shows a big “generation gap” between the two subgroups.
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5.4.2 Informal Evaluation with Management Researchers

A close collaboration between management and visualization researchers was critical for

the design of HIST. The management researchers help validate the design requirements

and evaluate the design iterations and prototypes. Thus far, we have applied the pro-

totypes to two real-world data sets: Major League Baseball (MLB) teams (Figure 5.2)

and an empirical faultlines study [15] (Figure 5.3). The domain experts found the rep-

resentation helpful in inspecting subgroup structure of different teams and in developing

a sense of where the separations are likely to occur following their configuration of the

faultline measures.

Figure 5.3: HIST representation of the subgroup structure of a team with strong fault-
lines (left view, Team 33) and a team with weak faultlines (right view, Team 80) from
the faultlines study data set [15]. Columns from left to right are Team ID, gender, age,
company tenure, and education.

5.4.3 Motivation for Futher Evaluation

While the qualitative results from our design study with domain experts are encourag-

ing, they have limitations. First, the study represents an informal evaluation based on

observations [88]. It lacks controlled visualization techniques (control groups) as well as

various data sets with controllable characteristics serving as ground truth answers. Sec-

ond, our two management researcher collaborators represent only a small set of potential

users of the visualization. The proposed faultlines visualization HIST could potentially

support a wide range of target users: (1) management researchers who study faultlines
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and subgroups theories [24], (2) human resources departments who manage current em-

ployees and recruiting new employees [49], and (3) managers and officials from many

areas concerning work teams such as education, sports, and entertainments to name a

few. Third, thus far, the management researchers limited the use of the faultline vi-

sualizations to data exploration only, accompanied by further statistical analysis. The

design of HIST targets both data exploration (e.g., data analysis) and communication

(e.g., charts in a publication or training). Finally, while HIST is designed based on the

requirements of faultlines and subgroup structures in work teams, it can be potentially

utilized to communicate distributions of clusters/subgroups in mixed-type data, for ex-

ample, compare structures of functional groups in ecological and microbiological data

[116, 117, 37].

To overcome these limitations and make the evaluation results generalizable, in the

next section, we extend our design evaluation with a controlled user study designed to

understand the effectiveness of a visual representation in a broader context of commu-

nicating information on faultines as well as on distributions of clusters/subgroups in

mixed-type data.

5.5 User Study Design and Implementation

In this section, we describe the design and implementation of a formal user study intended

to evaluate the effectiveness of HIST at communicating faultlines information in teams.

Specifically, we compare HIST to PCP [75, 74] and SPLOM [29], the two common

techniques for representing clusters of multivariate objects. In fact, a previous study

has shown that scatterplots are the most effective among variants of PCP for cluster

identification tasks [70]. Figure 5.4 depicts examples of the three techniques.

5.5.1 Task Design and Implementation

The task design includes three important components: (1) a set of task-oriented ques-

tions, (2) a procedure for generating synthetic team data, and (3) design of the three

visualization techniques under comparison.

User Study Task Questions. The study contains six types of questions intended to

assess the capability of a particular visual representation in conveying different aspects
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(a) (b)

(c)

Figure 5.4: Example team of size 18 visualized using (a) HIST, (b) PCP, and (c) SPLOM.
Distinct colors are used to differentiate the three subgroups: subgroup 1, subgroup 2,
and subgroup 3. While subgroup 3 is the biggest, subgroup 1 is the smallest. The three
subgroups are totally separated along ETHNICITY, EDUCATION, and EXPERIENCE
because different subgroups occupy different subsets of values along these attributes.
The three subgroups overlap in GENDER and AGE because there exist values of these
attributes shared by different subgroups. The faultline level is MEDIUM considering
that the subgroups are totally separated in three out of five attributes.
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of team faultlines (requirements R1 - R3). Note that in accordance with the previous

cluster identification study [70], we design the tasks to be relevant to both faultlines and

general cluster representations of mixed-type data and not tied to users with specialized

demographics knowledge.

Q1: How many subgroups are there in the given team? (possible answers: 1 to 7). This

question type is designed to determine if a representation technique supports users in

identifying the number of subgroups/clusters in a team/data set (requirement R3). This

type is equivalent to the only cluster identification task in the previous study [70].

Q2a/b: Among the existing subgroups in the given team, which one is the biggest/smallest?

(possible answers: Subgroup 1 to 7). These two types are intended to measure the user’s

ability to determine evenness of subgroups or equivalently, isolate subgroups/clusters

that contain most and least members/objects using a representation (requirement R3).

Q3: In which attributes are the subgroups totally separated? (possible answers: the

attributes under investigation). The goal of this question type is to test if a repre-

sentation technique supports users in isolating the attributes that totally separate sub-

groups/clusters and result in faultlines (or “cracks”) within a team (requirement R2).

Q4: To what extent are the subgroups separated across all attributes? (possible answers:

Very Weak, Somewhat Weak, Medium, Somewhat Strong, Very Strong). This question

type is intended to gauge how well a user can interpret and assign a faultline level to a

team using a visual representation (requirement R1). Within the scope of this study, the

faultline level of a team is determined by the number of attributes in which the subgroups

are totally separated. While this assessment does not consider attributes with partial

separation of subgroups as the way the Fau measure (equation 5.1) quantifies separation

of subgroups, it makes answering this task question more straightforward to participants.

Q5: Between two different teams, which team has stronger separation of subgroups?

(possible answers: Team A or Team B). This last question type is intended to deter-

mine if a representation technique is discriminative enough to allow a user to compare

the faultline levels of two teams depicted in two visualizations of the same technique

(requirement R1).

In our user study, each of the question types was asked multiple times on different

teams/data sets. We identified the best answers to the questions based on the distribu-

tion of members across subgroups and the attributes in which subgroups are separable.

These constructs are achieved using our synthetic data generation procedure, which is
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described next.

Synthetic Team Data Generation. For the study, we create teams formed from au-

tomatically generated data sets. Technically, our method generates pre-clustered teams

over a manually defined set of mixed-type demographic attributes, where team size, num-

ber of subgroups, evenness of subgroups, and separation of subgroups are controlled. The

aim was to simulate teams with realistic distributions of members while controlling the

faultlines and subgroup structure.

In our setting, we have one variable X for each attribute, and we hand-specify the

categorical values or range of values for X. To generate a team, we specify its input

parameters including the number of subgroups k, subgroup sizes {ni}ki=1, and the set

of attributes in which the subgroups are totally separated {Xs}. Note that n =
∑k

i ni

denotes the size of the entire team. For each Xs, we randomly partition its attribute

space into k distinct subsets of values and we draw randomly ni samples from each

subset for each subgroup i. This guarantees that the subgroups are totally separated in

these attributes {Xs}. For rest of the attributes {Xns}, we model the distribution over

its possible values either as uniform or skewed distribution and we draw randomly n

samples from each of these distributions. We choose these specific distributions based on

the realistic distributions of the team demographics in management literature: uniform

distribution corresponds to diversity as variety and skewed (or relatively homogeneous)

distribution corresponds to diversity as disparity [55]. For example, while both genders

may be uniformly represented in some teams (e.g., student body), either male or female

gender may be dominant in other teams (e.g., organizational groups). Once the samples

are created for each of the attributes, we use the jth sample for each attribute as the

corresponding attribute value of the jth member in the generated team. Finally, since

the team is already clustered into subgroups, we simply use the Fau formula (equation

5.1) to calculate the faultline strength value for the team.

In our generated teams, team members or objects are characterized by the following

five independent demographic attributes. We chose these attributes because they are

the most commonly used in faultline literature [150].

• GENDER: F or M

• AGE: 20-60, discretized by steps of 5 corresponding to the rescale factor

• ETHNICITY: T, U, V, W, X, Y, or Z
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• EDUCATION (degree): A, B, C, D, or E

• EXPERIENCE (level): 0-9

While we believed the study participants would be familiar with these attributes, we

used single-letter labels as values of categorical attributes (e.g., T, U, V, . . . for ETH-

NICITY) to prevent participants from associating their own knowledge of demographics

(e.g. ethnic differences) into their answers.

We generated teams whose sizes range from four to 50 members and number of

subgroups range from two to seven. The teams with at most 16 members were considered

small teams. The teams with more than 16 and less than 50 members are considered large

teams to simulate other workgroup settings such as online volunteer groups [108, 26].

Visual Representations. Figure 5.4 presents examples of stimulus materials of the

three techniques under comparison. The design of HIST (without visual enhancements)

was described in Section 5.4. In our design of PCP and SPLOM, we also use distinct

color hues to differentiate subgroups. To prevent total occlusion due to data overlap,

both PCP polylines and SPLOM dots are drawn at a constant opacity of 40% and 60%,

respectively. The opacity encoding matches our PCP implementation with that of Holten

and Van Wijk [70]. Furthermore, we employed a jittering technique [29] to alleviate data

overlap issues in SPLOM.

The resolution of each image produced by the three techniques was 630× 430 pixels.

Each visualization image was accompanied by a subgroup color legend of 80×270 pixels.

We chose these resolutions to ensure that visualization images would fit into a standard

1024×768 pixel screen without requiring any scrolling (the usable screen space for a web

page is approximately 960× 600 pixels).

5.5.2 Experiment Design and Implementation

Participants. Participants were recruited from Amazon’s Mechanical Turk (mTurk), a

popular crowdsourcing Internet marketplace which has been shown to be a viable plat-

form for graphical representation experiments [63]. The marketplace allows requesters

to post jobs (also called Human Intelligence Tasks or HITs) for a large pool of users

(also called workers or turkers) to consider and complete. Since mTurk is a world-wide

marketplace, we targeted our participants specifically to those registered in the US with
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normal vision, at least 95% “approval” rating, and at least 100 tasks approved. After

passing the color blindness qualification test hosted on the mTurk website, each partic-

ipant visited our external study website, read an explanation of the research study (in

lieu of a signed consent form), and was randomly assigned to a visualization technique.

The qualification test, which is based on the Ishihara Color Test [53], was to detect and

exclude interested individuals with color blindness.

In total, 57 participants completed the study (19 for each visualization technique).

They represented a diverse range of majors/occupations, gender, and ages (Figure 5.5).

Most of them were unfamiliar with the field of InfoVis. In addition to the 57 partic-

ipants, we excluded the other 10 participants who stopped at the beginning or in the

Figure 5.5: Participants of the user study visualized using multiple stacked his-
tograms. The visualized attributes, from left to right, are gender, age range, race,
major/occupation, familiarity with InfoVis (yes or no), and familiarity with computer
graphics (yes or no). Participants of the three techniques are differentiated by dis-
tinct colors: HIST, PCP, and SPLOM. While the three groups of participants were
mixed in most of the attributes, they collectively represented a diverse range of ma-
jors/occupations, genders, and ages.
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middle of the study. These withdrawn participants are evenly distributed across the

three techniques (4 for HIST, 3 for PCP, and 3 for SPLOM).

Experiment Design and Procedure. We followed a randomized between subjects

study design where the primary factor consisted of three levels (HIST, PCP, SPLOM).

Each of the techniques was randomly assigned to each of the participants. We used

a common collection of synthetic team data sets for each of the three visualization

techniques.

The participant first completed a short tutorial that explained the technique. The tu-

torial included several baseline visualization examples of very strong, weak, and medium

faultline levels. The participant then answered six task questions of each of the types

described earlier: three for smaller teams and three for larger teams. During a question,

the participant could access a visualization example with annotations highlighting var-

ious aspects of faultlines. Note that the questions of one type are the same, but each

one is asked about visualizations of different data sets. The ordering of question types

was randomized across participants, but all questions of the same type were asked as

a block. The ordering of questions in each type was also randomized to avoid ordering

effects (e.g., primacy and recency effects) among participants. In total, the number of

task questions was 36.

Following the data collection approach in our previous work on visualization of di-

versity in separate attributes [119] (see Chapter 3), we assigned an error distance to each

participant’s response to measure how far each response was from the correct answer.

We identified the correct answers from the distribution of members across subgroups

and the attributes in which subgroups are separated. These constructs are achieved

using our data generation procedure described earlier. We also collected the total time

participants spent on each response.

In addition to the questions of type Q1-Q5, at the end of the study, the partici-

pants answered a short questionnaire about their experience with each technique. This

questionnaire contained both Likert-style questions as well as open-ended questions. We

discuss the results of these questions in the next section.
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5.6 User Study Results

Initially, we hypothesized that for each type of question, HIST would outperform PCP

and SPLOM, both in terms of accuracy and response time. Specifically, we expected users

would have difficulty accurately identifying evenness of subgroups (Q2) and separation

attributes (Q3) using PCP or SPLOM due to occlusion and visual clutter that may

occur with increasing number of objects (i.e., large teams). A secondary factor of the

study was to determine whether data set/team size affected participants’ ability to judge

information on diversity faultlines using a visualization technique.

For each question type, we computed the mean of error distances and the mean of

response times across the questions of that type for each participant and compared these

aggregated values using hypothesis testing. Since the response data were not normally

distributed, we first applied a rank transformation [33] to the data before using ANOVA

for statistical tests. Figures 5.6(a) and (b) summarize the error distance and response

time results. We pay more attention to error distance when analyzing the results because

it is the most important performance measure for a given representation.

Results for Q1. How many subgroups are there in the given team? As Figure 5.6

indicates, participants answered Q1 questions more accurately with HIST and SPLOM

than with PCP. In fact, there was convincing evidence for an effect of visualization

technique on error distance, F (2, 54) = 10.01, p = 0. Post-hoc analysis using Tukey’s

HSD (honestly significant difference) revealed convincing evidence for an error distance

difference between HIST and PCP (pHIST−PCP = 0) but no evidence for such a difference

between HIST and SPLOM (pHIST−SPLOM = 0.255). Interestingly, when analyzing data

separately over small and large teams, we could not find evidence for such a difference

between HIST and PCP for small teams (pHIST :small−PCP :small = 0.277). In addition,

there was no evidence of the effect of visualization on response time.

The results for Q1 suggest that users can identify the number of subgroups existing

in a team equally well using both HIST and SPLOM, and PCP for only small teams.

We suspect that encoding subgroups with unique colors make identifying the number

of subgroups or clusters straightforward. However, PCP performance decreases when

data size increases. We suspect crowded and overlapping poly lines may hinder partic-

ipants from determining the correct number of subgroups in a team. Our results agree

with the previous study [70] that SPLOM performs better than PCP on cluster number
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(a)

(b)

Figure 5.6: Boxplots of mean of error distances (a) and of response times (b) for each
question type as a function of visualization technique (HIST, PCP, and SPLOM).

identification tasks, both for implicit and explicit clusters.

Results for Q2a/b. Among the existing subgroups in the given team, which one is

the biggest/smallest? The results for Q2 very much favored HIST (Figure 5.6). For

Q2a—which involves the biggest subgroup—there was convincing evidence for an ef-

fect of visualization on both error distance, F (2, 54) = 9.809, p = 0 and response time

F (2, 54) = 10.87, p = 0. Tukey’s HSD multiple comparison tests showed statistically

significant differences between HIST and PCP as well as between HIST and SPLOM

in terms of error distance (pHIST−PCP = 0; pHIST−SPLOM = 0.001) and response time

(pHIST−PCP = 0.002; pHIST−SPLOM = 0). The results for error distance held consistent

when small and large teams were analyzed separately. The results for Q2b were similar to
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Q2a’s, with participants tending to identify the smallest subgroup more accurately with

HIST. With respect to error distance, Tukey’s HSD tests revealed convincing evidence for

the difference in the two pairs of techniques (pHIST−PCP = 0; pHIST−SPLOM = 0). Inter-

estingly, when we analyzed error distance data separately over small and large teams, the

results held true for large teams only. With small teams, while we found a statistically

significant difference between HIST and PCP (pHIST :small−PCP :small = 0.014), there was

no such evidence when comparing HIST and SPLOM (pHIST :small−SPLOM :small = 0.890).

The results confirm our hypothesis that users would make better judgments about

subgroup evenness with HIST than with SPLOM or PCP. Again, PCP is the least fa-

vorable choice for this task perhaps due to both occlusion caused by data overlap and

visual clutter caused by large data sets. As the results suggest, data overlap also hurts

SPLOM’s performance, especially when the task involved identifying the biggest sub-

group in large teams. In contrast, participants using HIST produced consistent answers

for both smallest and biggest subgroups and independent of the data set size.

Results for Q3. In which attributes are the subgroups totally separated? The results

also favored HIST (Figure 5.6). We found statistically significant effects of visualization

on both error distance, F (2, 54) = 17.58, p = 0 and response time F (2, 54) = 12.15,

p = 0. Tukey’s HSD tests yielded significant differences between HIST and PCP as well

as HIST and SPLOM on both error distance (pHIST−PCP = 0; pHIST−SPLOM = 0.001)

and response time (pHIST−PCP = 0.013; pHIST−SPLOM = 0). The results held true when

we analyzed error distances for small and large teams separately.

These results confirm our initial hypothesis that HIST is the most effective in sup-

porting users in determining attributes in which subgroups/clusters are totally separated,

followed by SPLOM and PCP. This finding is important considering that to the best of

our knowledge, no previous work has explored the use of stacked histograms to show the

separation of clusters in separate attributes.

Results for Q4. To what extent are the subgroups separated across all attributes?

The results somewhat favored HIST, which showed a statistically significant effect of

visualization technique on error distance, F (2, 54) = 4.047, p = 0.023. Tukey’s HSD

multiple comparison tests reveal convincing evidence of the error distance differences

between HIST and PCP as well as suggestive but inconclusive evidence of the error

distance differences between HIST and SPLOM (pHIST−PCP = 0.019; pHIST−SPLOM =

0.161). When error distance data are analyzed separately over small and large teams,
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the results hold true for small teams only. These results suggest that users would be

able to assign a faultline level to a given team at least as accurately using HIST as using

PCP or SPLOM.

Results for Q5. Between two different teams, which team has stronger separation

of subgroups? While there was convincing evidence for an effect of visualization tech-

nique on response time, F (2, 54) = 3.554, p = 0.036, evidence for an effect of visualiza-

tion on error distance was suggestive but inconclusive, F (2, 54) = 2.566, p = 0.086.

Post-hoc analysis reveals that users answered this question the most quickly using

HIST (pHIST−PCP = 0.053; pHIST−SPLOM = 0.076). In addition, it is suggestive that

response accuracy favored HIST over PCP (pHIST−PCP = 0.092) but not SPLOM

(pHIST−SPLOM = 0.909). While these results do not support our initial hypothesis that

users would perform more accurately with HIST than with SPLOM, they do substantiate

our hypothesis that users would be able to compare the faultline level of two teams the

most quickly when using HIST.

Result Summary. The results across Q1–Q5 consistently supported our hypothesis

that among the three techniques under investigation, HIST—followed by SPLOM and

PCP—is the most effective representation in supporting users investigating faultlines

(requirement R2) and inner structure of subgroups (requirement R3) in a given team.

For the task involving assigning a faultline level to the team (requirement R1), HIST

is at least as effective as SPLOM and PCP. Moreover, users can identify the number

of subgroups existing in a team equally well using both HIST and SPLOM. Conversely,

PCP performs the worst consistently across the tasks.

These results are complementary to the findings from the previous diversity visual-

ization studies by Pham et al. [120, 119], which showed that multiple histograms are

well-suited to communicating the diversity or distribution of objects over multiple at-

tributes separately (see Chapters 3 and 4). Within our study, we could conclude that

the multiple linked stacked histograms technique, which takes the approach of attribute

visibility (or object distribution) as opposed to object visibility, is well-suited to com-

municating diversity faultlines and composition distribution in teams.



117

5.6.1 Subjective Evaluation

After answering the task questions, participants also completed a short questionnaire

requesting their thoughts on the visualization technique and their study experience.

The questionnaire consisted of 10 Likert-style statements, four NASA TLX questions

[57], and three open-ended questions:

• L1. I was able to identify the number of subgroups in a team using the chart.

• L2. I was able to identify the biggest/smallest subgroup in a team using the chart.

• L3. I was able to identify attributes in which the subgroups were totally separated

using the chart.

• L4. I was able to judge the overall degree of separation (faultline strength) in the

team using the chart.

• L5. I was able to identify between two different teams, which team had stronger

separation of subgroups.

• L6. After the initial tutorial session, I knew how to use the chart well.

• L7. After answering all of the questions, I knew how to use the chart well.

• L8. There are definitely times that I would like to use the chart.

• L9. I found the chart to be confusing.

• L10. I liked using the chart.

• O1. What aspect(s) of the chart did you like most?

• O2. What aspect(s) of the chart did you dislike most?

• O3. If possible, how would you change the chart to improve it?

• TLX1. Mental Demand: How mentally demanding were the task questions?

• TLX2. Physical Demand: How physically demanding were the task questions?

• TLX3. Temporal Demand: How hurried or rushed was the pace of the task

questions?

• TLX4. Frustration: How insecure, discouraged, irritated, stressed, and annoyed

were you?

We first discuss the results of the Likert-style statements and NASA TLX ques-

tions. Figure 5.7 presents the responses to each of the Likert-style statements from the
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samples of HIST, PC, and SPLOM participants. Overall, the level of agreement from

participants was slightly higher for HIST than for PCP and SPLOM regarding making

judgments of diversity faultlines components (L01–L05). This evaluation is consistent

with participant performance during the task questions. Notably, we found statistically

significant difference in level of agreement among the three groups of participants when

it comes to identification of attributes with total subgroup separation (L3)–the primary

task to judge faultlines in a team–F (2, 54) = 5.14, p = 0. Tukey’s HSD tests show

significant differences between HIST and PCP as well as between HIST and SPLOM

(pHIST−PCP = 0.02; pHIST−SPLOM = 0.02). The participants also slightly favored HIST

over PCP and SPLOM in terms of applicability, ease of understanding, and affinity

(L06–L10). These results are supported by the NASA TLX questions (Figure 5.8),

which showed significant differences on mental demand (TLX1) and frustration (TLX4)

among the three methods, p = 0.016 and p = 0.02 respectively.

Figure 5.7: Boxplot of responses to each of 10 Likert-style statements as a function of
visualization method (HIST, PCP, and SPLOM). The participants were asked to indicate
their level of agreement on a scale of 1 (strongly disagree) to 5 (strongly agree).

In addition to quantitative analysis, we also performed qualitative analysis of the

three open-ended questions. Overall, many participants praised HIST for its effective-

ness and ease of use, especially the use of qualitative colors for encoding subgroups.

However, some found it difficult to compare the small differences among bar lengths. As

an improvement, they suggested that we selectively attach numbers in the bars. This

suggestion is interesting considering that despite the stacking of multiple subgroups,

HIST still has screen space to accommodate more information. Regarding PCP, several
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Figure 5.8: Boxplot of responses to each of four NASA TLX questions as a function of
visualization method (HIST, PCP, and SPLOM). The participants were asked to indicate
the level on a scale of 1 (very low) to 10 (very high).

participants liked its layout, which is novel to them and is able to represent multiple

attributes in a single view. Nevertheless, many participants expressed concern about

transparency of polylines, which are difficult to discern especially when they are of sim-

ilar colors (e.g., red and orange). Participants also mentioned that the charts become

extremely overwhelming for large data sets. Commenting on SPLOM, several partici-

pants liked the technique for its familiarity and ease of understanding. However, similar

to PCP, many participants disliked the similar colors among dots. Additionally, many

participants requested bigger charts or the zoom-in ability. This confirmed our initial

assessement that without interaction techniques [35], the matrix form space requirement

of SPLOM is a limitation.

5.7 Faultlines Visualization Enhancement

To further facilitate the faultlines identification tasks, we incorporate computational

analysis into HIST. Inspired by the physical layered form of geological faultlines, we aug-

ment the representation with connecting dashed lines to indicate the holistic boundaries

of existing separation among the subgroups across the attributes of interest (Figures 5.2

and 5.9). To our knowlegde, this visual enhancement is novel considering that while mea-

sures exist to detect separable clusters of quantitative data in 2D scatterplots [144, 135],

measures and enhancements for mixed type data in stacked histograms are non-existent.

Technically, the augmentation requires three main computation procedures: (1) re-

ordering values in attribute space, (2) identifying attributes with total subgroup separa-

tion, and (3) drawing the lines.
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Figure 5.9: The HIST representation of the example team (Figure 5.4(a)) enhanced
with connecting dashed lines to indicate the boundaries of separation among subgroups
across the attributes. Within each of the nominal attributes, categories are clustered
using Bertin Classification Criterion. Attribute axes are sorted using the Total Sepa-
ration Criterion. The lines show that the three subgroups are totally separated along
EDUCATION, ETHNICITY, and EXPERIENCE.

5.7.1 Reordering of Attribute Values

The first step is to reorder values within nominal attributes to reveal meaningful bound-

aries among subgroups along the corresponding axes. For each attribute X, we first

construct the corresponding contingency table (or matrix), A, by subgroups. Second, we

reorder attribute values or matrix rows by optimizing the Bertin Classification Criterion

(BCC), as illustrated in Figure 5.10. The criterion, which is proposed by Pilhöfer et al.

[125] and related to Kendall’s τ [84], is an implementation of Bertin’s idea that reorder-

ing of data would improve the understandability of graphical displays [12]. The goal is

to minimize
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BCC(X) =
∑

i>i′,j<j′

AijAi ′j ′ (5.2)

where Aij denotes the entry value at row i and column j and similarly, Ai ′j ′ the entry

value at row i′ and column j′. Note that optimization of BCC does not indicate whether

total separation of subgroups/clusters occurs within an attribute. Also note that since

we want to preserve the stacking order of subgroups (i.e., subgroup 1–red followed by

subgroup 2–blue and subgroup 3–green as in Figure 5.9), this first step optimizes BCC

by re-arranging attribute values only, instead of both subgroups and attribute values.

Figure 5.10: Reordering of categories in attribute EDUCATION of synthetic Team 2
(Table 5.1 and Figure 5.1) by optimizing BCC. The goal is to arrange the matrix rows to
get close to a pseudo-diagonal form [125] and to reveal the boundary among subgroups.

5.7.2 Total Separation Criterion

The second step is to determine if total separation of subgroups/clusters occurs within an

attribute X. Technically, if X is a nominal attribute, total separation occurs when each

row (attribute value) of the matrix is fully contained in exactly one column (subgroup).

In other words, different subgroups share no common attribute values, or

R(X) =
∑

i=i′,j 6=j′

AijAi ′j ′ = 0 (5.3)

If X is a numeric or ordinal attribute, total separation of subgroups further requires

that rows fully contained in one specific column must be contiguous, or BCC(X) = 0,
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assuming the ordering of subgroups (or matrix columns) are optimized (i.e., pseudo-

diagonal form of the matrix [125]) . Combining the two requirements, total separation

of subgroups occurs within an attribute X when

TSC(X) = R(X) +min(BCC(X)) = 0 (5.4)

We refer to TSC as Total Separation Criterion. Its values are also used to reorder

attribute axes in ascending order from left to right (Figure 5.9) before executing the

faultlines drawing algorithm. Note that for the purpose of computing TSC, this step

simply calculates BCC with different permutations of subgroups (or matrix columns),

as opposed to actual re-arrangement of attribute values as in the first step.

5.7.3 Faultlines Drawing Algorithm

For each of the attributes with total separation of subgroups, since its values are already

in optimal ordering after the first two steps, our algorithm simply traverses the values

and marks the boundary between two adjacent subgroups. The traversal also wraps

around the values to include the boundary between the two subgroups occupying the

top and bottom values along the attribute axis. Finally, we draw a dashed polyline along

the boundaries of the two specific subgroups across the attributes with total separation

of subgroups. Note that values of nominal attributes without objects (zero-length bars)

can be selectively excluded to adjoin boundaries among subgroups. We also apply a

jittering technique to alleviate the possible overlap of vertical line segments (Figure 5.9).

Our informal test indicates that real-time computation of the lines is reasonably fast on

a typical desktop PC.

5.8 Discussion and Future Work

In this chapter, we propose, design, and evaluate visualization solutions to a new and

worthwhile domain-specific problem concerning diversity faultlines in work teams. Like

most studies, ours has limitations that we discuss here along with suggested directions

for future work.
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5.8.1 Study Design Issues

First, our study evaluated static visualizations only to first understand the merits and

shortcomings of HIST, PCP, and SPLOM as standalone representations. Since the fault-

line concept is still new to end-users (e.g., managers) and no visualization solution exists,

we must begin by understanding representation approaches that are linked to generic

clustering. This decision was also made to keep the study implementation feasible in the

online setting of mTurk. Future work will address the interactive capabilities of HIST.

For example, interaction features can potentially allow users to configure their faultline

requirements, such as faultline measures, attributes of interest, and rescale factors for

each of the examined attributes.

Second, while we collected response time, we did not set a time limit for each question

considering that the online setting of the study may be associated with more interruptions

than in a lab setting. This design decision resulted in several unexpected outliers as

shown in Figure 5.6(b). Nevertheless, these outliers were counter-balanced among the

three visualization techniques and we applied a rank transformation [33] to the data

before performing statistical tests.

Third, faultlines visualization enhancement (i.e., reordering of attribute values and

drawing of connecting dashed lines) also requires formal evaluation. Early feedback

from our management researcher collaborators were highly positive—they praised the

enhancement for its simplicity and usefulness. However, an interesting point was sug-

gested regarding reordering of attribute values not only in nominal attributes—as cur-

rently implemented—but also in ordinal and discretized quantitative attributes. The

aim would be to make the separation of subgroups along the dashed lines more clear-

cut (i.e., no crossing lines) but at the expense of losing the information on the possible

distance/gaps among subgroups in ordinal and quantitative attributes. A follow-up user

study of such trade-off in design choices with target users such as managers would be a

potential direction for future work.

5.8.2 Limitations of HIST

Multiple histograms also have limitations. First, the technique requires a discretization of

quantitative attributes. Second, since the technique treats each attribute independently,
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it provides limited insight into the correlation between attributes, at least with the static

representation. On the other hand, PCP is well-suited to showing correlation between

two neighboring attributes. To enable correlation analysis in HIST, we envision that PCP

poly-lines can be selectively overlaid to allow the user to inspect the relationship among

attributes as well as individual objects. Alternatively, it would be informative to consider

approaches that decouple the primary faultlines/subgroups view from a relationship view

where correlations are shown, for example, in a scatter plot matrix.

On a related note, implementing an interactive faultlines visualization would require

efficient faultline measures as an external data clustering step. Nevertheless, to our

knowledge, there are currently no well-established measures that would be scalable to

large teams with multiple subgroups [150]. We suspect that modern cluster algorithms

from the field of data mining such as Affinity Propagation [43] deserve further investi-

gation for the faultline measurement challenge.

5.9 Conclusion

We present the first study exploring the design space for graphical representation of

team faultlines, a fundamental construct in management that shares many characteris-

tics with clustering in computation. In doing so, we contribute (1) the novel application

and refinement of existing stacked histograms technique to the faultlines visualization,

(2) a rigorous evaluation of the effectiveness of the proposed technique, (3) additional

visual enhancements and metrics to further facilitate the faultlines identification tasks.

To visualization researchers, the findings from our study suggest the need for revisiting

cluster representations in general and investigating techniques for the important prob-

lem of faultlines in particular. To management researchers, our proposed visualization

provides a useful means to conceptualize visually the output of faultlines measures, a

requirement which is extremely difficult to achieve with a table-based assessment. We

also hope the visualization will help bring the benefits of studying faultlines to more

end-users such as managers or human resources departments.
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Chapter 6: Toward Exploratory Analysis of Diversity Unified

Across Fields of Study 1

6.1 Introduction

Understanding diversity patterns and their causes and consequences (processes) is one

of the greatest challenges in ecology, both at the scales of species such as plants and

animals and of microorganisms (e.g., [51, 101, 112, 45]). Although this problem is shared

by other disciplines, ecologists might not be fully aware of the potential improvements

that could be gained by a formalized understanding of diversity studies in many arenas.

For instance, while researchers and managers of human organizations may use different

vocabulary, they are also concerned with diversity (e.g., [90, 55, 14]).

A common approach to understanding diversity patterns and processes is hypothesis-

driven or confirmatory analysis that relies on rigorous statistical metrics and tests of data

observations [101, 48, 55, 150]. These techniques may work well when the hypotheses

exist, are falsifiable and testable with reasonable metrics and tests. Otherwise, the utility

of the current approach diminishes quickly when the number of diversity attributes

under investigation is large, multiple subsets of data are involved, and/or hypotheses are

not pre-established. Still, indices of diversity have greatly dominated over more direct

exploration of diversity in studies of ecology and human organizations.

Decades ago, ecology experts such as Whittaker [158], Sanders [133], and Hurlbert

[72] suggested that in addition to diversity indices, ecologists should gauge diversity pat-

terns by direct observation of data. Following this advice, visual representations of data

such as histograms and rank-abundance plots [158] have been employed to communicate

species variety and abundance. Nevertheless, these techniques supported limited num-

ber of variables, no interaction, and thus limited exploration capacities—perhaps due to

a lack of computational interfaces and tools at that time. Experts who study human

organizations have also suggested that configurations of work team structure are impor-

tant and have direct consequences on team outcome processes [24]. Yet no tools exist

1The material in this chapter represents joint work with Julia Jones and Ronald Metoyer.
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to enable direct investigation of team structure, besides text- or table-based assessment

of data. In addition to the paucity of tools, discipline-specific terminologies and metrics

preclude the understanding of how diversity functions and how it could be characterized

similarly across disciplines.

Recently, visual analytics, “the science of analytical reasoning facilitated by interac-

tive visual interfaces” [151], offers a new, and powerful aid to the analytical reasoning of

diversity patterns and processes in complex data. By leveraging the human visual system,

visual analytics—a subfield of data visualization—provides a visual gateway to the data,

complementing existing diversity metrics and allowing users to explore data directly and

iteratively prior to further statistical analysis (Figure 6.1). As demonstrated in previous

chapters, data exploration facilitates the generation of hypotheses and insights into the

data [154, 8].

Figure 6.1: Proposed visual-analysis process of exploring diversity data. Each rectangle
represents a subprocess and each arrow indicates a direction the analyst can take to
go through the process. This work focuses on exploratory analysis tasks (the orange
rectangle), as distinguished from data pre-processing or hypothesis testing tasks.

The visualization community has shown considerable interest in interactive visualiza-

tion tools for exploring diversity in ecology and its subfield—microbial ecology. Notably,

there are tools designed to facilitate understanding of (1) patterns of species distributions

in separate attributes (e.g., the EcoDATE tool [121]), (2) structures of microbial pop-

ulations (e.g., the MicrobiVis tool [37]), and (3) taxonomic classification and structure

(e.g., the TaxonTree tool [94]). Unfortunately, these tools serve specific subsets of infor-

mation needs that are somewhat separated and not transferrable from one to another.

To our understanding, very little work has focused on abstracting diversity analyses from

various fields to unified analytical tasks that target all facets of diversity in multivariate

data sets. By analytical task, we mean one or a series of actions carried out by the target

users on the data to fulfill an information need. Analytical tasks serve as prerequisites
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for designing visual-analysis tools that in turn support those tasks (Figure 6.2).

Figure 6.2: A model of visualization creation with four nested layers introduced by
Munzner [109] (left) and its instantiation in the context of diversity analysis (right).
This chapter emphasizes the two outer layers: (1) characterize the problem in terms
of diversity concerns and information needs (“the framework”) and (2) abstract the
concerns into analytical tasks (“the taxonomy”) that can be accomplished with visual-
analysis tools.

This chapter draws upon lessons from the design of diversity visualizations in previous

chapters to identify a taxonomy of analytical tasks for exploratory analysis of diversity

potentially unified across fields of study (the yellow layer in Figure 6.2). In doing so,

we first characterize the problem (the orange outermost layer in Figure 6.2). Specifi-

cally, we review, cross compare, and align diversity concerns across the three areas of

species diversity (ecology), microbial diversity (microbiology), and workgroup diversity

(organizational management). By concerns, we mean elements of diversity that can be

conceptualized in a manner that transcends the three disciplines and the type of ques-

tion being asked. We also illustrate these concerns with several examples of commonly

used visualization techniques. The aim of the alignment framework is to set up a shared

understanding between subject-matter experts and visualization researchers in terms of

common diversity-related vocabulary and design considerations. We then translate these

concerns into analytical tasks that are well defined by existing generic task taxonomies

in visual analytics (e.g., [5, 8]). Simply put, while the diversity concerns are the vo-

cabulary of subject-matter experts that represent their information needs and transcend

across fields, the analytical tasks are the vocabulary of computer science, or more specif-

ically, of visual analytics that represent user requirements that can be met by design of

visual-analysis tools.

Our results aim to benefit various users. Subject-matter experts can cross compare di-
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versity concerns and scientific findings as well as adopt analytical tasks and visualization

techniques. Further, visualization designers and researchers have common vocabulary

and abstractions for designing and evaluating different diversity visual-analysis tools.

Finally, we are aware that the proposed framework and taxonomy are by no means

comprehensive considering the complexity of ecological and human systems and their

interactions. Therefore, we expect this work will stimulate further discussions regarding

validation and improvement to both the framework and the taxonomy.

6.2 Alignment of Diversity Concerns

Here we discuss a framework for aligning diversity concerns (“the framework”) across the

analyses of species diversity (ecology), microbial/genomic diversity (microbial ecology),

and workgroup diversity (organizational management). By framework, we mean a set of

thoughts, theories, and approaches that are accepted by subject-matter experts as the

guiding principles for characterizing the problem. The concerns of interest include (1)

characteristics of diversity data, (2) description of diversity patterns, and (3) hypothe-

ses regarding the causes and consequences of diversity (processes). The framework is

summarized in Table 6.1.

6.2.1 Data Characteristics

Ecologists typically make a distinction between two types of phenomenon concerning

diversity: (1) the description of diversity (diversity patterns) and (2) the causes and

consequences of diversity (diversity processes) [101]. To understand these phenomena,

a common approach is to undertake scientific studies. Specifically, experts collect data

and make inferences about the underlying phenomena based on data behaviors (or data

patterns). Data behavior is defined as a set of inherent features specific to a (sub)set

of data observations considered as a whole as opposed to individual observations [8].

For instance, a data behavior may manifest itself as notions of distributions, clusters,

or trends. Simply put, analysts characterize behaviors of their collected data to under-

stand underlying phenomena. This approach of analysis follows inductive reasoning, as

distinguished from deductive reasoning such as forming hypotheses based on theoretical

models [48], which is outside the scope of this work.
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Table 6.1: Alignment of diversity concerns across the analyses of species diversity (ecology), microbial diversity
(microbial ecology and microbiology), and workgroup diversity (organizational management). Note that cells
marked with “–” indicate missing concerns that may not yet be studied in the corresponding fields. The last
column suggests how the data behavior for each of the concerns (if applicable) should be characterized.

Species Diversity Microbial/Genomic
Diversity

Workgroup
Diversity

Data Behavior
Characterization

Typical Unit of Study Community (α-diversity) Microbe Sample
(α-diversity)

Work team N/A

Typical Unit of
Observation

Individual of known
species or biomass

OTUs with abundance
(classified from microbe
sample)

Individual person N/A

Diversity Components
concerning Separate
Attributes

Variety and Abundance Variety and Abundance Variety
Distributions
Metrics

Niche Separation – Separation
Dominance/Rarity Dominance/Rarity Disparity

Diversity Components
concerning
Interactions among
Attributes

Functional Diversity Functional Diversity Faultines/Subgroups
Distributions
Clusters
Metrics

Taxonomic Diversity Taxonomic Diversity –

Distributions
Clusters
Hierarchies
Metrics

Diversity in Space and
Time

β-diversity or turnover;
γ-diversity

β-diversity or turnover Between-unit
diversity;
Macro-faultlines

Spatial & Temporal
Characterization
Metrics

Diversity as
Responder (Cause
of Diversity)

Landscape patterns
(Climate, Disturbance,
Land Use)

Environmental pat-
terns or Biological
patterns (Human
body)

Organizational
factors (e.g., cul-
ture, recruitment)

Correlations/
Regressions
Metrics

Diversity as Driver or
Moderator (Effect of
Diversity)

Ecosystem functions and
processes

Eco or Human system
functions and processes

Workgroup func-
tions and outcomes
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Diversity data are samples of independent observations collected from the population

of interest within one or multiple units of study (Table 6.1). For example, in workgroup

diversity, a work team represents a typical unit of study while an individual person

represents a unit of observation (or measurement) [55, 150]. Comparatively, in species

diversity, a typical unit of observation is an individual of known species such as animals

and plants collected in a community or assemblage [101]. On the other hand, a typical

unit of study of microbial community diversity is a biological sample (i.e., biological spec-

imen) that can be classified into various Operational Taxonomic Units (OTUs), a close

approximation to microbial species (as opposed to plant or animal species) with corre-

sponding abundances [112, 45]. The identification of OTUs is performed by extracting

and sequencing DNA from the biological sample [45].

Each unit of observation may be characterized by multiple mix-typed and, in some

cases, hierarchical characteristics (attributes) necessary for gauging diversity of the cor-

responding unit of study and its role in the examined ecological or human system. For

instance, a team member may be characterized by multiple demographics and non-

demographics attributes; an individual of a known species may be described by multiple

known characteristics (e.g. size, food type) and hierarchical levels of Linnaean taxonomy

(e.g., family, genus, and species). In addition, observations can be collected in space and

time (independent variables) and associated with additional process (cause and effect)

factors (e.g. team performance or ecosystem functions). In essence, diversity data sets

are mix-typed, multivariate, and in many cases, hierarchical, spatiotemporal, and large

(thousands of records/observations).

6.2.2 Diversity Patterns

Diversity patterns are an overarching concept that includes various and related compo-

nents adopted by the three areas of interest but usually under slightly different terms,

especially between species/microbial diversity and workgroup diversity. The components

can be loosely classified based on the ideas that (1) diversity is attribute-specific—that

is, attributes are not treated as equal and (2) one or multiple diversity attributes can be

investigated either separately (i.e., one by one) or simultaneously (Table 6.1, Diversity

Components concerning Separate Attributes vs. Diversity Components concerning Inter-

actions among Attributes) [90, 101, 55]. Here we aim to (1) briefly describe the common



131

components, (2) demonstrate how they could be aligned across the three examined areas,

and (3) more importantly, characterize each of the components with corresponding data

behaviors of interest to analysts.

6.2.2.1 Diversity Patterns concerning Separate Attributes

Figure 6.3: Illustration of species richness and evenness. Each icon represents an in-
dividual of a known species (e.g., insects). Species richness refers to the number of
different species represented in a unit of study and species evenness concerns how close
in abundances each species in a unit of study is.

First, consider the diversity patterns in separate attributes–for example, investigation

of biodiversity at species level only. In this regard, species diversity (or α-diversity) is

“the variety and abundance of species in a defined unit of study”, as defined by Magurran

[101]. The definition emphasizes the two main components and corresponding metrics

of richness of variety and evenness of abundance of species (Figure 6.3). Similarly but

at genomic level, microbial community diversity also concerns variety and abundance of

microorganisms in a community. With respect to data behaviors, in addition to diversity

metrics, richness of variety and evenness of abundance are typically characterized by

shapes of distribution, as depicted by a rank-abundance curve (Figure 6.4).

When space and time are involved, ecologists introduce additional diversity compo-

nents and related metrics [159]. α-diversity refers to species diversity within a particular

community or site as defined earlier [101]. β-, and γ-diversity correspond to variation in
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Figure 6.4: Rank abundance curve (with logarithmic scale) showing the evenness of
moth species in the moth dataset [106]. ‘A’ shows the common moths, ‘B’ shows the
rare moths, and ‘C’ shows the common through rare moths. The technique is a variation
of the histogram in which species are ranked from most to least abundant and then
plotted along the x-axis. The technique is limited to a single attribute. Image taken
from Pham et al. [120].

species composition from one site to the others or from time to time (i.e., turnover) and

to the diversity at the landscape scale, respectively [159].

On the other hand, experts studying human organizations describe workgroup diver-

sity in separate attributes as “the distribution of differences among the members of a

unit with respect to a common attribute, X, such as tenure, ethnicity, conscientiousness,

task attitude, or pay” [55]. Similar to the definition of species diversity, this definition

is also centered on the generalization of diversity as distributions.

Besides, workgroup diversity is explicitly attribute-specific. Depending on the at-

tributes under investigation, the experts conceptualize diversity not only as variety but

also as separation and disparity, as introduced by Harrison and Klein [55]. Variety rep-

resents differences in kind or category (e.g., different skill sets) and reflects information

in the unit. Separation represents differences in position or opinion and is considered a

horizontal difference between members of a unit. For instance, different cultural values

of members represent team separation. Disparity represents differences in concentration

of valued social assets or resources and is considered a vertical difference between mem-

bers of a unit. For example, difference in pay among members may create disparity in a

team. Disparity thus reflects differences in possession. Note that several characteristics,

specifically the demographic attributes of age, gender, race, and tenure, can represent

more than one type of diversity. For instance, ‘age’ may indicate variety in one case (age
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comes with experience) and separation in other cases (age represents generation gaps).

While these diversity types have different names conceptually, from an analysis point

of view, their patterns differ only in the shapes of the distribution of interest for minimum,

moderate, and maximum diversity (Figure 6.5) [55]. Consider maximum diversity, for

example. Maximum variety occurs when each of the possible values of an attribute

(e.g., skill sets) is evenly represented; maximum separation is depicted by a bimodal

distribution with half of the unit at each of the extremes of the attributes of interest

(e.g., cultural values); maximum disparity, on the other hand, is depicted by a skewed

distribution with one member at the high end of the vertical scale and all other members

at the low end (e.g., pay differences). These shapes of distributions are in turn empirically

associated with different outcomes for the examined unit of study [55].

Figure 6.5: Illustration of the three types of diversity within work teams and the corre-
sponding shapes of distributions for the three levels of diversity: minimum, moderate,
and maximum. Each of the icons represents a team member. Image reused with permis-
sion from Harrison and Klein [55]. c©2007, Academy of Management.

While ecologists do not explicitly discuss separation and disparity, they do discuss
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species dominance and niche separation, which correspond well to disparity and sep-

aration distributions in management, if these components are considered in separate

attributes. Specifically, species dominance refers to the degree to which a species is more

numerous than others are or makes up (or possesses) more of the biomass, thus represent-

ing a vertical difference in makeup (as in disparity) [11, 47, 46]. Niche separation is the

process of naturally partitioning competing species into different patterns of resource use

or different niches so that they do not out-compete each other [92]. As an example, food

type of animals could be considered as a separation attribute—carnivore (meat eater)

and herbivore (plant eater) may represent two extreme ends of the food type spectrum.

To some extent, this concept is comparable to separation in organizational management,

which is a horizontal difference in makeup.

In all, we argue that when diversity is considered in separate attributes, the concept

of species diversity matches well with that of workgroup diversity in which team members

equate to individuals of species (or their equivalents such as OTUs). These components

are centered on the generalization of diversity as distributions. Furthermore, it is im-

portant that the analysts choose the correct conceptualization (e.g. type of diversity)

and apply the appropriate data characterization (e.g. statistical metrics or shapes of

distribution). To summarize, we propose the following consideration for characterizing

data behavior of diversity patterns in separate attributes:

Data Behavior Characterization - Consideration 1. From an analysis

point of view, when diversity patterns are considered in separate attributes,

depending on the types of diversity under consideration (e.g., variety, separa-

tion, and disparity), the corresponding data behaviors are typically character-

ized by the shapes of distributions of observations in separate attributes,

in addition to summary statistics such as diversity metrics. If time and space

are involved, the data behavior should also consider how the distribution pat-

terns and summary statistics vary over time and space.

To demonstrate how this consideration may benefit design of interactive visualization

techniques, consider the example visualization in Figure 6.6. The figure depicts the mul-

tiple histogram representation of the moth diversity and abundance data set supported

by the EcoDATE tool [121]. Consideration 1 emphasizes the characterization of data

behavior as shapes of distributions in separate attributes. According to information vi-



135

sualization design principles [99], a histogram is well suited to showing the distribution

of objects within an attribute. Further, placing histograms vertically side-by-side in par-

allel [74] aims to convey a holistic object distribution over multiple attributes. Finally,

the characterization of distributions (Consideration 1) is further assisted by interaction

features. For instance, users can sort bins within a histogram by abundances to form the

rank-abundance curve (e.g., green histogram LEP NAME); annotate histograms with

different colors to distinguish attributes of different diversity types (i.e., variety, separa-

tion, and disparity); subset data by time (COLLECT YEAR) or space (TRAP ID) to

see how distribution patterns vary over time and space.

Figure 6.6: The multiple histogram representation of common moths. The visualized
attributes from left to right are LEP NAME (moth scientific name including genus and
species), LEP GENUS, LEP FAMILY, FOOD PLANT, TRAP ID, HABITAT, ELE-
VATION, WATERSHED, COLLECT YEAR, COLLECT PERIOD, TEMPERATURE.
Note that LEP is short for Lepidoptera (moth). In each of the histograms, the bars are
pointing to the right (in contrast to the familiar upward-pointing display). The structure
of the moth data set is described in [120]. The interactive version of the visualization is
available at http://purl.oclc.org/ecodate/commonmoth.
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6.2.2.2 Diversity Patterns concerning Interactions among Multiple

Attributes

Diversity definitions that look at the diversity of each attribute separately have a lim-

itation. They do not take into account the interaction among attributes. Consider an

example of two teams of employees that have four members each in Table 6.2. While it

is obvious that Team 2 is divided into more subgroups, the current definition concludes

that both teams are at the same level of overall diversity with respect to gender and

age—that is, in each of the two teams, members are uniformly distributed in both gen-

der and age. To address this limitation, here we discuss diversity patterns that consider

interactions among multiple attributes. In this regard, we also find parallel components

across the three areas (Table 6.1).

Table 6.2: Employee Diversity Example. Each of the two teams has four members.

Team 1
Female, over 50 Male, under 50
Female, over 50 Male, under 50

Team 2
Female, over 50 Male, over 50
Female, under 50 Male, under 50

Figure 6.7: A dendrogram representation demonstrating how seven species 1-7 are as-
signed to four functional groups based on hierarchical clustering of the species across
multiple functional traits. The four functional groups include {1}, {2, 3}, {4, 5}, {6,
7}. The dashed line indicates an arbitrary stopping condition for the clustering process.
Image reused with permission from Petchey and Gaston [116]. Copyright c©2002, John
Wiley and Sons.
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On the one hand, ecologists and microbiologists recognize functional diversity as va-

riety of roles played by different species (or their equivalents) based on their composition

of multiple functional traits (e.g., rooting depth and maximum growth rate of plants)

[116]. Technically, composition of these traits can be used to cluster different species

(or their equivalents) present in a unit of study into different functional groups and to

derive, for example, the functional diversity (FD) metric [116] (Figure 6.7). There are

potentially many ways to compute similarity or dissimilarity among objects or among

variables. Therefore, it is important to choose appropriate and ecologically meaning-

ful clustering algorithms or to allow analysts to iteratively explore them (Figure 6.1).

Ramette [128] provides an in-depth review of cluster analysis techniques for microbial

diversity data.

Furthermore, species and OTUs are inherently hierarchical—that is, species are

grouped into taxa. Therefore, traits or attributes under investigation might be extended

to taxonomic organization such as species, genus, and family, resulting in taxonomic

diversity (diversity across taxa) and corresponding metrics such as taxonomic distinct-

ness [157]. Figure 6.8 illustrates an example of two hypothetical units of study whose

diversity levels are determined by not only species level but also as composition of higher

taxa. From an analysis perspective, hierarchy of different species present is the primary

data behavior of interest for taxonomic diversity.

Figure 6.8: A node-link diagram (tree) representation of two hypothetical units of study
(e.g., assemblages) with the same level of species richness (i.e., five species represented)
but different levels of taxonomic diversity when higher taxa such as genus and family
are considered; unit of study (a) is more diverse than unit of study (b). Image reused
with permission from Magurran [101]. Copyright c©2003, John Wiley and Sons.

It is important to note that just as diversity patterns in separate attributes, func-

tional diversity and taxonomic diversity also concern richness of variety and evenness
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of abundances within or between clusters (e.g., functional groups) [117], making the

generalization of diversity as distributions still applicable. As an example, while the

dendrogram alone in Figure 6.7 does not consider evenness of observations in each of

the four functional groups, a heatmap is commonly used along with dendrogram to

communicate evenness of abundances (Figure 6.9).

Figure 6.9: A hybrid representation of dendrogram and heatmap used to depict the
taxonomic diversity of archael and bacteria phyla along with corresponding abundances
detected in several samples of a microbial diversity study. Image reused with permission
from Briggs et al. [18]. Copyright c©2011, American Society for Microbiology.

On the other hand, in organizational management, the diversity faultlines concept,
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which is also adopted from multivariate clustering, concerns subgroups or clusters formed

in a work team based on alignment (or composition) of multiple demographic or non-

demographic characteristics of members, as first introduced by Lau and Murnighan [90].

Figure 6.10 depicts an example of how the faultlines concept is applied to a work team.

Just as ecologists studying functional diversity, management experts are also interested

in (1) structure of subgroups with respect to the number of subgroups, evenness of

subgroups, and subgroup variety and abundance; and (2) faultlines or attributes in

which subgroups are separable or far apart from each other [14, 24, 123]. Note that

subgroups in workgroup diversity, functional groups in functional diversity, and clusters

in computation are now considered equivalent in the framework. Surveys of various

faultline concerns and metrics can be found in [150] and [104].

Figure 6.10: An example of how a faultline metric [14] is used to cluster a group of
starting pitchers of the MLB team Brewers in 2008 into two subgroups (subgroup 1 and
subgroup 2) based on the similarity of group members across the attributes of interest:
AGE, COUNTRY (of origin), RACE, and MLB TENURE (in years). The table does
not clearly show how the subgroups (or clusters) are separable or far apart across the
attributes under investigation. Figure 6.11 depicts a multivariate visualization technique
that addresses this issue. Data courtesy Katerina Bezrukova and Chester Spell.

In all, we argue that the concept of faultlines in organizational management could be

matched with that of functional diversity in ecology from an analysis perspective. Both

are adopted from multivariate cluster analysis. Therefore, appropriate operationaliza-

tions of the concepts in terms of diversity metrics or data behaviors of interest could

potentially be exchangeable. We summarize a consideration for characterizing data be-

havior of diversity patterns concerning interactions among multiple attributes as follows:
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Data Behavior Characterization - Consideration 2. From an analy-

sis point of view, when diversity patterns involve interaction among multiple

attributes simultaneously, the corresponding data behaviors are typically char-

acterized by the shapes of distributions of observations that are grouped

into clusters across multiple attributes, in addition to summary statistics

such as diversity metrics. Clusters may represent functional groups in an

ecological unit of study (e.g., communities) or subgroups in an organizational

unit of study (e.g., work teams); clusters may also represent different units

of study under comparison. In addition, in some cases, the data behavior of

interest is the hierarchical relationships if the patterns of interest concern

taxonomic organization (e.g., taxonomic diversity) or hierarchical clustering.

Further, if time and space are involved, the data behavior should also consider

how these distributions, clusters, and/or hierarchies as well as corresponding

summary statistics vary over time and space.

Figure 6.11 and Figure 6.12 show examples of visual representation design of diversity

faultlines that followed closely Consideration 2 [122, 123]. First, to convey distributions

of observations across attributes, the design reuses multiple histograms (Figure 6.6).

Then, since subgroups (or clusters) are nested within a team, to maintain bar length

encoding, a natural solution to encoding subgroups is to stack bars within each bin

(Figure 6.12). Distinct color hues on a white background are used to differentiate stacked

subgroups. Following this design, structure of each of the subgroups is conveyed across

attributes. In addition, a total separation of subgroups occurs at a nominal attribute

when distinct subgroups (or distinct colors) occupy distinct positions along the vertical

axis. Total separation at a numeric or ordinal attribute further requires that these

distinct positions—including ones without objects (zero-length bars)—are contiguous.

The visual representation in Figure 6.11 makes it obvious that the two subgroups formed

in a group of baseball players are totally separated apart in all four attributes under

investigation; the team visualized in Figure 6.12 represents a less extreme example of

faultline separation in a work team: the three subgroups are separated along several

attributes but the members overlap in other attributes.

To further show that the diversity faultlines concept in management corresponds well

to functional diversity in ecology, we also apply the multiple linked stacked histograms
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Figure 6.11: Group of starting pitchers of the MLB team Brewers in 2008 (Figure 6.10)
visualized using multiple linked stacked histograms (HIST). The two subgroups (sub-
group 1 and subgroup 2) are totally divided in all four attributes of COUNTRY, RACE,
AGE, and MLB TENURE. The connecting dashed lines are overlaid to represent the
holistic separation between the two subgroups.

representation (HIST) to visualizing the two groups of common moths and rare moths

from the moth data set (Figure 6.13). To some extent, the two groups are equivalent to

functional groups in functional diversity. The results are encouraging. The visualization

provides insights into the separation between the two groups with respect to species,

genus, and family as well as food plant: common moths are mostly conifer-feeders and

rare moths are mostly hardwood, herb, and grass-feeders (Figure 6.13).

6.2.3 Diversity Processes

Thus far, we have focused on diversity patterns, however these patterns are causally

associated with other phenomena in the system under investigation. Across the three

fields, we can find parallels in the roles of diversity as responder (cause), driver (effect),

or moderator (effect). For instance, ecologists refer to positive effects of diversity such as

sustainability and resilience in an ecological system (e.g., [51, 11]) while organizational
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Figure 6.12: Example team of size 18 visualized using HIST. Distinct colors are used
to differentiate the three subgroups: subgroup 1, subgroup 2, and subgroup 3. While
subgroup 3 is the biggest, subgroup 1 is the smallest. The three subgroups are totally
separated along ETHNICITY, EDUCATION, and EXPERIENCE because different sub-
groups occupy different subsets of values along these attributes. The three subgroups
overlap in GENDER and AGE because there exist values of these attributes shared by
different subgroups.

management experts seek innovation and flexibility, just to name a few (e.g., [55, 155,

105]). The causes of diversity in ecology are related to climate, disturbance, and land

use while in organizational management they are organizational factors such as culture

or recruitment.

During the data exploration process involving the analyst’s knowledge, the analyst

may be able to make inferences about the diversity processes from direct observation of

diversity patterns considering that the causal links are well understood [8, 37, 120]. For

example, ecologists found that the richness of species tends to be higher in lower latitudes

than in higher latitudes [69]. In another example, it is widely accepted in organizational

management that high variety of expertise in a team results in greater creativity and

innovation [55]. Nevertheless, based on information needs of users and availability of

process data (e.g., environmental factors or performance), visual analysis tools may
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Figure 6.13: Two groups (or clusters) of common moths and rare moths visualized using
HIST. Since the common moths are much more abundant than the rare moths, the
length of each bar is scaled according the logarithm with base 10. The view suggests
the two groups are far apart with respect to species, genus, and family as well as food
plant—attribute axes 1-4 from left to right. However, the two groups overlap in the
other attributes. The structure of the moth data set is described in [120].

support users in examining the associations between observed diversity patterns and

system processes directly via correlation and regression analyses. Note that regression

and correlation indicate only how or to what extent data variables are associated with

each other. To make conclusions about the causal relationships, analysists may need to

involve their domain knowledge. We introduce another consideration for characterizing

data behavior of diversity processes as follows:

Data Behavior Characterization - Consideration 3. From an analysis

point of view, the data behaviors of diversity processes are typically charac-

terized by how diversity patterns and system processes are correlated, if the

observed diversity patterns are investigated as a driver or responder; or by
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how diversity patterns moderate correlations between system processes, if

the observed diversity patterns are investigated as a moderator. If time and

space are involved, the data behavior should also consider how these corre-

lations/regressions vary over time and space. Note that following Consider-

ation 1 and 2, diversity patterns and system processes may be characterized

by corresponding data behaviors (e.g., distributions, clusters, hierarchies) or

summary statistics (e.g., diversity metrics).

Figure 6.14: An example of scatter plots used to depict possible relationships between
species richness, functional diversity metric, and ecosystem processes. Data points may
represent unique units of study or a unit of study repeatedly measured over time. Image
reused with permission from Petchey and Gaston [117]. Copyright c©2006, John Wiley
and Sons.

To demonstrate the relevance of this consideration to designing visual representations,

we first present two examples from ecology and organizational management. According

to information visualization guidelines, scatter plot and line chart are effective for com-

municating relationships between two variables [136]. In Figure 6.14, scatter plots are

used to demonstrate possible correlations between measures of species richness, func-

tional diversity, and ecosystem processes (e.g., retention of nitrogen, total aboveground

biomass). In Figure 6.15, a line chart is used to depict the role of diversity faultlines as

“moderator”. These two static examples, which are taken from research papers, serve

the primary purpose of explaining the correlations and regressions found from hypothesis

testing. Nevertheless, the techniques, if equipped with appropriate interaction features
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Figure 6.15: An example of a line chart used to depict the role of diversity faultline
as “moderator”: psychological distress of team members was positively related to their
perceived injustice in the team (the dashed line); strong group faultlines weakened that
positive relationship (the solid line). Image reused with permission from Bezrukova et
al. [15]. Copyright c©2010 Wiley Periodicals, Inc.

such as highlight/select and filter/subset [65], would be still applicable for enabling ex-

ploration of the correlations. On a related note, in both examples, the examined diversity

patterns and system processes are quantified by summary statistics, as opposed to more

descriptive data behaviors such as distributions or clusters, which we demonstrate in the

next example.

Reusing the moth data set, the next example shows how investigation of the rela-

tionships among distribution patterns (Consideration 3) is facilitated by multiple linked

histograms augmented with interaction features, especially data filtering (Figure 6.16).

Ecologists interact with the visualization to inspect the effect of temperature on the

emergence patterns of common moth (diversity as responder). By filtering the moth

records by COLLECT YEAR, ecologists observed that common moths were captured

in a much more concentrated time span in a warm year such as 2004 than in a cold

year such as 2008. In this example, while ecologists need to observe only three attributes

(COLLECT YEAR, COLLECT PERIOD, and TEMPERATURE) to discover their rela-

tionship, they can potentially relate other attributes for additional insights. For instance,

they may initially pre-define the ordering of moth species in LEP NAME attribute (e.g.,

by abundance) and then quickly verify whether the ordering pattern remains consistent
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Figure 6.16: The multiple histogram representation of common moths sampled in COL-
LECT YEAR of ‘2004’ (top) and of ‘2008’ (bottom). The views allow exploration of the
effect of TEMPERATURE on the sampling distribution of common moth (COLLECT
PERIOD): common moths were captured in a much more narrow time span in 2004
(warm year) than in 2008 (cold year)

over these two years in response to temperature patterns.
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6.2.4 Summary of the Diversity Concerns

We describe a variety of diversity concerns that represent information needs aligned

across the three areas. In summary, exploratory analysis of diversity patterns aims to

reveal the structure of multivariate objects of interest (e.g., species individuals, team

members) in units of study of interest (e.g., communities, work teams). Such structure

may manifest itself in the observed data as distributions, clusters, and/or hierarchies

(Considerations 1 and 2). Exploration of diversity processes concerns the existence

of the causal relationships between the diversity patterns and system processes. Such

relationships are typically characterized by correlations and regressions among values of

corresponding data variables (Consideration 3).

Based on research questions of interest, it becomes very important that experts choose

the correct conceptualization, such as diversity concerns, and apply the appropriate op-

erationalization such as statistical metrics or visual representations of data behaviors.

Therefore, we accompany each of the diversity concerns, if applicable, with several exam-

ples of appropriate visualizations. By discussing these examples, we wish to emphasize

how visualization design should be guided by the information needs of users that can be

abstracted into corresponding data behaviors.

Motivations for the taxonomy of analytical tasks. Thus far, the information needs

are described mostly in the vocabulary of experts and do not yet illuminate the ana-

lytical tasks or processes that fulfill those needs. For instance, investigation of diversity

patterns typically precedes that of diversity processes. Understanding these tasks and

processes is extremely important to designers of visualization tools. The process could

be iterative and exploratory considering that multiple configurations of diversity may be

involved and affect the results of the investigation (Figure 6.1). For example, ecologists

may wish to explore taxonomic hierarchies of species observations after finding the two

units of study are of the same level of diversity in terms of species richness [101] (see

Figure 6.8). Similarly, ecologists may wish to experiment with different combinations

of functional traits when investigating functional diversity. In another example, man-

agement researchers may wish to conceptualize the ‘age’ attribute as variety in one case

and as separation in other cases. While the operationalization in terms of statistics is

outside the scope of this work, the choice of analytical tasks that could be accomplished

with corresponding visual representation and interaction techniques are certainly opera-
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tionalizations and must be chosen carefully. Next, we review existing generic taxonomies

of analytical tasks and introduce a specific task taxonomy for diversity analysis unified

across ecology and organizational management.

6.3 Assessment of Existing Generic Taxonomies of Analytical Tasks

Design of our taxonomy of analytical tasks was informed by existing generic task tax-

onomies in the field of visual analytics. In this section, we assess applicability of a subset

of relevant taxonomies to diversity analysis. More thorough reviews of existing task

taxonomies can be found in [5] and [8].

To guide the design of information visualization tools, Shneiderman [141] proposed

the now well-known visual information seeking mantra “overview first, zoom and filter,

then details on demand” followed by a classification of corresponding analytical tasks.

The mantra and tasks are potentially useful to guide analysis strategies. Nevertheless,

the tasks are somewhat driven by the tool capabilities (e.g., support of zoom and filter

features) and there are no explicit mappings between the tasks and specific information

needs in the context of diversity studies (e.g., what is the purpose of overview or filter?).

Following a different approach based on user analytical activities when using visual-

ization tools, Amar et al. [5] introduced a taxonomy of ten low-level tasks (see Table

6.3). Applied to diversity analysis, these tasks, while not necessarily comprehensive,

are relevant as building blocks since they aim to capture primitive analytical operations

(e.g., filter/subset, sort, characterize distribution). Nevertheless, to be more useful, the

low-level operations need to be coupled with specific high-level information needs (e.g.,

which components of diversity require characterizing distributions, hierarchies, and/or

clusters?).
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Table 6.3: Ten low-level analytical tasks by Amar et al. [5] followed by the three additional tasks of Characterize
Hierarchy, Annotate, and Fit Models/Metrics. The tasks are described in the context of diversity analysis.

Task Description Example
Retrieve Value Given a set of observations, find attributes of those

observations
What is the tenure of a given player in a
given baseball team (Figure 6.10)?

Filter/Subset Given some concrete conditions on attribute values,
find observations satisfying those conditions.

What are the moth observations collected
in HJA Forest in 2008 (Figure 6.16)?

Compute Derived
Value/Metric

Given a set of observations, compute an aggregate nu-
meric representation of those observation.

What is the faultline level of a given team
(Figure 6.10)?

Find Extremum Find data observations possessing an extreme value of
an attribute over its range within the data set.

What is the moth species with highest
abundance (Figure 6.4)?

Sort Given a set of observations, rank them according to
some ordinal metric.

Sort the moth species observations by
abundances (Figure 6.4).

Determine Range Given a set of observations and an attribute of interest,
find the span of values within the set.

What is the age range of members in a
given team (Figure 6.11)?

Characterize
Distribution

Given a set of observations and an attribute of interest,
describe the distribution of that attributes values over
the set.

What is the tenure distribution of mem-
bers in given team (Figure 6.11)?

Find Anomalies Identify any anomalies within a given set of observa-
tions with respect to a given relationship or expecta-
tion, e.g., statistical outliers

Are there any rare moth species (Figure
6.4)?

Characterize
Clusters

Given a set of observations and multiple attributes of
interest, find clusters of similar attribute values.

Are there functional groups of trees with
similar traits (Figure 6.7)?

Correlate Given a set of observations and two attributes, deter-
mine useful relationships between the values of those
attributes.

Is there a correlation between species
richness, functional diversity, and ecosys-
tem processes (Figure 6.14)?

Characterize
Hierarchy

Given a set of data observations and hierarchy-based
attributes, describe the hierarchical classification of the
set over the attributes

What is the hierarchy of species in a unit
of study (Figure 6.8)?

Annotate Note or distinguish among attributes or observations
based on their common or user-defined characteristics

Annotate ’age’ attribute as variety or as
separation.

Fit
Models/Metrics

Given a set of observations, fit a statistical or compu-
tational model to those observations—usually in the
forms of visual indicators such as lines or colors.

Fit a specific distribution curve to the
data (i.e., dash line on the data his-
togram)
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Our proposed taxonomy is further motivated by the work of Andrienko and An-

drienko [8], who introduced a classification of tasks strongly based on information needs

of analysts and tied closely to spatiotemporal data. In their framework, a task is defined

as a query to find the unknown information (target) corresponding to the specified or

known information (one or more constraints). The target represents data behavior of

interest such as distributions, clusters, correlations fulfilled by one or many constraints

(e.g., population, space, time). The classification, whose general outline is illustrated in

Figure 6.17, makes a distinction between the two classes of task: elementary tasks—which

concern individual elements of data (e.g., what is the height of a given tree measured

in a given date?), and synoptic tasks—which involves data behaviors in a set or subset

of data as a whole (e.g., what is the shape of distribution of moth species caught in

a given date and location?). Synoptic tasks are further classified into descriptive (e.g.,

characterize distributions) and connectional (e.g., characterize correlation) tasks. Since

the classification presents high-level analytical tasks, it can potentially serve as a generic

framework for building a task taxonomy for field-specific needs like diversity analysis.

Figure 6.17: General outline of the classification of analytical tasks proposed by An-
drienko and Andrienko [8]. Image redrawn from [8].

6.4 A Unified Task Taxonomy for Exploratory Diversity Analysis

While the generic task taxonomies do not necessarily consider or readily support specific

tasks in diversity analysis, they serve as a framework and primitive building blocks

for our proposed unified task taxonomy. In fact, our taxonomy offers an instantiation,

combination, and extension of the taxonomy of data-centric queries by Andrienko and

Andrienko [8] and the analytic low-level operations by Amar et al. [5] in the context of
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a specific analysis. Figure 6.18 depicts the outline of our proposed taxonomy.

Figure 6.18: Proposed task taxonomy for exploratory analysis of diversity organized at
three levels of abstractions: (1) Generic Tasks, (2) Data-centric Queries, and (3) Low-
level Analytical Operations. Vertical solid arrows represent how the tasks in an upper
level can be mapped to one or many tasks in a lower level. Horizontal dashed arrows
suggest the workflow between tasks within the same level.

In essence, the taxonomy can be viewed at three levels of organization (or abstrac-

tion), representing the reasoning process of how analytical tasks transform information

needs into knowledge and insights. Specifically, an information need starts in a very ab-

stract form of synopsis (Generic Level), then is realized with specific queries on diversity

patterns and processes in the analyst’s mind (Data-Centric Level), and finally can be

achieved with low-level operations on appropriate analysis tools (Analytic Low Level).

The following subsections describe each of the three levels.
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6.4.1 Generic-level Tasks

At the generic and also highest level, the taxonomy considers only synoptic tasks (Figure

6.18) as opposed to both elementary and synoptic tasks as in Andrienko and Andrienko’s

framework [8] (Figure 6.17). We made that decision based on the understanding that

diversity patterns and processes concern behaviors of (sub)sets of observations as a whole

as opposed to individual data elements (Table 6.1). While specific individual observa-

tions (e.g., rare or extreme observations) may be of interest to researchers—especially to

certain microbiologists who have access to only a small number of samples due to sam-

pling challenges (e.g., subsurface environments)—these observations are usually assessed

in relation to other (sub)set of observations and are still considered as a whole. On a

related note, the value of a visualization typically lies in its capacity to uncover patterns

or behaviors in data as a whole. Investigation of individual observations may be better

served by raw tables coupled with database queries.

6.4.2 Data-centric Queries

Data-centric queries (Figure 6.18, middle level), which are morphed from synoptic tasks,

encompass specific information needs regarding building, detecting, or comparing diver-

sity patterns and processes as presented in the alignment framework (Table 6.1). To

some extent, patterns and processes match the descriptive and connectional tasks in An-

drienko and Andrienko’s framework [8] (Figure 6.17). At this level, we also adopt their

definition of task as query, which consists of two parts: one target (unknown information)

and one or many constraints (known information).

Diversity Patterns. These queries aim to gain knowledge into diversity patterns.

Based on the constraints, the main objective is to characterize data behaviors (tar-

gets) as distributions, hierarchies, clusters, or summary statistics, following the three

considerations. The primary constraint is population, which is represented by collected

samples of independent observations characterized by multiple attributes. In addition,

data samples could be collected in the context of space and time, two additional sec-

ondary constraints. For example, information needs regarding functional diversity in

ecology as well as faultlines in organizational management may involve building, detect-

ing, or comparing distributions of clusters of data observations (targets) collected from a
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specific population—and in some cases—in space and time (constraints) (Consideration

2).

Diversity Processes. These queries examine the scientifically meaningful relationships

between diversity patterns and system processes. Diversity patterns can play multiple

roles in such causal relationships: diversity as driver, as responder, and/or as moderator

(Table 6.1). These roles are characterized by the correlation between data behaviors of

diversity patterns/metrics—acquired from the diversity pattern queries—and of system

processes. As an example, in ecology, as the name suggests, functional diversity, which is

often characterized by statistical metrics or distribution of functional groups, is directly

correlated with various ecosystem processes [116]. In a synthesis study, Dı́az and Cabido

[34] reported a strong correlation between different functional groups of plants such as

nitrogen-fixing legumes, warm-season bunchgrasses, or rosette forbs and ecosystem pro-

cesses such as retention of nitrogen and total aboveground biomass. During exploratory

analysis, the queries on diversity patterns usually serve as prerequisites for understanding

diversity processes. This kind of “workflow” is represented as horizontal dashed arrows

in the task taxonomy (Figure 6.18).

6.4.3 Low-level Analytical Operations

Data-centric queries in the analyst’s mind are finally decomposed to low-level operations

to be fulfilled by visual-analysis tools (Figure 6.18, bottom level). All Amar et al.’s op-

erations [5] described in Table 6.3 are relevant to diversity analysis. Note that secondary

operations can be combined to accomplish a primary operation, which is denoted as

bold texts in Figure 6.18. For instance, characterizing distribution of a data subset may

require filtering data first, and then sorting the data.

The ten original operations [5] are not comprehensive. Guided by the alignment

framework of diversity concerns, we introduce three additional low-level operations:

Characterize Hierarchy, Annotate, and Fit Models/Metrics. Hierarchy characterization

is required when users inspect taxonomic diversity of species (or their equivalents) (Con-

sideration 2). Annotation is useful when analysts wish to note or distinguish among

attributes or observations based on their common or user-defined characteristics (Con-

sideration 1). For example, management researchers may wish to annotate the ’age’

attribute as variety in one case and as separation in other cases. Fitting Models/Metrics
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represents a scenario in which analysts, given a set of observations, may want to fit a

statistical or computational model to those observations—usually in the forms of visual

indicators. For example, they may want to fit a straight line to a set of observations in

a scatter plot to represent linear correlation (Figure 6.15); they may want to see some

visual indicator to represent separation among clusters of observations (Figure 6.11 and

Figure 6.12).

In summary, guided by the alignment framework and existing generic task tax-

onomies, our proposed taxonomy aims to capture all possible queries and operations

in the process of exploring diversity data. The reasoning process of the analyst may

start with high-level queries on scientific phenomena such as “what are the functional

diversity patterns?”, followed by low-level analytical operations such as “characterize

clusters of the observed data”. The data behavior characterization in turn enables the

analyst to understand and make inferences about the underlying scientific phenomena.

Understanding of the reasoning process as well as the specific queries and operations on

diversity data is a critical task for designers in designing visual-analysis tools.

6.5 Discussion

This work presents the first cross-disciplinary synthesis study targeting exploratory anal-

ysis of diversity. Our study provides two contributions: (1) understanding of the diversity

concerns aligned across the analyses of species, microbial, and workgroup diversity and

(2) a unified taxonomy of analytical tasks guiding the design of visual-analysis tools to

address these concerns. Here we extend our discussion on (1) validation and refinement

of the alignment framework with subject-matter experts, (2) limitations and future work,

and (3) implications for diversity studies and design of visualizations.

6.5.1 Feedback from Subject-Matter Experts

Feedback from experts is critical to ensure the alignment framework fulfills its intended

purpose of characterizing the diversity analysis problem. Our validation of the framework

consists of two phases: (1) a pilot phase with our domain expert collaborators and (2)

a survey study with other external experts. To stimulate our discussion, we adopt the

following feedback criteria [2] (Table 6.4): comprehensiveness (of the framework), ease
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of use, precision, usefulness, discoverability, and alignability.

Table 6.4: Criteria and corresponding questions for validation and refinement of the
alignment framework of diversity concerns. The criteria are adopted from Ahn et al. [2].

Feedback Criterion Question
Comprehensiveness Are any concerns missing from the framework?
Ease of Use Is the framework easy to understand?
Precision Does the framework describe precisely the concerns and the

corresponding data behaviors?
Usefulness Can the framework be used by experts to organize and cross

compare their studies?
Discoverability Does the framework help experts discover new concerns they

had not thought of?
Alignability Would the experts think concerns could be aligned across the

three fields of interest?

Pilot Feedback. In developing the alignment framework, we have set up multiple face-

to-face discussion sessions and follow-up email correspondence between two visualization

researchers and two domain expert collaborators: one ecologist and one microbiolo-

gist/microbial ecologist. The aims are to understand their information needs and to

collect feedback on early thoughts on the framework before a full survey study.

The ecologist was instrumental in helping refine the vocabulary and presentation of

the framework as well as validate the concerns of species diversity. Discussing the frame-

work’s comprehensiveness, she pointed out niche separation and dominance in ecology as

potentially parallel concepts to separation and disparity in organizational management,

respectively. With regards to the usefulness criterion, she requested compelling examples

to demonstrate the operationalizations of diversity concepts as well as their alignment

across the three areas. We responded with examples of visualization and introduced

the three considerations for data behavior characterization. Interestingly, after seeing

how multiple stacked histograms are used to communicate subgroups and faultlines in

organizational management (Figure 6.11), the ecologist immediately requested the same

chart for comparison of the structure of different groups of moths from the moth data

set (Figure 6.13). We take that request as a positive sign that the framework helped

the ecologist discover new diversity concerns she had not thought of, such as separation

between clusters of observations or functional groups.
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Our discussion with the microbiologist/microbial ecologist suggested that between

microbial diversity and species diversity, while there are some parallels in analysis ap-

proach, there also exist distinctions in information needs and characteristics of diversity

data. Specifically, microbial diversity analysis emphasizes exploration of genomic infor-

mation to identify previously unknown microorganisms and ultimately, to understand

their functionality. The classification is usually performed in the data pre-processing

stage (Figure 6.1), using DNA extracting and sequencing [145, 45]. Genomic informa-

tion is rich in terms of OTUs but is somewhat limited in terms of the number of biological

samples and the number of attributes (e.g., spatial and temporal) because in many cases

(e.g., subsurface environment), data sampling remains a challenge. However, surface

microbial communities (e.g., in soils, waters, humans, animals) can be sampled much

more frequently as in the MicrobiVis example [37]. On the other hand, species diver-

sity deals with already known species and their well-understood characteristics (e.g.,

taxonomic classification, food types, habitats) so its analysis emphasis is really on the

diversity patterns of multiple observations and their causes and consequences, providing

that ecologists have access to larger number of observations and other environmental

factors.

In all, the microbiologist assessed that the alignment framework was useful for cross-

comparison of diversity studies. It helped him discover new diversity concerns such as

diversity faultlines and corresponding techniques such as multiple stacked histograms.

It is also encouraging to hear his comment that the future of microbiology would benefit

from a similar species diversity analysis, and essentially from the alignment framework,

providing that microorganisms are well classified and more data replicates are available.

He also recommended related work on microbial diversity that we reference in this work.

Survey Study with Other Experts. After the pilot phase, we further evaluated

the framework in a survey study involving nine domain experts whose expertise was

in species diversity (four), both species and microbial diversity (one), and workgroup

diversity (four). All of them, who authored published research work cited in this chap-

ter, volunteered to participate in the survey in response to our emails solicitating their

feedback. They answered the survey after reading a technical report presenting the

framework.

The evaluation survey consisted of six Likert-style statements (Table 6.4), in which

the experts were asked to indicate their level of agreement on a scale of one (Strongly
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Disagree) to five (Strongly Agree), and two open-ended questions: (1) if you disagree

with any of the above statements, please explain your reason and (2) please comment

on any aspects concerning the framework or the technical report.

The survey results were encouraging (Figure 6.19). Most of the experts strongly

agreed or agreed on the framework’s comprehensiveness (seven (out of nine)), ease of use

(six), precision (seven), usefulness (seven), discoverability (six), and alignability (seven).

Several experts expressed their enthusiasm for the work, especially its novelty, necessity,

and timeliness: “I really like how you bring together three so different disciplines in

the first cross-disciplinary synthesis study about diversity! Your report represents a

tremendous amount of work.”; “It’s [the framework] looking great! I’m so happy that

you’re tackling this challenge–it’s sorely needed”; and “Overall, I found the text very

interesting and well written. The subject is also very timely.”

Figure 6.19: Boxplot of responses from n domain-experts to each of the six Likert-style
feedback criteria/statements (Table 6.4). The experts were asked to indicate their level
of agreement on a scale of 1 (Strongly Disagree) to 5 (Strongly Agree).

Nevertheless, some experts also pointed out several limitations of the work. With

respect to comprehensiveness of the framework, one mentioned the lack of diversity

components concerning data acquisition and pre-processing, which we elaborate in the

next subsection. Commenting on the role of visual exploration in diversity analysis, one

expressed concern about the issue with post-hoc analysis (i.e., use visualization to look for

patterns that were not specified a priori or discriminate actual patterns from noise). We
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respond to that comment that visual exploration, which is only part of a larger analysis

process (Figure 6.1), may prompt further statistical tests (that take into account post hoc

analysis) or graphical inference tests [160], additional data collection, and experiments.

We also argue that while traditional statistical tests are well studied, they may not be able

to uncover unexpected data behaviors such as shapes of distribution, outliers, separation

of clusters of interest to diversity analysis. Complementing statistics, visualizations are

particularly effective for those tasks.

In addition to critical comments, the experts also offered suggestions for improve-

ment. One pointed out related domains that may share common diversity analysis such

as community detection among social networks and additional analysis techniques such

as Bayesian approaches for workgroup data. Several of them suggested minor changes for

the terms used in Table 6.1 (e.g., correlation vs. regression, taxonomy vs. ontology vs.

typology) and other related work. We considered them carefully, followed up with the

corresponding experts via email if necessary, and incorporated them into the framework.

6.5.2 Limitations and Future Work

This work emphasizes the exploration stage of the analysis process (i.e., hypothesis

generation), following data acquisition and pre-processing stages and preceding further

hypothesis testing, as illustrated in Figure 6.1. Other stages may involve additional

diversity concerns and corresponding analytical tasks. For example, microbe samples

could be pre-classified into OTUs at different taxonomic levels using the Ribosomal

Database Project (RDP) [31] and the process could benefit from dedicated analytical

tasks such as dimensionality reduction using principal component analysis (PCA) and

Nonmetric multidimensional scaling (NMDS) [128]. In another example, data acquisition

(or sampling) plays a critical role because it affects diversity patterns and processes.

Species richness, for instance, tends to increase when the number of samples increases

[101]. Such analysis of assessing species richness from the results of sampling is supported

by dedicated analytical tasks such as constructing and comparing species accumulation

curves or rarefaction curves [101]. Extending this work beyond the exploration stage

deserves deeper investigation in future work.

To keep our proposed taxonomy concise, we excluded analytical tasks necessary for

collaborative exploration. For instance, analysts may wish to keep track of their findings
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and share their findings with other users [121]. These tasks are generic and relevant to

almost all scientific analysis workflows [61].

Our literature review examines only three areas of interest. Diversity represents itself

in many other fields. For example, chemists consider the similarity/diversity of molecular

models in exploring the multitude of designs generated by simulation [77]; scholars study

language diversity in order to understand societies [110]. All of these fields are advancing

and new findings and analysis techniques may prompt revision of the framework and the

taxonomy. Alternatively, we may have to create new ones for specific fields.

6.5.3 Implications for Diversity Studies

The alignment framework aims to support experts in adopting new diversity concerns

within their own field of expertise or across fields. In addition to the examples presented

in the Alignment Framework Section, we discuss several other usage scenarios here.

The first scenario demonstrates how the three types of diversity as variety, separation,

and disparity in separate attributes could be extended to interaction among multiple at-

tributes (Table 6.1). In fact, depending on the types of attribute under investigation,

experts studying workgroups already conceptualize variety-based, separation-based, and

disparity-based faultlines and subgroups, as introduced by Carton and Cummings [24].

For example, composition of disparity attributes such as pay, rank, and decision power

may form disparity-based faultlines and subgroups in a team [24]. The same conceptu-

alization might be applied to functional diversity in ecology, depending on the types of

examined functional traits. For example, composition of resource-based functional traits

for plants such as nutrient consumption, tree density, body size could create disparity-

based functional groups in the examined unit of study.

The second usage scenario extends our discussion on the alignability between diver-

sity faultlines in organizational management and functional diversity in ecology. Across

the two areas, it would be informative to cross compare statistical metrics [116, 117, 150]

and visual representations. For example, while the faultline metric used in the baseball

data (Figure 6.10) does not involve a hierarchy of clusters [14], hierarchical clustering

algorithms such as the FD metric in ecology [116] could potentially be adopted and vice

versa. Other modern cluster algorithms from the field of data mining such as Affinity

Propagation [43] could be potentially utilized. Further, configuration of attribute weight-



160

ing is another unique feature of diversity faultlines potentially applicable to ecological

functional diversity. For example, management researchers studying the impact of fault-

lines in workgroups may ask how many years of age difference between team members

should be considered as equally important as a difference in gender or ethnicity [149].

Ecologists studying functional diversity may adopt similar configuration of the relative

importance of functional traits, depending on the corresponding system processes of

interest.

The third usage scenario discusses the missing component of taxonomic diversity in

workgroup diversity (Table 6.1). To our understanding, experts studying workgroups

have not yet examined hierarchical classification of attributes yet. That missing link

may suggest a potential research direction. For example, functional expertise of team

members are potentially hierarchical (e.g., ecology and microbiology majors are closely

related since they are classified under life sciences) and the hierarchical information can

be taken into account during investigation of faultlines and subgroups.

6.5.4 Implications for the Design of Visualization

Use of the alignment framework and the task taxonomy also has implications for the

design of visualizations. Specifically, it provides visualization designers and researchers

with a common vocabulary and considerations for designing and evaluating different

visual-analysis tools targeting diversity data. We expect a set of base visualization

techniques and tools for illuminating various components of diversity and providing new

ways of looking at data across fields.

Typical Visual Representations. Following the three considerations and examples

of visualization presented in the Alignment Framework Section, Table 6.5 attempts to

make a list of typical visual representations that are well-suited to communicating the

data behaviors of interest concerning diversity. The techniques, which by no means

represent an exhaustive list, are suggested based on the understanding of their pros and

cons from the field of information visualization [119, 120, 123]. This classification would

serve as a useful reference for visualization designers targeting specific diversity concerns.

A thorough survey of various existing visualization techniques for general purpose can

be found in [83].

Table 6.5 could be extended to include techniques targeting diversity in space and
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Table 6.5: Data behaviors of interest to diversity analysis and corresponding typical
visual representations.

Data
Behavior

Examples of
Diversity Concern

Data Char-
acteristics

Typical visual representations
(with example citations)

Distributions
Variety and
abundance in
separate attributes

Univariate

Boxplot [154]
Histogram [101]
Stacked Bar Chart [22]
Rank-abundance Curve [158, 101]
Cumulative Frequency Curve [101]

Multivariate
2D Scatter plot and its variants (2D
Heatmap, Fluctuation Diagram)
Multiples of univariate representations
(e.g., Boxplot [154], Histogram, Scatter
plot matrix [29] , Diversity Map [120])

Distributions
+ Clusters

Functional diversity;
Subgroups/
Faultlines

Bivariate
Scatter Plot [135]
Mosaic Plot [58]

Multivariate
Multiple Stacked Histograms [123]
Scatter Plot Matrix [123]

Distributions
+ Hierarchies

Taxonomic Diversity
(Richness+Evenness)

Multivariate
Treemap [140, 71]
Sunburst, Icicle [148]

Hierarchies Taxonomic Diversity
(Richness)

Multivariate Node-link diagram and its variants
(e.g., Tree [94], Dendrogram [18])

Correlations
Processes of
Diversity

Bivariate Scatter plot or Line Chart [117, 15]

Multivariate
Scatter Plot Matrix [29]
Parallel Coordinates [74, 37]
Parallel Sets [86]

time. Recall that the three considerations suggest that if time and space are involved,

the techniques should support users to explore how the data behaviors of interest (e.g.,

summary statistics, distributions, clusters, and/or hierarchies) vary over time and space.

To communicate spatial distributions or clusters in univariate data, a geographical map

with an additional encoding (e.g., a heat map) is widely used. However, visualizing data

behaviors of multivariate data on a map remains a challenge. Potential solutions include

overlaying other representations on a geographical map or alternatively, presenting geo-

graphical maps and other representations in separate windows connected by interactions

[8]. On the other hand, to convey how the data behaviors of interest vary over time, one

possible solution is to employ multiple snapshots of visual representations—for example,
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multiple histograms—one for each time point. Alternatively, animation of visualiza-

tion states over time may potentially be useful. Andrienko and Andrienko [8] present

a thorough investigation of exploratory analysis of spatial and temporal data in their

book.

Assessment of existing visual-analysis tools. In addition to guiding the invention of

future visualizations, the three considerations could be used to assess existing techniques

and tools. For example, consider the MicrobiVis tool [37], which employed parallel

coordinate plot (PCP)—among other techniques—to convey the separation between two

groups of microbial samples across multiple OTUs (Figure 6.20). PCP is well suited

to make the data observations visible as well as to convey the correlation between two

neighboring attribute axes [74] (Table 6.5). However, we argue that the choice of PCP

does not support Consideration 2—PCP is not effective in supporting users in comparing

the distributions and separation of clusters across multiple attributes [123]. Figure 6.21

presents an alternative design in which stacked histograms are selectively overlaid along

the axes to convey the distribution of clusters as well as separation among clusters across

the attributes of interest.

Figure 6.20: Samples from two oral bacterial populations visualized using Parallel Coor-
dinate Plot (PCP) supported by the MicrobiVis tool [37]. Vertical axes represent a set
of Genus OTUs of interest to the analyst; each of the polylines represents a sample that
intersects each genus axis at the value corresponding to the abundance of the genus de-
tected in the sample. Distinct colors are used to differentiate the two populations: group
1 and group 2. Red and blue arrows indicate some interesting genera identified by the
analyst. For example, the first blue arrow from the left marks Genus 4 in which group
1 and group 2 are separated with respect to abundance. Image reused with permission
from Fernstad et al. [37]. Copyright c©2011 IEEE.
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Figure 6.21: An alternative design to the PCP in Figure 6.20 in which stacked histograms
are selectively overlaid along the axes to convey the distribution of clusters as well as
separation among clusters across the attributes of interest. For demonstration purpose,
Genus 4 axis—marked by the first blue arrow from the left—is re-drawn with stacked
histograms. We argue that the stacked histograms make separation between the two
groups of microbe samples within Genus 4 stand out: while all samples of group 1 contain
low abundance of Genus 4, most of the samples of group 2 contain higher abundance of
Genus 4. We adapt the Figure from Fernstad et al. [37]. Original figure c©2011 IEEE.

6.6 Conclusions

Ecologists are increasingly concerned about changes in diversity patterns of species com-

munities and how they influence ecosystem functioning. However, ecologists may not

be aware of analysis techniques (e.g., visualization and statistics) in other fields, such as

organizational management, that may help improve their own understanding. Aiming to

connect that missing link, this interdisciplinary work abstracts diversity concerns across

the three areas of species diversity, microbial diversity, and workgroup diversity in an

alignment framework and offers an operationalization of these concerns in terms of data

behaviors of interest and common analytical tasks. Subject-matter experts and tool

designers may take advantage of this work to find a common ground for the diversity

analysis problem. We expect this work will help guide the evaluation and refinement

of existing visualization techniques as well as the invention of future ones. We also an-

ticipate further discussions regarding validation and amendment to both the alignment

framework and the unified task taxonomy.
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Chapter 7: Conclusion

As current technological advances continue to drive the generation of tremendous amounts

of data, appropriate tools for data analysis become increasingly important. In many ap-

plication domains, there is a need for visualizations that enable exploration and commu-

nication of the diversity aspect of the multivariate data. Ecologists collect and analyze

species diversity data to conserve biodiversity and understand the interactions, for ex-

ample, between communities of plant and animal species and the environment. Likewise,

organizations strive to build diverse teams of effective team players and problem solvers,

admissions officials seek to build diverse incoming classes, and scholars study language

diversity to understand societal development. Nonetheless, there are few interactive

visualization techniques and tools designed specifically to serve those purposes. This

research work aimed to understand the issues involved in designing diversity visualiza-

tions. In doing so, we provide answers to the three key research questions summarized

in Table 7.1.

This dissertation utilized a variety of scientific methods. In collaboration with do-

main experts in ecology, microbiology, and organizational management, we characterized

the diversity analysis problem, investigated existing visualization techniques, and devel-

oped new ones. Subsequently, we designed and carried out controlled experiments to

understand the effectiveness of the techniques. We also employed a user-centered design

process to integrate the effective techniques into the analysis process of ecologists and

management researchers as they analyze real-world diversity data. We futher general-

ized the results to design considerations and a taxonomy of analytical tasks, guiding the

creation of future visualizations that target diversity data.
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Table 7.1: Summary of the dissertation contributions grouped by the three research questions.

Research Question Contributions Evaluation of Contributions
RQ1. How is diversity con-
ceptualized across the multiple
fields that study it and what are
the fundamental scientific ques-
tions/hypotheses of interest re-
garding diversity?

A framework of diversity concerns aligned
across the three fields of ecology (species
diversity), microbiology (microbial di-
versity), and organizational management
(workgroup diversity) (Chapter 6).

Cross-comparison of diversity literature
across the three fields and feedback from
subject-matter experts.

RQ2. Which existing or novel
multivariate representation and
interaction techniques are
particularly useful in exploring
and communicating diversity
data?

Diversity Map–Multivariate visual
representation of diversity patterns in
separate attrbutes (Chapter 3)

Controlled user study: Diversity Map
vs. Glyph-based Technique [114]
User-centered design study with ecolo-
gists exploring the moth data sets

HIST–Multivariate visual representation
of diversity patterns across multiple
attributes: A case study of team faultlines
(Chapter 5).

Design study with management re-
searchers analyzing real-world work-
group data sets (e.g. MLB data)
Controlled user study: HIST vs. PCP
[75, 74] vs. SPLOM [29]

A unified taxonomy of analytical tasks for
exploratory analysis of diversity (Chapter
6).

Visual analytics design principles and
feedback from subject-matter experts.

RQ3. What is the role of
interactive visualization in the
real-world analysis process in
which diversity is a key element?

EcoDATE (Ecological Distributions and
Trends Explorer)–web-based
visual-analysis tool that facilitates
exploratory analysis of long-term
ecological data (Chapter 4).

User-centered design study with ecolo-
gists exploring the three long-term eco-
logical data sets of cone production,
stream chemistry, and forest structure.
Working group at the LTER All Scien-
tists Meetings 2012.
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7.1 Review of Dissertation Contributions

After the first two chapters introducing the diversity analysis problem and providing an

overview of our contributing solutions, Chapter 3 presented (1) a novel representation,

the Diversity Map, for visualizing diversity patterns in separate attributes of a large set

of multivariate objects and (2) a rigorous evaluation of the effectiveness of the proposed

technique. Our design considerations and user study design centered on a precise defi-

nition of diversity adopted from the field of ecology that takes both richness of variety

of attribute values and evenness of relative abundances of objects into account [101].

The design of the Diversity Map built loosely upon ideas from both parallel coordinates

[75, 74] and multiple histograms. In a formal user study, we found that the Diversity

Map allows users to as or more accurately judge elements of diversity than the only other

existing multivariate method [114] designed to visualize diversity.

The Diversity Map representation was further refined into an interactive tool, Eco-

DATE (Ecological Distributions and Trends Explorer), for ecologists to explore diversity

patterns and temporal trends in long-term ecological data (Chapter 4). EcoDATE was

developed through a process of user-centered design in collaboration with long-term eco-

logical research. Application of the EcoDATE tool to long-term ecological data sets on

cone crop production, stream chemistry, and forest structure reveals that it facilitates

overview, initial hypothesis testing, and hypothesis formulation in an open-ended frame-

work. Further, the use of EcoDATE underscored an understanding of the potentially

different pathways to gaining insights into data and generating hypotheses. The tool is

readily available at http://purl.oclc.org/ecodate.

While Chapter 3 and Chapter 4 emphasized diversity patterns generalized as distribu-

tions of objects in separate attributes, Chapter 5 explored the design space for graphical

representation of diversity patterns conceptualized as distributions of clusters of objects

across mixed-type attributes. We instantiated the problem in the context of diversity

team faultlines, a fundamental construct in management that was derived from multi-

variate cluster analysis. In collaboration with management researchers, we contributed

a set of requirements for faultline visualizations. Then we designed and evaluated our

proposed technique, HIST, which is based on multiple linked, stacked histograms in a

parallel axis layout. The controlled user study results show that HIST supports users in

inspecting elements of team faultlines as or more effectively than the other two common
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cluster representation methods of parallel coordinate plot (PCP) [75, 74] and scatter

plot matrix (SPLOM) [29]. Finally, we augmented HIST with visual elements to further

facilitate the faultlines identification tasks.

Finally, building on and extending the results from the previous chapters, Chapter

6 presented the first cross-disciplinary study that aims (1) to align understanding of

diversity concerns across fields and (2) to propose a unified taxonomy of analytical tasks

guiding the design of visualizations addressing these concerns. The three fields under

investigation include species diversity in ecology, microbial diversity in microbiology, and

workgroup diversity in organizational management. The concerns of interest cover (1)

characteristics of diversity data, (2) description of diversity patterns, and (3) hypotheses

regarding the causes and consequences of diversity (processes), and (4) most impor-

tantly, characterization of each of the concerns (if applicable) with corresponding data

behaviors of interest to analysts. The proposed task taxonomy offers an instantiation

of existing task taxonomies from the field of visual analytics (e.g., [5, 8]) in the context

of a specific diversity analysis. In essence, the taxonomy captures the reasoning process

of how analytical tasks transform information needs into knowledge and insights, facili-

tated by interactive visualization. The results from our synthesis study aim to provide

domain experts and visualization designers with common vocabulary and considerations

for designing and evaluating different visualizations targeting diversity analysis.

7.2 Directions for Future Work

While we believe this dissertation represents a positive step in understanding interactive

diversity visualization of multivariate data, it also has limitations that we discussed in

specific chapters. Here we elaborate several broader directions in which the work could

be extended.

7.2.1 Diversity Visualization in Other Endeavors and Domains

Not only is interactive visualization a potentially powerful analysis tool, but it could

prove to be a very useful means for constructing sets of multivariate objects that pos-

sess the desired types and levels of diversity. Such a tool lends itself to organizational

management where the task at hand often involves building a team or an organization
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that exhibits particular diversity profiles and that ideally will produce positive outcomes.

Future work would investigate tools that allow users to explore what-if scenarios by ob-

serving the effects of adding/removing particular objects on diversity patterns on the

fly.

We are also intrigued by the possibility of investigating diversity in online collabora-

tions and other social contexts such as political science. There have been studies of the

effects of group diversity on productivity as well as member withdrawal behaviors among

Wikipedia projects [26], however, the effects of attributes are studied one at a time. In

future work, it will be informative to re-visit the problem and investigate the effects of

multiple attributes simultaneously with diversity faultlines as the primary measure. In

addition, political science, which studies demographic diversity and how diversity re-

lates to voting patterns and election results, opens another area that may benefit from

faultline-based visualization.

While this dissertation considers only three domains of ecology, microbiology, and

organizational management, diversity is of interest in others such as chemical diversity

[77] and language diversity [110]. These domains are advancing and new findings and

analysis techniques may require extension and refinement to our proposed alignment

framework of diversity concerns or the unified taxonomy of analytical tasks.

7.2.2 Integration of Exploration with Other Analysis Stages

While this dissertation emphasizes the exploration stage of the analysis process, other

stages of data acquisition, data pre-processing, and hypothesis testing are crucial and

demand additional analytical tasks. For example, in microbial diversity analysis, pre-

classification of microbe samples into taxonomic units is facilitated by ribosomal databases

(e.g., [31]) and by dedicated dimensionality reduction or cluster analysis techniques [128].

In another example, sampling of data plays an important role in the diversity investi-

gation and such data acquisition stage is supported by specific visualization techniques

such as species accumulation curves or rarefaction curves [101]. This work could be

extended to consider other stages of domain-specific analyses, in addition to exploration.
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7.2.3 Strategies to Exploratory Data Analysis

From our collaboration with experts across domains, we have observed different ap-

proaches to insight and hypothesis generation from exploratory analyses—in particular—

regarding diversity. As demonstrated in Chapter 4, in some cases, the visual information

seeking mantra “overview first, zoom and filter, and details on demand” [141] serves as

the main guidance. In other cases, analysts may adopt the iterative in-depth three-step

process of specifying visualization views, characterizing views, and gaining insights. In

all, exploratory data analysis is a very open-ended process and could benefit from future

research that investigates varying analysis strategies and the facilitation of a visual-

analysis tool in such an open-ended exploration.

On a related note, while existing statistical tools (e.g., R) and workflow systems

(e.g., Kepler [97]) serve as potentially powerful frameworks for structuring and managing

domain-specific analysis processes, they still lack support for interactive visualizations

and usability (perhaps due to a steep learning curve of their default command-line inter-

faces). We envision that visual-analysis techniques and tools such as HIST (Chapter 5)

and EcoDATE (Chapter 4) could be integrated into such frameworks and leverage their

capacities of provenance management and statistical computation.

7.3 Concluding Remarks

Arguably the most challenging questions in disciplines that study diversity center on

gauging how diversity patterns of multivariate objects of interest are structured and

explaining how those patterns can be related to ecosystem or human system processes.

Answering such questions, which are inherently data-driven, are now facilitated by ad-

vancements in data collection and analysis techniques. Answering such questions may

also require a collaboration not only between disciplines that concern diversity but also

with disciplines that specialize in data analysis and knowledge discovery such as statis-

tics and data visualization. This research work shows that collaboration between domain

experts and visualization researchers can potentially produce powerful techniques, tools,

and visualization design guidelines that enable us to answer critical scientific questions

regarding diversity that advance and sustain our world.
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