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a b s t r a c t

In organizational management, researchers and managers study separations or faultlines that occur in
diverse teams when members form subgroups based on the alignment of multiple demographic
characteristics. The team faultline concept is operationalized using multivariate cluster analysis—analysts
use faultline measures to identify subgroups/clusters in a team and to quantify how subgroups/clusters
are separated. Unfortunately, these measures have limited capacity to enable users to observe and
explore faultlines and subgroup structure across the examined attributes efficiently. We address this
problem and make three contributions. First, we propose a visual representation for communicating
faultline information that is based on multiple linked, stacked histograms in an axis-parallel layout.
Second, we evaluate the effectiveness of the proposed technique in a controlled user study, comparing it
to the two other common multivariate representations of clusters: parallel coordinates and scatter plot
matrices. While we chose faultline-related tasks based on the requirements by domain experts in
organizational management, the study findings can be generalized to representations and tasks involving
distributions of clusters of multivariate objects in mixed-type data. Finally, inspired by geological
faultlines, we propose several visual enhancements to stacked histograms to further facilitate the task of
identifying “cracks” within work teams.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Effective management of work teams is widely regarded as
critical to the success of organizations. Therefore, leveraging the
benefits of teamwork while reducing negative outcomes asso-
ciated with groups has been a central focus of organizational
research [1–4]. For example, researchers study how the demo-
graphic diversity of team members such as age, gender, ethnicity,
and functional background affects outcomes such as performance
and productivity as well as group processes such as collaboration
and conflict. They investigate diversity not only as a distribution
along one employee attribute, for instance, group ethnic diver-
sity, but also as a complex composition of multiple attributes that
results in diversity faultlines [1]. For instance, faultlines may split
a diverse project team into two subgroups: one of two senior
male software engineers and the other of two junior female QA
testers.

A common approach to understanding faultlines within a team
relies on faultline metrics [2,3,5], which measure the extent to
which the given team is divided into relatively homogeneous
subgroups across the attributes of interest, and tabular data of

subgroup structure (see Table 1 for an example). From an analysis
point of view, the goal is not necessarily to identify the objects that
cluster together, but to identify how attribute space is divided up
into the clustered subgroups. Unfortunately, as the number of
attributes and team members to be examined both increase,
table-based assessment of faultlines and subgroup structure
becomes difficult, time-consuming, and tedious. To our knowledge,
very little work has been done to develop visual representations
that reveal faultlines across multiple attributes. In fact, this lack of
tools is considered a challenge in management research that
hinders the development of the faultline theory to a more applic-
able and useful level [3,4].

We envision that the analysis of faultlines would be comple-
mented by a visual analytics approach that leverages faultline
metrics with appropriate representation and interaction techni-
ques. Specifically, such a visual interface would allow researchers
to explore faultlines and structure of subgroups within teams
quickly and iteratively. Managers or human resources departments
could use data visualization to inspect team dynamics based on
faultlines and potentially reassign members in hopes of improving
performance. Such visualizations could also prove useful in under-
standing the dynamics of online volunteer teams, for instance,
open source software development teams [6,7].

In addition to team faultlines, the problem of visualizing cluster
structure and separation in multivariate mixed data represents
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itself in other application domains. For instance, ecologists and
microbiologists recognize functional diversity as the variety of roles
played by different species or their equivalents based on their
composition of multiple functional traits such as rooting depth and
maximum growth rate of plants [8–10]. Technically, composition of
these traits can be used to cluster different species (or their equi-
valents) present in a unit of study into different functional groups and
to derive, for example, the functional diversity (FD) metric [8–10]. In
summary, clusters may represent functional groups in an ecological
unit of study (e.g., ecological communities) or subgroups in an
organizational unit of study (e.g., work teams); clusters may also
represent different units of study under comparison.

In this paper, we formalize and generalize the faultlines
visualization problem as visual analysis of cluster structure and
separation in multivariate mixed data. In doing so, we provide
three contributions. First, we propose a representation that aims
to reveal faultlines and subgroup structure of diverse teams across
multiple attributes. The proposed representation, HIST, is based on
multiple linked, stacked histograms in an axis-parallel layout
[11,12], as depicted in Fig. 1. To our knowledge, while these
techniques separately are well-known, as a whole, their applica-
tion to representing clusters of multivariate objects in general and
team diversity faultlines in particular is novel and it is a first
attempt to explore the design space for the problem. Moreover,
the novelty of HIST is in the emphasis on attribute visibility [13],

such as the distribution of clusters in attribute space, as opposed
to object visibility [14,15] when representing clusters.

Second, we contribute results of a controlled user study to
compare HIST to the parallel coordinate plot (PCP) [11,12] and the
scatter plot matrix (SPLOM) [16], the two other commonly used
techniques for representing clusters of multivariate objects, as
identified in previous work by Holten and Van Wijk [14]. With
respect to user performance, our results show that (1) users can
judge faultlines using HIST as or more accurately than when using
the other two methods and (2) HIST performance holds consistent
across task questions and data set sizes. Furthermore, the findings
can be generalized to representations and tasks involving distribu-
tions of clusters of multivariate objects in mixed-type data, extending
the previous work [14]. The generalization is reflected in our choice
of task questions that are relevant to both faultlines and general
cluster representations and in the application of HIST to other
application domains such as functional diversity in ecology.

Finally, we incorporate computational analysis into HIST to
assist users in detecting faultlines or subgroup separation. Speci-
fically, inspired by the physical form of geological faults, we
propose novel visual enhancements as connecting dashed lines
across attribute axes to represent “cracks” within a team, as
depicted in Fig. 2. In our algorithm, we cluster attribute values
by subgroups using Bertin Classification Criterion [17] and we
introduce a metric, Total Separation Criterion, to automatically
detect attributes with separable subgroups.

2. Diversity faultines background and design requirements

2.1. Diversity faultlines concept

Faultlines are described as hypothetical dividing lines that may
split a team into relatively homogeneous subgroups based on one
or more attributes [1]. Measuring faultlines of a team is adopted
from multivariate clustering—that is, the measure assigns team
members into subgroups (or clusters) according to their similarity
across the attributes of interest, for instance, demographic char-
acteristics. Clusters (or subgroups) have maximum internal homo-
geneity or between-cluster heterogeneity.

Team data represent team members characterized by multiple
demographic attributes of varying types, including numeric, ordi-
nal, and nominal. As an example, consider two teams as shown in

Table 1
Synthetic data of the two work teams. Faultline measure [5] clusters each of the
two teams into subgroups (Subgroup) and identifies the team faultline strength
(Fau).

Team AGE ETHNICITY EDU Subgroup Fau

1 21 T E 1 1.00
1 23 T E 1
1 20 T E 1
1 50 Y A 2
1 52 Y A 2

2 21 W E 1 0.56
2 23 W A 1
2 22 U B 2
2 26 X B 2
2 21 Z D 3
2 23 Z C 3
2 22 Z B 3

Fig. 1. Synthetic data (Table 1) of (a) Team 1 and (b) Team 2 visualized using HIST. Distinct colors are used to differentiate the subgroups: , , and
. While the two subgroups of Team 1 are totally separated in all three attributes of AGE, ETHNICITY, and EDUCATION, the three subgroups of Team 2 are totally

separated in ETHNICITY only (column 2). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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Table 1: Teams 1 and 2 consist of five and seven members,
respectively. We computed team faultlines along the three char-
acteristics of AGE, ETHNICITY, and EDUCATION (degree) using a
widely accepted measure proposed by Thatcher et al. [5]. For each
team, the measure identifies the subgroups (Subgroup column)
corresponding to the strongest group partitioning following the
formula:

F aug ¼
∑p

j ¼ 1∑
ng
k ¼ 1n

g
kðx �jk�x�j�Þ2

∑p
j ¼ 1∑

ng

k ¼ 1∑
ng
k

i ¼ 1ðxijk�x�j�Þ2

2
4

3
5 g¼ 1;2;…S; ð1Þ

where p is the number of attributes of interest, ng is the number of
subgroups in the partition g, ngk is the number of members in subgroup
k of partition g, x �jk is the mean value of attribute j in subgroup k, x�j� is
the overall mean value of attribute j, and xijk is the value of attribute j
of member i in subgroup k. Simply put, the measure iterates through
all possible partitions (splits) of the team into subgroups and finds the
largest ratio of the between subgroup sum of squares to the total sum
of squares. Since Faug takes numeric values, each categorical attribute
must be recoded into a series of dummy variables and rescaled across
the attributes [5]. For example, a five year difference in AGE is equi-
valent to a difference in ETHNICITY and a difference in EDUCATION
based on a given data sample.

The variable faultline strength Fau, which always takes a value
between zero and one, is the maximum over all fFauggSg ¼ 1. The
larger the faultline strength value, the stronger the separation
between subgroups or equivalently, the more attributes in which
the subgroups are separable. The concept is inspired by geological
faults whose strength increases with the number of layers it cuts
through [1]. Since Fau is based on a brute-force search, it is suited
only for small teams. Thatcher and Patel [3] and Meyer and Glenz
[18] present thorough surveys of existing faultline measures.

2.2. Design requirements

While Table 1 describes each of the team members of the two
teams in detail, the table does not clearly show where the
separation (or “cracks”) occur in a team. That is, within an

attribute, it is unobvious how the attribute space is potentially
occupied by different subgroups, which is precisely the problem
that we address with our visual representation. Here we discuss
design requirements as validated by our two collaborators, who
are experts in management research and also co-authors on this
paper. These requirements aim to capture the experts’ information
needs when they study team faultlines data (e.g., [19]). Moreover,
these requirements are empirically associated with team out-
comes in the faultlines literature, as we cite in the list of
requirements below. Specifically, a faultline representation of a
given team should allow users to explore efficiently:

� R1. Faultline value (e.g., faultline strength Fau). Such numeric
quantification of a faultline can be used to compare different
teams quickly or to predict the effects of faultlines on outcome
processes [2,3].

� R2. Faultlines themselves, or where do the “cracks” occur in the
team? A “crack” or total separation occurs within an attribute
when members of different subgroups fall into different sub-
sets of values in the attribute space.

� R3. The inner structure of subgroups in the team including the
number of subgroups, evenness of subgroups, and multivariate
distribution of members across the examined attributes [20].
These important constructs are associated with distribution of
power, resources, and abilities in the team [1,4].

In addition, the representation should scale well to the number
of members in a team and number of attributes of interest.
Management researchers have typically studied small teams of
up to 16 members that may potentially split into up to seven
subgroups, depending on team size and the number of attributes
[4,21], yet they are also interested in teams of larger sizes, for
instance, online volunteer groups [6,7].

2.3. Conventional cluster analysis vs. faultlines analysis

Finally, while conventional multivariate cluster analysis usually
concerns object visibility and separation in attribute space of

Fig. 2. A group of starting pitchers of the MLB team Brewers in 2008 visualized using HIST. The two subgroups are totally divided in all four attributes of COUNTRY, RACE,
AGE, and MLB TENURE. The connecting dashed lines, which are described in detail in Section 7, are overlaid to represent the holistic “cracks” between the two subgroups.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

T. Pham et al. / Computers & Graphics 38 (2014) 117–130 119



quantitative attributes [15], we note that faultlines analysis
emphasizes distribution or alignment of objects across multiple
attributes of varying types or, in other words, the role of attributes
in structure and separation of clusters. Furthermore, a faultlines
visualization requires a faultline measure or a clustering algorithm
as an external data pre-processing step to pre-assign team
members to subgroups, as opposed to letting analysts identify
potential subgroups or implicit clusters from representations of
raw data [14].

3. Related work

Design and evaluation of our proposed technique was informed
by related work on visual representations and user studies of
cluster representations, which we discuss here.

3.1. Representing clusters

Here we review a subset of existing representation techniques
that are potentially applicable to multivariate cluster analysis and
team faultlines. More general surveys of visual representations can
be found in [22,23].

Scatter plots are probably the most common technique to
represent clusters of objects [14]. However, without additional
encoding, possible data overlap/occlusion may lead to ambiguous
interpretation of the abundance of objects, especially among
categorical attributes. The histogram, on the other hand, takes
advantage of data overlap to show the distribution of objects over
a single attribute. Our proposed technique, which is based on
histograms, aims to convey object distribution instead of object
visibility. As noted, these techniques display only one or two
attributes of interest.

The dimensionality problem may be solved by using multiples.
For example, the scatter plot matrix (SPLOM) [16] extends scatter
plots to represent clusters of multivariate objects, although multi-
ple pairwise projections of the data attributes require more screen
space and potentially cognitive load placed on the user. On the
other hand, multiple histograms could be useful for representing
distribution of multiple attributes in an axis-parallel layout [24].
Furthermore, histograms have been proven effective in commu-
nicating diversity information in separate attributes in previous
work [25,26]. Our proposed representation of diversity faultlines is
in fact multiple histograms augmented with histogram stacking
and color encoding.

The parallel coordinates plot (PCP) [11,12] is another common
approach to represent clusters of high-dimensional objects [14].
Similar to SPLOM, PCP may suffer from occlusions caused by data
overlap as the number of objects increases and many categorical
attributes exist, as in the case of demographic data. Several
variants of PCP such as Parallel Sets [27] and Diversity Map [26]
overcome this limitation by providing information on the distri-
bution of values for each attribute. However, it is not clear how
multiple clusters are embedded into these techniques.

Star coordinates [28] may be suited to represent the overall
structure of a set of objects over multiple attributes. Additional
encoding such as colors may be used to reveal explicit clusters in
the data. Unfortunately, the mapping between a data point and its
location in star coordinates is not one-to-one. Consequently,
several different data points may end up in the same location if
they have equal vector sums.

Among stacked displays [22,29], the mosaic plot [30] could be
used for showing subgroup structure since subgroups are stacked
within a team. While in theory, the stacking process may be
repeated multiple times, in practice, space constraints limit the
number of attributes as well as the number of possible values in an

attribute. Therefore, mosaic plots can be useful only when the
number of attributes is relatively small. In our proposed
histogram-based technique, we apply the stacking process to
histogram bars only once.

Finally, there are hybrid approaches that integrate multiple
representations in a single view or in multiple coordinated views.
In the former group, the most relevant technique is DICON [31], a
treemap- and icon-based technique designed to visualize structure
of clusters. Unfortunately, the technique supports only quantita-
tive attributes, which is not sufficient for team faultlines data that
are usually multivariate with varying attribute types (e.g., numeric,
nominal, and ordinal) as described in Section 2. In the latter group
of multiple views, VisBricks [32] clusters an inhomogeneous data
set into different subsets and visualizes them using different
representation techniques augmented with coordination interac-
tion features. Our proposed representation technique could be
potentially incorporated into VisBricks as a building block.

3.2. Evaluating cluster representations

The closest exemplar to our user study is that of Holten and
Van Wijk [14]. They evaluated cluster identification performance
of nine PCP variants, two of which are the standard PCP and a
variant with embedded scatterplots (SP). Nevertheless, unlike our
scenario involving explicit clusters in demographic data, their
study used simulated quantitative data with no pre-computation
of clusters. The most interesting finding from their study is that
despite the apparently valid improvements of the PCP variants,
scatterplots are more effective than PCPs with respect to PCP-
based cluster identification tasks. Furthermore, participants
favored SP as the least difficult variation. Following this result, the
authors called for further evaluation of techniques that explicitly
highlight pre-computed clusters, for example, with unique colors. We
respond to that call in our user study by augmenting standard PCP
and SPLOM—the two controlled methods—with color encoding of
explicit clusters. We also extend the study to include other tasks
appropriate for faultlines/cluster analysis.

4. Visualization design

4.1. Design considerations and prototype

A histogram is well suited to show the diversity or distribution
of objects within an attribute (requirement R3). According to
Mackinlay [33], position and length are ranked highly for encoding
nominal and numeric values such as variety of attribute values and
abundance of objects, respectively. In addition, previous work
suggests that the axis-parallel layout [11,12] of multiple distribu-
tions is capable of conveying a holistic object distribution over
multiple attributes [24,26]. However, the previous work does not
consider how distributions of multiple subgroups align over
multiple attributes. Since subgroups are nested within a team, to
maintain bar length encoding, a natural solution to encoding
subgroups is to stack bars within each bin (Figs. 1 and 2).
We then use distinct color hues on a white background to diffe-
rentiate stacked subgroups. Our choice of qualitative colors pro-
vided by ColorBrewer [34] meets the requirement of encoding up
to seven subgroups. On another note, the length of each bar is
scaled according to lðxÞ ¼ jxj=jxMAX j, where jxj denotes the number
of objects in bin x, and xMAX is the bin with the most objects for the
attribute in question. We also discretized numeric attributes into
bins based on their rescaled factors (Eq. (1)).

Following this design, a total separation or “crack” occurs at a
nominal attribute when distinct subgroups (or distinct colors)
occupy distinct positions along the vertical axis (requirement
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R2). Total separation at a numeric or ordinal attribute further
requires that these distinct positions—including ones without
objects (zero-length bars)—are contiguous, for instance, AGE and
MLB_TENURE histograms in Fig. 2.

The HIST representation communicates the overall degree of
separation of subgroups in a given team (i.e., faultline strength) as
the combined separation of all demographic attributes under
investigation (requirement R1). In the limit of perfectly strong
faultlines, where different subgroups occupy different subsets of
attribute values across all the attributes, all the bars of the
histograms will have solid colors, as depicted in Figs. 1(a) and 2.
On the contrary, a team with very weak faultlines will produce a
visualization with most of the bars stacked with at least two colors
like the AGE histogram in Fig. 1(b). Moreover, while the chosen Fau
measure (Eq. (1)) [5] does not consider how far apart the
subgroups are, especially on quantitative attributes (i.e., faultline
distance [2]), we note that stacked histograms of quantitative axes
are able to reveal the potential gaps or distances between
subgroups. For instance, the AGE histogram in Fig. 1(a) shows a
big “generation gap” between the two subgroups.

4.2. Informal evaluation and motivation for a formal study

A close collaboration between management and visualization
researchers was critical for the design of HIST. The domain experts
helped validate the design requirements and evaluate the design
iterations and prototypes. We adopted an iterative user participa-
tory design approach [35] in which the management researchers
participated in every step of the design process. First, we used the
real-world data collected by the management researchers [19] to
identify their information needs. The example data were valuable
for helping the visualization researchers understand the problem
and facilitate the second step involving iterative discussions of the
data and visualization design requirements. After ensuring that all
the requirements were captured, the visualization team sketched
several mockup prototypes using hypothetical team data and
gathered feedback from the management researchers. As the
design gains maturity, the subsequent steps involved design
implementation, testing and exploration with real-world data sets,
and analysis of tasks and questions for the user study.

Thus far, we have applied the prototypes to two real-world data
sets: Major League Baseball (MLB) teams (Fig. 2) and an empirical
faultlines study [19] (Fig. 3). The domain experts found the
representation helpful in inspecting subgroup structure of differ-
ent teams and in developing a sense of where the separations are

likely to occur following their configuration of the faultline
measures.

While the qualitative results from our informal evaluation are
encouraging, they have limitations. First, the evaluation is obser-
vational [36] and lacks controlled visualization techniques (control
groups) as well as various data sets with controllable character-
istics serving as ground truth answers. Second, our two manage-
ment researcher collaborators represent only a small set of
potential users of the visualization. The proposed faultlines visua-
lization, HIST, could potentially support a wide range of target
users: (1) management researchers who study faultlines and
subgroups theories [4], (2) human resources departments who
manage current employees and recruit new employees [37], and
(3) managers and officials from many areas concerning work
teams such as education, sports, and entertainment to name a
few. Third, thus far, the management researchers limited the use of
the faultline visualizations to data exploration only, accompanied
by further statistical analysis. The design of HIST targets both data
exploration such as data analysis and communication such as
charts in a publication or training. Finally, while HIST is designed
based on the requirements of faultlines and subgroup structures in
work teams, it can be potentially utilized to communicate dis-
tributions of clusters of multivariate objects in mixed-type data,
for example, to compare structures of functional groups in
ecological and microbiological data [8–10,38], as we mentioned
in the Introduction section.

To overcome these limitations and make the evaluation results
generalizable, in the next section, we extend our evaluation with a
controlled user study designed to understand the effectiveness of
a visual representation in a broader context of communicating
separations and distributions of clusters/subgroups of multivariate
objects in mixed-type data.

5. User study design and implementation

In this section, we describe the design and implementation of a
formal user study intended to evaluate the effectiveness of HIST at
communicating cluster separation and structure in the specific
context of team faultlines. In particular, we compare HIST to PCP
[11,12] and SPLOM [16], the two common techniques for repre-
senting clusters of multivariate objects. In fact, a previous study
has shown that the standard PCP and a PCP variant with
embedded scatterplots are the most effective among variants of
PCP for cluster identification tasks [14]. Fig. 4 depicts examples of
the three techniques.

Fig. 3. HIST representation of the subgroup structure of a team with strong faultlines (left view, Team 33) and a team with weak faultlines (right view, Team 80) from the
faultlines study data set [19]. Columns from left to right are Team ID, gender, age, company tenure, and education.
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Fig. 4. Example team of size 18 visualized using (a) HIST, (b) PCP, and (c) SPLOM. Distinct colors are used to differentiate the three subgroups: , , and
. While subgroup 3 is the biggest, subgroup 1 is the smallest. The three subgroups are totally separated along ETHNICITY, EDUCATION, and EXPERIENCE because

different subgroups occupy different subsets of values along these attributes. The three subgroups overlap in GENDER and AGE because there exist values of these attributes
shared by different subgroups. The faultline level is MEDIUM considering that the subgroups are totally separated in three out of five attributes. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this article.)

T. Pham et al. / Computers & Graphics 38 (2014) 117–130122



5.1. Task design and implementation

The task design includes three important components: (1) a set
of task-oriented questions, (2) a procedure for generating syn-
thetic team data, and (3) design of the three visualization
techniques under comparison.

User study task questions: The study contains six types of
questions intended to assess the capability of a particular visual
representation in conveying different aspects of team faultlines
(requirements R1–R3). Note that in accordance with the previous
cluster identification study [14], we design the tasks to be relevant
to both faultlines and general cluster representations of mixed-
type data and not tied to users with specialized knowledge of
demographics. Therefore, for each of the question types, we also
provide the equivalent generic evaluation question in parentheses.

Q1: How many subgroups are there in the given team? (generic
form: How many clusters are there in the data set?) (possible
answers: 1–7). This question type is designed to determine if a
representation technique supports users in identifying the number
of subgroups/clusters in a team/data set (requirement R3). This
type is equivalent to the only cluster identification task in the
previous study [14].

Q2a/b: Among the existing subgroups in the given team, which
one is the biggest/smallest? (generic form: Among the existing
clusters in the data set, which one is the biggest/smallest?) (possible
answers: Subgroup 1–7). These two types are intended to measure
the user's ability to determine evenness of subgroups or equiva-
lently, isolate subgroups/clusters that contain most and least
members/objects using a representation (requirement R3).

Q3: In which attributes are the subgroups totally separated?
(generic form: In which attributes are the clusters totally separated?)
(possible answers: the attributes under investigation). The goal of
this question type is to test if a representation technique supports
users in isolating the attributes that totally separate subgroups/
clusters and result in faultlines (or “cracks”) within a team
(requirement R2).

Q4: To what extent are the subgroups separated across all
attributes? (generic form: To what extent are the clusters separated
across all attributes?) (possible answers: Very Weak, Somewhat
Weak, Medium, Somewhat Strong, Very Strong). This question
type is intended to gauge how well a user can interpret and assign
a faultline level to a team using a visual representation (require-
ment R1). Within the scope of this study, the faultline level of a
team is determined by the number of attributes in which the
subgroups are totally separated. While this assessment does not
consider attributes with partial separation of subgroups as the way
the Fau measure (Eq. (1)) quantifies separation of subgroups, it
makes answering this task question more straightforward to
participants.

Q5: Between two different teams, which team has stronger
separation of subgroups? (generic form: Between two different data
sets, which one has stronger separation of clusters?) (possible
answers: Team A or Team B). This last question type is intended
to determine if a representation technique is discriminative
enough to allow a user to compare the faultline levels of two
teams depicted in two visualizations of the same technique
(requirement R1).

In our user study, each of the question types was asked
multiple times on different teams/data sets. We identified the
best answers to the questions based on the distribution of
members across subgroups and the attributes in which subgroups
are separable. These constructs are achieved using our synthetic
data generation procedure, which is described next.

Synthetic team data generation: For the study, it is difficult to
find real data sets that can serve as ground truth stimuli for the six
types of questions. Therefore, we create work teams formed from

automatically generated data sets. Technically, our method gen-
erates pre-clustered teams over a manually defined set of mixed-
type demographic attributes, where team size, number of sub-
groups, evenness of subgroups, and separation of subgroups are
controlled. The aim was to simulate teams with realistic distribu-
tions of members while controlling the faultlines and subgroup
structure.

In our setting, we have one variable X for each attribute, and
we hand-specify the categorical values or range of values for X.
To generate a team, we specify its input parameters including
the number of subgroups k, subgroup sizes fnigki ¼ 1, and the set of
attributes in which the subgroups are totally separated fXsg. Note
that n¼∑k

i ni denotes the size of the entire team. For each Xs, we
randomly partition its attribute space into k distinct subsets of
values following a multinomial distribution and we draw ran-
domly ni samples from each subset for each subgroup i. This
guarantees that the subgroups are totally separated in these
attributes fXsg. For the rest of the attributes fXnsg, we model the
distribution over its possible values either as uniform or skewed
distribution and we draw randomly n samples from each of these
distributions. We choose these specific distributions based on the
realistic distributions of the team demographics widely accepted
in management literature: uniform distribution corresponds to
diversity as variety and skewed (or relatively homogeneous) dis-
tribution corresponds to diversity as disparity [20]. For example,
while both genders may be uniformly represented in some teams
(e.g., student body), either male or female gender may be
dominant in other teams (e.g., organizational groups). Once the
samples are created for each of the attributes, we use the jth
sample for each attribute as the corresponding attribute value of
the jth member in the generated team. Finally, since the team is
already clustered into subgroups, we simply use the Fau formula
(Eq. (1)) to calculate the faultline strength value for the team.

In our generated teams, team members or objects are char-
acterized by the following five independent demographic attri-
butes. We chose these attributes because they are the most
commonly used in faultline literature [3].

� GENDER: F or M
� AGE: 20–60, discretized for HIST by steps of 5 corresponding to

a pre-defined rescale factor (Equation (1))
� ETHNICITY: T, U, V, W, X, Y, or Z
� EDUCATION (degree): A, B, C, D, or E
� EXPERIENCE (level): 0–9

While we believed that the study participants would be
familiar with these attributes, we used single-letter labels as
values of categorical attributes, e.g., T, U, V, … for ETHNICITY, to
prevent participants from associating their own knowledge of
demographics, e.g., ethnic differences, into their answers.

We generated teams whose sizes range from four to 50
members and number of subgroups range from two to seven.
The teams with at most 16 members were considered small teams.
The teams with more than 16 and less than 50 members are
considered large teams to simulate other workgroup settings such
as online volunteer groups [6,7].

Visual representations: Fig. 4 presents examples of stimulus
materials of the three techniques under comparison. The design of
HIST (without visual enhancements) was described in Section 4. In
our design of PCP and SPLOM, we also use distinct color hues to
differentiate subgroups. To prevent total occlusion due to data
overlap, both PCP polylines and SPLOM dots are drawn at a
constant opacity of 40% and 60%, respectively. The opacity encod-
ing matches our PCP implementation with that of Holten and Van
Wijk [14]. Furthermore, we employed a jittering technique [16] to
alleviate data overlap issues in SPLOM.
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The resolution of each image produced by the three techniques
was 630�430 pixels. Each visualization image was accompanied
by a subgroup color legend of 80�270 pixels. We chose these
resolutions to ensure that visualization images would fit into a
standard 1024�768 pixel screen without requiring any scrolling—
the usable screen space for a web page is approximately 960�600
pixels.

5.2. Experiment design and implementation

Participants. Participants were recruited from Amazon's
Mechanical Turk (mTurk), a popular crowdsourcing Internet mar-
ketplace which has been shown to be a viable platform for gra-
phical representation experiments [39]. The marketplace allows
requesters to post jobs, also called Human Intelligence Tasks or
HITs, for a large pool of users (or turkers) to consider and com-
plete. Since mTurk is a world-wide marketplace, we targeted
our participants specifically to those registered in the US with
normal vision, at least 95% “approval” rating, and at least 100 tasks
approved. After passing the color blindness qualification test
hosted on the mTurk website, each participant visited our external
study website, read an explanation of the research study (in lieu of
a signed consent form), and was randomly assigned to a visualiza-
tion technique. The qualification test, which is based on the
Ishihara Color Test [40], was to detect and exclude interested
individuals with color blindness.

In total, 57 participants completed the study or 19 for each
visualization technique. They represented a diverse range of
majors/occupations, gender, and ages (Fig. 5). Most of them were
unfamiliar with the field of InfoVis. In addition to the 57 partici-
pants, we excluded 10 participants who stopped at the beginning
or in the middle of the study. These withdrawn participants are
evenly distributed across the three techniques: 4 for HIST, 3 for
PCP, and 3 for SPLOM.

Experiment design and procedure: We followed a randomized
between subjects study design where the primary factor consisted
of three levels (HIST, PCP, SPLOM). Each of the techniques was

randomly assigned to each of the participants. We used a common
collection of synthetic team data sets for each of the three
visualization techniques.

A participant first completed a short tutorial that explained the
technique. The tutorial included several baseline visualization
examples of very strong, weak, and medium faultline levels. The
participant then answered six task questions of each of the types
described earlier: three for smaller teams and three for larger
teams. During a question, the participant could access a visualiza-
tion example with annotations highlighting various aspects of
faultlines. Note that the questions of one type are the same, but
each one is asked about visualizations of different data sets. The
ordering of question types was randomized across participants,
but all questions of the same type were asked as a block. The
ordering of questions in each type was also randomized to avoid
ordering effects, such as primacy and recency effects, among
participants. In total, the number of task questions was 36.

Following the data collection approach in previous work
[14,26], we assigned an error distance to each participant's
response to measure how far each response was from the correct
answer. We identified the correct answers from the distribution of
members across subgroups and the attributes in which subgroups
are separated. These constructs are achieved using our data
generation procedure described earlier. We also collected the total
time participants spent on each response.

In addition to the questions of type Q1–Q5 at the end of the
study, the participants answered a short questionnaire about their
experience with each technique. This questionnaire contained
both Likert-style questions as well as open-ended questions (see
Appendix A). We discuss the study results in the next section.

6. User study results

Initially, we hypothesized that for each type of question, HIST
would outperform PCP and SPLOM, both in terms of accuracy and
response time. Specifically, we expected users would have

Fig. 5. Participants of the user study visualized using multiple stacked histograms. The visualized attributes, from left to right, are gender, age range, race, major/occupation,
familiarity with InfoVis (yes or no), and familiarity with computer graphics (yes or no). Participants of the three techniques are differentiated by distinct colorbrewers: ,

, and . While the three groups of participants were mixed in most of the attributes, they collectively represented a diverse range of majors/occupations, genders,
and ages. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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difficulty accurately identifying evenness of subgroups (Q2) and
separation attributes (Q3) using PCP or SPLOM due to occlusion
and visual clutter that may occur with increasing number of
objects (i.e., large teams). A secondary factor of the study was to
determine whether data set/team size affected participants' ability
to judge information on diversity faultlines using a visualization
technique.

For each question type, we computed the mean of error
distances and the mean of response times across the questions
of that type for each participant and compared these aggregated
values using hypothesis testing. Since the response data were not
normally distributed, we first applied a rank transformation [41] to
the data before using ANOVA for statistical tests. Fig. 6(a) and
(b) summarizes the error distance and response time results,
respectively. We pay more attention to error distance when
analyzing the results because it is the most important perfor-
mance measure for a given representation. With respect to user
performance, our results show that (1) across the tasks, users can
judge faultlines using HIST as or more accurately than when using
the other two methods and (2) HIST performance holds consistent
across task questions and data set sizes.

Results for Q1. How many subgroups are there in the given team?
As Fig. 6 indicates, participants answered Q1 questions more
accurately with HIST and SPLOM than with PCP. In fact, there
was convincing evidence for an effect of visualization technique on
error distance, Fð2;54Þ ¼ 10:01, p¼0. Post-hoc analysis using
Tukey's HSD (honestly significant difference) revealed convincing
evidence for an error distance difference between HIST and PCP
(pHIST�PCP ¼ 0) but no evidence for such a difference between HIST
and SPLOM (pHIST� SPLOM ¼ 0:255). Interestingly, when analyzing
data separately over small and large teams, we could not find
evidence for such a difference between HIST and PCP for small
teams (pHIST :small�PCP:small ¼ 0:277). In addition, there was no evi-
dence of the effect of visualization on response time.

The results for Q1 suggest that users can identify the number of
subgroups existing in a team equally well using both HIST and
SPLOM, and PCP for only small teams. We suspect that encoding
subgroups with unique colors make identifying the number of
subgroups or clusters straightforward. However, PCP performance
decreases when data size increases. We suspect crowded and
overlapping poly lines may hinder participants from determining
the correct number of subgroups in a team. Our results agree with
the previous study [14] that SPLOM performs better than PCP on
cluster number identification tasks, both for implicit and explicit
clusters.

Results for Q2a/b. Among the existing subgroups in the given team,
which one is the biggest/smallest? The results for Q2 very much
favored HIST (Fig. 6). For Q2a—which involves the biggest subgroup
—there was convincing evidence for an effect of visualization on
both error distance, Fð2;54Þ ¼ 9:809, p¼0 and response time

Fð2;54Þ ¼ 10:87, p¼0. Tukey's HSD multiple comparison tests
showed statistically significant differences between HIST and PCP
as well as between HIST and SPLOM in terms of error distance
(pHIST�PCP ¼ 0; pHIST� SPLOM ¼ 0:001) and response time (pHIST�PCP

¼ 0:002; pHIST�SPLOM ¼ 0). The results for error distance held
consistent when small and large teams were analyzed separately.
The results for Q2b were similar to Q2a's, with participants tending
to identify the smallest subgroup more accurately with HIST. With
respect to error distance, Tukey's HSD tests revealed convincing
evidence for the difference in the two pairs of techniques
(pHIST�PCP ¼ 0; pHIST�SPLOM ¼ 0). Interestingly, when we analyzed
error distance data separately over small and large teams, the
results held true for large teams only. With small teams, while we
found a statistically significant difference between HIST and PCP
(pHIST :small�PCP:small ¼ 0:014), there was no such evidence when
comparing HIST and SPLOM (pHIST :small� SPLOM:small ¼ 0:890).

The results confirm our hypothesis that users would make
better judgments about subgroup evenness with HIST than with
SPLOM or PCP. Again, PCP is the least favorable choice for this task
perhaps due to both occlusion caused by data overlap and visual
clutter caused by large data sets. As the results suggest, data
overlap also hurts SPLOM's performance, especially when the task
involved identifying the biggest subgroup in large teams. In
contrast, participants using HIST produced consistent answers
for both smallest and biggest subgroups and independent of the
data set size.

Results for Q3: In which attributes are the subgroups totally
separated? The results also favored HIST (Fig. 6). We found
statistically significant effects of visualization on both error dis-
tance, Fð2;54Þ ¼ 17:58, p¼0 and response time Fð2;54Þ ¼ 12:15,
p¼0. Tukey's HSD tests yielded significant differences between
HIST and PCP as well as HIST and SPLOM on both error distance
(pHIST�PCP ¼ 0; pHIST�SPLOM ¼ 0:001) and response time (pHIST�PCP ¼
0:013; pHIST� SPLOM ¼ 0). The results held true when we analyzed
error distances for small and large teams separately.

These results confirm our initial hypothesis that HIST is the
most effective in supporting users in determining attributes in
which subgroups/clusters are totally separated, followed by
SPLOM and PCP. This finding is important considering that to the
best of our knowledge, no previous work has explored the use of
stacked histograms to show the separation of clusters in individual
attributes.

Results for Q4: To what extent are the subgroups separated across
all attributes? The results somewhat favored HIST, which showed a
statistically significant effect of visualization technique on error
distance, Fð2;54Þ ¼ 4:047, p¼0.023. Tukey's HSD multiple compar-
ison tests reveal convincing evidence of the error distance differ-
ences between HIST and PCP as well as suggestive but inconclusive
evidence of the error distance differences between HIST and
SPLOM (pHIST�PCP ¼ 0:019; pHIST� SPLOM ¼ 0:161). When error

Fig. 6. Boxplots of mean of error distances (a) and of response times (b) for each question type as a function of visualization technique ( , , and ).
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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distance data are analyzed separately over small and large teams,
the results hold true for small teams only. These results suggest
that users would be able to assign a faultline level to a given team
at least as accurately using HIST as using PCP or SPLOM.

Results for Q5: Between two different teams, which team has
stronger separation of subgroups? While there was convincing
evidence for an effect of visualization technique on response time,
Fð2;54Þ ¼ 3:554, p¼0.036, evidence for an effect of visualization
on error distance was suggestive but inconclusive, Fð2;54Þ ¼ 2:566,
p¼0.086. Post-hoc analysis reveals that users answered this
question the most quickly using HIST (pHIST�PCP ¼ 0:053;
pHIST�SPLOM ¼ 0:076). In addition, it is suggestive that response
accuracy favored HIST over PCP (pHIST�PCP ¼ 0:092) but not SPLOM
(pHIST�SPLOM ¼ 0:909). While these results do not support our initial
hypothesis that users would perform more accurately with HIST
than with SPLOM, they do substantiate our hypothesis that users
would be able to compare the faultline level of two teams the most
quickly when using HIST.

Result summary: The results across Q1–Q5 consistently sup-
ported our hypothesis that among the three techniques under
investigation, HIST—followed by SPLOM and PCP—is the most
effective representation in supporting users investigating faul-
tlines (requirement R2) and inner structure of subgroups (require-
ment R3) in a given team. For the task involving assigning a
faultline level to the team (requirement R1), HIST is at least as
effective as SPLOM and PCP. Moreover, users can identify the
number of subgroups existing in a team equally well using both
HIST and SPLOM. Conversely, PCP performs the worst consistently
across the tasks.

These results are complementary to the findings from the
previous diversity visualization studies by Pham et al. [25,26],
which showed that multiple histograms are well-suited to com-
municate the diversity or distribution of objects over multiple
attributes separately. Within our study, we could conclude that the
multiple linked stacked histograms technique, which takes the
approach of attribute visibility (or object distribution) as opposed
to object visibility, is well-suited to communicate diversity faul-
tlines and composition distribution in teams.

6.1. Subjective evaluation

After answering the task questions, participants also completed
a short questionnaire requesting their thoughts on the visualiza-
tion technique and their study experience. The questionnaire
consisted of 10 Likert-style statements and three open-ended
questions, which we adopted from [25,42], as well as four NASA
TLX questions [43] (see Appendix A).

We first discuss the results for the Likert-style statements and
NASA TLX questions. Fig. 7 presents the responses to each of the
Likert-style statements from the samples of HIST, PC, and SPLOM

participants. Overall, the level of agreement from participants was
slightly higher for HIST than for PCP and SPLOM regarding making
judgments of diversity faultlines components (L01–L05). This
evaluation is consistent with participant performance during the
task questions. Notably, we found statistically significant differ-
ence in level of agreement among the three groups of participants
when it comes to identification of attributes with total subgroup
separation (L3)–the primary task to judge faultlines in a
team–Fð2;54Þ ¼ 5:14, p¼0. Tukey's HSD tests show significant
differences between HIST and PCP as well as between HIST and
SPLOM (pHIST�PCP ¼ 0:02; pHIST� SPLOM ¼ 0:02). The participants also
slightly favored HIST over PCP and SPLOM in terms of applicability,
ease of understanding, and affinity (L06–L10). These results are
supported by the NASA TLX questions (Fig. 8), which showed
significant differences on mental demand (TLX1) and frustration
(TLX4) among the three methods, p¼0.016 and p¼0.02 respec-
tively.

In addition to quantitative analysis, we also performed quali-
tative analysis of the three open-ended questions. Overall, nine
participants (out of 19) praised HIST for its effectiveness and ease
of use, especially the use of qualitative colors for encoding
subgroups (seven participants). However, four participants found
it difficult to compare the small differences among bar lengths.
As an improvement, they suggested that we selectively attach
numbers in the bars. This suggestion is interesting considering
that despite the stacking of multiple subgroups, HIST still has
screen space to accommodate more information. Regarding PCP,
three participants (out of 19) liked its layout, which was novel to
them and was able to represent multiple attributes in a single
view. Nevertheless, eight participants expressed concern about
transparency of polylines, which are difficult to discern especially
when they are of similar colors, e.g., red and orange. Seven
participants also mentioned that the charts become extremely
overwhelming for large data sets. Commenting on SPLOM, three
participants (out of 19) liked the technique for its familiarity and
ease of understanding. However, similar to PCP, five participants

Fig. 7. Boxplot of responses to each of 10 Likert-style statements as a function of visualization method ( , , and ). The participants were asked to indicate
their level of agreement on a scale of 1 (strongly disagree) to 5 (strongly agree). (For interpretation of the references to color in this figure caption, the reader is referred to
the web version of this article.)

Fig. 8. Boxplot of responses to each of four NASA TLX questions as a function of
visualization method ( , , and ). The participants were asked to
indicate the level on a scale of 1 (very low) to 10 (very high). (For interpretation of
the references to color in this figure caption, the reader is referred to the web
version of this article.)
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disliked the similar colors among dots. Additionally, ten partici-
pants requested bigger charts or the zoom-in ability. This con-
firmed our initial assessment that without interaction techniques
[44], the matrix form space requirement of SPLOM is a limitation.

7. Faultlines visualization enhancement

To further facilitate the faultlines identification tasks, we incor-
porate computational analysis into HIST. The visual enhancement is
inspired by the analogy between team faultlines and the physical
layered form of geological faultlines, as first introduced by Lau and
Murnighan [1], in a sense that teammembers' multiple demographic
attributes resemble multiple layers of the earth's crust. We augment
the representation with connecting dashed lines to indicate the
holistic boundaries of existing separation among the subgroups
across the attributes of interest or “layers” (Figs. 2 and 9). To our
knowlegde, this visual enhancement is novel considering that while
measures exist to detect separable clusters of quantitative data in 2D
scatterplots [15,45], measures and enhancements for mixed type
data in stacked histograms are non-existent.

Technically, the augmentation requires three main computation
procedures: (1) reordering values in attribute space, (2) identifying
attributes with total subgroup separation, and (3) drawing the lines.

7.1. Reordering of attribute values

The first step is to reorder values within nominal attributes to
reveal meaningful boundaries among subgroups along the corre-
sponding axes. For each attribute X, we first construct the
corresponding contingency table (or matrix), A, by subgroups.
Second, we reorder attribute values or matrix rows by optimizing
the Bertin Classification Criterion (BCC), as illustrated in Fig. 10.
The criterion, which is proposed by Pilhöfer et al. [17] and related
to Kendall's τ [46], is an implementation of Bertin's idea that
reordering of data would improve the understandability of gra-
phical displays [47]. The goal is to minimize

BCCðXÞ ¼ ∑
i4 i′;jo j′

AijAi′j′ ð2Þ

where Aij denotes the entry value at row i and column j and
similarly, Ai′j′ the entry value at row i′ and column j′. Note that
optimization of BCC does not indicate whether total separation of
subgroups/clusters occurs within an attribute. Also note that since
we want to preserve the stacking order of subgroups, that is,
subgroup 1—red followed by subgroup 2—blue and subgroup
3—green as in Fig. 9, this first step optimizes BCC by re-
arranging attribute values only, instead of both subgroups and
attribute values.

7.2. Total separation criterion

The second step is to determine if total separation of sub-
groups/clusters occurs within an attribute X. Technically, if X is a
nominal attribute, total separation occurs when each row (attri-
bute value) of the matrix is fully contained in exactly one column
(subgroup). In other words, different subgroups share no common
attribute values, or

RðXÞ ¼ ∑
i ¼ i′;ja j′

AijAi′j′ ¼ 0 ð3Þ

If X is a numeric or ordinal attribute, total separation of
subgroups further requires that rows fully contained in one
specific column must be contiguous, or BCCðXÞ ¼ 0, assuming that
the ordering of subgroups (or matrix columns) are optimized to

Fig. 9. The HIST representation of the example team (Fig. 4(a)) enhanced with connecting dashed lines to indicate the boundaries of separation among subgroups across the
attributes. Within each of the nominal attributes, categories are clustered using Bertin Classification Criterion. Attribute axes are sorted using the Total Separation Criterion.
The lines show that the three subgroups are totally separated along EDUCATION, ETHNICITY, and EXPERIENCE.

Fig. 10. Reordering of categories in attribute EDUCATION of synthetic Team 2
(Table 1 and Fig. 1) by optimizing BCC. The goal is to arrange the matrix rows to get
close to a pseudo-diagonal form [17] and to reveal the boundary among subgroups.
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achieve the pseudo-diagonal form of the matrix [17]. Combining
the two requirements, total separation of subgroups occurs within
an attribute X when

TSCðXÞ ¼ RðXÞþminðBCCðXÞÞ ¼ 0 ð4Þ
We refer to TSC as Total Separation Criterion: Its values are also

used to reorder attribute axes in ascending order from left to right
(Fig. 9) before executing the faultlines drawing algorithm. Note
that for the purpose of computing TSC, this step simply calculates
BCC with different permutations of subgroups (or matrix col-
umns), as opposed to actual re-arrangement of attribute values
as in the first step.

7.3. Faultlines drawing algorithm

For each of the attributes with total separation of subgroups,
since its values are already in optimal ordering after the first two
steps, our algorithm simply traverses the values and marks the
boundary between two adjacent subgroups. The traversal also
wraps around the values to include the boundary between the two
subgroups occupying the top and bottom values along the attri-
bute axis. Finally, we draw a dashed polyline along the boundaries
of the two specific subgroups across the attributes with total
separation of subgroups. Note that values of nominal attributes
without objects (zero-length bars) can be selectively excluded to
adjoin boundaries among subgroups. We also apply a jittering
technique to alleviate the possible overlap of vertical line seg-
ments (Fig. 9). Our informal test indicates that real-time computa-
tion of the lines is reasonably fast on a typical desktop PC.

8. Discussion and future work

In this paper, we propose, design, and evaluate visualization
solutions to a new and worthwhile domain-specific problem
concerning separation and structure of multivariate clusters
instantiated in the context of diversity faultlines in work teams.
Like most studies, ours has limitations that we discuss here along
with suggested directions for future work as well as implications
of our work for other application domains that concern cluster
structure and separation.

8.1. Study design issues

First, our study evaluated static visualizations only to first under-
stand the merits and shortcomings of HIST, SPLOM, and PCP as
standalone representations. Since the faultline concept is still new to
end-users, e.g., managers, and no visualization solution exists, we
must begin by understanding representation approaches that are
linked to generic clustering. This decision was also made to keep the
study implementation feasible in the online setting of mTurk. Future
work will address the interactive capabilities of HIST. For example,
interaction features can potentially allow users to configure their
faultline requirements, such as faultline measures, attributes of
interest, and rescale factors for each of the examined attributes.

Second, while we collected response time, we did not set a time
limit for each question considering that the online setting of the
study may be associated with more interruptions than in a lab
setting. The online setting could be a factor that caused several
unexpected outliers as shown in Fig. 6(b). Nevertheless, these
outliers were counter-balanced among the three visualization
techniques and we applied a rank transformation [41] to the data
before performing statistical tests.

Third, faultlines visualization enhancement, such as reordering
of attribute values and drawing of connecting dashed lines, also

requires formal evaluation. Early feedback from our management
researcher collaborators were highly positive—they praised the
enhancement for its simplicity and usefulness. However, an inter-
esting point was suggested regarding reordering of attribute
values not only in nominal attributes—as currently implemented
—but also in ordinal and discretized quantitative attributes. The
aim would be to make the separation of subgroups along the
dashed lines more clear-cut (i.e., no crossing lines) but at the
expense of losing the information on the possible distance/gaps
among subgroups in ordinal and quantitative attributes. A follow-
up user study of such trade-off in design choices with target users
such as managers would be a potential direction for future work.

8.2. Limitations of HIST

Multiple histograms also have limitations. First, the technique
requires a discretization of quantitative attributes. Second, since
the technique treats each attribute independently, it provides
limited insight into the correlation between attributes, at least
with the static representation. On the other hand, PCP is well-
suited to showing the correlation between two neighboring
attributes. To enable correlational analysis in HIST, we envision
that PCP polylines can be selectively overlaid to allow the user to
inspect the relationship among attributes as well as individual
objects. Alternatively, it would be informative to consider
approaches that decouple the primary faultlines/subgroups view
from a relationship view where correlations are shown, for
example, in a scatter plot matrix.

With regard to scalability, HIST is scalable to the number of
visualized objects. Nevertheless, like many other multivariate
representation techniques, screen space is a limiting factor when
the number of dimensions increases. As a remedy, the HIST design
places histograms vertically side-by-side—as opposed to horizon-
tally—to allow more attributes to fit in a wide-screen display as
well as to facilitate the placement and reading of labels from left to
right. Across the three examined techniques, scaling with the
number of clusters or subgroups would also be limited by the
number of distinct qualitative color hues perceivable to the human
eye. Harrower and Brewer provide detailed guidelines for qualita-
tive color schemes in their ColorBrewer paper and tool [34].
Besides color hues, future work would investigate other encodings
(e.g., textures or patterns) or combination of encodings to improve
scalability in terms of the number of clusters.

On a related note, implementing an interactive faultlines
visualization would require efficient faultline measures as an
external data clustering step. Nevertheless, to our knowledge,
there are currently no well-established measures that would be
scalable to large teams with multiple subgroups [3]. We suspect
that modern cluster algorithms from the field of data mining such
as Affinity Propagation [48] deserve further investigation for the
faultline measurement challenge. These algorithms may prompt
revision of HIST and other cluster representations.

8.3. Implications of faultlines and HIST in other domains

To further show that the faultlines concept in management
corresponds well to functional diversity in ecology, as mentioned
in the Introduction section, we also apply the multiple linked
stacked histograms representation (HIST) to visualize the two
groups/clusters of common moths and rare moths from the moth
data set [49] (Fig. 11). To some extent, the two groups are
equivalent to functional groups in functional diversity. The results
are encouraging. The visualization provides insights into the
separation between the two groups with respect to species, genus,
and family as well as food plant: common moths are mostly
conifer-feeders (i.e., gymno) and rare moths are mostly hardwood-
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and herb-feeders grass-feeders (Fig. 11). Readers interested in the
ecological viewpoint are encouraged to refer to Petchey and
Gaston [9,10] and Ramette [50] for in-depth reviews of cluster
analysis techniques for ecological and microbial diversity data,
respectively.

Finally, we are also intrigued by the possibility of investigating
faultlines in online collaborations and other social contexts such as
political science. There have been studies of the effects of group
diversity on productivity as well as member withdrawal behaviors
among Wikipedia projects [7], however, the effects of attributes
are studied one at a time. In future work, it will be informative to
re-visit the problem and investigate the effects of multiple
attributes simultaneously with diversity faultlines as the primary
measure. In addition, political science, which studies demographic
diversity and how diversity relates to voting patterns and election
results, opens another area that may benefit from faultline-based
visualization.

9. Conclusion

We present the first study exploring the design space for
graphical representation of team faultlines, a fundamental con-
struct in management that shares many characteristics with
clustering in computation. In doing so, we contribute (1) the novel
application and refinement of existing stacked histograms techni-
que to the faultlines visualization in particular and visual analysis
of cluster structure and separation in multivariate mixed data

in general, (2) a rigorous evaluation of the effectiveness of the
proposed technique, (3) additional visual enhancements and
metrics to further facilitate the faultlines identification tasks.
To visualization researchers, the findings from our study suggest
the need for revisiting cluster representations in general and
investigating techniques for the important problem of faultlines
in particular. To management researchers, our proposed visualiza-
tion provides a useful means to conceptualize visually the output
of faultlines measures, a requirement which is extremely difficult
to achieve with a table-based assessment. We also hope that
the visualization will help bring the benefits of studying faultlines
to more end-users such as managers or human resources depart-
ments.
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Appendix A. Subjective evaluation questionnaire

After answering the task questions, participants also completed
a short questionnaire requesting their thoughts on the visualiza-
tion technique and their study experience. The questionnaire

Fig. 11. Two groups (or clusters) of and visualized using HIST. Since the common moths are much more abundant than the rare moths, the length
of each bar is scaled according the logarithm with base 10. Within each of the nominal attributes, categories are clustered using Bertin Classification Criterion. Attribute axes
are sorted using the Total Separation Criterion. The view suggests that the two groups are far apart with respect to species, genus, and family as well as food plant—attribute
axes 1–4 from left to right. However, the two groups overlap in the other attributes. The structure of the moth data set is described in [25].
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consisted of 10 Likert-style statements, four NASA TLX questions,
and three open-ended questions:

� L1. I was able to identify the number of subgroups in a team
using the chart.

� L2. I was able to identify the biggest/smallest subgroup in a
team using the chart.

� L3. I was able to identify attributes in which the subgroups
were totally separated using the chart.

� L4. I was able to judge the overall degree of separation (fault-
line strength) in the team using the chart.

� L5. I was able to identify between two different teams, which
team had stronger separation of subgroups.

� L6. After the initial tutorial session, I knew how to use the
chart well.

� L7. After answering all of the questions, I knew how to use the
chart well.

� L8. There are definitely times that I would like to use the chart.
� L9. I found the chart to be confusing.
� L10. I liked using the chart.
� O1. What aspect(s) of the chart did you like most?
� O2. What aspect(s) of the chart did you dislike most?
� O3. If possible, how would you change the chart to improve it?
� TLX1. Mental Demand: How mentally demanding were the task

questions?
� TLX2. Physical Demand: How physically demanding were the

task questions?
� TLX3. Temporal Demand: How hurried or rushed was the pace

of the task questions?
� TLX4. Frustration: How insecure, discouraged, irritated,

stressed, and annoyed were you?

Appendix B. Supplementary data

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.cag.2013.10.009.
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